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ABSTRACT

Goal specification is an important aspect of designing autonomous agents. A

goal does not only refer to the set of states for the agent to reach. A goal also de-

fines restrictions on the paths the agent should follow. Temporal logics are widely

used in goal specification. However, they lack the ability torepresent goals in a

non-deterministic domain, goals that change non-monotonically, and goals with

preferences. This dissertation defines new goal specification languages by extend-

ing temporal logics to address these issues.

First considered is the goal specification in non-deterministic domains, in which

an agent following a policy leads to a set of paths. A logic is proposed to distinguish

paths of the agent from all paths in the domain. In addition, to address the need of

comparing policies for finding the best ones, a language capable of quantifying over

policies is proposed. As policy structures of agents play animportant role in goal

specification, languages are also defined by considering different policy structures.

Besides, after an agent is given an initial goal, the agent maychange its ex-

pectations or the domain may change, thus goals that are previously specified may

need to be further updated, revised, partially retracted, or even completely changed.

Non-monotonic goal specification languages that can make these changes in an

elaboration tolerant manner are needed. Two languages thatrely on labeling sub-

formulas and connecting multiple rules are developed to address non-monotonicity

in goal specification.

Also, agents may have preferential relations among sub-goals, and the preferen-

tial relations may change as agents achieve other sub-goals. By nesting a compar-

ison operator with other temporal operators, a language with dynamic preferences

is proposed.

Various goals that cannot be expressed in other languages are expressed in the

proposed languages. Finally, plans are given for some goalsspecified in the pro-

posed languages.
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Chapter 1

INTRODUCTION

Reasoning about actions and their effects in changing the environment is an impor-

tant aspect in designing autonomous agents. Systematic design of semi-autonomous

agents involves specifying (i) domain description: actions that an agent can do, their

impacts, environment, and etc.; (ii) control execution of an agent; and (iii) directives

for an agent. There has been a large body of work on (i) [FN71, Ped87, GL98a] and

a significant amount of work on (ii) [Sch87, BG00, DLPT02, BDH99]. However,

there has been relatively less work on (iii), which is often referred to as goal spec-

ification. This dissertation focuses on (iii) and its relations with other components

in agent design. In specifying goals of an agent, temporal logics are widely used.

However, there are many interesting goals which cannot be expressed using exist-

ing temporal logics. For example, a lot of interesting goalsin non-deterministic do-

mains cannot be represented. Existing temporal logics are not able to handle elabo-

ration tolerance in goal specification. Also, existing logics are not able to represent

preferences that may change dynamically in specifying goals of an agent. This

dissertation extends existing temporal logics in different directions to cover them.

The following section begins with the components in designing a semi-autonomous

agent.

1.1 Agent Design

In designing an agent, components considered are the environment of an agent, the

ability of an agent, and the requirements for an agent.

The environment of an agent is often modeled as a transition graph. It defines

states and actions in a domain, the value of each fluent in eachstate, and the ef-

fects of executing an action in each state. In planning community, STRIPS [FN71],

1



ADL [Ped89], and PDDL [McD00] are defined to model effects of actions. In rea-

soning about actions community, different mechanisms suchas state calculus [MH69,

Rei91], event calculus [KS86], action language [GL98b], fluent calculus [Thi98]

are proposed to precisely represent the transition graph, especially for modeling the

frame problem [MH69]. These logics are also extended to model different proper-

ties of a reasoning task or different properties of a domain.

The second aspect in automatic agent design is to define the ability of an agent.

Given a transition graph, ability of an agent is often modeled as a policy program, or

a policy structure of the agent. For example, in a deterministic domain, each agent

might execute a sequence of actions to achieve its goal. It may also take actions by

following a mapping from states to actions. In a non-deterministic domain, besides

the two definitions above, a policy may also be a mapping from sequences of states

to actions [HF85, AHK02, BDH99]. In a multi-agent setting, actions taken by one

agent may depend on its knowledge about the domain and other agents. In a domain

where agents have sensing actions, actions taken by one agent may depend on other

properties of the transition graph. There are also other definitions of the policy

structure, where each definition of the policy structure specifies the ability of an

agent. Once the ability of an agent is specified, a plan or a policy of the agent is

one instance of its policy structure.

Given an agent with a policy structured defined, the agent executes in an envi-

ronment leads to a structure of states. Requirements users have for the agent are

then defined as goals. A goal is not necessarily about a set of states for the agent to

reach. It may also define how the agent behaves before reaching one of the desired

states. Given that a trajectory is a sequence of states, eachgoal in a goal specifica-

tion language specifies a trajectory, or a set of trajectories resulted from executing

a plan or a policy in the domain. Each goal of an agent distinguishes the set of

desired policies from undesired ones for the agent. This is necessary in designing
2



autonomous agents, as often an agent needs to be given a directive – a high level

goal specification – regarding the behavior desired from it.Directives given to the

agent may not easily be described. The following section elaborates on why a goal

specification language is needed and why existing goal specification languages are

not adequate in representing some interesting requirements for the agent.

1.2 Goal Specification with Temporal Logics

In most cases, a goal is considered as a set of states satisfying some properties. An

agent satisfies a goal if it finds a path in the transition graphto one of the states.

Currently, most planners in the planning community are trying to find a plan to

reach one of the states.

However, besides reaching a set of states, there are other requirements for an

agent. The need of specifying goals of an agent was first proposed in [McC59,

MH69]. Since then, comparing to other components in autonomous agent design,

there is relatively less work in the goal specification aspect of agent design. Tem-

poral logics such as LTL [Pnu77] and CTL∗ [EC82, ES89, Eme90] are introduced

in representing goals of an agent.

If an agent is to reach a state, there are requirement on how the state is reached.

If an agent is asked to maintain some properties, there is no final states to reach.

In both cases, linear temporal logic (LTL) can be used in specifying properties of a

sequence of states of reaching a state or maintaining a configuration.

Also, there are requirements on other paths other than the path taken by the

agent. For example, as the agent driving from a city to the other city, it may be

required to have a gas station in 4 miles at any time before arriving in the destina-

tion. Note that the 4 miles driving to the gas station may not on the main path of

the agent. Branching time logics such as CTL and CTL∗ can be used to deal with

such branches in goal specification.

3



Many extensions of linear and branching time temporal logics are used for

goal specification. For example, LTL and CTL∗ are extended to have metric in-

tervals [BK98] or qualitative measures on elapsed time between the occurrences

of the events [Pnu77]. Also in a timed transition system, by defining a cost func-

tion on CTL states and paths, min-max CTL [DCDS01] was proposed by allowing

the quantification of CTL states and paths. Languages ATL and ATL∗ [AHK02]

extend LTL and CTL∗ to game-like multi-agent systems to quantify over paths of

each agent. Besides these, temporal logics are often suggested for specifying non-

Markovian rewards [BBG96, BBG97, TGS+06] in the decision theoretic planning

community.

Most of the temporal logics mentioned above were developed in the context of

program specification and model checking [HNSY92]. This dissertation shows that

in representing goals of an agent, some properties of goal specifications that are not

exist in model checking need to be addressed. For example, there are no goals of

the kind “trying one’s best” in specifying a program while a user may have a goal

for an agent to try its best to reach a state.

In defining a goal specification language, the first question is that “what is a

goal?”. A goal is considered as a mapping from possible trajectories for the agent

to choose to sets of trajectories (or sets of set of trajectories) chosen by the agent,

where each trajectory is a sequence of states. A plan of an agent satisfies one goal if

for all domains, the trajectory (or the set of trajectories)of the plan is one element

in the set.

There are some limitations of existing goal specification languages. This dis-

sertation addresses these limitations by extending existing goal specification lan-

guages. CTL∗ is extended toπ-CTL∗ and P-CTL∗ to capture goals in non-deterministic

domains. Languages N-LTL and ER-LTL are proposed to address non-monotonicity

in goal specification. Also, language Pref-π-CTL∗ is proposed to address goals with
4



dynamic preferences.

The following sections elaborate on the importance of the proposed extensions.

Goal Specification in Non-deterministic Domains

Goal specifications in a non-deterministic domain are firstly considered. Non-

deterministic domains have some properties that are not captured in existing lan-

guages. For example, in a non-deterministic domain, due to non-deterministic ef-

fects of actions, each plan leads to a set of trajectories. Tocapture properties of

the plan, Dal Lago, Pistore, and Traverso [DLPT02] suggest that trajectories in the

plan need to be distinguished from all trajectories in the domain. Instead of defining

a new language as in [DLPT02], by extending CTL∗, a languageπ-CTL∗ is pro-

posed in this dissertation based on the same observation. Also, as there are multiple

plans in a domain, it is necessary to compare properties of plans before choosing

a particular set of plans among them. The way of comaring plans is referred to as

quantifying over policies [AHK02]. This dissertation proposes language P-CTL∗

to capture the motivation of quantifying over policies for goal specification. These

two languages are discussed in Chapter 3. Now, the transitiongraph in Figure 1.1

is illustrated to show the importance of policies in defininga goal specification

language.

Assuming that the agent is in states1, the goal of the agent is to “try its best”

to reach a state wherep is true. In order to achieve “trying its best”, the agent

should be able to know all policies it has, and should be able to compare them. The

goal of “trying its best” may have an interpretation that “ifthere is a policy in the

domain with some desired properties, the policy taken by theagent should have

such properties”. In states1 of the transition graph in Figure 1.1, as there is a policy

which is a mapping from states to actions to reachp, the policy that takes actiona6

in states1 is not trying its best in reachingp. Similarly, properties of policies can
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Figure 1.1: Transition diagram in a non-deterministic domain

be compared so as to find the most preferred policy. In particular, this dissertation

shows that by grouping trajectories in the same policy, and by quantifying over

policies, any policy in this example can be distinguished from other policies by

comparing different properties policies have.

Non-monotonicity in Goal Specification

After an agent is given an initial goal, the agent may change its expectations or

the domain may change. Thus the agent may modify, enhance, ordiscard previ-

ously specified goals. The agent may also make one change after another on its

initial goal. The following example illustrates the needs of non-monotonicity in

goal specification.

Example 1. John has an agent in his office that does errands for him. John may

ask the agent to bring him some coffee. But soon he realizes that the coffee machine

was broken. He is not sure if the machine has been fixed or not. Hethen revises his

directive to the agent telling it that if the coffee machine is still broken then a cup

of tea would be fine. Just after that he gets a call from a colleague who says that

he had called a coffee machine company and asked them to deliver a new coffee
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machine. Then John calls up the agent and tells it that if the new coffee machine

is already there then it should bring him coffee. (Note that the old coffee machine

may still be broken.) He also remembers that he takes sugar with his tea and that

the tea machine has various temperature settings. So he tells the agent that if it is

going to bring tea then it should bring him a pack of sugar and set the tea machine

setting to “very hot”.

To represent these goals, a non-monotonic goal specification language that en-

ables the agent to modify its goals in an elaboration tolerant manner is required.

While there have been a lot of non-monotonic logics such as logic programs [GL88],

default logic [Rei87], autoepistemic logic [Moo85], only two papers [FH91, Sae87]

are found on defining non-monotonic logics for goal specification but neither work

addresses the elaboration tolerant issue in goal specification. It is a question whether

these non-monotonic logics can be applied directly to temporal formulas. Chap-

ter 4 of this dissertation proposes languages N-LTL and ER-LTL. Each goal in the

languages is represented as a set of rules. Similar to defeasible logic [Nut87], sub-

formulas in a rule are defeated if there are exceptions defined for the sub-formula.

The idea of completion is used to capture all possible exceptions for a sub-formula.

Labels are used to combine multiple rules to one temporal formula. The idea

of completion was used for defining exceptions. Reiter’s ideaof a surface non-

monotonic logic [Rei01] that gets compiled into a more tractable standard logic is

used and thus avoid increase in complexity. With these techniques borrowed from

other languages, each step in Example 1 can be represented inthe proposed ER-

LTL language. Chapter 4 of this dissertation proposes these languages and gives an

approach of progressing goals after the agent has executed part of its plan.
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Preferences in Goal Specification

The third direction considered in this dissertation is the goal specification with

preferences. In specifying goals of an agent, users often have different prefer-

ence relations among sub-goals. Users may have some preference relations under

one condition but other preference relations under other conditions. The prefer-

ence relation may also change dynamically as the agent proceeds with its current

plan. Thus a goal specification language capable of handing dynamic preferences

is needed. Son and Pontelli define a preference relation in goal specification lan-

guagePP [SP06]. However, it only works for deterministic domain andit does

not allow changes in the preference relations. The following example illustrates the

needs of dynamic preferences and motivates our language Pref-π-CTL∗.

Consider that a user has a goal for the agent that provides the user with plans of

commuting between her home and the workplace. The user can either walk, take

a bus, or hire a taxi to go from her home to the workplace. She has objectives

of going to the workplace on time, spending less money on the trip, and other

objectives such as keeping warm and dry. With these preferences relations among

sub-goals in mind, if she gets up late, she may hire a taxi to avoid being late. If

it is raining outside, she does not want to walk. The agent that make plans for

this user needs to determine the preference relations amongthese sub-goals based

on the current state of the user. For example, if it starts raining while the user

walking to the workplace, the preference relation might change. In order to handle

all these dynamics, the agent should be able to adjust its goal such that a sub-goala

is preferred to the other goalb under some conditions, butb is preferred toa under

other conditions. Note that whether a sub-goal is preferredover other sub-goals is

not determined in the initial state when the agent is deployed. The agent can only

know the preference relations among sub-goals after the user has executed part of
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her plan, as the execution of the plan may lead the user to a state that is different

from the inital state.

In Chapter 5, language Pref-π-CTL∗ is proposed to represent goals with dy-

namic preferences. The language enables users to representgoals consist of dy-

namic preferences among sub-goals.

1.3 Planning

After a goal in a goal specification language is specified, it is a still a challenge

problem to find planning algorithms for the goal. It is difficult, if possible, to find

general planning heuristics for goals specified in these languages. Chapter 6 takes

some specific goals inπ-CTL∗ such as strong, weak, strong-cyclic plans [CPRT03]

and their variations, and find plans by utilizing the approach proposed in [BEBN08]

that first encodes the planning problem as a Reverse-Horn SAT problem, further

translates the encoding to a Horn SAT, and then derives a polynomial time algorithm

by simulating the way of solving the Horn SAT. Logic program implementations of

these plans and a plan that “tries its best” to reach states satisfying some conditions

are proposed.

1.4 Outline of Contributions

Different extensions of temporal logics are studied in Chapters 3 to 6. In particular,

the main contributions of the dissertation are as follows:

• Extending temporal logics to non-deterministic domains: Chapter 3 gives

a formal definition on “what is a goal”. Languagesπ-CTL∗ is proposed to

distinguish the set of trajectories of the agent and all trajectories in the do-

main. Language P-CTL∗ is proposed by quantifying over policies. The con-

sideration of policies plays an important role in goal specifications in non-

deterministic domains. The definition of a policy also impacts the set of goals

expressed in the language, thus languages defined with different definitions
9



of the policy structured are proposed. An approach on proving a goal cannot

be expressed in a language is proposed. The set of goals expressed in goal

specification languages are then formally compared.

• Non-monotonic extension of temporal logics: Chapter 4 presents logics N-

LTL and ER-LTL that enable users in revising goals in an elaboration tolerant

manner. The way of progressing a goal is proposed to deal withthe case that

the agent has already executed some actions. Also, an algorithm of translating

an ER-LTL goal to an equivalent LTL formula is implemented.

• Extending temporal logics with preference: Chapter 5 presents a logic

Pref-π-CTL∗ with dynamic preference relations defined among sub-goals.

This dynamic preference relation enables users in representing goals with

different preference relations in different states.

• Planning with goal specified in proposed languages: Chapter 6 studies the

planning problems for some goals specified in proposed languages. The ap-

proach in [BEBN08] is used for strong, weak, strong cyclic planning [CPRT03],

and their variations. A logic program implementation of a plan that “tries its

best” in reaching a set of states is also given.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter2 introduces temporal

logics LTL and CTL∗. All logics defined in the dissertation are extended from

these logics. An approach in [BEBN08] that find plans for ak-maintainability

problem is also discussed. Some planning algorithms in Chapter 6 are based on a

similar approach. Different extensions of temporal logicsare studied in Chapters 3

to 6. In Chapter 3, languages for goal specifications in non-deterministic domains

are proposed. Chapter 4 studies non-monotonic goal specification languages. In
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Chapter 5, a language for representing preferences in specifying goals is proposed.

In Chapter 6, planning algorithms for some goals in proposed languages are studied.

The dissertation is concluded with a summary and future directions in Chapter 7.
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Chapter 2

BACKGROUND

This chapter contains some background materials used in later chapters. It starts

with linear temporal logic LTL and branching time temporal logic CTL∗. Logics

proposed in later chapters are based on these two logics. In the second part of this

chapter, a planner for thek-maintainability [BEBN08] problem is reviewed. Some

planning algorithms in Chapter 6 are proposed by following the same approach.

2.1 Background: LTL and CTL∗

As languages proposed in this dissertation rely a lot on existing temporal log-

ics, in this section existing formulations [ES89, Eme90, BK98, NS00, BKT01,

PT01] of specifying goals using linear and branching time temporal logics are dis-

cussed. This section starts with goal specification using the linear temporal logic

from [BK98, BKT01].

Goal Representation Using LTL

The syntax of the language is now discussed. Syntactically,LTL formulas are made

up of propositions, propositional connectives∨, ∧, and¬, and future temporal

connectives©, 2, 3 andU.

Definition 1. Let 〈p〉 be an atomic proposition,〈 f 〉 be an LTL formula. LTL for-

mulas are defined as follows:

〈 f 〉 ::= 〈p〉|〈 f 〉∧ 〈 f 〉 | 〈 f 〉∨ 〈 f 〉 | ¬〈 f 〉 |©〈 f 〉 |2〈 f 〉 |3〈 f 〉 |〈 f 〉U〈 f 〉

2

A trajectory is an infinite sequence of states. The truth of an LTL formula is

defined with respect to a trajectory and a reference state.
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Definition 2. Let σ given by s0,s1, . . . ,sk, sk+1, . . . be a trajectory, p be an atomic

proposition, sj be a state, and f and fis be LTL formulas.

• (sj ,σ) |= p iff p is true in sj .

• (sj ,σ) |= ¬ f iff (sj ,σ) 6|= f .

• (sj ,σ) |= f1∨ f2 iff (sj ,σ) |= f1 or (sj ,σ) |= f2.

• (sj ,σ) |= f1∧ f2 iff (sj ,σ) |= f1 and(sj ,σ) |= f2.

• (sj ,σ) |=© f iff (sj+1,σ) |= f .

• (sj ,σ) |=2 f iff (sk,σ) |= f , for all k ≥ j.

• (sj ,σ) |=3 f iff (sk,σ) |= f , for some k≥ j.

• (sj ,σ) |= f1 U f2 iff there exists k≥ j such that(sk,σ) |= f2 and for all i,

j ≤ i < k, (si ,σ) |= f1. 2

The notion of trajectories consistent with an initial stateand a transition function

is defined so as to specify goals of an agent in LTL.

Definition 3 (Trajectory of a transition function). A trajectory s0, s1, · · · is consis-

tent with an initial state s and a transition functionΦ if s0 = s and for i≥ 0, there

is an action ai, such that si+1 ∈ Φ(si ,ai). 2

Using the above definition, for any LTL formulaϕ, ϕ(s,Φ) is now defined as

the set of trajectories{σ : σ is conistent withs andΦ and(s,σ) |= ϕ}. A goal g

can be expressed as a formulaϕ in languageL if ϕ(s,Φ) = g(s,Φ) for all states

and transition functionΦ. Now, a policyπ satisfies an LTL goalϕ if the set of

trajectories consistent withπ is a subset ofϕ(s,Φ).

Note that this definition is slightly different from the original definition as we

define a goal as a mapping from(s,Φ) to set of trajectories instead of simplyly
13



a set of trajectories. This definition is adopted to be consistent with the rest of

the dissertation. The importance of having this definition is discussed in the next

chapter.

Often [BK98, BKT01], planning with respect to LTL goals are clubbed with

the assumption that there is complete information about theinitial state, and the

actions are deterministic. In that case there is at most one trajectory consistent with

the policy. The role of LTL in specifying planning goals has been well studied and

examples of that can be found in [BK98, NS00, BKT01].

Goal Representation Using Branching Time Temporal Logic

The use of a branching time temporal logic in specifying planning goals that cannot

be specified using LTLs are studied in [NS00, PT01, BKT01]. Thenecessity of

branching time operators arise for several reasons. In particular, it is needed when

a user wants to specify conditions on other paths starting from the states in the

agent’s main path. For example, a robot going from positionA to positionB may

be required to take a path so that from any point in the path there is a charging

station within two steps. Note that these two steps do not have to be in the path of

the robot. This goal cannot be expressed using LTLs and a branching time logic

such as CTL∗ is needed. The syntax and semantics of CTL∗ [ES89, Eme90] is now

given below.

There are two kinds of formulas in CTL∗: state formulas and path formulas.

Normally state formulas are properties of states while pathformulas are properties

of paths. The syntax of state and path formulas is as follows:

Definition 4. Let 〈p〉 be an atomic proposition,〈s f〉 be a state formula, and〈p f〉

be a path formula.

〈s f〉 ::= 〈p〉 | 〈s f〉∧ 〈s f〉 | 〈s f〉∨ 〈s f〉 | ¬〈s f〉 |E〈p f〉 | A〈p f〉

〈p f〉 ::= 〈s f〉 | 〈p f〉 ∨ 〈p f〉 | ¬〈p f〉 | 〈p f〉∧〈p f〉 |〈p f〉U 〈p f〉 |©〈p f〉 |3〈p f〉 |2〈p f〉
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2

The symbolsA andE are the branching time operators meaning ‘for all paths’

and ‘there exists a path’ respectively. As the quantification ‘branching time’ sug-

gests, specification in the branching time logic CTL∗ are evaluated with respect to

the branching structure of the time. The term ‘path’ in the meaning ofA andE

refers to a trajectory in the branching structure of time.

Now define the formal semantics of CTL∗ formulas, which are defined depend-

ing on whether they are state formulas or path formulas.

Definition 5 (Truth of state formulas). The truth of state formulas are defined with

respect to a pair(sj ,Φ), where sj is a state andΦ is the transition function. In

the following p denotes an atomic proposition, s fis are state formulas, and p fis are

path formulas.

• (sj ,Φ) |= p iff p is true in sj .

• (sj ,Φ) |= ¬s f iff (sj ,Φ) 6|= s f .

• (sj ,Φ) |= s f1∧s f2 iff (sj ,Φ) |= s f1 and(sj ,Φ) |= s f2.

• (sj ,Φ) |= s f1∨s f2 iff (sj ,Φ) |= s f1 or (sj ,Φ) |= s f2.

• (sj ,Φ) |= E p f iff there exists a trajectoryσ in Φ starting from sj such that

(sj ,Φ,σ) |= p f .

• (sj ,Φ) |= A p f iff (sj ,Φ,σ) |= p f for all trajectoriesσ in Φ starting from sj .

2

Definition 6 (Truth of path formulas). The truth of path formulas are defined with

respect to a triplet(sj ,Φ,σ) whereΦ is a transition function,σ is a trajectory

s0,s1, . . . consistent withΦ, and sj is a state inσ .
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• (sj ,Φ,σ) |= s f iff (sj ,Φ) |= s f .

• (sj ,Φ,σ) |= ¬p f iff (sj ,Φ,σ) 6|= p f .

• (sj ,Φ,σ) |= p f1∨ p f2 iff (sj ,Φ,σ) |= p f1 or (sj ,Φ,σ) |= p f2.

• (sj ,Φ,σ) |= p f1∧ p f2 iff (sj ,Φ,σ) |= p f1 and(sj ,Φ,σ) |= p f2.

• (sj ,Φ,σ) |=©p f iff (sj+1,Φ,σ) |= p f .

• (sj ,Φ,σ) |=2p f iff (sk,Φ,σ) |= p f , for all k≥ j.

• (sj ,Φ,σ) |=3p f iff (sk,Φ,σ) |= p f , for some k≥ j.

• (sj ,Φ,σ) |= p f1 U p f2 iff there exists k≥ j such that(sk,Φ,σ) |= p f2 and

for all i, j ≤ i < k, (si ,Φ,σ) |= p f1. 2

Using the above definition, similar to the definition in LTL, for any CTL∗ for-

mulaϕ, ϕ(s,Φ) is defined as the set of trajectories{σ : σ is conistent withs andΦ and(s,Φ,σ) |=

ϕ}. A policy π satisfies a CTL∗ goalϕ if the set of trajectories consistent withπ is

a subset ofϕ(s,Φ).

Now the goal of getting toB such that from anywhere in the path, a state where

p holds can be reached in at most two steps, can be represented in CTL∗ as: (p ∨

E© p ∨E©E© p) U at B. Additional examples of the use of branching temporal

logics CTL and CTL∗ to specify goals are given in [BK98, NS00, PT01, BKT01].

2.2 k-maintainability

This section recalls various definitions, algorithms and results from [BEBN08].

They are used in Chapter 6 in proposing new algorithms for strong, weak, and

strong cyclic plans. In this section, the definition ofk-maintainability is defined

first.

Definition 7 (System). A system is a quadrupleD = 〈S , A , Φ, poss〉, where
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• S is the set of states;

• A is the set of actions, which is the union of two disjoint sets of actions:

agents actions,Aag, and environmental actions,Aenv.

• poss: S → 2A is a function that describes which actions are possible in

which states; and

• Φ : S ×A → 2S is a non-deterministic transition function that specifies

how the state of the world changes in response to actions.

Assume here that possible actions always lead to some successor states, i.e., in

any system, the claim thatΦ(s,a) 6= /0 whenevera∈ poss(s) holds for any states

and actiona. On the other hand, givenΦ, if a∈ poss(s) wheneverΦ(s,a) 6= /0, then

D = 〈S , A , Φ, poss〉 is abbreviated asD = 〈S ,A ,Φ〉 by default.

Definition 8 (Control, super-control policy). Given a systemD=〈S ,A ,Φ, poss〉

and a setAag⊆A of agent actions,

• a super-control policy forD w.r.t. Aag is a partial function K: S → 2Aag

such that K(s)⊆ poss(s) and K(s) 6= /0 whenever K(s) is defined.

• a control policy forD w.r.t. Aag is a super-control such that K(s) = 1 when-

ever K(s) is defined.

Definition 9. Given a systemD = 〈S ,A ,Φ, poss〉 and a state s, R(D ,s) ⊆ S is

the smallest set of states that satisfies the following conditions: (i) s∈ R(D ,s), and

(ii) if s′ ∈ R(D ,s), and a∈ poss(s′), thenΦ(s′,a)⊆ R(D ,s). R(D ,s) is the smallest

set of states that are reachable from s by following actions inposs. 2

Definition 10 (Closure). LetD = 〈S ,A ,Φ, poss〉 be a system and let S⊆ S be a

set of states. Then the closure ofD w.r.t. S, denoted by Closure(S,D), is defined by

Closure(S,D) =
⋃

s∈SR(D ,s). 2
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Definition 11 (Unfoldk(s,D ,K)). LetD = 〈S ,A ,Φ, poss〉 be a system, let s∈S ,

and let K be a control forD . Then Unfoldk(s,D ,K) is the set of all sequences

σ = s0,a1, s1,a2, . . . ,al ,sl where l≤k and s0=s such that aj+1 ∈ K(sj) is defined

for all j<l, sj+1∈Φ(sj ,a j+1), and if l< k, K(sl ) is undefined. 2

Informally,Unfoldk(s,D ,K) contains all maximal paths in the system that emerge

by taking agent actions, starting ats, such that the total length of each path is at most

k.

Now define the notion ofk-maintainability. In it, the functionexo: S → 2A

specifies which exogenous actions can occur in which states.Let DK,exo be the

system〈S ,A ,Φ, possK,exo〉, wherepossK,exo(s) = K(s)∪exo(s).

Definition 12. [k-Maintainability] Given a systemD = 〈S ,A ,Φ, poss〉, a set

of agent actionsAag ⊆ A , and a specification of exogenous action occurrence

exo, a control1 K for A w.r.t. Aag k-maintainsI ⊆ S with respect toG ⊆ S ,

where k≥0, if it holds for each state s∈ Closure(I ,DK,exo) and each sequence

σ = s0,a1,s1,a2, . . . ,al ,sl in Unfoldk(s,D ,K) with s0 = s and{s0, . . . ,sl}∩G 6= /0.

A set of statesI ⊆S (resp.D , if I =S ) is k-maintainable, k≥ 0, w.r.t. a set

of statesG ⊆ S , if there exists a control K which k-maintainsI w.r.t. G . Further-

more,I (resp.D) is calledmaintainablew.r.t G , if I (resp.D) is k-maintainable

w.r.t. G for some k≥ 0. 2

Note that as easily verified,k-maintainability fork≥|S | and |S |-maintaina-

bility always coincide.

The approach above is used in [BEBN08] to develop an algorithm that findsk-

maintainable policies. The problem is referred to ask-Maintain. It has the following

input and output:

1Here onlyK(s) for s∈ Closure(S,DK,exo) is of relevance. For all others, K(s) can be arbitrary
or undefined.
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Input: An input I is a systemD = 〈S , A , Φ, poss〉, sets of statesG ⊆ S and

I ⊆ S , a setAag ⊆ A , a functionexo, and an integerk≥ 0.

Output: A controlK such that forD w.r.t. Aag k-maintainsG w.r.t. I , if such

a control exists. Otherwise, output the answer that no such control exists.

Before describing the encoding, the following definition of an a-path is needed.

Definition 13 (a-path). In a systemD = 〈S , A , Φ, poss〉, there exists ana-path

of length at most k≥ 0 from a state s to a set of statesG , if either

1. s∈ G , or

2. s /∈ G , k> 0 and there is some action a∈ Aag∩ poss(s) such that for every

s′ ∈ Φ(s,a) there exists an a-path of length at most k−1 from s′ to G . 2

In the following encoding of an instanceI of problemk-Maintain to SAT, re-

ferred to assat′(I), si will intuitively denote that there is an a-path froms to G of

length at mosti. The propositions ai , i > 0, will denote that for suchs there is

an a-path froms to G of length at mosti starting with actiona (∈ poss(s)). The

encodingsat′(I) has groups (0) – (5) of clauses as follows:

(0) For alls∈ S , and for all j, 0≤ j < k:

sj ⇒ sj+1

(1) For alls∈ G ∩I : s0

(2) For any states∈ S ands′ such thats′ ∈ Φ(a,s) for some actiona∈ exo(s):

sk ⇒ s′k

(3) For every states∈ S \G and for alli, 1≤ i ≤ k:

(3.1) si ⇒
∨

a∈Aag∩poss(s) s ai ;
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(3.2) for everya∈ Aag∩poss(s) ands′∈Φ(s,a):

s ai ⇒ s′i−1;

(3.3) for everya∈ Aag∩ poss(s), if i < k:

s ai ⇒ s ai+1.

(4) For alls∈ I \G : sk

(5) For alls∈ S \G : ¬s0

Proposition 1. [BEBN08] Let I consist of a systemD = 〈S , A , Φ, poss〉, a set

Aag ⊆ A , sets of statesI ,G ⊆ S , an exogenous function exo, and a positive

integer k. For any model M of sat′(I), let CM = {s∈S | M |= sk}, and for any state

s∈CM \G let ℓM(s) denote the smallest index j such that M|= s a j for some action

a∈ Aag∩ poss(s), which is called thea-levelof s w.r.t. M. Then,

(i) I is k-maintainable w.r.t.G iff sat′(I) is satisfiable;

(ii) given any model M of sat′(I), the partial function K+M : S → 2Aag which is

defined on CM \G by

K+
M(s) = {a | M |= s aℓM(s)}

is a valid super-control; and

(iii ) any control K which refines K+M for some model M of sat′(I) k-maintainsI

w.r.t. G .

The encodingsat′(I) is a reverse Horn theory.sat′(I) can be rewritten to a Horn

theory,sat′(I) by reversing the propositions, where the intuitive meaningof si and

s ai is the converse of the meaning ofsi ands ai respectively. The encodingsat′(I)

is as follows:
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(0) For alls∈S and j, 0≤ j<k:

sj+1 ⇒ sj .

(1) For alls∈ G ∩I :

s0 ⇒⊥.

(2) For any states∈ S ands′ such thats′ ∈ Φ(a,s) for some actiona∈ exo(s):

s′k ⇒ sk.

(3) For every states∈ S \G and for alli, 1≤ i ≤ k:

(3.1)
(

∧

a∈Aag∩poss(s) s ai

)

⇒ si;

(3.2) for everya∈ Aag∩poss(s) ands′∈Φ(s,a):

s′i−1 ⇒ s ai;

(3.3) for everya∈ Aag∩ poss(s), if i < k:

s ai+1 ⇒ s ai .

(4) For alls∈ I \G :

sk ⇒⊥.

(5) For alls∈ S \G :

s0.

Theorem 1. [BEBN08] Let I consist of a systemD = 〈S , A , Φ, poss〉, a set

Aag ⊆ A , sets of statesI ,G ⊆ S , an exogenous function exo, and a positive

integer k. Let, for any model M ofsat′(I), CM = {s | M 6|= sk}, and letℓM(s) =

min{ j | M 6|= s a j , a∈ Aag∩ poss(a)}. Then,

(i) I is k-maintainable w.r.t.G iff the Horn SAT instancesat′(I) is satisfiable;
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(ii) Given any model M ofsat′(I), every control K such that K(s) is defined iff

s∈CM \G and satisfies

K(s) ∈ {a∈ Aag∩ poss(s) | M 6|= s a j , j = ℓM(s)},

k-maintainsI w.r.t. G .

From the encoding to Horn SAT above, a direct algorithm to construct ak-

maintainable control, if one exists, can be distilled. The algorithm mimics the steps

which a SAT solver might take in order to solvesat′(I). It uses countersc[s] and

c[s a] for each states∈ S and possible agent actiona in states, which range over

{−1,0, . . . ,k} and{0,1, . . . ,k}, respectively. Intuitively, valuei of counterc[s] (at a

particular step in the computation) represents that so fars0, . . . ,si are assigned true;

in particular,i =−1 represents that nosi is assigned true yet. Similarly, valuei for

c[s a] (at a particular step in the computation) represents that sofar s a1, . . . ,s ai

are assigned true (and in particular,i = 0 that nos ai is assigned true yet).

Starting from an initialization, the algorithm updates by demand of the clauses

in sat′(I) the counters (i.e., sets propositions true) using a commandupd(c, i): ‘if

c< i thenc := i’ towards a fix-point. If a counter violation is detected, correspond-

ing to violation of a clauses0 →⊥ for s∈ I ∩G in (1) or sk →⊥ for s∈ I \G

in (4), no control is possible. Otherwise, a control is constructed from the counters.

The algorithm is illustrated in Algorithm 2.2.

Algorithm 2.2 is easily modifiable if users simply want to output a super-control

such that each of its refinements is ak-maintainable control, leaving a choice about

the refinement to the user. Alternatively, such a choice based on preference infor-

mation can be implemented in Step 4.

The following proposition states that the algorithm works correctly and runs in

time polynomial ink andI .
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[k-Control]

Input: A systemD = 〈S ,A ,Φ,poss〉, a setAagent⊆ A of agent actions, sets of
statesI ,G ⊆ S , an exogenous functionexo, and an integerk≥ 0.

Output: A control K which k-maintainsI with respect toG , if any such control
exists. Otherwise, output that no such control exists.

(Step 1) Initialization

(i) SetΦexo= {〈s,a,s′〉 | s∈ S ,a∈ exo(s),s∈ Φ(s,a)},

ΦG
poss={〈s,a,s′〉 | s∈S \G , a∈poss(s),s′∈Φ(s,a)}, and for every

s∈S , possag(s)=Aagent∩poss(s).

(ii) For everys in G , setc[s] :=−1.

(iii) For everys in S \G , setc[s] := k if s∈I andpossag(s)= /0; otherwise,
setc[s] := 0.

(iv) For eachs∈ S \G anda∈ possag(s), setc[s a] := 0.

(Step 2) Repeat the following steps until there is no change orc[s]=k for some
s∈I \G or c[s]≥0 for somes∈I ∩G :

(i) For any〈s,a,s′〉∈Φexo with c[s′]=k do upd(c[s],k).

(ii) For any〈s,a,s′〉∈ΦG
posssuch thatc[s′]=i and 0≤ i < k do upd(c[s a], i+

1).

(iii) For any states∈S \ G such thatpossag(s) 6= /0 and i= min(c[s a] |
a∈possag(s)) do upd(c[s], i).

(Step 3) Ifc[s]=k for somes∈I \G or c[s]≥0 for somes∈I ∩G , then output
thatI is notk-maintainable w.r.t.G and halt.

(Step 4) Output any controlK : S \G → Aagent defined on all statess∈S \G
with c[s]< k, such thatK(s) ∈ {a∈ possag(s) | c[s a] = minb∈possag(s) c[s b]}.

Proposition 2. [BEBN08] Algorithm k-Control solves problem k-Maintain, and

can be implemented to run in time O(k‖I‖) for any input I.

Sincek-maintainability fork≥ |S | and|S |-maintainability coincide, problem

k- Maintain can be solved usingk-Control in polynomial time.

With the preparation of the background knowledge, the following chapters pro-
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pose the languages for different goal specification requirements and give algorithms

for some of the goals. The next chapter starts with the goal specifications in non-

deterministic domains.
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Chapter 3

Π-CTL∗ AND P-CTL∗: GOAL SPECIFICATION WITH TEMPORAL LOGICS

IN NON-DETERMINISTIC DOMAINS

Reasoning about actions and change is an important aspect of designing autonomous

agents. Closely tied to reasoning about actions and change, and also an important

aspect of designing autonomous agents, is the issue of specifying desired trajecto-

ries – that satisfy the action and change principles – of the agent which is referred

to as goal specification for an agent. This is necessary in designing autonomous

agents, as often an agent needs to be given a directive – a highlevel goal spec-

ification – regarding the behavior desired from it. Temporallogics such as LTL

and CTL∗ have been used in goal specification in deterministic domains but are not

adequate for non-deterministic domains. For example, a simple goal of achieving

p in a non-deterministic domain has many nuances such as having the possibility

of achievingp, making sure thatp is achieved, preferring guaranteed achievement

of p over possible achievement, trying one’s best to achievep, and so on. These

different nuances cannot be distinguished in LTL or CTL∗. CTL∗ is extended to

π-CTL∗ by adding two new quantifiers, exists a path following the policy and for

all paths following the policy. This distinguishes paths associated with the policy

from all paths in the domain.π-CTL∗ is further extended to P-CTL∗ by adding two

new quantifiers, exists a policy and for all policies. Languages are also proposed for

agents with different policy structures. With these extensions, many useful goals

that cannot be expressed in LTL, or CTL∗ can be specified. The new languages

also allow specification of goals that are adaptive to domains and agent’s ability.

With formal definitions of goals, a framework on comparing expressiveness of goal

specification languages is proposed. It helps in formally proving that some goals
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cannot be expressed in some goal specification languages.

3.1 Introduction and Motivation

In his pioneering paper [McC59], John McCarthy envisioned a system with com-

monsense which he called “Advice Taker” and said:

The advice taker is a proposed program for solving problems by manip-

ulating sentences in formal languages. The main differencebetween it

and other programs or proposed programs for manipulating formal lan-

guages (the Logic Theory Machine of Newell, Simon and Shaw and the

Geometry Program of Gelernter) is that in the previous programs the

formal system was the subject matter but the heuristics wereall embod-

ied in the program. In this program the procedures will be described as

much as possible in the language itself and, in particular, the heuristics

are all so described.

The main advantages we expect the advice taker to have is that its be-

havior will be improvable merely by making statements to it,telling

it about its symbolic environment and what is wanted from it.To make

these statements will require little if any knowledge of theprogram or

the previous knowledge of the advice taker. One will be able to as-

sume that the advice taker will have available to it a fairly wide class of

immediate logical consequences of anything it is told and its previous

knowledge. This property is expected to have much in common with

what makes us describe certain humans as having common sense. We

shall therefore say that a program has common sense if it automatically

deduces for itself a sufficiently wide class of immediate consequences

of anything it is told and what it already knows.
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In the paper, McCarthy shows how to use logic to describe properties of a world,

the conditions of executing actions in that world, the effect of actions on the world,

and what is desired from the world. He then shows how to use deduction with the

above kinds of logical description and comes up with a plan that achieves what is

specified as desired. In a later paper, McCarthy and Hayes [MH69] give a more

formal and more general presentation of the above, where they introduce the Situ-

ation Calculus. Since then a large body of research has been done on the topic of

reasoning about actions.

Restating the various kinds of “premises” that McCarthy’s Advice Taker in [McC59]

has, asystematic designof a (semi)-autonomous1 agent has three main aspects:

(i) the domain description that describes actions of the agent, the description of

the world including the relationship between objects in theworld, the condi-

tions when actions can or cannot be executed, and the impact of the actions

on the world;

(ii) the control execution of the agent in the system, and

(iii) the directives given to the agent regarding how it should behave or what is

expected from it.

In the literature a large body of work has been done on topic (i) [FN71, Ped87,

GL98a], and a significant amount of work has been done on topic(ii) [Sch87, BG00,

DLPT02, BDH99]. However, despite McCarthy’s use of thewantpredicate in spec-

ifying what is wanted, besides this research there has been relatively less work on

topic (iii). This chapter focuses on topic (iii). But since these three aspects are

1Here the agents considered are not fully autonomous agents who can choose their own goals
or improve their control execution. This work is not workingtowards building agents that can make
human beings their slaves.
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interrelated and they relate to the main purpose of this chapter, a brief overview of

all three of them is covered in the following.

Components of Agent Design

The first component is on defining the environment of the agent.

Domain Description and Transition Systems

The main research issue in describing the domain of an agent is to develop ways that

allow natural and succinct, and hence often implicit, description of the transition

between states of the world due to execution of action(s). Butfor the purpose of

this chapter, it is simpler to use an explicit notion of transition systems.

A transition system is defined [GL98a] using anaction signaturewhich consists

of three nonempty sets: a setV of value names, a setF of fluent names, and a set

A of action names. Each fluent name represents a particular property of the system.

A stateis an interpretation of the set of fluent names. The set of states in the system

is denoted asS. Let M( f ,s) ∈ V be the value of fluentf ∈ F in states∈ S.

Definition 14. [GL98a][Transition System] A transition system of an action signa-

ture 〈V ,F ,A 〉 consists of

1. a set of states S,

2. a function M fromF ×S intoV , and

3. a transition functionΦ from S×A into the powerset of S. 2

The statess′ such thats′ ∈ Φ(s,a) are possible results of executing actiona

in states. Action a is consideredexecutablein s if |Φ(s,a)| > 0. Action a is

deterministicin s if |Φ(s,a)|= 1. Actiona is non-deterministicin s if |Φ(s,a)|> 1.

A domain isnon-deterministicif it has at least one actiona and one states such

28



thata is non-deterministic ins. For convenience, assume that there is an actionnop

such that for each states∈ S, we haveΦ(s,nop) = {s}.

In this dissertation, assume that the world is given by a single transition system,

and the transition system is known to the agent.

Control Programs and Policies

The control of an autonomous agent in a domain specifies the ability of the agent.

It can be a purely deliberative type, a purely reactive type or a hybrid type. In

a purely deliberative control, the agent continually follows the cycle of observe,

plan-or-replan, and act. In a purely reactive control, the deliberation for or of the

agent has been done beforehand and in run time it continuallyfollows the cycle

of observe, simple table-look-up and act. In one kind of hybrid control the agent

may deliberate in certain states and react in others and the deliberation may itself

be of various degrees. In a second kind of hybrid control the table-look-up requires

evaluating formulas over the past states and actions. Focusof this chapter is mainly

on reactive control. However, sometimes other definitions of the control are also

considered.

As mentioned earlier a reactive control involves making observations and then

looking up a table to decide on how to act. However, the structure of the table

may vary from agent to agent. This structure of the table is referred as thepolicy

structureand denote it asP. Assume that an agent has a fixed policy structure.

A policy π of an agent is an instantiation of its policy structureP. A commonly

used policy structure is a mapping from states to actions anda policy following that

structure is a particular mapping from a specific set of states to a specific set of

actions.

When an agent starts in an initial situation and follows a particular policy, the

world of the agent evolves in a particular way. This evolution is formally repre-
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sented as a sequence of states, also referred to as a trajectory. One can thus define

when a particular sequence of states (or a trajectory) is consistent with the execution

of a particular policy.

Definition 15 (Trajectories consistent with a policy). An infinite sequence of states,

or a trajectory s0, s1, · · · is consistent with a policyπ that maps from states to

actions, if si+1 ∈ Φ(si ,π(si)) for i ≥ 0. 2

The above definition allows users to link policies with trajectories and it is use-

ful in connecting policies with goal specifications which are often about specifying

desired trajectories.

What is a Goal?

Given a transition system and a policy structure, an agent can choose a policy con-

forming to its policy structure to execute. The policy chosen when executed starting

in a particular initial state will lead to a particular trajectory. In a domain where

actions have deterministic effects this trajectory can be predetermined. But in do-

mains where actions may have non-deterministic effects this trajectory may not be

predetermined; one can at best determine a set of trajectories of how the world may

progress. Under these circumstances, how does an agent decide which policy to

execute?

This will depend on what the agent wants or desires. An agent may simply want

to end up in one or one among a set of particular states; or it may want to have more

general restrictions on how the world evolves. Such wants and desires of an agent

are referred as its goal.

In classical planning, the agent’s goals were to reach a finalstate that satisfies

certain conditions. It was soon realized that in many cases the desired goal may be

such that there is no final state (such as in many maintenance goals), and even if

there is a final state, the desire may also include restrictions on how a final state is
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reached. One example of this would be for the robot to get to a room without hitting

the wall in the process of getting there. Goals were then generalized as a set of

trajectories so that the agent or the robot at least follows one of them. But things get

more involved when actions have non-deterministic effects. As mentioned earlier,

execution of a policy under such circumstances may lead to one among a set of

trajectories. In that case a goal may be to prefer some sets ofpossible trajectories

over others; exemplified by accepting some policies over others. In other words

each goal would now correspond to a set of desired set of trajectories.

The above notions of goal are all subjective or absolute: No matter what options

(in terms of what actions it has at its disposal and how those actions may change the

world and what the initial state may be) the agent may have, the goal is about the

trajectories. However, often a goal of an agent may include aspects corresponding

to choosing the “best options” among the ones that are available to the agent. To

express the options that are available to the agent, the transition graph and the initial

state need to be taken into account. I.e., if the transition graph, or the initial state

of the agent is different, then the policies that are available for the agent to choose

from could be different. Thus a goal is no longer absolute buta mapping from a

set of ways about how the world may evolve to the set of ways howthe evolution

is desired. How the world may evolve can be expressed by an initial states and a

transition functionΦ and how the evolution is desired can be expressed as (a) a set

of trajectories or in some cases as (b) a set of set of trajectories.

Since in most cases a user cannot explicitly express a goal byexpressing the

above mentioned mapping, a succinct way of expressing goalsis needed. Thus the

need for a goal specification language which is the raison d’etre of this chapter.

In the literature various logics, including temporal logics, have been proposed as

goal specification languages. For example, Temporal logicssuch as linear temporal

logic LTL [Pnu77], branching time temporal logic CTL∗ [EC82, ES89, Eme90],
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and their extensions [BK98, NS00, BKT01] have been proposed and used as goal

specification languages in the autonomous agent community and planning com-

munity [BKSD95, BK98, GV99, NS00, SSD00, PT01]. In the decision theoretic

planning community there are suggestions to use temporal logics in specifying non-

Markovian rewards [BBG96, BBG97, TGS+06].

Extension of LTL and CTL∗ are also studied. One direction is to extend the

logic to have metric intervals [BK98] or qualitative measureon elapsed time be-

tween the occurrences of the events [Pnu77]. Following the latter, timed CTL

(TCTL) [AH93], real time CTL (RTCTL) [EMSS92], and more generally quali-

tative logics [BEH95a, BEH95b] focus on the expressions of qualitative bounds on

the occurrences of events (c.f. [ET99]).

Also in a timed transition system, Min-max CTL [DCDS01] was proposed by

allowing the quantification of CTL state and path properties in terms of a cost func-

tion over real time. It uses “min” and “max” calculation in aggregating the proper-

ties of states and paths.

Another extension of LTL and CTL∗ is to the game-like multi-agent systems

and the languages ATL and ATL∗ [AHK02] were invented that quantify over paths

belonging to the execution of each agent. CATL [vdHJW05] further extends ATL

with a ternary counterfactual commitment operator of the form Ci(σ ,φ), with the

intended reading “if it were the case that agenti committed to strategyσ , then

φ ”. By using this operator in combination with the ability operators of ATL, it is

possible to reason about the implications of different possible choices of agents.

In considering using temporal logics for goal specification, most of these papers

– except [PT01], only consider the case when actions are deterministic. Following

that direction, in [DLPT02], a question was raised regarding whether the existing

temporal logics are adequate to specify many intuitive goals, especially in a non-

deterministic domain, and an alternative language was proposed. In this chapter, it
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is formally proved that in the case that actions have non-deterministic effects, there

are goals (as motivated above) which cannot be expressed in existing temporal log-

ics such as LTL and CTL∗. However, departing from [PT01, DLPT02], extensions

to these temporal logics are proposed. The proposed extensions are able to express

the richer goals and nuances that one encounters in the non-deterministic domains.

To do that the formal notion that a goal is a mapping from an initial state s and

a transition functionΦ to a set of trajectories (or a set of set of trajectories) is

needed. This is argued in previous paragraphs.

To relate this notion of a goal as a mapping and the notion thata goal in a goal

specification language is a formula in that language, the following notations and

definitions are needed.

Consider a goalg. Let the set of trajectories thatg maps an initial states and

a transition functionΦ beg(s,Φ). Now consider a goal specification languageL

and a formulaϕ in L . To match the notion of a goal, the semantics ofL needs

also to be defined with respect to an initial state and a transition function. In other

words, given ans and aΦ, the semantics ofL will map formulas inL to a set

of trajectories. Intuitively, this set of trajectories “satisfy” the formulaϕ given s

andΦ. It is denoted asϕ(s,Φ). The notion of “satisfaction” and a corresponding

entailment relation (|=) will be precisely defined by the semantics of the language

L . For example, in CTL∗ the entailment relation|= is defined between triplets

(s,Φ,σ) (whereσ is a trajectory) and formulas of CTL∗. Using that for a CTL∗

formulaϕ, the expressionϕ(s,Φ) denotes the set{σ : (s,Φ,σ) |= ϕ}.

Now a goalg can be expressed as a formulaϕ in languageL if

ϕ(s,Φ) = g(s,Φ) (3.1)

for all states and transition functionΦ.

In the above definitions the notion of a goal as a mapping from an initial states,
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a transition functionΦ to a set of trajectories is used. They can be easily extended

to the case when a goal is a mapping from an initial states, a transition functionΦ

to a set of set of trajectories.

A Motivating Example

The previous section alluded to the added complexity of whatgoals mean in do-

mains with non-deterministic actions. The following example illustrates the diffi-

culty of expressing goals in such domains. Later sections will formally show the

inadequacies of existing goal specification languages in expressing some of the

goals mentioned in this subsection. New languages will be proposed to address the

inadequacies.

In a non-deterministic domain, sometimes there does not exist a definite strat-

egy under which one can guarantee the achievement of a particular property of the

world, sayp. In that case the agent may be directed to “try its best” to reach a state

wherep is true. This idea of “trying ones best” has many nuances and they cannot

be expressed in existing temporal logics.

Example 2. Consider a domain which has five states: s1, s2, s3, s4, and s5. The

proposition p is only true in state s4. The other states are distinguishable based on

other fluents which are not elaborated here. Suppose the only possible actions and

their consequences are given in Figure 3.1, except that in each state there is always

an action nop that keeps the agent in the same state.2
2

Consider that the agent would like to try its best3 to get to a state wherep is

true. The agent and its controller are aware that some of the available actions have

non-deterministic effects. Thus they are looking for mappings from states to actions

2Although in the examples, to save space, state space diagrams are used. These diagrams can
easily be grounded on action descriptions. For an example see [DLPT02].

3Note that special cases of ‘try your best’ are the well-studied (in AI) notions of strong planing,
strong cyclic planning, and weak planning [CPRT03], andTryReach p of [DLPT02].
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Figure 3.1: Transition diagram in a non-deterministic domain

instead of plans consisting of action sequences. Moreover,due to non-deterministic

effects of actions, they are worried about how to specify their goal so that the goal is

not so strict that it is not achievable and still conveys the meaning of ‘trying its best’.

The notion of ‘trying one’s best’ would then have a differentmeaning depending on

the ability of the agent, and also depending on where the agent is: In states1, one

would prefera1 to a6 because ifa6 is executed ins1, the agent can never reachp.

Similarly, in s2, doinga2 is better than doinga5, since executinga2 guarantees that

p will be reached while by executinga5 one may not reachp in the worst case. In

s3, doinga3 is better than doinga4 because by executinga3 in s3, the agent always

has a hope of reachingp, but executinga4 may lead tos5, from which the agent

can never reachp. So one interpretation of ‘trying one’s best’ is to only accept

the policy that doa1 in s1, a2 in s2 anda3 in s3. But one may also have a weaker

goal and consider some of the other policies acceptable. To analyze this further, the

following policies that are mappings from states to actionsare considered. Each

policy is represent by a set of pairs of states and actions of the form(s,a) which

will mean that in states, actiona should be executed. It is assumed that if no action

is explicitly specified for a states then(s,nop) is implicitly present.
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1. Policyπ1 = {(s1,a1),(s2,a2),(s3,a3)}

2. Policyπ2 = {(s1,a1),(s2,a2),(s3,a4)}

3. Policyπ3 = {(s1,a1),(s2,a5),(s3,a3)}

4. Policyπ4 = {(s1,a1),(s2,a5),(s3,a4)}

5. Policyπ5 = {(s1,a6)}

Considers1 as the initial state. Based on the preference relations of actions in

each state, Figure 3.2 shows the relation between the five policies in terms of which

one is preferable to the other with respect to the goal of trying one’s best to get to a

state wherep is true. A directed edge fromπi to π j meansπi is preferable toπ j and

this preference relation is transitive. Note that given a different transition system, a

different initial state, or a different goal, users might have other preferences among

policies, or may even not have a preference relation.

π4π1

π3

π2

π5

Figure 3.2: The preference relation between policies

First, try to use existing temporal logic formalisms to specify the goal of ‘trying

one’s best to reachp.’ Since the use of policies lead to multiple trajectories, a

user cannot directly use the specification3p from linear temporal logic with future

operators (LTL) [MP92, Eme90]. Thus try to express this goalin the branching

time temporal logic CTL∗, where there are operatorsA (meaning ‘for all paths’)

andE (meaning ‘there exists a path’).

Suppose the initial state of the agent iss1. Froms1 there is a path tos4. Thus the

CTL∗ goalE3p will be true with respect tos1 and the transition function regardless
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of which policy one chooses includingπ5. Clearly,π5 is not a policy that is trying

to get to p. Thus the specificationE3p is incorrect. Alternatively, consider the

goalA3p. This goal is too strong as, even if a user considers the initial state as

s2 from which there is a policy that guaranteesp is reached, the goalA3p will not

be true with respect tos2 and the transition system. This is because the semantics

of E andA are tied to the overall transition function. With these operators, a user

cannot distinguish the set of transition relations tied to agiven policy from the over-

all transition function in the domain. One way to overcome this is to either tie the

semantics ofE andA to the policy under consideration [CPRT03] or introduce new

operators (say,Epol andApol) that tie the paths to the policy under consideration.

The second approach is chosen in this chapter, as to express certain goals it be-

comes necessary to have both versions (E, A, Epol andApol) of the branching time

operators. For example, to specify the intuition of having apolicy that guarantees

to reach a safe state that will never reachp from then on no matter what happens,

both versions are needed in formulaApol32(¬E3p). The intuitive meaning of the

operatorApol is ‘for all paths that are consistent with the policy under considera-

tion’ and the operatorEpol is ‘there exists a path that is consistent with the policy

under consideration.’ When each policy is a mapping from states to actions, this

new language is calledπ-CTL∗. As will be described in the following sections, in

π-CTL∗, if a goal is represented asEpol3p, policy π1, π2, π3, andπ4 satisfy the

goal while policyπ5 does not satisfy the goal.

However, inπ-CTL∗, a goal that only acceptsπ1 but rejects other policies can-

not be represented. One step further, a user may want a goal specified for each

subset of{π1,π2,π3,π4,π5}. How can they be specified? Now select one such sub-

set to explain what is needed in representing a goal that accepts π1 andπ2 while

rejects other policies. Policiesπ1 andπ2 have the same actiona1 in s1, implying

that if there is a policy that can guarantee thatp will be reached, the policy cho-
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sen by the agent should guarantee to reachp. In general, mechanisms are needed

to compare policies to indicate that “if there is a policyin the domain to satisfy

f , the agent should take a policy to satisfyf ”. Languageπ-CTL∗ is extended to

P-CTL∗ by having two new operatorsA P and E P, which mean for all poli-

cies and exist a policy from a state. Latter sections in this chapter will show how

various nuances of this example can be encoded in the extended language having

these two new operators. For example, this goal can be specified in P-CTL∗ as

Apol2((E PEpol3p ⇒ Epol3p)∧ (E PApol3p ⇒ Apol3p)). Intuitively, it says

that in any state following the given policy, if there is a policy that makesp reach-

able then the policy chosen by the agent should makep reachable. Besides, if there

is a policy that can always reachp no matter the non-deterministic actions, then in

the policy chosen by the agent,p must be reached. Given this domain, there might

be other specification inπ-CTL∗ to distinguishπ1 andπ2 from other policies, but

the formula given above is more intuitive with the quantification over policies.

One intuition to be captured with the quantification over policies is that the

expectation we have for the agent may change in the process of executing. For

example, in terms of the goal of trying the best in reachingp, initially, the agent

may not be able to guarantee thatp will be reached. However, in the process of

executing, it may get lucky enough to reach a state from wherereachingp can be

guaranteed. When specifying the kind of policy that a user wants, the user may

require that the agent should guarantee reaching ofp from then on. It seems in

[PT01, DLPT02], the authors also tried to capture the intuition of modifying plans

during the execution, but their method is insufficient in doing so [BZ04].

Going further, certain goals necessitates more general notions of policies; in

particular, policies that map from state sequences to actions rather than just states to

actions are needed. To compare the various goal specification languages proposed

in this chapter, formal methodologies are developed for comparing languages and
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for defining expressiveness of languages. They are used to prove that there is a goal

that can be expressed inπ-CTL∗ but cannot be expressed in CTL∗, and there is a

goal that can be expressed in P-CTL∗ but cannot be expressed inπ-CTL∗. On the

other hand, all goals expressed inπ-CTL∗ can be expressed in P-CTL∗. Expres-

siveness of a goal specification language in this context depends on the definition

of the policy structure in the language. A few variations ofπ-CTL∗ and P-CTL∗ are

defined by considering different definitions of the policy structure. These languages

are also formally compared.

Contribution

In summary, the main contributions in this chapter are:

• Formally answering the question of “what is a goal”;

• Extending temporal logics for goal specification in non-deterministic do-

mains by having different branching operators inπ-CTL∗;

• Further extending goal specification languageπ-CTL∗ by quantifying over

policies in P-CTL∗;

• Pointing out that goal specification may depend on the definition of policies,

and then proposing variations ofπ-CTL∗ and P-CTL∗ that depend on differ-

ent notions of the policy;

• Proposing mechanisms and using them in formally comparing expressiveness

of goal specification languages;

• Motivating on goal specification languages that are adaptive to domains.

Structure of the Chapter

The rest of this chapter is organized as follows. Section 3.2illustrates limitations

of existing logics in specifying goals in non-deterministic domains and introduces
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π-CTL∗. Section 3.3 shows some limitations ofπ-CTL∗, and proposes a further

extension P-CTL∗. Section 3.4 demonstrates the importance of the policy structure

in a language. Variations ofπ-CTL∗ and P-CTL∗ are then introduced. Section 3.5

formally compares expressiveness of goal specification languages. Some general

issues in goal specifications such as complexity and relatedwork are discussed in

Section 3.6. This chapter is end with summary and some futurework in Section 3.7.

3.2 Limitations of CTL∗: Extending CTL∗ to π-CTL∗

This section starts by showing that in a non-deterministic domain, there are goals

that cannot be expressed in CTL∗. CTL∗ is then extended toπ-CTL∗.

Limitations of CTL∗ in Non-deterministic Domains

First consider the following lemma.

Lemma 1. Consider the transition relationΦ1 andΦ2 in Figure 3.3.

a2

s2

s1

a1

s3

~p

p

~p

s2

s1

a1

s3

~p

p

~p

a1

Φ1 Φ2

Figure 3.3: Transitions that show limitations of CTL∗

1. For any state formulaϕ in CTL∗, (s1,Φ1) |= ϕ iff (s1,Φ2) |= ϕ;

2. Let σ be any trajectory inΦ1 (or Φ2). For any path formulaψ in CTL∗,

(s1,Φ1,σ) |= ψ iff (s1,Φ2,σ) |= ψ.

Proof. The proof is based on the induction on depth of formulas. The notion of

“depth” of formulas is defined in Appendix A.
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Base Case: It is easy to see that (1) and (2) are true for CTL∗ formulas of depth

1.

Induction: Assume that (1) and (2) are true for CTL∗ formulas of depthn< k.

That is, ifdepth(ϕ)< k anddepth(ψ)< k, then(s1,Φ1) |= G iff (s1,Φ2) |= G and

(s1,Φ1,σ) |= G iff (s1,Φ2,σ) |= G.

Let n= k.

Consider state formulas of depthk. It can only be the following forms: (a)

s f1∧s f2 (b) s f1∨s f2 (c) ¬s f1 (d) Ep f (e)Ap f , wheres f1, s f2 andp f have depth

less thank.

Consider (a)s f1∧ s f2. Since depth ofs f1 ands f2 are less thank by induction

hypothesis,(s1,Φ1) |= s f1 iff (s1,Φ2) |= s f1 and(s1,Φ1) |= s f2 iff (s1,Φ2) |= s f2.

By definition,(s1,Φ1) |= s f1∧s f2 iff (s1,Φ1) |= s f1 and(s1,Φ1) |= s f2. Similarly,

(s1,Φ2) |= s f1∧s f2 iff (s1,Φ2) |= s f1 and(s1,Φ2) |= s f2. Thus(s1,Φ1) |= s f1∧s f2

iff (s1,Φ2) |= s f1∧s f2.

The proofs for formulas of the forms (b) and (c) are similar.

Consider (d)E p f . By definition,(s1,Φ1) |= E p f iff there exists a trajectoryσ

in Φ1 starting froms1 such that(s1,Φ1,σ) |= p f . it is observed thatσ is a trajectory

in Φ1 iff σ is a trajectory inΦ2. Sincedepth(p f) < k, by induction hypothesis,

(s1,Φ1,σ) |= p f iff (s1,Φ2,σ) |= p f . Hence,(s1,Φ1) |= Ep f iff (s1,Φ2) |= Ep f .

The proof for formulas of the form (e) is similar.

Consider path formulas of depthk. It can be of the following forms: (a)p f1∧

p f2 (b) p f1∨ p f2 (c)¬p f1 (d) p f1 U p f2 (e)©p f1 (f) 3p f1 (g)2p f1, (h)s f, where

p f1 and p f2 have depth less thank. The proof of each of these cases is similar to

the proof for the corresponding state formula.

Proposition 3. There is a goal defined as a mapping from a state and a transition

function to a set of trajectories that cannot be expressed inCTL∗.
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Proof. Consider the goalg that maps(s1,Φ1) to the set of trajectoriess1s2s∗2,

wheres1s2s∗2 is the set of trajectories with the first state beings1 and all remain-

ing states beings2. g maps(s1,Φ2) to the set of trajectoriess1s2s∗2∪s1s3s∗3. That is

g(s1,Φ1) = s1s2s∗2, andg(s1,Φ2) = s1s2s∗2∪s1s2s∗2.

Now show by contradiction that this goal cannot be expressedin CTL∗.

Suppose goalg can be expressed in CTL∗ asϕ. In that caseϕ(s1,Φ1) = s1s2s∗2

andϕ(s1,Φ2) = s1s2s∗2∪s1s3s∗3. Consider the trajectorys1s3 which is in the second

set but not in the first. Lets refer to it asσ ′. Based on the Definition ofϕ(s,Φ),

(s1,Φ1,σ ′) 6|= ϕ while (s1,Φ2,σ ′) |= ϕ in CTL∗.

But, according to Lemma 1,(s,Φ1,σ ′) |= ϕ iff (s,Φ2,σ ′) |= ϕ.

There is a contradiction and hence, goalg cannot be expressed in CTL∗.

Note that the proof is based on a non-deterministic domain. In a deterministic

domain the execution of a policy in an initial state leads to aunique trajectory

and one can simply use LTL to specify properties of that trajectory and use the

branching time operators to refer to arbitrary trajectories starting from states in the

main trajectory. In case of non-deterministic domains, there are multiple possible

trajectories for a policy starting from an initial state. This set of trajectories is

a subset of all trajectories from the initial state. Thus oneneeds to distinguish

trajectories that areconsistent with respect to the policy of the agentand arbitrary

trajectories. To express the former the operatorsEpol (andApol) are introduced

which means that there exists a path (and for all paths, respectively) consistent with

the policy of the agent.

The syntax and semantics of this extended branching time logic π-CTL∗ is now

formally defined, in which a policy is mapped from states to actions.

Syntax ofπ-CTL∗

The syntax of state and path formulas inπ-CTL∗ is as follows:
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Definition 16. Let 〈p〉 be an atomic proposition,〈s f〉 be a state formula, and〈p f〉

be a path formula.

〈s f〉 ::= 〈p〉 | 〈s f〉∧〈s f〉 | 〈s f〉∨〈s f〉 | ¬〈s f〉| E〈p f〉 |A〈p f〉 | Epol〈p f〉 |Apol〈p f〉

〈p f〉 ::= 〈s f〉 | 〈p f〉∨〈p f〉 | ¬〈p f〉 | 〈p f〉∧〈p f〉 |〈p f〉U 〈p f〉 |©〈p f〉 |3〈p f〉 |2〈p f〉

2

Semantics ofπ-CTL∗

The semantics ofπ-CTL∗ is similar to the semantics of CTL∗.

Definition 17 (Truth of state formulas inπ-CTL∗). The truth of state formulas is

defined with respect to a triple(sj ,Φ,π) where sj is a state,Φ is the transition

function, andπ is a policy that maps from states to actions.

• (sj ,Φ,π) |= p iff p is true in sj .

• (sj ,Φ,π) |= ¬s f iff (sj ,Φ,π) 6|= s f .

• (sj ,Φ,π) |= s f1∧s f2 iff (sj ,Φ,π) |= s f1 and(sj ,Φ,π) |= s f2.

• (sj ,Φ,π) |= s f1∨s f2 iff (sj ,Φ,π) |= s f1 or (sj ,Φ,π) |= s f2.

• (sj ,Φ,π) |= E p f iff there exists a pathσ in Φ starting from sj such that

(sj ,Φ,π,σ) |= p f .

• (sj ,Φ,π) |= A p f iff (sj ,Φ,π,σ) |= p f for all pathsσ in Φ starting from sj .

• (sj ,Φ,π) |= Epol p f iff there exists a pathσ in Φ starting from sj consistent

with the policyπ such that(sj ,Φ,π,σ) |= p f .

• (sj ,Φ,π) |= Apol p f iff (sj ,Φ,π,σ) |= p f for all pathsσ in Φ starting from

sj , and consistent with the policyπ. 2
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Definition 18 (Truth of path formulas inπ-CTL∗). The truth of path formulas is

now defined with respect to the quadruple(sj ,Φ,π,σ), where sj is a state,Φ is the

transition function,π is a policy, andσ is a trajectory sj ,sj+1, . . ..

• (sj ,Φ,π,σ) |= s f iff (sj ,Φ,π) |= s f .

• (sj ,Φ,π,σ) |= ¬p f iff (sj ,Φ,π,σ) 6|= p f

• (sj ,Φ,π,σ) |= p f1∧ p f2 iff (sj ,Φ,π,σ) |= p f1 and(sj ,Φ,π,σ) |= p f2.

• (sj ,Φ,π,σ) |= p f1∨ p f2 iff (sj ,Φ,π,σ) |= p f1 or (sj ,Φ,π,σ) |= p f2.

• (sj ,Φ,π,σ) |=©p f iff (sj+1,Φ,π,σ) |= p f .

• (sj ,Φ,π,σ) |=2p f iff (sk,Φ,π,σ) |= p f , for all k≥ j.

• (sj ,Φ,π,σ) |=3p f iff (sk,Φ,π,σ) |= p f , for some k≥ j.

• (sj ,Φ,π,σ) |= p f1 U p f2 iff there exists k≥ j such that(sk,Φ,π,σ) |= p f2,

and for all i, j ≤ i < k, (si ,Φ,π,σ) |= p f1. 2

Using these definitions, for aπ-CTL∗ formulaϕ, a policyπ satisfies a goalϕ

from s0, if (s0,Φ,π) |= ϕ in π-CTL∗. The setϕ(s,Φ) denotes the set of set of tra-

jectories

{πσ : (s,Φ,π) |=ϕ andπσ is the set of trajectories that are consistent with policyπ}.

Goal Representation inπ-CTL∗

Various kinds of goals which cannot be appropriately expressed in LTL or CTL∗

can be expressed inπ-CTL∗. It is shown in the following.

π-CTL∗ differs from CTL∗

A few goals that cannot be represented in CTL∗ are illustrated now. Given a policy,

which is a mapping from states to actions, a user is able to check whether the policy
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satisfies the goal inπ-CTL∗. According to the definition, a policyπ satisfies a goal

ϕ from s0 if (s0,Φ,π) |= ϕ. A user needs to check properties of paths in the policy

against the whole transition system. This is different fromCTL∗, in which there is

no explicit distinction of the paths in the transition system and the paths follow the

policy.

1. From the initial state, if there is a path that is possible to reachp, the agent’s

policy should also allow that possibility. This goal can be represented inπ-

CTL∗ asE3p→ Epol3p. In a domain, given a policy, to check whether the

policy satisfies a goal or not, a user also needs to refer to paths that are not

consistent with the policy. This goal is one such example. Ina domain, if no

path can reachp by following any policy of the agent, then any policy taken

by the agent would satisfy this goal. On the other hand, if there is a policy in

the domain that has a chance of reachingp, the agent must take a policy that

has a chance of reachingp.

2. Navigate among states that have chances of reachingp, but do not have to

reachp. This goal specifies that from the initial state, each state in the policy

has a path of reachingp, where those paths may not be in the policy. This

can be represented inπ-CTL∗ as:Apol2(E3p).

Reachability Goals Corresponding to Example 2

How various kinds of reachability goals can be specified inπ-CTL∗ is illustrated

here. The domain in Example 2 is considered.

1. Gπ
w = Epol3p: This goal specifies that from the initial state, a state where p

is true may be reached by following the given policy. This is referred to as

weak planning in the literature. In Example 2, with respect to the initial state
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s1, the policiesπ1, π2, π3, andπ4 satisfy this goal, while the policyπ5 does

not.

2. Gπ
s = Apol3p: This goal specifies that from the initial state, a state where p

is true will be reached by following the given policy. This isreferred to as

strong planning. In Example 2, with respect to the initial states1, no policy

satisfies this goal. But if the initial state iss2, the policy{(s2,a2)} satisfies

this goal.

3. Gπ
sc = Apol2(Epol3p): This goal specifies that all along the trajectory – fol-

lowing the given policy – there is always a possible path to a state wherep

is true. This is referred to as strong cyclic planning [CPRT03]. With respect

to the initial states1, this goal is not satisfied as no policy can make this true.

But if the initial state iss2, policies{(s2,a5)} and{(s2,a2)} satisfy this goal.

4. Gπ
aw = Apol2(E3p → Epol3p): This goal specifies that in any states that

is reachable from the initial state by following the policy,if it is possible

to reachp from s, then the agent’s policy should allow that possibility. In

Example 2, policiesπ1, π2, π3, andπ4 satisfy this goal while the policyπ5

does not.

Given the initial state and a policy, if a propertyp can be reached in all paths

consistent with the policyπ or cannot be reached in any path consistent with the

policy π, then by following the policy, the reachability of propertyp is not changed.

Otherwise, due to non-deterministic effect of actions, as an agent proceeds with

the execution of its policy, its situation regarding a goal may keep changing. For

example, initially, a formula can be reached by the policy but the formula is not

guaranteed by the policy. During the execution of actions inthe policy, when the

agent gets to some states, it may realize that the formula it intended to reach can no
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longer be reached. When the agent gets to other states, it may also realize that one

can guarantee that the formula can be reached even taking thenon-deterministic

property of the domain into account.

Maintainability Goals

Reachability goals are mainly considered previously. Maintainability can be con-

sidered as the opposite of reachability. For example, in thedeterministic domain,

given a plan, the path formulaφ maintained iff¬φ cannot be reached. It is also the

case in the non-deterministic domain. In languageπ-CTL∗, Epolϕ and¬Apol¬ϕ

are equivalent for any path formulaϕ. As a consequence, in formulating the goals

about maintainability, a user can indeed translate them into the goals of checking

whether a state can be reached or not, thus the various notions of reachability from

the previous section have corresponding notions of maintainability.

For example, according to the relationship between reachability and maintain-

ability, here are a few observations in the following.

If a propositional formula can be maintained in all trajectories consistent with

the policy or cannot be reached in any trajectories consistent with the policy, then

the maintainability of this propositional formula will notchange during the execu-

tion of the policy. In other cases, for example, in the initial state, by following the

policy, a formula can be maintained in some trajectories butnot in all trajectories.

During the execution of the policy, the agent may find out thatthe path formula can

be maintained in all trajectories starting from the state itis in. It is also possible

that the agent may find out that the path formula cannot be maintained in any of the

trajectories starting from the state it is in.

Goals Composed of Multiple Sub-goals

Now consider goal specifications that are composed of two sub-goals. The com-

position is based on asking the following questions: Does the agent has to reach
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the first goal? When does the agent give up the first goal? When thefirst goal is

reached, does the agent still need to reach the second goal? When the first goal

cannot be reached, does the agent need to reach the second goal? In the process of

reaching the second goal, does the need to keep an eye on the first goal?

1. The policy must reachp, and must reachq after reachingp. The agent starts

to considerq only after reachingp. The agent does not care whetherq is

reached or not in the process of reachingp. Theπ-CTL∗ representation of

this goal isApol3(p∧Apol3q).

2. In a state if it is possible to reachp, try to reachp until it is impossi-

ble to do so. From the state thatp can never be reached, try to reachq

until it is impossible to do so. Theπ-CTL∗ representation of this goal is

Apol2((E3p→ Epol3p)∧ ((¬E3p∧E3q)→ Epol3q)).

3. If there is a trajectory that makes it possible to reachp, try to reach it. If

you are in a state thatp can never be reached, you must reachq from that

state. Theπ-CTL∗ representation of the goal isApol2((E3p → Epol3p)∧

(¬(E3p)→ Apol3q)).

4. Make sure that goalp∨q is reached finally. Besides, in any state, if it is pos-

sible to reachp and the action cannot lead the agent to a state where neitherp

norq can be reached, the agent tries to reachp. Theπ-CTL∗ representation of

this goal is(Apol3(p∨q))∧Apol2((E3p∧Apol©A3(p∨q))→ Epol3p).

In these examples, in some cases, the agent not only wants to know whether

there is a path from a state that can reachp or not, but also wants to know whether

there is a policy from a state such that all paths consistent with the policy from

that state can reachp or not. To better satisfy this, operators that quantifying over

policies are needed.
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3.3 P-CTL∗: The Need for Higher Level Quantifiers

In Example 2, when considered from the starting states1 partitions the set of poli-

cies{π1, . . . ,π5}, π-CTL∗ can be used to express a few goals but no specifications

only acceptsπ1 is given. Sometimes, there is a need of comparing propertiesof a

policy with properties of other policies in the domain. In particular, if accepting

only π1 means that only the best policy is accepted, this goal cannotbe represented

in π-CTL∗. The following shows that this goal and other partitions of{π1, . . . ,π5}

can be expressed when there is an enhanced language that allows quantification

over policies.

Quantifying Over Policies

An example to illustrate the need of quantifying over policies is given firstly.

Example 3. Consider the two transition diagramsΦ1 andΦ2 of Figure 3.4, which

may correspond to two distinct domains. The two diagrams have states s1 and s2,

and actions a1 and a2. In state s1 the fluent p is false, while p is true in state s2. In

both transition diagrams a2 is a non-deterministic action which when executed in

state s1 may result in the transition to state s2 or may stay in s1, and when executed

in s2 stays in s2. The action a1 is only present in the transition diagramΦ1 and if it

is executed in state s1 then it causes the transition to s2.

~p

a1

p

a2

a2

s1 s2

a2

~p p

a2

s1 s2

a2

a2

Φ1 Φ2

Figure 3.4: Transitions that show limitations ofπ-CTL∗

Now suppose the agent, which is in states1 (where p is false), wants to try

its best to get tos2 wherep is true. Aware of the fact that actions could be non-
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deterministic and there may not always exist policies that can guarantee that the

agent reachesp, the agent and its handlers are willing to settle for less, such as

a strong cyclic policy, when no better options are available. Thus for the domain

corresponding to transition diagramΦ2, the policy π = {(s1,a2),(s2,a2)} is an

acceptable policy. But it is not an acceptable policy for the domain corresponding

to transition diagramΦ1, as there is a better option. InΦ1 if one were to executea1

in s1 then one is guaranteed to reachs2 wherep is true. Hence, with respect toΦ1

only the policyπ ′ = {(s1,a1),(s2,a2)} is an acceptable policy.

The following proposition shows that the above discussed goal of ‘guaranteeing

to reachp if that is possible and if not then making sure thatp is always reachable’

cannot be expressed usingπ-CTL∗. For that the following lemma is needed.

Lemma 2. ConsiderΦ1, Φ2 in Figure 3.4, andπ = {(s1,a2),(s2,a2)}.

(i) For any state formulaϕ in π-CTL∗, (s1,Φ1,π) |= ϕ iff (s1,Φ2,π) |= ϕ.

(ii) For any path formulaψ in π-CTL∗ and any pathσ in Φ1 (or Φ2), (s1,Φ1,π,σ) |=

ψ iff (s1,Φ2,π,σ) |= ψ.

Proof. The proof is based on the induction on the depth of formulas.

Base case: It is easy to see that (i) and (ii) are true for formulas of depth 1.

Induction: Assume that (i) and (ii) are true for formulas of depth less thann,

and show that (i) and (ii) are true for formulas of depthn.

Consider state formulas of depthn. It can be of the following forms: (a)s f1∧s f2

(b) s f1∨s f2 (c)¬s f1 (d) Ep f (e)Ap f (f) Epolp f (g)Apolp f , wheres f1, s f2 andp f

have depth less thann.

Consider (d)Ep f . By definition,(s1,Φ1,π) |= E p f iff there exists a pathσ in

Φ1 starting froms1 such that(s1,Φ1,π,σ) |= p f . It is observed thatσ is a path

starting from s1 in Φ1 iff σ is a path starting from s1 in Φ2. Since depth ofp f is less

thann, by induction hypothesis,(s1,Φ1,π,σ) |= p f iff (s1,Φ2,π,σ) |= p f . Hence,
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(s1,Φ1,π,σ) |= Ep f iff (s1,Φ2,π,σ) |= Ep f .

The proofs for formulas of other forms are similar.

Consider path formulas of depthn. It can be of the following forms: (a)p f1∧

p f2 (b) p f1∨ p f2 (c) ¬p f1 (d) p f1 U p f2 (e)©p f1 (f) 3p f1 (g) 2p f1, wherep f1

and p f2 have depth less thann. The proof of each of these cases is similar to the

proof for state formulas.

Proposition 4. There is a goal defined as a mapping from a state and a transition

function to a set of set of trajectories that cannot be expressed inπ-CTL∗.

Proof. This proposition is proved by defining a goal and proving it cannot be ex-

pressed inπ-CTL∗. Consider the goalg that maps(s1,Φ1) of Figure 4 to the set of

set of trajectories expressed by{s1s2s∗2} and maps(s1,Φ2) of Figure 4 to the set of

set of trajectories expressed by{s1s∗1s2s∗2}. This is denoted asg(s1,Φ1) = {s1s2s∗2},

andg(s1,Φ2) = {s1s∗1s2s∗2}. Now show by contradiction that goalg cannot be ex-

pressed in languageπ-CTL∗.

Otherwise, supposeg can be expressed inπ-CTL∗ as ϕ. According to For-

mula 3.1, if goalg can be expressed as formulaϕ in π-CTL∗, Let g(s,Φ) = ϕ(s,Φ)

in π-CTL∗ for all states and transition graphΦ. Thusϕ(s1,Φ1) = {s1s2s∗2} and

ϕ(s1,Φ2) = {s1s∗1s2s∗2}.

Let policy π be{(s1,a2),(s2,a2)}.

Now show that(s1,Φ1,π) 6|= ϕ. According to the definition,ϕ(s,Φ) denotes

the set of set of trajectories

{πσ : (s,Φ,π) |=ϕ andπσ is the set of trajectories that are consistent with policyπ}.

If (s1,Φ1,π) |= ϕ in π-CTL∗, the set of trajectories consistent withπ in (s1,Φ1)

is in ϕ(s1,Φ1). However, the set of trajectories consistent withπ in (s1,Φ1) is

s1s∗1s2s∗2, ands1s∗1s2s∗2 6∈ ϕ(s1,Φ1). Thus(s1,Φ1,π) 6|= ϕ.

Now show that(s1,Φ2,π) |= ϕ. According to the definition,ϕ(s,Φ) denotes
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the set of set of trajectories

{πσ : (s,Φ,π) |=ϕ andπσ is the set of trajectories that are consistent with policyπ}.

As s1s∗1s2s∗2 ∈ ϕ(s1,Φ2), there is a policyπ ′ in Φ such that(s1,Φ2,π ′) |= ϕ and the

set of trajectories consistent withπ ′ is s1s∗1s2s∗2. π is the only policy such that the

set of trajectories consistent with it iss1s∗1s2s∗2. Thusπ = π ′ and(s1,Φ2,π) |= ϕ.

Thus(s1,Φ1,π) 6|= ϕ and(s1,Φ2,π) |= ϕ. According to Lemma 2, for all for-

mulasϕ in π-CTL∗, (s,Φ1,π) |= ϕ iff (s,Φ2,π) |= ϕ.

There is a contradiction. Hence the goalg cannot be expressed inπ-CTL∗.

The goal defined in the proof satisfies the following requirement:

“All along your trajectory

if from any state p can be achieved for sure

thenthe policy being executed must achieve p,

elsethe policy must make p reachable from any state in the trajectory.”

While the thenand elsepart of this goal can be expressed inπ-CTL∗, the if part

can be further elaborated as “there exists a policy which guarantees that p can be

achieved for sure”, and to express that, one needs to quantify over policies. Thus

a new existence quantifierE P and its dualA P are introduced, meaning ‘there

exists a policy starting from the state’ and ‘for all policies starting from the state’

respectively.

Syntax of P-CTL∗

The syntax ofπ-CTL∗ is extended to incorporate the above mentioned two new

quantifiers.

Definition 19. Let 〈p〉 denote an atomic proposition,〈s f〉 denote a state formula,

and〈p f〉 denote a path formula. Intuitively, state formulas are properties of states,

path formulas are properties of paths. With that the syntax of state and path formu-

las in P-CTL∗ is as follows.
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〈s f〉 ::= 〈p〉 | 〈s f〉∧ 〈s f〉 | 〈s f〉∨ 〈s f〉 | ¬〈s f〉| E〈p f〉 | A〈p f〉

| Epol〈p f〉 | Apol〈p f〉 | E P〈s f〉 | A P〈s f〉

〈p f〉 ::= 〈s f〉 | 〈p f〉∨〈p f〉 | ¬〈p f〉 | 〈p f〉∧〈p f〉| 〈p f〉U 〈p f〉 |©〈p f〉 |3〈p f〉 |2〈p f〉

2

Note that in the above definitionE P〈s f〉 is a state formula. That is because

once the policy part ofE P is instantiated, the reminder of the formula is still a

property of a state. The only difference is that a policy has been instantiated and

that policy needs to be followed in the reminder of the formula unless specified

otherwise. The semantics of P-CTL∗ is defined as follows.

Semantics of P-CTL∗

The semantics of P-CTL∗ is related to the semantics ofπ-CTL∗.

Definition 20 (Truth of state formulas). The truth of state formulas are defined with

respect to a triple(sj ,Φ,π) where sj is a state,Φ is the transition function, andπ

is a policy as a mapping from states to actions.

• (sj ,Φ,π) |= p iff p is true in sj .

• (sj ,Φ,π) |= ¬s f iff (sj ,Φ,π) 6|= s f .

• (sj ,Φ,π) |= s f1∧s f2 iff (sj ,Φ,π) |= s f1 and(sj ,Φ,π) |= s f2.

• (sj ,Φ,π) |= s f1∨s f2 iff (sj ,Φ,π) |= s f1 or (sj ,Φ,π) |= s f2.

• (sj ,Φ,π) |= E p f iff there exists a pathσ in Φ starting from sj such that

(sj ,Φ,π,σ) |= p f .

• (sj ,Φ,π) |= A p f iff (sj ,Φ,π,σ) |= p f for all pathsσ in Φ starting from sj .

• (sj ,Φ,π) |= Epol p f iff there exists a pathσ in Φ starting from sj consistent

with the policyπ such that(sj ,Φ,π,σ) |= p f .
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• (sj ,Φ,π) |= Apol p f iff (sj ,Φ,π,σ) |= p f for all pathsσ in Φ starting from

sj consistent with the policyπ.

• (sj ,Φ,π) |= E P s f iff there exists a policyπ ′ being a mapping from states

to actions consistent withΦ such that(sj ,Φ,π ′) |= s f .

• (sj ,Φ,π) |= A P s f iff (sj ,Φ,π ′) |= s f for all policiesπ ′ that are mappings

from states to actions consistent withΦ. 2

Definition 21 (Truth of path formulas). The truth of path formulas are now defined

with respect to the quadruple(sj ,Φ,π,σ), where sj ,Φ andπ are as before andσ

is an infinite sequence of states sj ,sj+1, . . ., called a path.

• (sj ,Φ,π,σ) |= s f iff (sj ,Φ,π) |= s f .

• (sj ,Φ,π,σ) |= ¬p f iff (sj ,Φ,π,σ) 6|= p f

• (sj ,Φ,π,σ) |= p f1∧ p f2 iff (sj ,Φ,π,σ) |= p f1 and(sj ,Φ,π,σ) |= p f2.

• (sj ,Φ,π,σ) |= p f1∨ p f2 iff (sj ,Φ,π,σ) |= p f1 or (sj ,Φ,π,σ) |= p f2.

• (sj ,Φ,π,σ) |=©p f iff (sj+1,Φ,π,σ) |= p f .

• (sj ,Φ,π,σ) |=2p f iff (sk,Φ,π,σ) |= p f , for all k≥ j.

• (sj ,Φ,π,σ) |=3p f iff (sk,Φ,π,σ) |= p f , for some k≥ j.

• (sj ,Φ,π,σ) |= p f1 U p f2 iff there exists k≥ j such that(sk,Φ,π,σ) |= p f2,

and for all i, j ≤ i < k, (si ,Φ,π,σ) |= p f1. 2

Now define when a policyπ that maps from states to actions satisfies P-CTL∗

goalϕ given an initial states0, and a transition functionΦ.

Similar to the definitions inπ-CTL∗, for a P-CTL∗ formulaϕ, a policyπ satis-

fies a goalϕ from s0, if (s0,Φ,π) |= ϕ in P-CTL∗. Let the setϕ(s,Φ) denotes the
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set of set of trajectories

{πσ : (s,Φ,π) |=ϕ andπσ is the set of trajectories that are consistent with policyπ}.

For any transition functionΦ, a pathσ in Φ and for all policiesπ that map

from states to actions, and a formulaϕ in π-CTL∗, (s0,Φ,π,σ) |= ϕ in π-CTL∗ iff

(s0,Φ,π,σ) |= ϕ in P-CTL∗. Which implies that with each policy being a mapping

from states to actions, all goals that can be expressed inπ-CTL∗ can be expressed

in P-CTL∗. Considering Proposition 4, P-CTL∗ is a proper superset of languageπ-

CTL∗ and is strictly more expressive. More on this will be discussed in Section 3.5.

Goal Representation in P-CTL∗

Several goal examples that can be expressed in P-CTL∗ while cannot be expressed

in π-CTL∗ or other languages such as CTL∗ is now illustrated.

Section 3.2 explored various goals that can be expressed inπ-CTL∗. Based

on goal specificationsGπ
s , Gπ

w, andGπ
sc, the new quantifiers in P-CTL∗ is used to

express conditions similar to the ones mentioned in the beginning of Section 3.3.

Cw = E PEpol3p: This is a state formula, which characterizes states with re-

spect to which (i.e., if that state is considered as an initial state) there is a pol-

icy such that if one were to follow that policy then one can, but not guaranteed

to, reach a state wherep is true. Similarly, defineCs = E PApol3p, andCsc =

E PApol2(Epol3p).

These three formulas are not expressible inπ-CTL∗, and are state formulas of

P-CTL∗. But, by themselves they, or a conjunction, disjunction or negation of them,

are not meaningful goal formulas with respect to which one would try to develop

policies (or plan) for. Nevertheless, they are very useful building blocks.

Recall the transition function in the proof of Proposition 4,given as:

All along your trajectory,

if from any statep can be achieved for sure,
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thenthe policy being executed must achievep,

elsethe policy must makep reachable from any state in the trajectory.

Now the above goal in P-CTL∗ can be expressed asApol2((E PApol3p ⇒

Apol3p)∧ (¬E PApol3p⇒ Apol2(Epol3p))).

The policyπ in Figure 3.4 defined asπ(s1) = π(s2) = a2 achieves the above

goal with respect toΦ2, but not with respect toΦ1, while the policyπ ′ defined

asπ ′(s1) = a1, andπ ′(s2) = a2 achieves the above goal with respect toΦ1. The

reasonπ does not satisfy the goal with respect toΦ1, is thatE PApol3p is true

with respect tos1 (in Φ1), but the policyπ does not satisfyApol3p.

Goals Corresponding to Example 2

Now use P-CTL∗ formulasCs, Cw andCsc andπ-CTL∗ formulasGπ
s , Gπ

c , andGπ
sc

to express various goals with respect to Example 2.

• GP
w = Apol2(E PEpol3p ⇒ Epol3p): This goal specifies that all along the

trajectory following the given policy, if there is a policy that makesp reach-

able then the given policy makesp reachable. The policiesπ1, π2, π3 andπ4

satisfy this goal whileπ5 does not.

As a rarity, theπ-CTL∗ goal Gπ
w = Apol2(E3p ⇒ Epol3p) also satisfies

these four policies.

• GP
s = Apol2(E PApol3p ⇒ Apol3p): This goal specifies that all along the

trajectory following the given policy, if there is a policy that can always reach

p no matter the non-deterministic actions, then in the policychosen by the

agent,p must be reached.” The policiesπ1, π2 andπ5 satisfy this goal while

π3 andπ4 do not.

• GP
sc = Apol2(E PApol2(Epol3p) ⇒ Apol2(Epol3p)): This goal specifies

that all along the trajectory following the given policy, ifthere is a policy
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that is a strong cyclic policy forp, then the policy chosen by the agent is a

strong cyclic policy forp.” The policiesπ1, π3, andπ5 satisfy this goal while

policiesπ2 andπ4 do not.

• GP
s ∧GP

c ∧GP
sc: This goal specifies that all along the trajectory followingthe

given policy, if there is a policy that guarantees thatp will be reached, then

the agent’s policy must guarantee to reachp; else-if there is a strong cyclic

policy for p, then the policy chosen by the agent must be a strong cyclic

policy; and else-if there is a policy that makesp reachable then the policy

makesp reachable. This can be considered as one formal specification of the

goal of “trying one’s best to reachp”. Only π1 amongπ1 – π5 satisfies this

goal.

Goal Satisfiable policies
Gπ

w, GP
w π1, π2, π3, π4

GP
sc π1, π3, π5

GP
s π1, π2, π5

GP
w∧GP

s π1, π2

GP
w∧GP

sc π1, π3

GP
w∧GP

s ∧GP
sc π1

GP
s ∧¬GP

sc π2

GP
sc∧¬GP

s π3

GP
w∧¬GP

sc∧¬GP
s π4

GP
s ∧¬GP

w π5
Gπ

s /0

Table 3.1: Different P-CTL∗ andπ-CTL∗ goal specifications and the policies satis-
fying them

Based on these formulations, users may have various specifications. Some of

these specifications and the subset of the policiesπ1 – π5 that satisfy these goals

are summarized in Table 3.1. In this example, users may have an arbitrary par-

tition of {π1, · · · ,π5}, while most of these partitions cannot be done in existing
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languages. Language P-CTL∗ is more powerful in expressing the intention of com-

paring among policies.

Maintenance Goals and Other Goals Specified in P-CTL∗

In expressing goals about maintainability, the relations for π-CTL∗ goals still hold

here.Apolφ is equivalent to¬Epol¬φ for any path formulaφ . Besides,A Pφ is

equivalent to¬E P¬φ .

Some goals that involve two subgoals,p andq are specified in P-CTL∗. They

illustrate that the additional expressive power of P-CTL∗ is not just for expressing

the “if-then” type of conditions discussed earlier.

• Suppose there is an agent that would like to reachq but wants to make sure

that all along the path if necessary it can make a new (contingent) policy

that can guarantee thatp will be reached. Here,q may be the destination

of the robot andp may be the property of locations that have recharging

stations. This goal can be expressed in P-CTL∗ asApol2((E PApol3p)Uq).

Alternative specifications in CTL∗ or π-CTL∗ cannot capture this goal.

• Consider an agent that would like to reach eitherp or q, but because of

non-determinism the agent is satisfied if all along its path at least one of

them is reachable, but at any point if there is a policy that guarantees thatp

will be reached then from that point onwards the agent would like to make

sure thatp is reached; otherwise, if at any point if there is a policy that

guarantees thatq will be reached then from that point onwards the agent

would like to make sure thatq will be reached. This can be expressed in P-

CTL∗ asApol2(Epol(p∨q)∧ (E PApol3p⇒ Apol3p)∧ ((¬E PApol3p∧

E PApol3q)⇒ Apol3q)).

• Consider an agent whose goal is to maintainp true and if that is not possible
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for sure then it must maintainq true until p becomes true. This can be ex-

pressed in P-CTL∗ asApol2((A PEpol¬2p⇒Apol(qUp))∧(E PApol2p⇒

Apol2p)).

The proposed language P-CTL∗ allows the specification of such goals. P-CTL∗

has the ability of letting the agent to compare and analyze policies and “adjust”

accordingly. Hence, it is useful for the agent to plan in a non-deterministic or

dynamic domains in which current states are unpredictable.

Although P-CTL∗ is a rich goal specification language, it still has limitations.

These limitations are partly due to the policy defined in the language. The next

section formally elaborates on having a different policy structure in defining a lan-

guage.

3.4 Pσ -CTL∗: Need for Different Notions of the Policy Structure

In languagesπ-CTL∗ and P-CTL∗, the policy structure is defined as a mapping

from states to actions. Now illustrate that the definition onpolicy structure in a

language has a great impact on the set of goals expressed in the language.

p, −q, r

−p, −q, −r

−p, −q, r

−p, q, r

a1

a4

a3a2

a2

Figure 3.5: A transition with different policy structures

For example, in Figure 3.5, suppose the goalg has a property that it maps tran-

sition graphΦ and initial states1 to the sets of set of trajectories{s1s2s3s1s4s∗4∪
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s1s2s1s4s∗4}. This goal states that the agent needs to reach (a state where) p (is true)

first and then reachq.

This goal cannot be expressed by a formula in P-CTL∗ due to the policy defined

in the language. By analyzing the transition graph, given that the agent is initially

in states1, the agent can take the following strategy that correspondsto the set of

trajectoriess1s2s3s1s4s∗4∪ s1s2s1s4s∗4. The agent can initially execute actiona1 in

states1, and then taking actiona2 in the resulting states2. If a2 happens to take

the agent to states1, the agent then takes actiona4. If the execution ofa2 in state

s2 takes the agent to states3, the agent should then executea3 followed by a4 to

reach states4. However the strategy described above is not a mapping from states

to actions. It takes different actions ats1 the two times it is there. It is not an action

sequence either as actiona2 has non-deterministic effects and no common actions

can be executed in the resulted states. In fact, given that the initial state iss1, there

is no action sequences or mappings from states to actions to satisfy the requirement

of reachingp and then reachingq in the domain. In order to capture the strategy

described above, a policy as a mapping from state sequences to actions is defined.

Definition 22 (Policy as a mapping from state sequences to actions). A policy π is

a mapping from each sequence of finite number of states T to an action A. A policy

is valid if for each trajectoryσ ∈ T of the form s0, s1, · · · , for i ≥ 0, it is true that

si+1 ∈ Φ(si ,π(s0, s1, · · · , si)). 2

Having policies as mappings from state sequences to actionsis not new. There

are some similar definitions in the literature. It is often called a strategy, an algo-

rithm, or a protocol [HF85, AHK02]. In [BDH99], a policy is defined as a mapping

from state-action sequences to actions. Each state-actionsequence is a sequence of

states and actions from the initial state to the current state. In [DLPT02], acontext

is attached to each state, which encodes the properties of historical states. As users
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usually do not care about actions taken in the past in a goal specification language,

a policy is now defined as a mapping from state sequences to actions instead of a

mapping from state and action sequences to actions.

A trajectory consistents with a policy that is a mapping fromstate sequences to

actions is now defined.

Definition 23 (Trajectories consistent with a policy). A trajectoryσ = s0,s1, · · · is

consistent with a policyπ that maps state sequences to actions if si+1∈Φ(si,π(s0,s1, · · · ,si))

for i ≥ 0. 2

This notion of policies is related to the notion of policies as mappings from

states to actions. If a policy that is a mapping from trajectories to actions has a

property that trajectories with the same last states are mapped to the same action,

it can be simplified to a mapping from states to actions. For each policy that maps

states to actions, there is a policy that maps histories to actions such that a trajectory

is consistent with one policy iff it is consistent with the other one.

With each policy being a mapping from state sequences to actions, goal spec-

ification languagesπσ -CTL∗ and Pσ -CTL∗ are defined in a similar approach as

π-CTL∗ and P-CTL∗. Relations of these languages are discussed in the next sec-

tion.

Now consider the goal of reachingp and then reachingq in transition graph

in Figure 3.5. The goal is represented inπσ -CTL∗ asApol3(p∧3q). A policy

{(s1,a1), (s1s2,a2), (s1s2s3,a3), (s1s2s1,a4), (s1s2s3s1,a4)} in Pσ -CTL∗ satisfies

this goal. This goal cannot be represented in languageπ-CTL∗ or P-CTL∗.

Definitions of policy structures are not limited to the ones defined above. A

policy may also defined as a mapping from states to sets of actions, or from pairs

of LTL/CTL∗/etc. formulas to actions, etc. A goal specification language may also

defined such that the policy of the agent can be the combination of two other policy
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definitions. The policy structure represents the architecture of the agent, it denotes

the ability of the agent. For two agents with different abilities, the same instruction

given to them may lead to different outcomes.

3.5 Expressiveness of a Goal Specification Language

In previous sections, different goal specification languages are proposed in repre-

senting goals, where each goalg is a mappingg(s,Φ) from a transition graphΦ and

an initial states to a set of trajectories (or a set of set of trajectories). A set of for-

mulas are defined in each goal specification language. Goals are then represented

by these formulas with the definition that a goalg is represented by a formulaϕ

in the language ifg(s,Φ) = ϕ(s,Φ) for any transition graphΦ and states. In each

language, the definition ofϕ(s,Φ) implies the relations of goals and formulas. With

this definition, this chapter showed that there is a goal in P-CTL∗ which cannot be

expressed inπ-CTL∗, and there is a goal inPσ -CTL∗ which cannot be expressed in

P-CTL∗.

In addition to this, a relation between formulas and policies is defined based on

the entailment relation in each language. For example, inπ-CTL∗, policyπ satisfies

a goalϕ from states0 in Φ if (s0,Φ,π) |= ϕ.

Comparing formulas and policies in different languages, twolanguages are dif-

ferent for different reasons. The set of formulas inπ-CTL∗ is a proper subset of set

of formulas in P-CTL∗, and in both languages, each policy is a mapping from states

to actions thus these two languages share the same set of policies. This relation is

denoted assyntax-advanced.

On the other hand, the set of formulas in P-CTL∗ and the set of formulas in

Pσ -CTL∗ are the same, while policies defined inPσ -CTL∗ are mappings from tra-

jectories to actions, and policies defined in P-CTL∗ are mappings from states to

actions. As policies in P-CTL∗ is a proper subset of polices inPσ -CTL∗. this is
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denoted aspolicy-advanced. These relations between goal specification languages

are formally defined as follows.

Definition 24 (syntax-advanced). Given two languages L1 and L2, L1 is syntax-

advancedthan L2 if

1. the set of policies in both languages are the same for any transition systemΦ

and state s,

2. the set of goal formulas in L2 is a proper subset of goal formulas in L1, and

3. for a formulaϕ in L2, an initial state s, and a transition systemΦ, a policyπ

satisfiesϕ in L2 iff it satisfiesϕ in L1. 2

Definition 25 (policy-advanced). Given two languages L1 and L2, L1 is policy-

advancedthan L2 if

1. the set of policies in L2 is a proper subset of policies in L1 for any transition

systemΦ and state s0,

2. the set of goal formulas in both languages are the same, and

3. for a policyπ in L2, an initial state s, and a transition systemΦ, policy π

satisfies a formulaϕ in L2 iff it satisfiesϕ in L1. 2

Based on the semantics of each language, P-CTL∗ is syntax-advanced thanπ-

CTL∗. To prove it, it is easy to check Item 1) and 2) in Definition 24.Item 3) is

proved by showing that for a formulaϕ in π-CTL∗, the set of policies satisfying

ϕ in π-CTL∗ is the same as the set of policies satisfyingϕ in P-CTL∗. That is,

(s,Φ,π) |= ϕ in π-CTL∗ iff (s,Φ,π) |= ϕ in P-CTL∗. This can be implied by the

semantics ofπ-CTL∗ and P-CTL∗. Similarly, Pσ -CTL∗ is syntax-advanced than

πσ -CTL∗.
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Similarly, πσ -CTL∗ is policy-advanced thanπ-CTL∗. To prove it, Item 1) and

Item 2) in Definition 25 are easy to check. Item 3) states that apolicy π in π-CTL∗

satisfies a formulaϕ in π-CTL∗ iff it satisfies the same formula in P-CTL∗. This

can be implied by the semantics ofπ-CTL∗ andπσ -CTL∗.

However,Pσ -CTL∗ is not policy-advanced than P-CTL∗. In checking the Item

3) in Definition 25, for the same formula, semantics ofE P andA P in two lan-

guages are different. They states the comparison of all policies in the language,

while these two languages have different sets of policies.

Note that in languagesπ-CTL∗, P-CTL∗, πσ -CTL∗, andPσ -CTL∗, ϕ(s,Φ) are

all defined as a set of set of trajectories

{πσ : (s,Φ,π) |=ϕ andπσ is the set of trajectories that are consistent with policyπ}.

Thus these languages can be compared based on the set of goalsexpressed in each

of them.

Proposition 5. Given a goal that is a mapping from states and transition graphs to

sets of set of trajectories,

• A goal expressed inπ-CTL∗ can be expressed in P-CTL∗;

• A goal expressed inπσ -CTL∗ can be expressed in Pσ -CTL∗.

Proof. Let ϕ(s,Φ)π−CTL∗ be ϕ(s,Φ) in languageπ-CTL∗. Let ϕ(s,Φ)P−CTL∗ be

ϕ(s,Φ) in language P-CTL∗. Suppose a goalg can be expressed inπ-CTL∗ asϕ.

g(s,Φ) is defined asϕ(s,Φ)π−CTL∗ for any states and transition graphΦ. Now

prove thatϕ(s,Φ)π−CTL∗ = ϕ(s,Φ)P−CTL∗. As P-CTL∗ is syntax-advanced than

π-CTL∗, the set of policies satisfyingϕ in these two languages are the same, and

policies defined in these two languages are the same. Asϕ(s,Φ) is defined as

{πσ : (s,Φ,π) |=ϕ andπσ is the set of trajectories that are consistent with policyπ},
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ϕ(s,Φ)π−CTL∗ = ϕ(s,Φ)P−CTL∗. Thus a goal expressed inπ-CTL∗ can be ex-

pressed in P-CTL∗.

It is similar to prove that a goal expressed inπσ -CTL∗ can be expressed in

Pσ -CTL∗.

However, there is no such relations betweenπ-CTL∗ andπσ -CTL∗ or between

P-CTL∗ andPσ -CTL∗. For example, considering a goal that mapss1 andΦ1 to a

set of set of trajectories{s1s∗1s2s∗2,s1s2s∗2} in transition graphΦ1 of Figure 3.4. This

goal can be be represented inπ-CTL∗ asApol3p. However, this goal cannot be

represented asApol3p in πσ -CTL∗. The formulaϕ = Apol3p mapss1 andΦ1 to a

set of set of trajectories that consists of a lot more elements. For example, a set of

trajectoriess1s1s2s∗2∪s1s2s∗2 is one element inϕ(s1,Φ1). A policy in πσ -CTL∗ that

try actiona2 twice before taking actiona1 in states1 is a policy satisfying this goal

in πσ -CTL∗.

There are other approaches of defining expressiveness of a goal specification

language. In Appendix B, another approach of defining expressiveness of a goal

specification language is proposed. It has different properties as the framework

proposed above.

3.6 Discussion and Related Work

In this section, a few issues related to goal specifications are discussed. This section

starts with the importance of the policy structure in a goal specification language.

Goal Specification with Different Policy Structures

The goal “try your best to reachp” has properties of comparing policies of the

agent. Thus the agent need to be aware of the set of policies available to her before

she can choose the best one. This goal cannot be captured by just comparing sets of

trajectories in the transition graph, as some sets of trajectories may not be available

to the agent even though they are the best trajectories.
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As there may be different definition of policies in a transition system. Depend-

ing on different initial states and different transition system the agent is in, a goal is

a mapping from the “possible ways the world could evolvefor the agent” to “some

desired ways”. Each “possible ways the world could evolve for the agent” stands

for a possible state structure that are available to the agent, which is usually ties to

the policy structure of the agent. This implies that in some cases, users may not only

need to consider how the world may evolve, but also need to consider how the world

may evolvefor the agent. This is interesting as different agents may have different

policy structures. Thus for the agent to choose the “best options” among the ones

that are available, the agent need to know all the options that are available to her.

How the world may evolve for the agent can be expressed by a triple of an initial

states, a transition functionΦ, and a policy structureP of the agent. In previous

section, when one specifies a goal in the languagesπ-CTL∗, πσ -CTL∗, P-CTL∗ and

Pσ -CTL∗, a particular policy structure is assumed implicitly or explicitly. However,

sometimes, users may have a requirement in mind while users are not aware of the

particular ability (i.e., policy structure) of the agent. Thus the following definition

on goals might be needed.

Definition 26. A goal g is a mapping from triples of initial state s, transition func-

tion Φ, and policy structureP to sets of trajectories (or sets of set of trajectories),

which is denoted as g(s,Φ,P).

Let g be a formula in goal specification languageL, s be the initial state,Φ be

the transition function. Now a goal can be expressed as a formula ϕ in languageL

if

ϕ(s,Φ,P) = g(s,Φ,P).

With this definition, when a goal is given to the agent, users do not need to be

aware of the policy of the agent. Each agent can interpret therequirement based on
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its own policy structure and then choose the corresponding policies to execute.

Limitations of Goal Specification with Temporal Logics

A few limitations of current goal specification with temporal logic approach are

listed now. All temporal logic approach in goal specification share these limitations.

Firstly, there is no elegant way of comparing states explicitly. Current goal

specification languages only specify properties of the policy taken by the agent in

terms of relations of fluents. There is not explicit representation and comparison

of states, which is necessary in some cases. For example, users may want to make

sure that the agent stays in the first state where fluentp is reached, or users may

want to prevent the agent from visiting the same state twice.Representing such a

requirement in an elegant way is a challenge problem.

Secondly, current goal specification languages are not goodat handling paths

consist of a finite number of states. For example, users want the agent to find

a policy such that the agent cannot reachp, but must stay in the first state from

where there is a policy that guarantees to reachp (e.g., a state s.t.E PApol3p).

In a non-deterministic domain, users can try to encode the goal in P-CTL∗ as

(Apol32(E PApol3p))∧Apol2¬p but the formula does not exactly capture the

intention of staying in that state. Given a finite state sequence, it can be extend

to an infinite state sequence by appending the last state, which is the result of the

action “nop”. On the other hand, given an infinite state sequence, it is not easy to

get a properly defined state sequence of a finite number of states.

Complexity Issues

So far in this chapter the issue of complexity of planning andplan checking with

respect to goals in the various proposed languages has not been explored. The com-

plexity results not only depend on the goal language but alsoon how the transition

diagram is encoded. This section points to some of the earlier papers on complex-
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ity with respect to temporal logics [WD05, JL03, LMO06, BKT01]and presents

one sample result where the transition diagram is encoded using an action lan-

guage. In particular, the language considered is STRIPS+, anextension of STRIPS

representation of the transition system in [FG00] that allows actions to have non-

deterministic effects. In short, actions in STRIPS+ composed of preconditions in

pre, deterministic effects ind eff, and non-deterministic effects ini eff. The input

and output of the problem is now defined:

Given an action signature〈V ,F ,A 〉, a states0 in Sdenoted as the initial state,

the transition functionΦ defined by the action language in [FG00], and a temporal

formulag in goal specification languageL, thePlan Existence Checkingproblem is

about deciding whether there is a policyπ such that(s0,Φ,π) |=L g.

Proposition 6. Deciding whether there is a policy in a non-deterministic domain

that satisfies aπ-CTL∗ formula is EXPTIME-hard.

Proof. To prove that the problem is EXPTIME-hard, EXPTIME-complete problem

G4 [SC79] is reduced to a plan existence checking problem.

In a G4 problem, a 13DNF formula f and two sets of variables are given as

input. There are two players in the game. Each play has one setof variables. Each

player can choose one variable belong to him and flip it. Two players take turns

with passing allowed in flipping variables. The output ofG4 problem is true if the

first player has a policy to guarantee winning the game. The output is false if no

such policy exists for the first player.

The translation from aG4 problem to a plan existence checking problem is

defined as follows:

For each variabler in theG4 problem, there is a fluentr in the non-deterministic

planning problem. Let the set ofr fluents corresponding to playerA beRA. The set

of r fluents corresponding to playerB beRB. Besides, there is an extra fluentAturn

68



for the planning problem. It indicates whether it is playerA’s turn to execute the

next action.

In the planning problem, there are two sets of different actions. Conceptually,

one set of actions corresponds to actions of playerA, while the other set playerB.

One action belonging to playerA can be executed only ifAturn is true in the state.

On the other hand, one action belonging to playerB can be executed only ifAturn

is not true in the state. The set of actions executable by player A are deterministic

actions. The number of actions executable by playerA doubles the size ofRA. For

each fluentr in RA, there are two actionsf liprt and f lipr f such that they will make

the fluentr true if it is false, and make it false if it is true.

fliprt pre : Aturn,¬r

d eff : ¬Aturn, r

fliprf pre : Aturn, r

d eff : ¬Aturn,¬r

Besides, there is a dummy action, which corresponds to the pass through of

playerA:

dummyA pre : Aturn

d eff : ¬Aturn

Only one action can be executed whenAturn is not true, it changes at most one

fluent fromRB.

actionB pre : ¬Aturn

d eff : Aturn

i eff : {rb1},{¬rb1}, · · · ,{rbr},{¬rbr}
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Whererb1, · · · , rbr are all fluents inRB. Note thatactionB may not chance value

of any fluent, which corresponds to the pass through of playerB. Whenaction B

changes value of fluents, it can only change value of at most one fluent at a time.

Length of theaction B is polynomial to the number of fluents inRB. It is a polyno-

mial time translation. Note that anyA’s action will makeAturn false and the action

actionB will makeAturn true. By this, playerA andB take turns in flipping fluents.

Given the formula inG4 problem beingf , the π-CTL∗ goal to be checked is

Apol(¬(Aturn∧ f )U(¬Aturn∧ f )). The claim is that there is a policy for playerA

iff there is a policy, i.e., a mapping from states to actions,to satisfy the goal in the

transformed planning domain.

Firstly, it is easy to see that it is a polynomial time reduction. Now prove the

correspondence of these problems:

If there is a policy for playerA to win the game, then playerA has a policy that

while execute the action he choose, no matter what playerB execute, will guarantee

to reach a state wheref is true while in the process of reaching that state, there is

no state that personB makesf true. Note that the policy taken by playerA must be

a mapping from states to actions.

On the other hand, if there is a policy satisfying theπ-CTL∗ goal, there is a

policy for playerA.

From the proof, it is known that the program can be encoded with a P-CTL∗

formula. Thus deciding whether there is a policy in a non-deterministic domain

that satisfies a P-CTL∗ formula is EXPTIME-hard.

Now define the policy checking problem to check whether a goalis satisfied

by a policy. Given an action signature〈V ,F ,A 〉, a states0 in S denoted as the

initial state, the transition functionΦ defined by the action language in [FG00],

a policy π that is a mapping from states to actions (or a policy that is anaction
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sequence, or a mapping from state sequences to actions), anda temporal formulag

in goal specification languageL, the em Policy Checking problem is about deciding

whether or not(s0,Φ,π) |= g in languageL.

Proposition 7. The policy checking problems forπ-CTL∗ is PSPACE-complete.

Proof. It is known that the model checking problem for CTL∗ is PSPACE-complete [EL85,

Sch03] in deterministic domain. The model checking for LTL is PSPACE-hard [SC85].

Similarly, the model checking forπ-CTL∗ is PSPACE-hard as well.

The following shows that the policy checking problem forπ-CTL∗ is in PSPACE.

An algorithm is constructed based on the algorithm for CTL∗. Two transition func-

tions are defined. They proceed simultaneously. One of the transition function isΦ,

and the other one isΦπ , the transition function corresponding to the policyπ of the

agent. Take a similar approach as in Section 4 of [AHK02], fora formulaϕ, all its

sub-formulas are considered. Label each state inΦ andΦπ with all sub-formulas

of ϕ that are satisfied in the state. A sub-formula is constructedrecursively. If the

sub-formula is constructed by precedingApol orEpol, check and update on the tran-

sition functionΦπ . If the sub-formula is constructed by precedingA or E, check

and update on the transition functionΦ. All the remaining are the same as CTL∗

in both transition function. As the checking for CTL∗ is in P-SPACE, the policy

checking problems forπ-CTL∗ is in P-SPACE.

Related Works

In the history of computer science, there has been a lot of research in specifying

purpose of programs, and proving correctness of programs with respect to given

specification, using temporal logic. Temporal logics were used for specification and

verification of concurrent systems and some of the work are presented in the books

such as [CM88, MP92] and surveyed in [Eme90]. Some work has also been done

on automatically and semi-automatically synthesizing [MW84, CE81, PR89, ES84]
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parts of a concurrent programs. Most of the work is on extending logics to have met-

ric intervals [BK98], qualitative measure on elapsed time between the occurrences

of the events [Pnu77, AH93], or having a timed transition system [DCDS01], or

in a game-like multi-agent system [AHK02, vdHJW05]. There are some work on

making use of temporal connectives for specifying the control programs of semi-

autonomous systems. The early research on this include the state based temporal

logic in [McD82b], the interval based logic in [All84], and the interval based gen-

eralization of state based temporal logic in [Sho87]. How touse temporal logic to

specify goals of agents is not well studied in those directions.

Different from those work, in using temporal logics in goal specification, this

chapter points out that as richer and richer goal specification languages are devel-

oped, languages that are intimately associated with the policy structure of the agent

are needed. For agents with different policy structures, orabilities, the same intu-

ition might have different interpretations. For example, if a user asks the agent to

try its best to reachp, one agent may not even execute a single action as long as

he can convince the user that he is not able to reachp. In that case, the user still

consider the agent as tried his best. The other agent in the same state might have to

reachp as he has a different policy structure and is capable of reaching p.

Languageπ-CTL∗ captures the intuition of grouping the set of trajectories as-

sociated with the policy under consideration. Some constructs from [DLPT02] cap-

ture the same intuition. However their language is somewhatorthogonal to tempo-

ral logics and as a result using their language one cannot build up on the existing

expressiveness of temporal logics such as LTL and CTL∗. On the other logics pro-

posed in this chapter build up on existing temporal logics. In [BZ04] a more detailed

and critical analysis of their language is given. The paper also points point out ad-

ditional limitations of the work in [DLPT02]. Similar toπ-CTL∗, in [dLPdB08],

logic α-CTL∗ was proposed by branching on actions instead of the set of trajecto-
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ries in a policy.

Quantification over policies was proposed in the context of games in the lan-

guage ATL and ATL∗ [AHK02]. An extension of that called CATL [vdHJW05]

has also been proposed. They are similar to P-CTL∗. However, their focus in on

games. If a user considers the domain to be non-deterministic domain, there is no

easy way of single out each path. If a single deterministic domain is considered, it is

not obvious that one can have a 1-1 correspondence between those formalisms and

ours as the transition considered in P-CTL∗ is non-deterministic. For example, one

may have a translation from this formalism (one person, but with non-deterministic

transitions) to their formalism (two person games with deterministic transitions) to

take care of the non-deterministic effects of actions. For example, the actiona1 and

a6 in states1 in Figure 3.1 is translated to actions in Figure 3.6.

~p

~p

~p

s5

~p

~p

~p

s1

s2

s1’

s1’’
a6

a1

a1’’

a1’’’

a6’

a1’

s3

Figure 3.6: Differences of ATL and P-CTL∗ in specifying goals

Note that statess
′

1 ands
′′
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′

1, a
′′

1, a
′′′

1 anda
′

6 are new deter-

ministic actions.a1 anda6 are actions of the first agent anda
′

1, a
′′

1, a
′′′

1 anda
′

6 are

actions belong to the second agent. A similar translation for other states and ac-

tions can be done. With this translation, their formalism can be used to take care

of non-deterministic actions. However, their formalism cannot be used to represent

all goals inπ-CTL∗ and P-CTL∗. In P-CTL∗, E f andE PEpol f correspond to dif-

ferent set of paths. The latter only consider the paths that follows a policy while

the first formula consists of all possible paths in the domain. Similarly, A f and
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A PApol f have different meaning. In general, P-CTL∗ allows non-deterministic

domains, it distinguishes between the definitions of all paths and the set of paths due

to the agent actions while this distinction is not captured in ATL, ATL ∗ or CATL.

However, it might be true that their formalism can be used to represent goals in

P-CTL∗. Definition of the policy plays an important role in these languages while

the impact of policy definitions is not considered in ATL and ATL∗.

3.7 Summary

Systematic design of semi-autonomous agents involves specifying (i) the domain

description: the actions the agent can do, its impact, the environment, etc.; (ii)

the control execution of the agent; and (iii) directives forthe agent. While there has

been a lot of research on (i) and (ii), there has been relatively less work on (iii). This

chapter made amends and explored the expressive power of existing temporal logic

based goal specification languages. This chapter showed that in presence of actions

with non-deterministic effects many interesting goals cannot be expressed using

existing temporal logics such as LTL and CTL∗. This chapter gave a formal proof

of this, and showed showed that by introducing additional branching time operators

Apol andEpol where the path is tied to the policy being executed users can express

the goals that were thought inexpressible using temporal logic in [DLPT02]. A

new languageπ-CTL∗ was proposed. This chapter then illustrated the necessity

of having new quantifiers which are called “exists policy” and “for all policies”

and developed the language P-CTL∗ which builds up onπ-CTL∗ and has the above

mentioned new quantifiers. The chapter further extended thegoal specification

languagesπ-CTL∗ and P-CTL∗ to πσ -CTL∗ andPσ -CTL∗ by adopting a different

and more expressive policy structure. It turns out that new languages with such

new policy definition exhibit different properties thanπ-CTL∗ and P-CTL∗. Such a

result reveals the importance of agent structure in goal specification languages. In
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particular, in goal specification languages, to better suitthe agent, one should take

the agent architecture into account. This chapter showed how many of the goals

that cannot be specified in earlier languages can be specifiedin the newly proposed

languages.

An interesting aspect of this work is that it illustrates thedifference between

program specification and goal specification. Temporal logics were developed in

the context of program specification, where the program statements are determin-

istic and there are no goals of the kind “trying one’s best”. In cognitive robotics,

actions have non-deterministic effects and sometimes one keeps trying until one

succeeds, and similar attempts to try one’s best. The proposed language P-CTL∗

allows the specification of such goals. P-CTL∗ has the ability of letting the agent to

compare and analyze policies and “adjust” its current goal accordingly.

An orthogonal expressiveness issue is related to the policystructure. This chap-

ter focus on the policy structures as a mapping from states toactions, and as a

mapping from histories to actions. A framework of formally comparing expressive-

ness of goal specification languages is proposed. The relations betweenπ-CTL∗,

P-CTL∗, πσ -CTL∗, andPσ -CTL∗ are examined. The approach for comparing these

languages can be easily extended to compare richer languages, such as the ones

with policies that map LTL and CTL∗ formulas to actions.

In terms of future work, the connection of goal specificationand planning is an

interesting topic. This chapter illustrates that in more expressive goal specification

languages, some strong requirement of the goal reduces the search space. One

conjecture is that as the goal specification languages gets more and more expressive

and specific, some categories of the planning problems with respect to such goals

might become easier to solve.
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Chapter 4

N-LTL AND ER-LTL: NON-MONOTONIC TEMPORAL LOGICS THAT

FACILITATE ELABORATION-TOLERANT REVISION OF GOALS

In many domains such as in a human-robot interaction domain like a rescue and

recovery situation, as the situation unveils physically orin the user’s mind as time

goes by, goals once specified may need to be further updated, revised, partially re-

tracted, or even completely changed. Retract the earlier specification and give a

completely new specification is undesirable as it costs precious time in terms of

communication and formulation for the new specification, and may not even be

appropriate, as the agent may have started acting based on the earlier specifica-

tion. Ideas from the knowledge representation community are extrapolated, where

non-monotonic knowledge representation languages are proposed for elaboration

tolerant knowledge representation, and propose the development of non-monotonic

temporal logics N-LTL and ER-LTL that rely on labeling sub-formulas and con-

necting multiple rules. The chapter also proposes the approach of progressing an

ER-LTL program to take care of the case that the agent has started acting based on

earlier specifications.

4.1 Introduction

This chapter summarizes and elaborates on the papers [BZ07] and [BZ08]. It starts

with why it is important to have non-monotonic goals, and whynon-monotonic

requirements in goal specification languages are differentfrom that in classical log-

ics.

The previous chapter illustrates that an important component of autonomous

agent design is goal specification. Often goals of agents arenot just about or not

necessarily about reaching one of a particular set of states, but also about satis-
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fying certain conditions imposed on the trajectory. Besides, reactive agents with

maintenance goals may not have a particular set of final states to reach. Also,

agents acting in non-deterministic domains may lead to multiple trajectories in-

stead of one. Temporal logics such as linear temporal logic LTL, branching time

temporal logics CTL∗, π-CTL∗, and their extensions [BK98, NS00, BKT01] are

invented. Thus the use of temporal logics and temporal connectives to specify

goals has been suggested in the autonomous agent community and planning com-

munity [BKSD95, BK98, GV99, NS00, PT01]. In the decision theoretic planning

community suggestions have been made to use temporal logicsin specifying non-

Markovian rewards [BBG96, BBG97, TGS+06]. The previous chapter studies tem-

poral logic extensionsπ-CTL∗ and P-CTL∗ to better capture properties of goals in

non-deterministic domains.

However, in many domains such as in a human-robot interaction domain like a

rescue and recovery situation, goals once specified may needto be further updated,

revised, partially retracted, or even completely changed.This could be because at

the time of initially specifying the goal, the user did not have complete information

about the situation, or he was in haste and hence he did not completely think through

the whole situation, and as the situation unveiled physically or in the user’s mind,

he had to change his specification. In other cases, it is not necessary to consider

all possible cases in giving the initial goal. The followingexample illustrates these

points.

Example 4. John has an agent in his office that does errands for him. John may

ask the agent to bring him some coffee. But soon he realizes that the coffee machine

was broken. He is not sure if the machine has been fixed or not. Hethen revises his

directive to the agent telling it that if the coffee machine is still broken then a cup

of tea would be fine. Just after that he gets a call from a colleague who says that

77



he had called a coffee machine company and asked them to deliver a new coffee

machine. Then John calls up the agent and tells it that if the new coffee machine

is already there then it should bring him coffee. (Note that the old coffee machine

may still be broken.) He also remembers that he takes sugar with his tea and that

the tea machine has various temperature settings. So he tells the agent that if it is

going to bring tea then it should bring him a pack of sugar and set the tea machine

setting to “very hot”.

One may wonder why does not John in the above example give a well thought

out directive at the start without making further changes after that. As mentioned

earlier, some of it is because he lacked certain information, such as a new coffee

machine having been ordered; in another case he had forgotten about the coffee ma-

chine being broken, and since he takes tea less often, he had also initially forgotten

about the extra sugar.

In specifying goals of agents, often it is needed to specify goals non-monotonically.

For example, initially, an agent may be given a goal of havingp true through the

trajectory while reachings. Later, the agent may decide to weaken its goal so that in

certain exceptional casesp does not have to be true. It is quite common that goals

need to changed non-monotonically. In rescue and recovery situations with robots

being directed by humans, there is often so much chaos together with the gradual

trickling of information and misinformation that the humansupervisors may have

to revise their directives to the robots quite often.

Another motivation for having a non-monotonic goal specification language that

allows easy updating through adding is that users may not want to give the agent a

directive that is too specific, too complicated, and that takes into account all pos-

sible exceptions, from the very beginning. Besides users maynot even know all

the exceptions initially. A good non-monotonic goal specification language should
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allow users to specify a simple goal initially and should allow users to refine it by

adding new exceptions. All in elaboration tolerance manner.

To deal with the problem that the goals are unclear initiallyor need to be

changed later on, one approach would be for the agent to replace its original goal

by a revised goal, coming up with a completely new revised goal, or obtaining the

revised goal by doing surgery on the original goal specification. However, that may

cost precious time in terms of communication and formulation of the new specifica-

tion, and may not be even appropriate, as the agent may already have started acting

based on the earlier specification. Besides, this violates the principle of elabora-

tion tolerance. These are limitations of existing temporallogics. What is needed is

a goal specification language that allows users to update thegoal specification by

simply adding new statements to the original specification.Such a goal specifica-

tion language would be non-monotonic.

This raises the question of choosing a goal specification language that can be

revised or elaborated easily. As McCarthy says in [McC98], a natural language

would be more appropriate. However, there is still a need of aformal language,

sometimes as an intermediary between a natural language andthe machine lan-

guage and other times as a goal specification language. Considering the necessity

and usefulness of temporal logics in specifying trajectories in standard planning

and in specifying non-Markovian rewards in decision theoretic planning, to remain

upward compatible with existing work in these directions, this work stays with the

temporal connectives in temporal logics. The question thenis: What kind of tem-

poral logic will allow users easy revision of specifications?

In other aspects of knowledge representation, the use of non-monotonic logics

for elaboration tolerant representation [McC98] is often advocated and for reasons

similar to the example above: Intelligent entities need to reason and make decisions

with incomplete information and in presence of additional information they should
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be able to retract their earlier conclusions. Thus a non-monotonic temporal logic

could be a good candidate for the purpose.

Looking back at the literature, although there have been many proposals for

non-monotonic logics [McD82a], so far only two [FH91, Sae87] non-monotonic

versions of temporal logics are found. The first extends auto-epistemic logic with

temporal operators and does not explore issues such as elaboration tolerant repre-

sentation of exceptions and weak exceptions. The second hassemantics issues that

are mentioned in the first.

This chapter proposes non-monotonic versions of temporal logics. The focus is

on the overall aim of having non-monotonic goal languages. So rather than follows

the path of non-monotonic modal logics and auto-epistemic logic this chapter fo-

cuses on specific aspects of knowledge representation that need non-monotonicity

and borrows some specific techniques that allow such non-monotonicity.

One of the important use of non-monotonicity is the ability to express normative

statements such as “normallyq’s have the propertyp.” This resonates well with the

need of non-monotonic goal languages as users may need to specify that “normally

a state should satisfy the propertyp”. Accompanying normative statements users

have various kinds of exceptions. For example, consider theage old normative

statement “birds normally fly”. One kind of exception to sucha statement is that

“penguins are birds that do not fly”. It is called a strong exception. Another kind of

exception, referred to as weak exceptions, is that “injuredbirds are weak exceptions

to the normative statement about birds flying;” as for wounded birds users do not

know whether they fly or not. There is a need of similar exceptions with respect

to goal specifications. A normative goal specification may specify that “normally

a state should satisfy the propertyp”. Strong exceptions may be states that satisfy

some other conditions, while weak exceptions may be these conditions do not need

to be satisfied.
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To accommodate the above, proposed language N-LTL introduces two special

notations1

• [r]φ

• [[r]]φ .

The intuitive meaning of the first one is that normallyφ holds in a state and the label

r lists the weak exceptions. The intuitive meaning of the second one is that normally

φ holds in a state and the labelr lists the strong exceptions. The role ofr here is

similar to the role of labeling defaults and normative statements when representing

them in logic programming. There, often the label is used as aparameter with

respect to theabpredicates.

This formulation is related to what we human beings communicate among our-

selves. Users used to state something and then further referto it using words such

as “that” or “the”. Users are referring to a sub-formula witha label in a similar

way. Users use these labels also because users want to keep the temporal relations

of sub-formulas that are specified in earlier formulas.

Since the non-monotonicity in goal languages is not due to having incomplete

knowledge about the states, but rather due to the specifier not quite precisely know-

ing what she wants, N-LTL does not use operators such as the negation as failure

operator ‘not’ from logic programming. Here the issue is different from inferring

or assuming negation by default.

On the other hand N-LTL borrows the idea behind program completion in logic

programming to specify and interpret the conditions listedcorresponding to the

labelr. Thus there may be a set of conditions written as

〈r : ψ1〉 . . . 〈r : ψk〉
1Unlike traditional exceptions and weak exceptions, N-LTL wants the specifier to have pre-

decided control over whether a particular goal fragment could have a weak exception or an excep-
tion, but not both.
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that specify the exception or weak exception conditions with respect tor. Given the

above, the overall condition associated withr becomesψ1∨ . . .∨ψk. One is allowed

to add additional conditions. For example, if〈r : ψk+1〉 is added to the above set

then the overall condition associated withr becomesψ1∨ . . .∨ψk∨ψk+1.

It is illustrated with respect to the following example.

Example 5. Suppose initially the agent wants to maintain p true while reaching for

s. The agent knows beforehand that the aim to maintain p is not strict; it is just that

the agent does not know yet, under what conditions truth of p may not be necessary.

After a while, the agent realizes that when q is true there is no need to have p true.

The initial goal can be written in the language as〈g : (2[r]p)∧3s〉. It says that

the agent should maintain p while reaching s. If the exceptionr happens in some

states, the agent may not need to maintain p in those states. The weak exception r

is then specified as〈r : q〉.

To informally illustrate how non-monotonicity is manifested in the above ex-

ample, when a language is monotonic is defined.

Definition 27. A logic L together with a query language Q and entailment relation

|= is monotonic if for all T , T′ in L and t in Q, T|= t implies T∪T ′ |= t. 2

With respect to Example 5 letT be{〈g : (2[r]p)∧3s〉}, T ′ = {〈r : q〉}. Intu-

itively, T |=2p andT∪T ′ is equivalent to2(p∨q)∧3s in LTL thusT∪T ′ 6|=2p.

Hence the proposed language N-LTL is non-monotonic.

The language N-LTL has many limitations such as it only allows strong ex-

ceptions and weak exceptions but does not allow arbitrary revising or retracting

existing sub-formulas. Besides, when there is an exception in N-LTL, it must be

predefined whether it is a weak exception or a strong exception. These limitations

restrict the ability of N-LTL to specify goals in an evolvingscenario.
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This chapter continues on developing an appropriate non-monotonic temporal

goal specification language that allows elaboration tolerant revision of goal specifi-

cations. The language ER-LTL is developed, which is also based on LTL [MP92].

Each ER-LTL program is composed of a set of rules of the form

〈h : [r]( f1 ; f2)〉 (4.1)

The symbolh is referred to as the head of the rule and Rule 4.1 states that, normally,

if formula f1 is true, then the formulaf2 should be true, with exceptions given by

rules withr in their heads and this rule is an exception to a formula labeled byh.

ER-LTL also takes a similar approach as N-LTL and use Reiter’s idea of a surface

non-monotonic logic [Rei01] that gets compiled into a more tractable standard logic

and thus avoid increase in complexity; The idea of completion is used when rules

about exceptions are given for the same precondition. With simple rules as Rule 4.1,

users are able to express various ways to revise goals. This includes specification

of exceptions to exceptions, strengthening and weakening of preconditions, and

revision and replacement of consequents.

This chapter is organized as follows: Section 4.2 proposes the syntax and se-

mantics of a new language N-LTL. Section 4.3 proposes the syntax and semantics

of language ER-LTL, and illustrate with examples on how ER-LTLcan be used in

specifying goals and revising them in an elaboration tolerant manner. As users may

revise the goal of an agent after the agent has already executed part of his plan, the

approach of progressing an ER-LTL program is discussed in Section 4.4. Applying

the approach to other monotonic goal specification languages is briefly discussed

in Section 4.5. Section 4.7 compares languages N-LTL and ER-LTL, discusses

related works, and discusses properties of applying the techniques in ER-LTL to

propositional logic. The chapter is concluded with a summary and future work.
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4.2 N-LTL: A Non-monotonic Extension of LTL

This section extends LTL to capture non-monotonic requirements in specifying a

goal. The new language is called N-LTL which stands fornon-monotonic LTL. The

syntax and semantics of N-LTL is first defined.

Syntax

While designing the language two questions need to be addressed:

• If syntactically the goal is one temporal formula, how can users revise it to

have new goals by just adding to the original formula?

• How to refer to one part of a specification in another part of the specification?

For the first N-LTL borrows ideas from Reiter’s approach to situation calculus [Rei01]

where he compiles his specification to classical logic. Whilethe classical logic part

is monotonic, reasoning with respect to the specification language is non-monotonic

and the non-monotonicity is achieved through the compilation process. For the sec-

ond N-LTL borrows ideas from logic programming. Similar to alogic program

consisting of a set of rules, each N-LTL program is a set of rules and rule labels are

used such asr in Example 5 to link these rules into one temporal formula.

Definition 28. Let{g}, R, and P be three disjoint sets of atoms. Let〈r〉 be an atom

in R,〈p〉 be an atom in P, e∈ {g}∪R. 〈 f 〉 is a formula defined below:

〈 f 〉 ::= 〈p〉|〈 f 〉∧ 〈 f 〉 | 〈 f 〉∨ 〈 f 〉 | ¬〈 f 〉 |©〈 f 〉 |2〈 f 〉 |

3〈 f 〉 |〈 f 〉U〈 f 〉 |[〈r〉](〈 f 〉) |[[〈r〉]](〈 f 〉)

An N-LTL program is a set of rules〈e : f 〉, Where e is thehead, and f is the

bodyof rule 〈e : f 〉. 2

In an N-LTL program,g is a special symbol that stands for the final goal for-

mula.R is the set of labels to be used to define corresponding exceptions and weak
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exceptions. A formulaf defines the conditions of atoms inR or the conditions of

g. Intuitively, [〈r〉](〈 f 〉) means that normallyf is true, with the weak exceptions

denoted throughr. [[〈r〉]](〈 f 〉) means that normallyf is true, with the strong excep-

tions denoted throughr. The weak and strong exception conditions corresponding

to r are defined through other rules.

Definition 29 (Atom Dependency, Loop-free). Let 〈e1 : f1〉 be a rule in an N-LTL

program. If e2 ∈ R occurs in the body of〈e1 : f1〉, then e2 dependson e1. The

dependency relation is transitive. An N-LTL program isloop-freeif no atom in R

depends on itself in the program. 2

Semantics of N-LTL Programs

As mentioned earlier, the semantics of N-LTL programs is defined by following the

approach taken in Reiter’s situation calculus [Rei01]: N-LTLprograms are com-

piled to LTL theories.

[Translate N-LTL program to LTL formula] A loop-free N-LTL programT is trans-
lated to an LTL formulaTr(T) as follows:

1. Let 〈e : f1〉,〈e : f2〉, · · · ,〈e : fn〉 be all the rules inT with e in the head,e∈
{g}∪R. A formula f1∨ f2∨ ·· ·∨ fn is constructed, and it is calledE(e). Do
this for any atome if the set of rules withe in the head is not empty.

2. If atoma1 depends on atoma2, andE(a1) is defined, replace any occurrence
of [a1]( f ) in E(a2) with f ∨E(a1). The revised formula is still calledE(a2).

3. If atoma1 depends on atoma2, andE(a1) is defined, replace any occurrence
of [[a1]]( f ) in E(a2) with E(a1). The revised formula is still calledE(a2).

4. Do Step 2 and Step 3 recursively until no atomsedepending ong while E(e)
is not empty occurs inE(g).

5. Finally, inE(g), replace all remaining[r]( f ) and[[r]]( f ) with f . The revised
goal formula isTr(T). 2

This algorithm is illustrated with an example.
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Example 6. Consider N-LTL program T as follows:

〈g : (3[r1](p))∧ [r3](q)〉

〈r1 : [[r2]](v)〉

〈r1 : 2t〉

〈r2 : s〉

According to the definition, initially E(g) = 3[r1](p)∧ [r3](q), E(r1) = [[r2]](v)∨

2t, and E(r2) = s. By replacing the formulas according to the dependence re-

lations, E(g) = 3(p∨ [[r2]](v)∨2t)∧ [r3](q) = 3(p∨ s∨2t)∧ [r3](q). There is

no rules with r3 as the head. Thus E(g) = 3(p∨ s∨2t)∧ q. Further, Tr(T) =

3(p∨s∨2t)∧q.

The program in Example 6 is loop-free. Loop-free N-LTL programs have the

following property:

Proposition 8. Tr(T) is a well defined LTL formula for loop-free N-LTL program

T.

Proof. Define a formula as close-to-good if after replacing all sub-formula [a1]( f )

and[[a1]]( f ) to f in the formula, the formula is an LTL formula. According to the

definition of N-LTL formulas in Definition 28, the body of eachrule in an N-LTL

program is a close-to-good formula.

Now check on the translation of the program in Algorithm 4.2.E(e) for eache

in the head in Step 1 is a close-to-good formula. In Step 2 and Step 3, after the re-

placement, eachE(a2) is a close-to-good formula. Finally, Step 4 in Algorithm 4.2

removes all[a1]( f ) and[[a1]]( f ) to f . The resulted program is an LTL formula.

Given this property, when a plan satisfies a goal specified in N-LTL can be

defined.
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Definition 30. Let T be a loop-free N-LTL program. Given a state s, and a trajec-

tory σ = s0,s1, · · · ,sk, · · · , (s,σ) |= T in N-LTL if (s,σ) |= Tr(T) with respect to

LTL. 2

Definition 31 (Plans with respect to N-LTL goals). Let T be a loop-free N-LTL

program. A sequence of actions a1, · · · , an is a plan from the initial state s for

the N-LTL goal T , ifσ is the trajectory corresponding to s and a1, · · · , an, and

(s,σ) |= T in N-LTL. 2

Temporal logics such as LTL have a different property when anLTL goal for-

mula is considered to be a set of temporal formulas. IfP is a plan with respect to an

LTL goal T ∪T ′ thenP is a plan with respect toT. In LTL, adding more formulas

reduces (or at best leaves it unchanged) the set of plans satisfying it while in N-LTL,

this is not the case.

Properties and N-LTL in Goal Specification

Now, the notion that N-LTL is non-monotonic is defined. LTL ismonotonic since

T |= t impliesT∪T ′ |= t whereT andT ′ are two sets of LTL temporal formulas and

t is an LTL temporal formula. The following entailment in N-LTL is considered.

Definition 32 (Entailment). T |= T ′ if Tr(T) |= Tr(T ′), where T and T′ are two

loop-free N-LTL programs. 2

Proposition 9. The entailment in Definition 32 is non-monotonic.

Proof. To prove that the entailment is non-monotonic, now find a programT, T2,

andT ′ such thatT |= T ′ but T ∪T2 6|= T ′, whereT, T ′ andT ∪T2 are all loop-free

N-LTL programs.

For example, letT andT ′ be〈g : [r1](2p)〉. It is clear thatT |= T ′ asTr(T) =

Tr(T ′) = 2p. Let T2 be 〈r1 : [r2](2q)〉. Tr(T ∪T2) = 2q. It is not the case that

Tr(T ∪T2) |= Tr(T ′) in LTL. Thus the entailment is non-monotonic.
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Consider one example to illustrate the way of using N-LTL.

Example 7. One professor asks his robot to make a photocopy of one document and

fetch a cup of coffee. However, before the robot goes out the office, the professor

finds out that the coffee is sold out. No plan can satisfy the goal given to the robot.

The professor would now like to weaken the goal. Following are three possibilities:

1. He would be happy with a cup of tea instead;

2. He just needs the copy of the document and is willing to forget about the

coffee;

3. The robot may come back to his office with the document copiedand go about

looking for the coffee later.

If the professor was using N-LTL and from past experience knows that he may

have to revise his goal, especially with respect to coffee, hecan express the initial

goal as:

〈g : 3(([r]coffee)∧copy∧3office)〉

It is equivalent to satisfying3(coffee∧copy∧3office) in LTL.

Later on, according to the new conditions and new alternatives, the professor

may revise his original goal by adding one of the following three rules:

1. Adding the new rule〈r : tea〉 which makes the overall goal equivalent to

3((coffee∨ tea)∧copy∧3office) in LTL;

2. Let⊤ denote true and⊥ denote false. Adding the new rule〈r : ⊤〉 which

makes the overall goal equivalent to3((coffee∨⊤)∧copy∧3office) in LTL,

which is equivalent to3(copy∧3office) in LTL;
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3. Adding the new rule〈r : 3(coffee∧3office)〉 which makes the overall goal

equivalent to3(coffee∧copy∧3office)∨3(copy∧3office∧3(coffee∧3office))

in LTL. Now it allows the agent to get the document copied first before wait-

ing for the coffee.

If users want to get the tea instead of coffee, users should know initially that

the sub-task of getting coffee can be replaced by a differentgoal. Now, the initial

formulation is

〈g : 3(([[r]]coffee)∧copy∧3office)〉

When users add a new goal〈r : tea〉. The goal afterwards is equivalent to3(tea∧

copy∧3office) in LTL.

Note that “copy” must be satisfied in this domain as the professor does not

want to weaken this condition. While the robot is on its way of getting things done,

some other exceptions may happen. With N-LTL, users may further refine part of

the goal.

Note that if a rule in the formula has a sub-string[[r1]]( f ), then removing rules

〈r1 : ⊥〉 may affect the semantics of the formula. If there is no sub-string [[r1]]( f )

in any part of the formula, then users can remove rules〈r1 : ⊥〉 without affecting

the semantics of the formula. Here,f stands for any temporal formula.

4.3 ER-LTL

N-LTL has some limitations. Firstly, it needs to be pre-specified whether an excep-

tion is a strong exception or a weak exception. Secondly, theway of dealing with

rules is limited. In some cases, it may end up having a lot of changes to the initial

program. The non-monotonic temporal logic ER-LTL that is based on LTL is pre-

sented; ER stands for “Exceptions andRevisions”. It takes care of some limitations

89



of N-LTL. Besides, it is more powerful in expressing exceptions and revisions. The

syntax and semantics of the language is defined firstly.

Syntax

Definition 33 (ER-LTL program). Let G, R, and P be three disjoint sets ofatoms.

Let g be the only atom in G. Let〈r〉 be an atom in R,〈p〉 be an atom in P. An

ER-LTL formula〈 f 〉 is defined recursively as:

〈 f 〉 ::= 〈p〉| (〈 f 〉∧ 〈 f 〉) | (〈 f 〉∨ 〈 f 〉) | ¬〈 f 〉 |©〈 f 〉 |

2〈 f 〉 | 3〈 f 〉 | (〈 f 〉U〈 f 〉) | [〈r〉](〈 f 〉; 〈 f 〉)

An ER-LTL rule is of the form〈h : [r]( f1 ; f2)〉, where h∈ G∪R, r∈ R, and

f1 and f2 are two ER-LTL formulas; h is referred to as thehead, and[r]( f1 ; f2)

as thebodyof the rule. AnER-LTL programis a finite set of ER-LTL rules. 2

The symbols⊤ and⊥ are abbreviations for propositional formulas that evaluate

to trueandfalserespectively. For example, for atomq∈ P, q∨¬q is abbreviated as

⊤, andq∧¬q is abbreviated as⊥.

The same as in N-LTL, rules in ER-LTL with headg express the initial goal

which may later be refined.

In comparison to LTL,[r]( f1 ; f2) is the only new constructor in ER-LTL.

f1 is referred to as the precondition andf2 as the consequent of this formula. It

states that normally if the preconditionf1 is true, then the consequentf2 needs

to be satisfied, with the exceptions specified viar. The conditions denoting the

exceptions labeled byr are defined using other rules. When those exceptions are

presented in the program, other goals instead off2 need to be satisfied. If the sub-

formula is preceded with a head atomh∈ R∪G as in〈h : [r]( f1 ; f2)〉, it further

states that this sub-formula is an exception to formulas labeled byh.
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Similar to N-LTL, several auxiliary definitions that will beused in defining the

semantics of ER-LTL are defined.

Definition 34 (Atom dependency). Let T be an ER-LTL program. Let h1, h2 be

atoms in R∪G. Atom h1 dependson h2 in T if there is a rule in T such that h2

occurs in the body of the rule while h1 is the head of the rule. The dependency

relation is transitive. 2

Example 8. Consider the following rules:

〈r1 : [r2](p; ((2q); r))〉 (4.2)

〈r1 : [r2]((3p∨ [r3](2q; (pU q))); (3q))〉 (4.3)

Rule 4.2 is not a syntactically valid ER-LTL rule.((2q) ; r) in it is not a valid

ER-LTL formula. It should be preceded by a label in R. Rule 4.3is a valid ER-LTL

rule. With respect to a program consisting of Rule 4.3, r1 depends on r2 and r3.

Definition 35 (Loop-free, Leaf). An ER-LTL program isloop-freeif in the program,

no atom in R depends on itself. An atom is called aleaf in the program if it does

not depend on any atom in R. 2

Semantics

Now define a translation from ER-LTL to LTL so as to relate the semantics of ER-

LTL to the semantics of LTL. A similar technique as in N-LTL isused to capture

temporal relations among different rules to combine them tobe one temporal for-

mula. Atomr1 depends onr2 states thatr2 should be fully expanded beforer1.
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[Translate ER-LTL program to LTL formula] A finite loop-free ER-LTL program
T is translated to an LTL formulaTr(T) as follows:

1. For each sub-formula inT of the form[rt ](lt0 ; ft0) where for all rules with
rt in the head:

〈rt : [rt1](lt1 ; ft1)〉

· · ·

〈rt : [rtk](ltk ; ftk)〉

rti (1≤ i ≤ k) are leaf atoms.lti , fti (0≤ i ≤ k) are LTL formulas.

a) If [rt ](lt0 ; ft0) is not preceded with “:”, the formula[rt ](lt0 ; ft0) is
replaced with(lt0∧¬lt1∧·· ·∧¬ltk ⇒ ft0)∧(lt0∧ lt1 ⇒ ft1)∧·· ·∧(lt0∧
ltk ⇒ ftk). The program is still calledT;

b) If [rt ](lt0 ; ft0) is preceded with “:” and it is in a rule of the form
〈rv : [rt ](lt0 ; ft0)〉 whererv ∈ G∪R, the rule is replaced with:

〈rv : [rt ](lt0∧¬lt1∧·· ·∧¬ltk ; ft0)〉

〈rv : [rt ](lt0∧ lt1 ; ft1)〉

· · ·

〈rv : [rt ](lt0∧ ltk ; ftk)〉

The resulting program is still calledT.

2. Repeat Step 1 until it can no longer be applied further.

3. Suppose〈g : [r i](l i ; fi)〉 ( 0≤ i ≤ n) are all rules with the headg. Tr(T) is
defined as∧n

i=0(l i ⇒ fi). 2

Example 9. An ER-LTL program T is given as follows2:

〈g : [r1](bird ; fly)〉

〈r1 : [r2](penguin; ¬fly)〉

〈r1 : [r3](wounded;⊤)〉

〈r2 : [r4](flyingPenguin; fly)〉
2Here and in a later example the flying bird example that has been used a lot in the non-

monotonic reasoning literature is used. This is only for quick illustration purposes, and not to
suggest that ER-LTL is an alternative to traditional non-monotonic languages. There has been sig-
nificant progress in the research on non-monotonic reasoning. ER-LTL is not one alternative of
these logics. The claim is only with respect to non-monotonic temporal logics, which have not been
explored much. 92



After the first processing of step 1 of Algorithm 4.3, the output is the set of rules:

〈g : [r1](bird ; fly)〉

〈r1 : [r2](penguin∧¬flyingPenguin; ¬fly)〉

〈r1 : [r3](wounded;⊤)〉

〈r1 : [r2](penguin∧flyingPenguin; fly)〉

After the second processing of step 1, the set of rules is:

〈g : [r1](bird∧¬penguin∧¬wounded; fly)〉

〈g : [r1](bird∧penguin∧¬flyingPenguin; ¬fly)〉

〈g : [r1](bird∧wounded;⊤)〉

〈g : [r1](bird∧penguin∧flyingPenguin; fly)〉

Finally, based on step 3, Tr(T) is the output. It can be simplified to:(bird∧

¬penguin∧¬wounded⇒ fly)∧ (bird∧penguin∧¬flyingPenguin⇒¬fly)∧ (bird∧

penguin∧flyingPenguin⇒ fly).

ER-LTL in Goal Specification

Loop-free ER-LTL programs have the following property.

Proposition 10. Given a loop-free ER-LTL program T, Tr(T) is an LTL formula.

Proof. Define a formula as close-to-good if after replacing all sub-formula [r](l ;

f ) with (l ⇒ f ), the resulted is an LTL formula. According to the definition of

ER-LTL formulas in Definition 33, the body of each rule in an ER-LTL program is

a close-to-good formula.

Now check on the translation of the program in Definition 4.3.After each pro-

cessing in Step 1 in the definition, each formula in the program is a close-to-good.

Thus Step 3 makes the final program an LTL formula.
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Given this property, when a plan satisfies an ER-LTL program can be defined.

Definition 36. Let T be a loop-free ER-LTL program,σ = s0,s1, · · · ,sk, · · · be a

trajectory, and i be an index ofσ . (i,σ) |= T in ER-LTL if(i,σ) |= Tr(T) in LTL.

2

An ER-LTL programT is equivalent to an LTL formulaT ′ if Tr(T) andT ′ are

equivalent in LTL. For any LTL formulaG, there is an equivalent ER-LTL program.

When planning with an ER-LTL goalT, find plans for LTL formulaTr(T).

WhenT is updated toTUT ′, users need to find plans for LTL formulaTr(TUT ′).

Definition 37 (Entailment). Given that T1 and T2 are loop-free ER-LTL programs,

T1 |= T2 if Tr(T1) |= Tr(T2) in LTL. 2

Proposition 11. The entailment in Definition 37 is non-monotonic.

Proof. Consider the following two ER-LTL rules:

〈g : [r1](⊤;2p)〉 (4.4)

〈r1 : [r2](3q;3q)〉 (4.5)

Let T1 be a program consisting of Rule 4.4, andT2 be a program consists of Rule 4.4

and Rule 4.5.Tr(T1) = 2p while Tr(T2) =3q∨2p. It is easy to see thatT1 |= T1

while T2 = T1∪{Rule4.5} andT2 6|= T1. Thus the entailment relation defined in

Definition 37 in ER-LTL is non-monotonic.

This implies that a plan possibly satisfy an ER-LTL programT1∪T2 but notT1.

It should be noted that the opposite is also true.

Exceptions and Revisions in ER-LTL

Now illustrate the application of ER-LTL in modeling exceptions and revisions.

This sub-section starts with the modeling of exceptions that happen mainly be-

cause the user has incomplete information about the domain,the domain has been
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changed after the initial goal is given, or the user does not have a clear specification

for the agent initially.

Exceptions

First consider modeling weak exceptions and strong exceptions in goal specifica-

tion.

Weak Exception and Strong Exception As discussed earlier, strong exceptions

are to refute the default conclusion when exceptions happen; Weak exceptions are

to render the default inapplicable. In terms of goal specification, supposef1∧ f2

is the initial goal users have, after having the weak exception on f1, users do not

know whether sub-goalf1 should be true or not, users thus can remove the sub-

formula f1 from the existing specification. On the other hand, if users have a strong

exception onf1, users should conclude thatf1 is no longer true, and cannot be true.

Thus, users need to have¬ f1 as a part of the revised goal specification. Consider

the following example, again, for simplicity, given with respect to the birds flying

scenario.

Example 10. Birds normally fly. Penguins are birds that do not fly. Users donot

know whether wounded birds fly or not.

The initial statement can be written as

〈g : [r1](bird ; fly)〉 (4.6)

It is equivalent to the LTL formula bird⇒ fly. If append rule

〈r1 : [r2](penguin; ¬fly)〉 (4.7)

to it, the program is equivalent to the LTL formula((bird ∧¬penguin) ⇒ fly)∧

((bird∧penguin)⇒¬fly). If append rule

〈r1 : [r3](wounded;⊤)〉 (4.8)
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about wounded birds to Rule 4.6, output is a program that is equivalent to the LTL

formula((bird∧¬wounded)⇒ fly).

This example shows that when users need a strong exception, users can specify

the negation of the initial consequents explicitly as in Rule4.7. When users need

a weak exception, users can simply say as in Rule 4.8 that underthe exception, no

consequents are needed.

Exception to Exception The way of dealing with exceptions to exception in ER-

LTL is illustrated by the following example.

Example 11. Birds normally fly. Penguins are birds that do not fly. However,a

flying penguin is a penguin that can fly.

The initial statement is written as Rule 4.6. Later, Rule 4.7 and a rule

〈r2 : [r4](flyingPenguin; fly)〉 (4.9)

are appended. Rule 4.9 is an exception to the exception stated in Rule 4.7. The

program consisting of the three rules is equivalent to the LTL formula (bird ∧

(¬penguin∨flyingPenguin)⇒ fly)∧ (bird∧penguin∧¬flyingPenguin⇒¬fly).

Revision: Change User Intentions

Various revisions of the goal are allowed if it is represented in ER-LTL. ER-LTL

splits the requirements to preconditions and consequents such that users may have

goals as “if some conditions are satisfied, the agent should satisfy some goals”. A

few approaches of revising preconditions and consequents are listed now. They help

to revise any part of the initial ER-LTL goal. In the following, a simple example is

considered where the initial ER-LTL program is:

〈g : [r1]( f1 ; f2)〉 (4.10)

where f1 and f2 are two LTL formulas.
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Changing Consequents Ways to change consequents in the goal are considered

first.

Example 12. Given Rule 4.10, if the ER-LTL rule

〈r1 : [r2]( f1 ; f3)〉,

is appended where f3 is an LTL formula, the revised program is equivalent to the

LTL formula(( f1∧¬ f1)⇒ f2)∧ (( f1∧ f1)⇒ f3), or f1 ⇒ f3. Now the consequent

has changed from f2 to f3.

The consequent can be changed to be stronger or weaker than the initial speci-

fication. It can also be revised to one that is different from the initial specification.

Similar revisions can be made for preconditions as well.

Changing Preconditions Now list a few examples illustrating how to change

preconditions in a goal specification.

Example 13 (Making Preconditions Stronger). Suppose users want to refine the

goal given as Rule 4.10 by having a new precondition f3 together with f1. The

program can be refined by appending the rule:

〈r1 : [r2](¬ f3 ;⊤)〉. (4.11)

The new formula states that if¬ f3 is satisfied, then the goal is satisfied naturally.

The refined program is equivalent to the LTL formula( f1∧ f3)⇒ f2.

Example 14(Making Preconditions Weaker). Suppose users want to refine the goal

given as Rule 4.10 so that under a new condition f3, consequent f2 also need to be

satisfied. This refinement will weaken the precondition f1. The program can be

refined by appending the rule:

〈g : [r1]( f3 ; f2)〉.
97



The new program is equivalent to the LTL formula( f1∨ f3)⇒ f2.

Example 15(Changing Preconditions). Suppose users want to refine the goal given

as Rule 4.10 so as to change the precondition f1 to f3. This can be done by append-

ing the following rules

〈r1 : [r2]( f1 ;⊤)〉

〈g : [r3]( f3 ; f2)〉

to the program consisting of Rule 4.10. The new program is equivalent to the LTL

formula(( f1∧¬ f1)⇒ f2)∧ ( f1∧ f1 ⇒⊤)∧ ( f3 ⇒ f2), which can be simplified as

f3 ⇒ f2.

Revision after Revision Now consider an example that needs further revision

after the first revision.

Example 16. In Example 12, the revised program is equivalent to the LTL formula

f1 ⇒ f3. If users want to further revise the consequent to f4, and make the program

equivalent to f1 ⇒ f4, the rule〈r2 : [r3]( f1 ; f4)〉 can be added to the existing

program.

Nested Revision Nested revisions are also common when users introduce a new

goal to the domain while not clear about the preconditions and consequents of the

new goal. Rules that specify that the preconditions and consequents will be given

later. We illustrate this by the following example.

Example 17. Suppose the initial ER-LTL program is

〈g : [r1](⊤; f1)〉.

Suppose now we know in addition to f1 some thing more needs to be done; but

we do not yet know what. We can append the following rule to accommodate that
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possibility:

〈r1 : [r2](⊤; f1∧ [r3](⊤;⊤))〉,

It will allow users to add additional requirements later.

Allow Sub-formula to be Modified

The agent given the initial goal may not know which sub-goal or which part of the

formula might be revised further. As seen in ER-LTL, in order to make revisions or

define exceptions for a sub-formula, the sub-formula need tobe declared as modifi-

able firstly. Thus a way of declaring a sub-formula to be modifiable is needed. The

following example illustrates this:

Example 18. The initial goal is given as

〈g : [r1](⊤; f1∧ f2)〉

As the user may aware that f2 might be further modified without affecting f1.

The following rule can be added to capture such a motivation.

〈r1 : [r2](⊤; f2∧ [r3](⊤; f2))〉

The modified and the original program are equivalent to the same LTL formula

f1∧ f2.

Thus ER-LTL enables users in revising goals of an agent in an elaboration tol-

erant manner. The following sub-section elaborates on how the evolution of John’s

requirement introduced in the Introduction section can be represented.

Representing John’s Requirements in ER-LTL

Now show the way of applying ER-LTL in representing the problem in Example 4.

Example 19. John can specify his initial goal in ER-LTL as:

〈g : [r0](⊤;3(coffee∧3back))〉. (4.12)
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It is equivalent to the LTL formula3(coffee∧3back). It states that the agent needs

to get a cup of coffee and then come back.

After realizing that the coffee machine might be broken, John can refine his goal

by adding the following two rules:

〈r0 : [r1](⊤;3([r2](⊤; coffee)∧3back))〉 (4.13)

〈r2 : [r3](broken; tea)〉 (4.14)

Rule 4.13 now allows the sub-formula about coffee in the initial goal to be further

refined. The overall specification is now equivalent to the LTL formula3((¬broken⇒

coffee)∧ (broken⇒ tea)∧3back). Notice that John did not have to retract his

previous goal and give a new goal; neither did he have to change the earlier spec-

ification; he just had to add to his previous specification andthe semantics of the

language takes care of the needed change. This is an example of “elaboration

tolerance” of a language.

Later, after knowing from a colleague that a new coffee machine might be in-

stalled, John can give the agent a new command by adding one more rule to the

existing goal:

〈r3 : [r4](newMachine; coffee)〉

The overall goal is now equivalent to the LTL formula3((broken∧¬newMachine⇒

tea)∧ (¬(broken∧¬newMachine)⇒ coffee)∧3back).

Finally, John can give the agent a new command by adding the following rule.

〈r3 : [r5](¬newMachine; (hot∧©(tea∧sugar)))〉

The overall goal is now equivalent to the LTL formula:3((broken∧¬newMachine⇒

(hot∧©(tea∧sugar))∧ (¬(broken∧¬newMachine)⇒ coffee))∧3back).

Note that in this example, the way of expanding and revising the goal in an

elaboration tolerance manner is introduced by introducinga different consequent,
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weakening the requirements, introducing exceptions to exceptions, and introducing

nested exceptions.

4.4 Progressing ER-LTL

When represent a goal in ER-LTL, it is interesting to study how the goal can be

simplified, and how the goal can be progressed based on earlier states in the tra-

jectory. In order to do so, how a new rule added to a program affect the models of

existing program, and under what condition two programs are“strong-equivalent”

are presented below. These definitions are helpful when there is a need to simplify

a progressed ER-LTL program.

Strengthening and Weakening in ER-LTL

This section considers how the new rules added to a program affect the existing

ER-LTL program.

With the introduction of preconditions and consequents, ER-LTL branches on

preconditions. Given a loop-free ER-LTL program, adding a new rule with headg

correspond to adding a new branch. Adding a new rule with headr ∈ Rcorrespond

to adding a new branch, or revising existing branches. Branches are added and

removed based on the new rules added. For example, given an ER-LTL rule of the

form:

〈r1 : [r2]( f1 ; f2)〉

Another rule with headr2 of the form

〈r2 : [r3]( f3 ; f4)〉

introduces a new branch iff3 6|= f1. Otherwise, the existing branch onf2 is removed

and the new branch onf4 is added.

With different rules added, a goal can be made easier or more difficult to satisfy:
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Definition 38. Given two ER-LTL programs T1 and T2, if T1∪T2 |= T1, T2 is called

a strengthener of T1; if T1 |= T1∪T2, T2 is called a weakener of T1.

After union with a weakener of a program, the new ER-LTL program is satisfied

by more or equal number of policies. After union with a strengthener of a program,

the new ER-LTL program is satisfied by fewer or equal number of policies.

Note that if there is a similar definition as Definition 38 for LTL, any LTL for-

mula is a strengthener of any other LTL formula. Adding rulesto a monotonic tem-

poral logic always strengthening the logic. This also explains that LTL is monotonic

while ER-LTL is non-monotonic.

However, in non-monotonic logic ER-LTL, some programs are always strength-

ener to other programs.

Proposition 12. A rule of the form

〈g : [r]( f1 ; f2)〉 (4.15)

is a strengthener of any loop-free ER-LTL program, where g∈ G, r ∈ R, and f1 and

f2 are well defined ER-LTL formulas.

Proof. Let Π be a loop-free ER-LTL program and its corresponding LTL formula

is Tr(Π). Let a rule of the form 4.15 bet. According to the translation in Algo-

rithm 4.3, before Step 3, the corresponding program ofΠ∪{t} will have one more

rule than the program ofΠ. The rule is of the form〈g : [r]( f3 ; f4)〉 where f3 and

f4 are LTL formulas that correspond tof1 and f2 accordingly. Finally,Tr(Π∪{t})

is of the formTr(Π)∧ ( f3 ⇒ f4). As Tr(Π)∧ ( f3 ⇒ f4) |= Tr(Π), Rule 4.15 is a

strengthener of loop-free ER-LTL programΠ.

Strong Equivalence in ER-LTL

Now check the programs that have the same consequents in weakening or strength-

ening other programs. The notion of strong equivalence is defined similar to that
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in logic program [LPV01] that helps to simplify the program without affecting the

rest of the program.

Definition 39 (strong equivalence). Two ER-LTL programs T1 and T2 are strongly

equivalent if T2∪T and T1∪T are loop-free programs, and T1∪T |= T2∪T and

T2∪T |= T1∪T for any ER-LTL program T. 2

It is easy to know that if two ER-LTL programs are strongly equivalent, then a

policy in a domain satisfies the goal denoted by one program ifand only if it satisfies

the other one. Now list some ER-LTL programs that are stronglyequivalent:

Proposition 13. Let r∈R, h∈R∪G, g∈G, and f1, f2, and f3 be arbitrary ER-LTL

formulas.

Π1 : 〈h : [r]( f1 ; f2)〉

〈h : [r]( f3 ; f2)〉

and

Π2 : 〈h : [r](( f1∨ f3); f2)〉

are strongly equivalent.

Proof. Firstly, it is safe to assume thatf1, f2, and f3 are LTL formulas. According

to the semantics of ER-LTL, occurrences of the same ER-LTL formula will be

translated to the same LTL formula.

Given a programΠ, now prove thatΠ∪Π1 andΠ∪Π2 are equivalent. For each

occurrence ofr in programΠ, suppose the set of rules withr in head are:

〈r : [r1]( fi1 ; f j1)〉

· · ·

〈r : [rn]( fin ; f jn)〉
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wherer1, · · · , rn do not occur in the head of other rules. According to the semantics

of ER-LTL, in Π∪Π1, the set of rules will be replaced by

〈h : [r](( f1∧¬ fi1∧·· ·∧¬ fin); f2)〉

〈h : [r](( f1∧ fi1); f j1)〉

· · ·

〈h : [r](( f1∧ fin); f jn)〉

〈h : [r](( f3∧¬ fi1∧·· ·∧¬ fin); f2)〉

〈h : [r](( f3∧ fi1); f j1)〉

· · ·

〈h : [r](( f3∧ fin); f jn)〉

In Π∪Π2, the set of rules will be replaced by

〈h : [r]((( f1∨ f3)∧¬ fi1∧·· ·∧¬ fin); f2)〉

〈h : [r]((( f1∨ f3)∧ fi1); f j1)〉

· · ·

〈h : [r]((( f1∨ f3)∧ fin); f jn)〉

For each occurrence ofh in the body of a rule that is preceded by “:” of the

form

〈t : [h]( fh1 ; fh2)〉,
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the corresponding rule in programΠ∪Π1 is replaced by

〈t : [h](( fh1∧¬( f1∧¬ fi1∧·· ·∧¬ fin)∧¬( f1∧ fi1)∧·· ·∧¬( f1∧ fin)∧

¬( f3∧¬ fi1∧·· ·∧¬ fin)∧¬( f3∧ fi1)∧·· ·∧¬( f3∧ fin)); fh2)〉

〈t : [h](( fh1∧ f1∧¬ fi1∧·· ·∧¬ fin); f2)〉

〈t : [h](( fh1∧ f1∧ fi1); f j1)〉

· · ·

〈t : [h](( fh1∧ f1∧ fin); f jn)〉

〈t : [h](( fh1∧ f3∧¬ fi1∧·· ·∧¬ fin); f2)〉

〈t : [h](( fh1∧ f3∧ fi1); f j1)〉

· · ·

〈t : [h](( fh1∧ f3∧ fin); f jn)〉

the corresponding rule in programΠ∪Π2 is replaced by

〈t : [h](( fh1∧¬(( f1∨ f3)∧¬ fi1∧·· ·∧¬ fin)

∧¬(( f1∨ f3)∧ fi1)∧·· ·∧¬(( f1∨ f3)∧ fin)); fh2)〉

〈t : [h](( fh1∧ ( f1∨ f3)∧¬ fi1∧·· ·∧¬ fin); f2)〉

〈t : [h](( fh1∧ ( f1∨ f3)∧ fi1); f j1)〉

· · ·

〈t : [h](( fh1∧ ( f1∨ f3)∧ fin); f jn)〉

Both above two rules will be simplified as

〈t : [h](( fh1∧¬( f1∨ f3)); fh2)〉 (4.16)

It is easy to see that the other rules are equivalent to the same LTL formulas.
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For each occurrence ofh in the body of a rule that is not preceded by “:” of the

form

〈t : [r]([h](h1 ; h2)), (4.17)

the corresponding rule inΠ∪Π1 is translated as

(( f1∧¬ fi1∧·· ·∧¬ fin)⇒ f2)∧ (( f1∧ fi1)⇒ f j1)∧·· ·∧ (( f1∧ fin)⇒ f jn)∧

(( f3∧¬ fi1∧·· ·∧¬ fin)⇒ f2)∧ (( f3∧ fi1)⇒ f j1)∧·· ·∧ (( f3∧ fin)⇒ f jn)

the corresponding rule inΠ∪Π2 is translated as

((( f1∨ f3)∧¬ fi1∧·· ·∧¬ fin)⇒ f2)∧((( f1∨ f3)∧ fi1)⇒ f j1)∧·· ·∧((( f1∨ f3)∧ fin)⇒ f jn)

it is easy to see that these two LTL formulas are equivalent.

Thus theΠ∪Π1 andΠ∪Π2 are equivalent.Π1 andΠ2 are strongly equivalent.

Proposition 14. Let r∈R, h∈R∪G, g∈G, and f1, f2, and f3 be arbitrary ER-LTL

formulas.

Π3 : 〈h : [r]( f1 ; f2)〉

and

Π4 : 〈h : [r]( f1 ; f1∧ f2)〉

are strongly equivalent.

Proof. Given any programΠ, now prove thatΠ∪Π3 andΠ∪Π4 are equivalent.

The rule inΠ3 andΠ4 only differ in the right part of the;. They share the same

formula in the left part of symbol;, meaning that all occurrence ofTr( f1 ; f2)

in Tr(Π∪Π3) are replaced withTr( f1 ; ( f1∧ f2)), and the output isTr(Π∪Π4).

Based on properties of LTL,f1 ⇒ f2 and f2 ⇒ ( f1∧ f2) are equivalent. ThusΠ3

andΠ4 are strongly equivalent.
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Similarly, the following proposition is true. It helps to simply a program.

Proposition 15. Let r∈R, h∈R∪G, g∈G, and f1, f2, and f3 be arbitrary ER-LTL

formulas

Π5 : 〈g : [r]( f1 ;⊤)〉

and

Π6 : 〈r1 : [r2](⊥; f1)〉

and /0 are strongly equivalent.

These definitions on strongly equivalent will be more interesting if they can be

used to simplify a program. The following sub-section discusses its application in

progressing an ER-LTL program.

Progressing ER-LTL

In [BK98], authors proposed the progressing for MITL. The approach can be easily

adopted in progressing LTL formulas with a different way of dealing with the sym-

bol U. Now consider the way of progressing an LTL programT after observing a

sequence of statess0, · · · ,si. It is illustrated in Algorithm 4.4.

Now extend the work on progressing to non-monotonic logics.An ER-LTL

programT is progressed after observing a statess. It is illustrated in Algorithm 4.4.

Definition 40. Progress(T,s) for an ER-LTL program T, and a state s is defined as

(T/g)∪
⋃

l∈T

Progress(l ,s) (4.18)

where T/g is the set of rules in T with the head not in{g}.

A programT can be simplified by removing rules whose heads do not occur in

the body of any rule.

Note that in the progressing of the formulas, a set of rules are introduced that

progress one step on states for each rule in the existing program. Also note that the
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[Progressing LTL]Inputs: A statesi, with formula labelf .
Output : a new formulaProgress( f ,si) representing the temporal formula for the
successor state.
Algorithm :

1. If f = p, and the current state withp true, thenProgress( f ,s) =⊤;

2. If f = ¬ f1, thenProgress( f ,s) = ¬Progress( f1,s);

3. If f = f1∨ f2, thenProgress( f ,s) = Progress( f1,s)∨Progress( f2,s);

4. If f =© f1, thenProgress( f ,s) = f1;

5. If f = f1U f2, then Progress( f ,s) = Progress( f2,s) ∨ (Progress( f1,s) ∧
( f1U f2)).

As usual¬(¬ f1∨¬ f2) is denoted byf1∧ f2, ⊤U f is denoted by3 f , and¬3¬ f is
denoted by2 f .

[Progressing ER-LTL] For a rulel of the form〈h : f 〉 in an ER-LTL programT.
Progress(l ,s) is defined as{〈hs : Progress( f ,s)〉} if h∈R, or{〈h : Progress( f ,s)〉}
if h∈ {g}, whereProgress( f ,s) for a formula f and a states is as follows:

1. If f = p, and the current state withp true, thenProgress( f ,s) =⊤;

2. If f = ¬ f1, thenProgress( f ,s) = ¬Progress( f1,s);

3. If f = f1∨ f2, thenProgress( f ,s) = Progress( f1,s)∨Progress( f2,s);

4. If f =© f1, thenProgress( f ,s) = f1;

5. If f = f1U f2, then Progress( f ,s) = Progress( f2,s) ∨ (Progress( f1,s) ∧
( f1U f2));

6. If f = [r]( f1 ; f2), then
Progress( f ,s) = [rs](Progress( f1,s); Progress( f2,s)).

new rules introduced with headrs for r ∈ R. This helps to link this rulers to other

rules.

Definition 41 (Progress(T,(s0;s1; · · · ;si))). Progress(T,(s0;s1; · · · ;si)) is defined

as

Progress(. . .Progress(Progress(T,s0),s1), · · · ,si).
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The progressed program can be simplified by strong equivalences properties of

programs. This is illustrated in the following example.

Example 20. Suppose the agent has the goal:

〈g : [r1]((3p); (©[r3](⊤;3q)))〉

〈r1 : [r2]((©p); (2r))〉

〈r3 : [r4](r ;⊤)〉

The goal is equivalent to LTL formula

((3p∧¬© p)⇒ (©(r ∨3q)))∧ (©p⇒2r) (4.19)

Suppose the agent is initially in a state{p,q,¬r} and has executed an action

and get to a state{¬p,q, r}. Now progress the goal by one step on state{p,q,¬r}

to:

〈r1 : [r2]((©p); (2r))〉 (4.20)

〈r3 : [r4](r ;⊤)〉 (4.21)

〈g : [r1s](⊤; ([r3](⊤;3q)))〉 (4.22)

〈r1s : [r2s](p;⊥)〉 (4.23)

〈r3s : [r4s](⊥;⊤)〉 (4.24)

As in Formula 4.18, Rule 4.20 and Rule 4.21 are in(T/g), which are copied

from the previous program. The last 3 rules are in∪l∈TProgress(l ,s).

This program can be simplified as

〈r3 : [r4](r ;⊤)〉

〈g : [r1s](⊤; ([r3](⊤;3q)))〉

〈r1s : [r2s](p;⊥)〉
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which is equivalent to LTL formula

(r ∨3q)∧¬p (4.25)

It is equivalent to the LTL formula after progressing Formula 4.19 on state{p,q,¬r}.

In reality, it is possible that this goal after progressing is refined by append-

ing new rules. For now, after executing another action, the agent gets to a state

{¬p,¬q,¬r}. Further progress the goal:

〈r3 : [r4](r ;⊤)〉

〈r1s : [r2s](p;⊥)〉

〈r3t : [r4t ](⊥;⊤)〉

〈g : [r1st](⊤; ([r3t ](⊤;3q)))〉

〈r1st : [r2st](⊥;⊥)〉

It can be simplified as

〈g : [r1st](⊤; ([r3t ](⊤;3q)))〉

It is equivalent to LTL formula3q, and is equivalent to the formula after progress-

ing Formula 4.25.

Note that the initial program can be more complicated than the one given in this

example. For example, if the initial program has a rule of theform 〈g : [r1](p ;

(3[r3](⊤;3q)))〉, it would be complicated to evaluate the sub-formula3[r3](⊤;

3q) when progressing on a state.

Due to the recursive nature in the definition of translating an ER-LTL program

to a LTL program, and due to the only difference in the progressing steps, it is easy

to prove the following proposition:
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Proposition 16. Let ErProgress be the progressing approach defined for language

ER-LTL. Let LtlProgress be the progressing approach definedfor language LTL. It

is true that

Tr(ErProgress(T,σ)) = LtlProgress(Tr(T),σ)

This implies that the progressing steps are well-defined. Now users can specify

a goal in ER-LTL and give it to agents. Once users want to changethe goal of an

agent, they can do so by appending new rules and send these rules to the agent. The

agent receiving the new instructions can change its goal non-monotonically. In the

case that the agent has executed some actions. The agent can progress its ER-LTL

goals based on earlier states in the trajectory before translating the ER-LTL goals

to LTL for further executions.

4.5 Non-monotonic Extension of CTL∗, π-CTL∗, and P-CTL∗

The approach of defining N-LTL can be applied to other temporal logics. Dif-

ferent from LTL, in CTL∗ [ES89, Eme90],π-CTL∗ [BZ04], and P-CTL∗ [BZ06],

formulas are categorized as state formulas and path formulas. As a consequence,

the corresponding non-monotonic languages should be defined with respect to path

formulas and state formulas respectively. Now define the wayof extending the

definition of non-monotonic temporal logics for CTL∗, called N-CTL∗. Language

N-CTL∗ is based on CTL∗.

Definition 42. Let {g}, Rp f , Rs f and P be four disjoint sets of atoms. Let〈rp f〉 be

an atom in Rp f , 〈rs f〉 be an atom in Rs f, 〈p〉 be an atom in P, e∈ {g}∪Rs f. Let

〈s f〉 denote a state formula, and〈p f〉 denote a path formula.

〈s f〉 ::= 〈p〉 | 〈s f〉∧ 〈s f〉 | 〈s f〉∨ 〈s f〉 | ¬〈s f〉 |E〈p f〉 | A〈p f〉 |

[〈rs f〉]〈s f〉 | [[〈rs f〉]]〈s f〉

〈p f〉 ::= 〈s f〉 | 〈p f〉 ∨ 〈p f〉 | ¬〈p f〉 | 〈p f〉∧ 〈p f〉 |©〈p f〉 |

〈p f〉 U 〈p f〉 | 3〈p f〉 | 2〈p f〉 | [〈rp f〉]〈p f〉 | [[〈rp f〉]]〈p f〉
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An N-CTL∗ formula is a set of rules〈e: s f〉, or 〈rp f : p f〉. Each of e or rp f is the

headof the rule, and each of s f or p f is thebodyof the rule〈e : s f〉 or 〈rp f : p f〉.

2

The semantics of N-CTL∗ is defined in a way similar to the definition of the se-

mantics of N-LTL. Now illustrate the usefulness of N-CTL∗ through two examples.

Example 21. The initial goal is to require that p be true until q is reached. How-

ever, it is realized that in some domain, this goal is too strong as no plan can always

have p until reaching q. If in some states in the main path, allpossible trajectories

will have p true in the future, then it may considered as an exception and there is

no need to have p. The initial goal can be represented as〈g : [r](p)Uq〉 in N-CTL∗.

This goal is equivalent to pUq in CTL∗. It can be further refined by adding one rule

about the exception r as〈r : A3p〉. The revised goal is equivalent to(p∨A3p)Uq,

which is equivalent to(A3p)Uq.

Example 22. Initially, the goal is to make sure that in most trajectoriesstarting

from the initial state,3p is true. However, later on, users may require that once

3q is satisfied by some trajectories, those trajectories are considered as exceptional

ones and users do not require them to satisfy3p. The initial goal is represented as:

〈g : A[r](3p)〉. Later, the goal can be weakened by adding one more rule about the

exceptions:〈r : (3q)〉.

The initial goal is equivalent to the CTL∗ formulaA3p and the revised goal is

equivalent toA(3p∨3q).

It is noted that the approach in N-LTL and ER-LTL can be appliedto other

temporal logics such as CTL∗, π-CTL∗ and P-CTL∗.
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4.6 A Program Translating an ER-LTL goal to a LTL goal

To help translating a goal represented in ER-LTL to a LTL formula so as to be used

by other existing systems that accept LTL formulas, a program of translating an ER-

LTL program to LTL is given. The program first call a Lexical analyzer generator

Lex and a Yacc compatible compiler Bison [bis] to generate parses. Afterwards,

an implementation of the Algorithm 4.3 translates the parsed program to an LTL

formula. The program is available at http://www.public.asu.edu/∼jzhao6/erltl.tar.

A few programs and their corresponding outputs are listed below:

1. Input:

{g0 :[r1](a \arrow b) }

{r1 : [r2](c \arrow d) }.

Output:

g : [] (\top \arrow ((a \and \not (c)) \arrow (b)) \ and

(((c) \and (a)) \arrow (d)) )

2. Input:

{g0 :[r1](a \arrow b) }

{r1 : [r2](c \arrow d) }

{r1 : [r3](e \arrow \diamond p) }.

Output:

g : [] (\top \arrow ((a \and \not (c) \and \not (e))

\arrow (b)) \and (((c) \and (a)) \arrow (d)) \and

(((e) \and (a)) \arrow ( \diamond p)) )

3. Input:

{g0: [r1]( a \arrow ([r2]((\diamond c) \arrow (\Box d))))}

{r2: [r3]( top \arrow (\not e))}.
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Output:

g : [] (\top \arrow ((a) \arrow ((( \diamond c \and

\not (top)) \arrow ( \Box d)) \and (((top) \and

( \diamond c)) \arrow ( - e)))) )

4.7 Discussion

Languages ER-LTL and N-LTL are compared now to check whether we can trans-

late program in one language to an equivalent program in the other language.

Comparing ER-LTL and N-LTL

ER-LTL and N-LTL different in the way of using completion: N-LTL does comple-

tion on the formulas disjunctively, and ER-LTL does completion on preconditions

of the exceptions conjunctively.

In ER-LTL, the weak exceptions in N-LTL are discarded. Both weak exception

and strong exception will be taken care of by the new symbol;. The way of

distinguishing preconditions and consequents with the symbol ; in ER-LTL is

more intuitive. Arbitrary revision of the goals is allowed.For example, in the

extreme case, All existing requirements can be eliminated by having a set of rules

of the form〈[r i] : (⊤;⊤)〉 wherer i occurs in the ER-LTL program, and then add

the new requirements. In N-LTL, not all existing requirements can be eliminated as

in ER-LTL.

These two languages are also related. If an N-LTL program hasonly strong

exceptions and having at most one rule for eachr ∈ R, it can be translated rule

by rule to an ER-LTL program. The N-LTL program and the translated ER-LTL

program are equivalent to the same LTL program. The translation is as follows:

Given the rule〈h : f1〉, it is written as

〈h : [r−](⊤; f1)〉
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where there is no rule in the program with headr−. Further, for any sub-formula in

f1 of the form[[r]]( f2), it is replaced as[r1](⊤; f2).

Example 23. Given an N-LTL program as follows.

〈g : [[r1]]( f1)〉

〈r1 : [[r2]]( f2)∧ f3〉

It can be translated to an ER-LTL as

〈g : [r−](⊤; [r1](⊤; f1))〉

〈r1 : [r−](⊤; [r2](⊤; f2)∧ f3)〉

They are equivalent to the same LTL program.

Related Works

There are a few work that are related to the non-monotonic logics proposed in this

chapter.

Paper [FH91] has somewhat similar aim as ours. It extends auto-epistemic logic

with temporal operators. It is very different from this work, and does not discuss the

issues such as exceptions, weak exceptions, elaboration tolerance that are discussed

in N-LTL and ER-LTL.

N-LTL and ER-LTL are related to traditional non-monotonic logics including

logic program and default logic, especially when the underline formula in the de-

fault logic are considered as LTL formulas. The occurrencesof the symbols are

considered as the triggering of exceptions. The idea of completion are used when

rules are defined for exceptions. However, they are different in various aspects.

For example, semantics of default logic depends on models ofthe program, and it

does not allow revision of sub-formulas in a formula. Semantics of the objective

language such as entailment relations are involved in defining semantics of the de-

fault logic. On the other hand, semantics of ER-LTL relies on the translation of the
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logic to LTL before the temporal operands are examined. ER-LTL also has a great

advantage in terms of complexity.

Recently, a paper [PSBZ10] on applying default logic to temporal logics was

published. Different from default logic, the logic replaceeach propositional for-

mula with a temporal formula. One limitation of the work is that calculating a

model of the logic is of high complexity. Also, it is not natural to apply the logic to

real applications, especially when a part of the previouslyspecified goal need to be

changed.

This work is also similar to defeasible logic [Nut87] such that rules are treated

as preconditions and effects.

Applying the Techniques in ER-LTL to Propositional Logic

The constructs in ER-LTL can be used to define a defeasible logic where LTL is

replaced by simple propositional logic. Lets call this logic as ER-POP. It has some

interesting properties.

ER-POP shares some common properties with defeasible logic [] and its exten-

sion plausible logic [Bil98]. Labels are used in both languages to denote rules. Be-

sides, an ordering on rules are defined in each language and the ordering is acyclic.

However, ER-POP differs defeasible logic in a few aspects. Firstly, ER-POP

allows nested rules. In defeasible logic, each program is a few sets of rules together

with an ordering on rules. Nested rules are not allowed. Secondly, the ordering in

these two languages have different semantics. The tree structure ordering in ER-

POP denotes the ordering of revising sub-formulas. On the other hand, the ordering

in defeasible logic denotes whether a rule can be fired or not.The ordering in

defeasible logic is a linear order. A rule cannot be fired if its conclusion contradict

with that is implied by rules with higher priority. Finally,the models of ER-POP

rely on a translation to propositional logic. The models of defeasible logic rely on
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a gradually growing set of literals by firing rules.

4.8 Summary

In many domains, goals specified might be further revised or partially retracted due

to incomplete information users have about the domain initially. Non-monotonic

temporal logics can be used for specifying goals which can then be revised in an

elaboration tolerant manner. This chapter discussed two non-monotonic extensions

of LTL. The idea of completion and exception from logic programming and the idea

of a surface non-monotonic logic that can be translated to a monotonic logic, from

Reiter, are borrowed. The approach of extending LTL can be used to extend other

monotonic temporal logics such as CTL and CTL∗.

The chapter motivated the need for such non-monotonic temporal logics from

the point of view of needing ways to express goals that can be changed in an elab-

oration tolerant manner. Several properties of such logicsare presented and their

application in modeling revisions is illustrated.

This chapter also discussed progressing of an ER-LTL program. This is im-

portant as agent received new requirements may already executed some actions to

satisfy earlier goals. Thus the agent need to progress the previous requirements and

the new requirements based on the trajectory of the agent.

In terms of future work, the approach used in syntactic formula revision is not

restricted to temporal formulas. Its implications vis-a-vis existing non-monotonic

logics, belief revision mechanisms, and formalizing natural language discourses3

needs to be explored.

3Sentences in natural language have references such as “that”, “those”, “the” may hint about the
replacement. However, it is a challenge problem for the replacement.
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Chapter 5

PREF-Π-CTL∗: GOAL SPECIFICATION WITH DYNAMIC PREFERENCE IN

NON-DETERMINISTIC DOMAINS

In this chapter, a goal specification language Pref-π-CTL∗ for representing goals

with dynamic preferences in a non-deterministic domain is proposed. Pref-π-CTL∗

extendsπ-CTL∗ by introduction a new binary operator� to denote preferences

among temporal formulas. This language is more intuitive and is simpler in repre-

senting nested preferences and dynamic preferences as the new operator� is treated

the same way as other temporal operators. Some of these goalscannot be captured

in other temporal logics with preferences. Further, a program is given for finding

one particular planning problem in Pref-π-CTL∗ that defines preferences relations

among weak, strong, and strong cyclic plans in a non-deterministic domain.

5.1 Introduction

An important aspect of designing autonomous agent is to specify what users want

for the agent. This is called goal specification. Different goal specification lan-

guages were proposed. Among them, temporal logics such as line temporal logic

LTL [Pnu77], branching time temporal logic CTL∗ [EC82, ES89, Eme90], and

their extensions [BK98, NS00, BKT01] have been proposed and used as goal spec-

ification languages in the autonomous agent community and planning commu-

nity. CTL∗ is also extended to non-deterministic domains by quantifying over

plans [AHK02, BZ04, BZ06].

Each goal specification language defines a set of goal formulas, and specifies a

set of plans satisfying each goal formula. In the case that multiple plans satisfy a

goal, it is interesting to find out more preferred plans amongthem. This is often

done by defining a preference relation among goals, or among plans. One approach
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of defining the preference relation among plans is to consider some goals as soft

constraints [BCGR99]. As in PDDL3 [GL05], all plans satisfyinghard constraints

are considered acceptable plans, while plans also satisfying some soft constraints

are more preferred among them. Preference relation can alsobe interpreted differ-

ently. InPP [SP06], a preference relation among plans is defined for eachgoal

formula. The preference relation is defined to get the most preferred plans. As a

consequence, goalg1 prefers tog2 meaning that if plans satisfyingg1 exist in the

domain, choose such a plan. Otherwise, choose other plans satisfying g2.

This chapter uses the notion of preference as inPP but consider non-deterministic

domains. A plan in non-deterministic domain is also called apolicy. This chapter

argues that given that each goal is a mapping from transitiongraphs and initial

states to sets of trajectories (or sets of set of trajectories), and given that agents can

quantify over policies, preference relations among goals as inPP can be captured

without explicit comparison of temporal formulas.

For instance, in language P-CTL∗, each goal is a mapping from transition graphs

and initial states to sets of set of trajectories. As a consequence, goals defined are

adaptive to domains, meaning that for a given goal in the language, the same set of

trajectories (or policy) is acceptable in one transition graph while not acceptable in

the other transition graph, if there are more preferred set of trajectories (or policy)

in the domain. This implies that among the set of policies satisfying the goal,

users usually prefer some policies over the others. For example, (E Pg1 ⇒ g1)∧

((¬E Pg1 ∧ E Pg2) ⇒ g2) is a goal in P-CTL∗ states that users prefer policies

satisfyingg1 to policies satisfyingg2. In a transition graph, if there is a policy

satisfyingg1, the agent needs to take a policy satisfyingg1. Otherwise, a policy

satisfyingg2 is acceptable. Even though the preference relation can be captured in

P-CTL∗. The goal stated above is not as intuitive as the formulag1� g2, which

explicitly defines the preference relations among temporalformulas, or policies
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satisfying the temporal formulas.

Now consider another example from [BZ06] given as in Figure 3.1 to illustrate

that P-CTL∗ is capable of expressing preferences among sub-goals whilea language

with explicit preference relation among formulas is more intuitive in capturing the

goals.

p~p

~p

~p

a1

a1

s4s1

a2

~p

s3

s5

s2

a3

a4

a4

a5

a5

a3

a6

a1

Figure 5.1: Transition diagram in a non-deterministic domain

In the example, a goal that is adaptive to domains and changesits expectation in

different states is defined as follows: In any state of the domain, the agent is trying

to find a strong plan, and then a strong cyclic plan if no strongplan can be found,

and a weak plan if no strong cyclic plan can be found. Strong plan, strong cyclic

plan, and weak plan can be expressed inπ-CTL∗ asApol3p, Apol2(Epol3p), and

Epol3p respectively. This goal above is expressed in P-CTL∗ [BZ06] asApol2((E PEpol3p⇒

Epol3p)∧ (E PApol2(Epol3p)⇒ Apol2(Epol3p))∧ (E PApol3p⇒ Apol3p)).

Note that in this example, any strong plan is also a strong cyclic plan, which in turn

is a weak plan. Without this property among sub-goals, the formula above will be

more complicated. This goal states that the agent has a few options in any state of

the planning problem and a preferences relation is defined among these options. A
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more intuitive representation of the goal would be:

Apol2((strong�strongcyclic)�weak)

or

Apol2((Apol3p�Apol2(Epol3p))�Epol3p). (5.1)

It states that in any state of the plan, users always prefer tohave a strong plan, and

users prefer to have a strong cyclic plan if it is not possibleto have a strong plan.

This goal is useful. For example, suppose that the strong, weak, and strong

cyclic plans be the different operation plans a Doctor has for an operation. Due to

non-deterministic outcome of the actions, the Doctor needsto make sure to try his

best to save the patient’s life. Thus the Doctor need to choose the best actions in

any state of the plan.

This chapter proposes language Pref-π-CTL∗ that is based onπ-CTL∗ but with

a preference relation� between state formulas. It shows that the goal above can be

represented in Pref-π-CTL∗ as Formula 5.1.

Language Pref-π-CTL∗ has some good properties comparing to other goal spec-

ification languages with preferences. It is noted that the goal above cannot be ex-

pressed inPP [SP06] even after extendingPP to non-deterministic domains.

In PP, to capture preference relations, logics are defined by attaching rules about

preference relations to underline goal specification languages. It does not allow

temporal operators to wrap around general preferences. More importantly, it is not

easy, if it is possible to express preference relations thatare dynamic w.r.t. given

conditions inPP. One such example is that users preferg1 over g2 under one

condition but preferg2 overg1 under other conditions. New language Pref-π-CTL∗

allows nested preferences and allows dynamic preference relations as users do not

need to distinguish between basic desire formulas and general preferred formulas

as in [SP06].
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The rest of this chapter is organized as follows. Section 5.2defines syntax

and semantics of language Pref-π-CTL∗. Section 5.3 studies properties of Pref-π-

CTL∗. Section 5.4 compares Pref-π-CTL∗ with related languages. This chapter is

end with summary and future work.

5.2 Pref-π-CTL∗: Extending CTL∗ with Preferences

Now syntax and semantics of the goal specification language with preferences are

defined. The logic extendsπ-CTL∗ by adding a preference relation to temporal

formulas. The logic is called Pref-π-CTL∗.

Similar to π-CTL∗, formulas in Pref-π-CTL∗ are either state formulas or path

formulas.

Definition 43. Let 〈p〉 be an atomic proposition,〈s f〉 be a state formula, and〈p f〉

be a path formula.

〈s f〉 ::= 〈p〉 | 〈s f〉∧〈s f〉 | 〈s f〉∨〈s f〉 | ¬〈s f〉| E〈p f〉 |A〈p f〉 | Epol〈p f〉 |Apol〈p f〉 |

〈s f〉� 〈s f〉

〈p f〉 ::= 〈s f〉 | 〈p f〉∨〈p f〉 | ¬〈p f〉 | 〈p f〉∧〈p f〉 |〈p f〉U 〈p f〉 |©〈p f〉 |3〈p f〉 |2〈p f〉

2

The operator� is allowed to occur recursively on state formulas. For example,

(Apol2q)�Apol3(p�q) states that users preferApol2q to Apol3(p�q), and in

Apol3(p�q), users prefer to reach a state wherep is true to a state whereq is true.

A goal satisfying “a state is preferred over another state” is now defined.

Definition 44 (Truth of state formulas in Pref-π-CTL∗). Truth of a state formula

is defined with respect to a triple(sj ,Φ,π) where sj is a state,Φ is the transition

function, andπ is a policy that is a mapping from states to actions for all states in

the transition graph.
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• (sj ,Φ,π) |= p, ¬s f , s f1∧ s f2, s f1∨ s f2, E p f,A p f , Epol p f , Apol p f are

defined similarly as inπ-CTL∗.

• (sj ,Φ,π) |= s f1�s f2 iff

– (sj ,Φ,π) |= s f1, and(sj ,Φ,π) |= s f2, or

– (sj ,Φ,π) |= s f1, and no other policies such that(sj ,Φ,π2) |= s f1 and

(sj ,Φ,π2) |= s f2, or

– (sj ,Φ,π) |= s f2, and no other policiesπ2 such that(sj ,Φ,π2) |= s f1, or

– No policiesπ2 such that(sj ,Φ,π2) |= s f1 or (sj ,Φ,π2) |= s f2. 2

Truth of path formulas is defined similarly as inπ-CTL∗.

Definition 45 (Truth of path formulas in Pref-π-CTL∗). The truth of path formulas

is now defined with respect to the quadruple(sj ,Φ,π,σ), where sj is a state,Φ is

the transition function,π is a policy, andσ is a trajectory sj ,sj+1, . . ..

(sj ,Φ,π,σ) |= s f ,¬p f , p f1∧ p f2, p f1∨ p f2, ©p f , 2p f , 3p f , p f1Up f2 are

defined similarly as inπ-CTL∗;

Based on the semantics of Pref-π-CTL∗, (sj ,Φ,π) |= s f1�s f2 iff

(sj ,Φ,π) |= (s f1∧s f2)∨ ((¬E P(s f1∧s f2))∧s f1)

∨((¬E Ps f1)∧s f2)∨ (¬E Ps f1∧¬E Ps f2).

in P-CTL∗. This implies that each formula in Pref-π-CTL∗ can be translated to a

formula in P-CTL∗.

Now define when a policy satisfies a goalg given an initial states0, and a tran-

sition functionΦ in Pref-π-CTL∗.

Definition 46 (Policy satisfies a Pref-π-CTL∗ goal). Given an initial state s0, a

state mapping policyπ, a transition functionΦ, and a Pref-CTL∗ goal ϕ, π is a

policy for ϕ from s0, iff (s0,Φ,π) |= ϕ in Pref-π-CTL∗. 2
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Note that in a transition system, if there is no policy satisfying eitherϕ1 or ϕ2,

any policy in the transition system satisfiesϕ1�ϕ2. In the case users preferϕ1

overϕ2 while want a least one of them is satisfied, users can represent the goal as

(ϕ1∨ϕ2)∧(ϕ1�ϕ2). The following section lists a few properties of a Pref-π-CTL∗

program before illustrates its applications.

5.3 Properties of Pref-π-CTL∗

This section shows a few properties of Pref-π-CTL∗ that helps in simplifying a

program.

Proposition 17. Let s f1, s f2, and s f3 be state formulas in Pref-π-CTL∗. It is true

that (s,Φ,π) |= (s f1∧s f3)� (s f2∧s f3) if (s,Φ,π) |= (s f1�s f2)∧s f3.

Proof. Given that(s,Φ,π) |= (s f1�s f2)∧s f3, it is known that(s,Φ,π) |= s f3 and

one of the following is true:

1. (s,Φ,π) |= s f1∧s f2,

2. (s,Φ,π) |= ¬E P(s f1∧s f2)∧s f1,

3. (s,Φ,π) |= ¬E Ps f1∧s f2,

4. (s,Φ,π) |= ¬E Ps f1∧¬E Ps f2.

To prove that(s,Φ,π) |= (s f1∧ s f3)� (s f2∧ s f3), it is sufficient to prove that

any of the following is true:

• (s,Φ,π) |= s f1∧s f2∧s f3,

• (s,Φ,π) |= ¬E P(s f1∧s f2∧s f3)∧ (s f1∧s f3),

• (s,Φ,π) |= ¬E P(s f1∧s f3)∧ (s f2∧s f3),

• (s,Φ,π) |= ¬E P(s f1∧s f3)∧¬E P(s f2∧s f3).
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In case of Item 1, it is easy to know that(s,Φ,π) |= s f1∧ s f2∧ s f3. In case

of Item 2, as there is no policy satisfyings f1 ands f2, there is no policy satisfying

s f1∧ s f2∧ s f3 as well. (s,Φ,π) |= s f1 is true and(s,Φ,π) |= s f3, thus(s,Φ,π) |=

¬E P(s f1∧s f2∧s f3)∧(s f1∧s f3). In case of Item 3, as there is no policy satisfying

s f1, there is no policy satisfyings f1 ands f3. It is known that(s,Φ,π) |= s f2 and

(s,Φ,π) |= s f3, thus(s,Φ,π) |= ¬E P(s f1∧ s f3)∧ (s f2∧ s f3). In case of Item 4,

as there is no policy satisfyings f1, there is no policy satisfyings f1∧s f3. As there

is no policy satisfyings f2, there is no policy satisfyings f2∧s f3. Thus(s,Φ,π) |=

¬E P(s f1∧s f3)∧¬E P(s f2∧s f3).

Proposition 18. Let s f1, s f2, and s f3 be state formulas in Pref-π-CTL∗. It is true

that

• (s,Φ,π) |= (s f1�s f2)∨ (s f1�s f3) if (s,Φ,π) |= s f1� (s f2∨s f3),

• (s,Φ,π) |= (s f1�s f3)∨ (s f2�s f3) if (s,Φ,π) |= (s f1∨s f2)�s f3,

• (s,Φ,π) |= (s f1�s f2)∧ (s f1�s f3) only if (s,Φ,π) |= s f1� (s f2∧s f3),

• (s,Φ,π) |= (s f1�s f3)∧ (s f2�s f3) only if (s,Φ,π) |= (s f1∧s f2)�s f3.

Proof. First prove that(s,Φ,π) |= (s f1 � s f2)∨ (s f1 � s f3) if (s,Φ,π) |= s f1 �

(s f2∨s f3).

Given that(s,Φ,π) |= s f1� (s f2∨s f3), one of the following is true:

1. (s,Φ,π) |= s f1∧ (s f2∨s f3),

2. (s,Φ,π) |= ¬E P(s f1∧ (s f2∨s f3))∧s f1,

3. (s,Φ,π) |= (¬E Ps f1)∧ (s f2∨s f3),

4. (s,Φ,π) |= ¬E Ps f1∧¬E P(s f2∨s f3).
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To prove that(s,Φ,π) |= (s f1� s f2)∨ (s f1� s f3), it is sufficient to show that one

of the following is true:

• (s,Φ,π) |= s f1∧s f2,

• (s,Φ,π) |= ¬E P(s f1∧s f2)∧s f1,

• (s,Φ,π) |= (¬E Ps f1)∧s f2,

• (s,Φ,π) |= ¬E Ps f1∧¬E Ps f2,

• (s,Φ,π) |= s f1∧s f3,

• (s,Φ,π) |= ¬E P(s f1∧s f3)∧s f1,

• (s,Φ,π) |= (¬E Ps f1)∧s f3,

• (s,Φ,π) |= ¬E Ps f1∧¬E Ps f3.

It is easy to check the case in Item 1 and Item 3. Consider the case in Item 2.

Given that(s,Φ,π) |= ¬E P(s f1 ∧ (s f2 ∨ s f3)) ∧ s f1, it is true that(s,Φ,π) |=

¬E P(s f1∧ (s f2∨ s f3))∧ s f1. Thus(s,Φ,π) |= s f1∧¬E P((s f1∧ s f2)∨ (s f1∧

s f3)). Thus(s,Φ,π) |= s f1∧¬E P(s f1∧s f2). Similarly, given Item 4, it is known

that(s,Φ,π) |= ¬E Ps f1∧¬E Ps f2.

Similarly, it can be proved that(s,Φ,π) |= (s f1�s f3)∨(s f2�s f3) if (s,Φ,π) |=

(s f1∨s f2)�s f3.

Now prove that given(s,Φ,π) |= (s f1 � s f2)∧ (s f1 � s f3), (s,Φ,π) |= s f1 �

(s f2∧s f3) is true.

Given that(s,Φ,π) |= (s f1�s f2)∧ (s f1�s f3), it is known:

1. (s,Φ,π) |= s f1∧s f2,

2. (s,Φ,π) |= ¬E P(s f1∧s f2)∧s f1,
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3. (s,Φ,π) |= (¬E Ps f1)∧s f2,

4. (s,Φ,π) |= ¬E Ps f1∧¬E Ps f2.

and

1. (s,Φ,π) |= s f1∧s f3,

2. (s,Φ,π) |= ¬E P(s f1∧s f3)∧s f1,

3. (s,Φ,π) |= (¬E Ps f1)∧s f3,

4. (s,Φ,π) |= ¬E Ps f1∧¬E Ps f3.

To prove(s,Φ,π) |= s f1� (s f2∧s f3), it is needed to show one of the following is

true:

1. (s,Φ,π) |= s f1∧ (s f2∧s f3),

2. (s,Φ,π) |= ¬E P(s f1∧ (s f2∧s f3))∧s f1,

3. (s,Φ,π) |= (¬E Ps f1)∧ (s f2∧s f3),

4. (s,Φ,π) |= ¬E Ps f1∧¬E P(s f2∧s f3).

Now check the 16 combinations in(s f1� s f2)∧ (s f1� s f3) and show that in

each of them, one of the 4 cases above is satisfied.

Given that(s,Φ,π) |= s f1∧s f2, if (s,Φ,π) |= s f1∧s f3, (s,Φ,π) |= s f1∧ (s f2∧

s f3). If (s,Φ,π) |= ¬E P(s f1∧ s f3)∧ s f1, (s,Φ,π) |= ¬E P(s f1∧ (s f2∧ s f3))∧

s f1.

Given that(s,Φ,π) |= ¬E P(s f1 ∧ s f2)∧ s f1, in all cases, it is known have

(s,Φ,π) |= ¬E P(s f1∧ (s f2∧s f3))∧s f1.

Given that(s,Φ,π) |= (¬E Ps f1)∧ s f2, if (s,Φ,π) |= s f1 ∧ s f3, (s,Φ,π) |=

s f1 ∧ (s f2 ∧ s f3). If (s,Φ,π) |= ¬E P(s f1 ∧ s f3)∧ s f1, (s,Φ,π) |= ¬E P(s f1 ∧
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(s f2∧s f3))∧s f1. If (s,Φ,π) |= (¬E Ps f1)∧s f3, (s,Φ,π) |= (¬E Ps f1)∧ (s f2∧

s f3). If (s,Φ,π) |= ¬E Ps f1∧¬E Ps f3, (s,Φ,π) |= ¬E Ps f1∧¬E P(s f2∧s f3).

Given that(s,Φ,π) |=¬E Ps f1∧¬E Ps f2, in any cases,(s,Φ,π) |=¬E Ps f1∧

¬E P(s f2∧s f3) is true.

Thus it is known that(s,Φ,π) |= (s f1� s f2)∧ (s f1� s f3) only if (s,Φ,π) |=

s f1�(s f2∧s f3). Similarly, it can be proved that(s,Φ,π) |=(s f1�s f3)∧(s f2�s f3)

only if (s,Φ,π) |= (s f1∧s f2)�s f3.

Proposition 19. Let Φ be a transition graph, s be a state inΦ. Let s f1 be a

state formula in Pref-π-CTL∗. (s,Φ,π) |= (s f1�⊤) iff (s,Φ,π) |= (⊥� s f1) iff

(s,Φ,π) |= s f1∨¬E Ps f1.

Proof. The proof is based on the semantics of Pref-π-CTL∗.

(s,Φ,π) |= (s f1 �⊤) iff (s,Φ,π) |= (s f1 ∧⊤) ∨ ((¬E P(s f1 ∧⊤)) ∧ s f1) ∨

((¬E Ps f1)∧⊤)∨ (¬E Ps f1∧¬E P⊤) iff (s,Φ,π) |= s f1∨¬E Ps f1.

Similarly, (s,Φ,π) |= (⊥�s f1) iff (s,Φ,π) |= (⊥∧s f1)∨ ((¬E P(⊥∧s f1))∧

⊥)∨ ((¬E P⊥)∧s f1)∨ (¬E P⊥∧¬E Ps f1) iff (s,Φ,π) |= s f1∨¬E Ps f1.

Thus(s,Φ,π) |= (s f1�⊤) iff (s,Φ,π) |= (⊥�s f1).

Given the transition system and the initial state, each formula represents the set

of states or paths satisfying it. Let the transition graph beΦ, an initial state bes,

the set of policies satisfyingf1 is denoted asP(Φ,s, f1).

Proposition 20. Let s f1 and s f2 be two state formulas in Pref-π-CTL∗.

1. If s f2 |= s f1, it is known that(s,Φ,π) |= (s f1 � s f2) iff (s,Φ,π) |= s f2 ∨

((¬E Ps f2)∧s f1)∨¬E Ps f1.

2. If s f2 |=¬s f1, or s f1 |=¬s f2, it is known that(s,Φ,π) |= s f1�s f2 iff (s,Φ,π) |=

s f1∨ ((¬E Ps f1)∧s f2)∨ (¬E Ps f1∧¬E Ps f2).
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3. (s,Φ,π) |= (s f1�s f2)∧ (s f2�s f1) iff (s,Φ,π) |= (s f1∨¬E Ps f1)∧ (s f2∨

¬E Ps f2).

Proof. Each of them is proved based on semantics of Pref-π-CTL∗:

1. Given thats f2 |= s f1, it is known that(s,Φ,π) |= (s f1� s f2) iff (s,Φ,π) |=

(s f1 ∧ s f2)∨ ((¬E P(s f1 ∧ s f2))∧ s f1)∨ ((¬E Ps f1)∧ s f2)∨ (¬E Ps f1 ∧

¬E Ps f2) iff (s,Φ,π) |= s f2∨((¬E Ps f2)∧s f1)∨((¬E Ps f1)∧s f2)∨¬E Ps f1

iff (s,Φ,π) |= s f2∨ ((¬E Ps f2)∧s f1)∨¬E Ps f1.

2. Given thats f2 |= ¬s f1, or s f1 |= ¬s f2, it is known that(s,Φ,π) |= (s f1�s f2)

iff (s,Φ,π) |= (s f1∧s f2)∨ ((¬E P(s f1∧s f2))∧s f1)∨ ((¬E Ps f1)∧s f2)∨

(¬E Ps f1∧¬E Ps f2) iff (s,Φ,π) |=⊥∨ ((¬E P⊥)∧s f1)∨ ((¬E Ps f1)∧

s f2)∨(¬E Ps f1∧¬E Ps f2) iff (s,Φ,π) |= s f1∨((¬E Ps f1)∧s f2)∨(¬E Ps f1∧

¬E Ps f2).

3. (s,Φ,π) |= (s f1�s f2)∧ (s f2�s f1) iff (s f1∧s f2)∨ (¬E Ps f1∧¬E Ps f2)∨

((¬E P(s f1 ∧ s f2)∧ s f1)∨ (¬E Ps f1 ∧ s f2))∧ ((¬E P(s f1 ∧ s f2)∧ s f2)∨

(¬E Ps f2∧s f1)) iff (s f1∧s f2)∨(¬E Ps f1∧¬E Ps f2)∨(s f1∧¬E Ps f1)∨

(s f2∧¬E Ps f2) iff (s,Φ,π) |= (s f1∨¬E Ps f1)∧ (s f2∨¬E Ps f2).

These properties of Pref-π-CTL∗ help users in simplifying a Pref-π-CTL∗ pro-

gram. Consider the following example.

Example 24. Given the transition graph as in the example in Section 5.1, now

check whether the policyπ = {(s1,a1),(s2,a5),(s3,a4)} satisfies Pref-π-CTL∗ goal

(Epol3p∧ Epol2¬p)�Apol3p. Let s f1, s f2 and s f3 be Epol3p, Epol2¬p and

Apol3p respectively. The goal is(s f1∧s f2)�s f3.
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According to Proposition 18, the policy satisfies the goal only if it satisfies the

goal (s f1�s f3)∧ (s f2�s f3). According to Proposition 20, as s f3 |= s f1 and s f3 |=

¬s f2, the goal is equivalent to P-CTL∗ goal(s f3∨((¬E Ps f3)∧s f1)∨¬E Ps f1)∧

(s f2∨ ((¬E Ps f2)∧s f3)∨ (¬E Ps f2∧¬E Ps f2)).

As policyπ satisfies s f1, and s f2, and there is no policy in the domain satisfies

s f3. The goal above is satisfied. Thusπ satisfies the Pref-π-CTL∗ goal (Epol3p∧

Epol2¬p)�Apol3p.

Let s f1, s f2, and s f3 be state formulas. It is noticed that(s,Φ,π) |= s f1 �

(s f2�s f3) does not imply that(s,Φ,π) |= (s f1�s f2)�s f3. For example, given a

states in systemΦ. Suppose there are only two policiesπ1 andπ2 starting from

states in Φ. Policy π1 satisfies state formulass f1 but nots f2 ands f3. Policy π2

satisfies state formulass f1, s f2 but nots f3. Thus(s,Φ,π1) |= s f1� (s f2�s f3) but

(s,Φ,π1) 6|= (s f1�s f2)�s f3.

5.4 Compare Pref-π-CTL∗ with Related Languages

As mentioned in Section 5.1, language Pref-π-CTL∗ is related to other goal spec-

ification languages in non-deterministic domain. Now compare Pref-π-CTL∗ with

π-CTL∗ and P-CTL∗.

Compare Pref-π-CTL∗ with other Goal Specification Languages in

Non-deterministic Domain

Goal specification language Pref-π-CTL∗ is based on languageπ-CTL∗. Accord-

ing to the definition on one language is Syntax-advanced thanthe other language

in Chapter 3, P-CTL∗ is syntax-advanced than Pref-π-CTL∗, and Pref-π-CTL∗ is

syntax-advanced thanπ-CTL∗.

Further, the following proposition on the set of goals expressed in the languages

is true.
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Proposition 21. Given a goal that is a mapping from states and transition graphs

to set of set of trajectories, it is known that:

• A goal expressed inπ-CTL∗ can be expressed in Pref-π-CTL∗;

• A goal expressed in Pref-π-CTL∗ can be expressed in P-CTL∗.

Proof. Let ϕ(s,Φ)π−CTL∗ beϕ(s,Φ) in languageπ-CTL∗. Letϕ(s,Φ)Pre f−π−CTL∗

be ϕ(s,Φ) in language Pref-π-CTL∗. Suppose a goalg can be expressed inπ-

CTL∗ asϕ. It is known thatg(s,Φ) = ϕ(s,Φ)π−CTL∗ for any states and transition

graphΦ. Now prove thatϕ(s,Φ)π−CTL∗ = ϕ(s,Φ)Pre f−π−CTL∗. As Pref-π-CTL∗

is syntax-advanced thanπ-CTL∗, it is known that the set of policies satisfyingϕ in

these two languages are the same, and policies defined in these two languages are

the same. Asϕ(s,Φ) is defined as

{πσ : (s,Φ,π) |=ϕ andπσ is the set of trajectories that are consistent with policyπ},

it is known thatϕ(s,Φ)π−CTL∗ = ϕ(s,Φ)Pre f−π−CTL∗. Thus a goal expressed inπ-

CTL∗ can be expressed in Pref-π-CTL∗.

Similarly, it can be proved that a goal expressed in Pref-π-CTL∗ can be ex-

pressed in P-CTL∗.

On the other hand, there are some goals in Pref-π-CTL∗ that cannot be ex-

pressed inπ-CTL∗. This is implied by Proposition 4 in Chapter 3. It is to show that

strong(p)�strongCyclic(p) cannot be expressed in pi-CTL∗.

Compare Pref-π-CTL∗ with other Languages with Preferences

Now compare Pref-π-CTL∗ with other goal specification languages with prefer-

ences. It is illustrated in the following example in a deterministic domain.

Example 25.Tom needs to go to school this morning to attend a semina. He prefers

to have breakfast before leaving for school. But if he got up late or have other things

to do, he might have to skip the breakfast.
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The goal is presented as3(break f ast∧3atSemina)�3atSemina, which states

that is there is a plan for Tom to have breakfast before attending the semina, take

that plan. Otherwise, try to attend the semina. If there is no plan for Tom to attend

the semina, Tom may skip the semina as well. It does not matter whether Tom will

have breakfast or not in this case.

Also note that this goal is different from3((break f ast�⊤)∧3atSemina),

which is equivalent to P-CTL∗ formula3((break f ast∨¬E Pbreak f ast)∧3atSemina)

according to Proposition 19.

Now check how this goal is represented in other goal specification languages

with preferences. In PDDL3, attending the semina is considered as a hard goal

while having breakfast is considered as a soft goal. Among theplans, as long as

Tom has attended the semina, the goal is considered as satisfied, even though Tom

may not have had the breakfast.

In PP, the goal is represented as3(break f ast∧3atSemina)�3atSemina.

Plans satisfying this formula are the same inPP and in Pref-π-CTL∗.

LanguagePP [SP06] is defined for deterministic domains. Now extend it to

non-deterministic domains first before comparing with Pref-π-CTL∗.

In PP, an ordering between trajectories w.r.t. single desire (orgoal) is defined.

Now define an ordering between policies w.r.t. single desire. Note that in a non-

deterministic domain, a policy leads to a set of trajectories.

Definition 47 (Ordering between Policies w.r.t. Single Desire). Let ϕ be a basic

desire formula and letα andβ be two policies. Policyα is preferred to policyβ in

transition systemΦ with initial state s if(s,Φ,α) |= ϕ and(s,Φ,β ) 6|= β .

Policy α andβ are indistinguishable in transition systemΦ with initial state s

if one of the following two cases occurs: (i)(s,Φ,α) |= ϕ and(s,Φ,β ) |= ϕ, or (ii)

(s,Φ,α) 6|= ϕ and(s,Φ,β ) 6|= ϕ.
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With this definition,PP can be extended to non-deterministic domains. The

preference relation defined inPP can be captured by quantifying over policies.

As discussed above, nested comparisons of the formulas are allowed. A for-

mula3(p� q) or Apol2(strong(p)� strongCyclic(p)) in Pref-π-CTL∗cannot be

captured inPP. Besides, comparing to languagePP, Pref-π-CTL∗allows dif-

ferent preference relations under different conditions. For example, suppose the

goal is expressed as:(c1 ⇒ ( f1� f2))∧ (c2 ⇒ ( f2� f1)).

LanguagePP and Pref-π-CTL∗ are different in defining semantics of formu-

las such asf1� f2� f2. This formula is undefined in Pref-π-CTL∗. Meanwhile,

PP, formulas( f1� f2)� f3 and f1� f2� f3 have different semantics.

5.5 Discussion
Point-wise Preference

The preferences relation defined in the language is a rule based preferences relation,

meaning that when checking the� relations, a policy either satisfies a formula or

does not satisfy the formula. There is no definition on partial satisfaction of a

formula. It is also unheard that a policy is more “closer” in satisfying a goal than

other policies.

However, there are cases where the preference relations aredefined on “sub-

goals” that contradict with each other. In some cases, even though the most pre-

ferred goal cannot be satisfied by a policy, users may want partial satisfaction of the

goal.

The following example illustrates the case that point-wisepreferences might be

needed.

Example 26. Joe always do exercise before dinner. However, Joe get a phone call

from a friend to meet him tomorrow before dinner. Joe have to skip the exercise

tomorrow but will continue the exercise in the following days.
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The initial goal is represented as2exercise. A second rule is appended as

©(¬exercise∧meetFriend). Users might want a revised goal as exercise∧©(¬exercise∧

meetFriend)∧©©2exercise. This revisions cannot be done in Pref-π-CTL∗.

How to define a goal specification language to handle this is still a challenging

issue.

5.6 Summary

This chapter proposed a goal specification language with preference for goal spec-

ifications in non-deterministic domain. The language is based onπ-CTL∗. A bi-

nary connective� is introduced to compare state formulas. Comparing to other

goal specification languages with preferences, Pref-π-CTL∗ is the only language

for non-deterministic domains. Besides, by treating the� operator the same way

as other operators, language Pref-π-CTL∗ has some interesting properties such as

allowing nested preferences and dynamic preferences.

In terms of future work, an interesting topic is to utilize the preference rela-

tion in other temporal logics, especially the non-monotonic goal specification lan-

guages. Another interesting topic is to make use of the goal specification languages

with preferences in defining non-monotonic goal specification languages. Defining

goal specification languages that can deal with point-wise preferences is also an

interesting topic.
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Chapter 6

PLANNING WITH GOALS SPECIFIED IN TEMPORAL LOGICSΠ-CTL∗

AND PREF-Π-CTL∗

Given a goal specified inπ-CTL∗ or P-CTL∗, planning and plan checking prob-

lems are more difficult that traditional planning problems.For example, planning

problems with goals inπ-CTL∗ is EXPTIME-hard. However, for specific subsets

of goals specified inπ-CTL∗, Polynomial time algorithms can be found by using

the same approach as Baral et. al. proposed fork-maintainability problems. The

method first encodes the problem in reverse Horn SAT, and thentranslates it to

Horn SAT. Finally, a genuine algorithm is developed by simulating the way of solv-

ing the Horn SAT program. This chapter shows that this approach of obtaining

polynomial time algorithms for problem solving can be fruitfully applied to finding

plans for variousπ-CTL∗ goals including weak, strong, strong cyclic plans and a

few otherπ-CTL∗ goals. Some interesting properties of these planning problems

can be found by comparing their reverse Horn SAT encodings. Further, a program

solving a particular Pref-π-CTL∗ program is given.

6.1 Introduction

In recent years, one of the approaches that is used in finding solutions to AI prob-

lems is to find “models” of a logical encoding of the problem. Examples of this

include finding planning via satisfiability encoding [KS92]or logic programming

encodings with answer set semantics [GL91]. The later is nowreferred to as answer

set programming. But in most of these cases, problems solved are in the complexity

class NP-complete or beyond. One outlier is the work [BEBN08] which takes ad-

vantage of the lower complexity results about specific logicprogramming and SAT

sub-classes to come up with a polynomial-time algorithm forfinding maintenance
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policies.

In that paper, the authors first give a propositional reverseHorn encoding of

the problem and show that the models of the encoding correspond to desired agent

policies. They then give a transformation of that encoding to a propositional Horn

encoding. The fix-point iteration approach to compute models of Horn theories,

which is feasible in linear time, is then exploited to develop a genuine polynomial-

time algorithm for finding agent policies. If one were to viewthe logical encod-

ing as a specification, then the above mentioned approach canbe considered as a

systematic way to develop algorithms from specifications. The original software

engineers dreamed of finding ways where algorithms are obtained from problem

specification in a systematic way. This dream is partly come true now.

In recent years, there have been some important work on planning in non-

deterministic domains [DLPT02, CPRT03]. In particular, in [CPRT03] the notions

of strong planning, weak planning, and strong cyclic planning were introduced,

and algorithms for finding such plans were presented. In Chapter 3 of this disser-

tation, temporal logics are extended to better capture goalspecifications in a non-

deterministic domain. In particular, languagesπ-CTL∗ and P-CTL∗ are proposed.

It is noted that strong planning, weak planning, and strong cyclic planning problems

can be encoded inπ-CTL∗ asEpol3p, Apol3p, andApol2(Epol3p) respectively.

This chapter explores the possibilities of making use of theapproach in [BEBN08]

in solving strong planning, weak planning, strong cyclic planning and a few other

π-CTL∗ goals. Encodings inspired by the encoding in [BEBN08] are developed,

leading to polynomial time algorithms for finding plans. Further, the relations of

these problems are studied by comparing their encodings.

The approach is generalized to obtain polynomial time algorithms for a few

otherπ-CTL∗ goals in a non-deterministic domain.

Contributions of this chapter are as follows:
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• This chapter illustrates the novel algorithm design approach of [BEBN08]

to systematically develop an algorithm from a logical specification. Passing

through Horn SAT specifications, new polynomial time algorithms for weak,

strong, and strong cyclic planning are developed; thus shedding additional

insights about these notions. As part of that, the encoding for finding weak

plans is a subset of the encoding for finding strong cyclic plans.

• Show how strong cyclic plans can be declaratively generatedwith answer set

programming at an abstract level. Discuss how particular properties of the

encodings and features of answer set solvers can be exploited for comput-

ing (most) preferred plans among alternative candidate plans. In particular,

based on the encoding, maximal plans and least defined plans can be found

in polynomial time.

• How this approach can lead to algorithms for other kind of goals in non-

deterministic domains is discussed.

• Complexity results about weak, strong and strong cyclic planning are given.

(No such results appear in previous papers.)

6.2 Background: Strong, Weak, and Strong Cyclic Plans in Non-deterministic

Domains

This chapter start with recalling the notions of weak, strong, and strong cyclic plans

from [CPRT03]. Such plans manifest in non-deterministic domains. In such do-

mains, plans map states to actions or to sets of actions. A weak plan to achievep is

a plan that says that at least one of the paths (based on following that plan) leads to

p. A strong plan to achievep is a plan that says that all paths (based on following

that plan) would lead top. A strong cyclic plan to achievep is a plan that says

all along the path (based on following that plan) there is at least one of the paths
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(based on following that plan) that would lead top. These goals are expressed as

Epol3p, Apol3p, andApol2(Epol3p) in languageπ-CTL∗ [BZ04], respectively;

where3 means eventually,2 means always,Epol means exists a path following

the plan under consideration, andApol means all paths following the plan under

consideration.

Now give the formal definitions.

Definition 48 (Planning problem). Let D = 〈S ,A ,Φ, poss〉 be a system. A plan-

ning problem forD is a triple 〈D ,I ,G 〉 whereI ⊆ S , andG ⊆ S .

Definition 49 (Execution structure). Let π be a control policy, or a plan of a plan-

ning problem〈D ,I ,G 〉 whereD=〈S ,A ,Φ, poss〉. The execution structure in-

duced byπ from the set of initial statesI ⊆ S is a tuple K= 〈Q,T〉 with Q⊆ S

and T⊆ S ×S inductively defined as follows:

1. If s∈ I , then s∈ Q, and

2. If s∈ Q, action a∈ π(s), and s′ ∈ Φ(s,a), then s′ ∈ Q and(s,s′) ∈ T.

A state s∈ Q is a terminal state of K if there is no s′ ∈ Q, s′ 6= s, such that

(s,s′) ∈ T.

In the following, it is assumed that there is always an actionnop in each state

si, such thatΦ(si ,nop) = {si}, thus the planning problem〈S ,A ,Φ, poss〉 can be

simplified as〈S ,A ,Φ〉.

A states2 ∈ Q is reachable from states1 ∈ Q if there is a path froms1 to s2 in

T.

Definition 50 (Plans with respect to a planning problem). Let D = 〈S ,A ,Φ〉 be

a planning domain, P= 〈D ,I ,G 〉 be a planning problem,π be a plan inD . Let

K = 〈Q,T〉 be the execution structure induced byπ fromI .
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1. π is a weak plan with respect to P iff for any state inI , some terminal state

in G is reachable from the state.

2. π is a strong plan with respect to P iff K is acyclic and all the terminal states

of K are inG .

3. π is a strong cyclic plan with respect to P iff from any state in Q some terminal

state is reachable and all the terminal states of K are inG .

b

c

d e

x

xx

y

y

Figure 6.1: Transition diagram of the planning domainD

Example 27. Consider a planning domainD = 〈S ,A ,Φ〉. LetS = {b,c,d,e},

A = {x,y}, and the transition functionΦ as in Figure 6.1. Then, poss(b) = {x,y}

while poss(e) = /0. For the planning problem〈D ,I ,G 〉 whereI = {b} and

G = {e}, the mappingπ such thatπ(c)=x andπ(b)=x, is a strong cyclic plan.

Its execution structure is K= {{b,c,e},{(b,c), (c,b), (c,e)}}. In this planning

problem, no strong plan exists, whileπ is also a weak plan.

6.3 Finding Strong Cyclic Plans

This section uses the approach in [BEBN08] to develop algorithms that construct

strong cyclic plans. To start with, a propositional SAT encoding of a planning

problem is given. It is shown that the models of this theory encode strong cyclic

plans, if one exists, and vice versa.
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SAT Encoding S-Cyclic(P)

In the SAT encoding, for each states and actiona, propositionssi and s ai are

used, wherei ≥ 0 is an integer. Intuitively,si will mean that there is a path from

s to G , following T of the execution structureK = 〈Q,T〉, of length at mosti.

Similarly, s ai will intuitively mean that there is a path froms to G of length at

most i, following T of the execution structureK = 〈Q,T〉, and witha as its first

action. Let an upper boundmax= |S |−1 for i, depending on the number of states

in S ; if there is no path of length at mostmax, there is no path at all.

[SAT encoding of strong cyclic planning:S-Cyclic] Suppose a planning problem
P=〈D ,I ,G 〉 is given whereD=〈S ,A ,Φ〉. Let max= |S |−1. P is translated
into a SAT encodingS-Cyclic(P) as follows:

(0) for all s∈ S andi, 0< i ≤ max: si−1 ⇒ si

(1) for every states∈ S \G , and for alli, 0< i ≤ max: si ⇒
∨

a∈poss(s) s ai

(2) for every statess, s′ ∈S such thats′ ∈Φ(s,a) for some actiona: s amax⇒ s′max

(3) for every states∈ S , actiona ∈ poss(s), and for alli, 0< i ≤ max: s ai ⇒
∨

s′∈Φ(s,a) s′i−1

(4) for every states∈ S , actiona∈ poss(s), and 1< i ≤ max: s ai−1 ⇒ s ai

(5) for s∈ I : smax

(6) for s∈ S \G : ¬s0

The encoding in Algorithm 6.3 uses the step numbers in [BEBN08]so as to

reflect the closeness between this encoding and the encodingsat′ of [BEBN08] for

k-maintainability. In case ofsat′, the numberk is part of the input. The clauses in

(0), (5) and (6) are the same as insat′(I) with one exception; instead ofk, max−1 is

used. The clauses in (1) and (4) are also very similar to the corresponding clauses

in sat′(I). The main difference are the genuine clauses in (2) and (3), and that (2) of

sat′(I) is missing in this encoding (because there are no exogenous actions here).
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The intuition behind this encoding is as follows. The clauses in (0) state that

if there is a path froms to G of length at mosti-1, then there is a path of length

at mosti. The clauses in (4) make a similar statement for paths with first actiona.

The clauses in (1) state that if there is a path froms to G of length at mosti, then

there must exist an actiona which is the first action of such a path. The clauses in

(2) state that for any states, there is a path froms to G of length at mostmaxwith

a as its first action only if from every states′ ∈ Φ(s,a) a path toG of length at most

maxexists. This takes into account the possibility thats may be in the closureQ

of the execution structure〈Q,T〉. This rule makes sure that in the resulted plan, for

any state reachable from the initial state by following the plan, there is a path to a

state inG . The clauses in (3) state that a path froms to G of length at mosti with

a as its first action exists only if there is a path from some states′ ∈ Φ(s,a) to G of

length at mosti-1. The clauses in (5) state that every initial state must have a path

of length at mostmax. Finally, the clauses in (6) exclude paths of length zero for

non-goal states.

Strong cyclic plans with respect toP and the models ofS-Cyclic(P) are formally

connected as follows.

Lemma 3. For any state t, a model of the program M, if M|= ti where0≤ i < max,

then there is a path in TM from t to a final state inG and the length of the path is

not larger than i, where TM is in the execution structure corresponding to M.

Proof. It is proved by the induction oni.

In the base case,M |= t0. From the clauses in (6), it is known thatt has to be in

G . According to the definition ofS-Cyclic, there is a path inTM of length 0 from

statet to a final state inG . Thus the statement holds for the base case.

For the induction step, suppose for all statess whereM |= sj , for j < i, there is

a path inTM from s to a final state inG with the length no larger thanj. For a state
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s′, if M |= s′i andM |= s′i−1, there are two different cases. Ifs∈ G , the induction

step is proved. On the other hand, ifs∈ S \G . SinceM must satisfy the clauses in

(1), there is an actions a such thatM |= s ai. SinceM must satisfy the clauses in

(3), there is a states′ ∈ Φ(s,a) with M |= s′i−1. Based on the induction, there is a

path no larger thani−1 steps froms′ to a terminal goal state. By taking actions a,

there is a path from states to a terminal goal state and the length of such a path is

less than or equals toi. The induction step is proved.

Proposition 22. 1. P has a strong cyclic plan iff S-Cyclic(P) is satisfiable;

2. For any model M of S-Cyclic(P), the partial functionπM : S → 2A defined

byπM(s) = {a | M |= s a j , j = mini M |= si} on all states s∈S \G such that

M |= si for some i, is a strong cyclic plan of P.

Proof. First prove (1). SupposeP has a strong cyclic planπ.

Let T (π) be the set of terminal states of policyπ. A policy π ′ is defined such

that π ′(s) = π(s) for all s 6∈ G ; π ′(s) are not defined fors∈ G . It is clear that

T (π)⊆ T (π ′)⊆ G andπ ′ is also a strong cyclic plan ofP. Denote the execution

structure induced byπ ′ by 〈Qπ ′ ,Tπ ′〉.

According to the definition of strong cyclic plan, for any state s in Qπ ′ , there is

a path (viaTπ ′) from s to a state inT (π ′). Consider states inQπ ′. Let d(s,G ) be

the length of one of the shortest path (viaTπ ′) from s to any state inG . For each

states∈ Qπ ′ , if d(s,G ) is n, then defines0, · · · ,sn−1 to be false andsn, · · · ,smax−1

to be true. For each actiona such thatπ ′(s) = a andd(s,G ) = n, s a1, · · · ,s an−1

are defined to be false ands an, · · · ,s amax−1 to be true. All othersi ands ai atoms

are assigned false. Denote this propositional interpretation by N. Now argue that

N satisfies all clauses inS-Cyclic(P). By construction ofN all clauses in (0) are

satisfied byN. All clauses in (1) are satisfied byN because when their left hand

side is true, that meanss∈Qπ ′. Sinces 6∈ G , andT (π ′)⊆ G , scannot be a terminal
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state, and thusπ ′(s) must be defined. Then by the construction ofN the right hand

side of (1) must be satisfied byN. For the clauses in (2) the left hand side is satisfied

by N only whens∈ Qπ ′, anda ∈ π ′(s). By definition ofQπ ′, all s′ ∈ Φ(s,a) are

going to be inQπ ′ . ThusN must satisfy the right hand side of the clause whose left

hand side it satisfies. Consider the clauses in (3). IfN satisfies its left hand side

then there must be a path froms to G via (via Tπ ′). Let the length of the shortest

such path bem, anda is the first action in one such path. Since this is one of the

shortest paths, one of the statess′ ∈ Φ(s,a) must have a path of lengthm-1 to G .

Thus the right hand side of the corresponding clause in (3) issatisfied byN. Hence,

N satisfies the clauses in (3). By construction ofN, it is easy to see thatN satisfies

the clauses in (4), (5) and (6). This proves part (1) of the proposition.

To prove part (2) of the proposition, letP= 〈D ,I ,G 〉, with D = 〈S ,A ,Φ〉,

and|S | = max. Let M be a model ofS-Cyclic(P)KM be as defined, and〈QM,TM〉

be the execution structure induced byKM from I . From the construction ofKM

and since it is not defined on states inG , it is needed to show that for any state in

QM, there is a path from this state to a final state inG .

Let the distancedKM(s,I ) be the length of the shortest path (viaTM) from any

state inI to s. By using induction ondKM(s,I ), and the above lemma, that for

every state inQM, there is a path (viaTM) from this state to a final state inG .

The base case,dKM(s,I ) = 0, is abouts∈I . From the clauses in (5), for these

statess, M |= smax−1. Thus, by using the lemma, there is a path froms to a final

state inG . Thus the statement holds in the base case.

Now for the induction step, assume that ifdKM(s,I )< d, then there is a path in

QM from s to a final state inG . Now prove the case wheredKM(s
′,I ) = d. Since

dKM(s
′,I ) = d, there is a statessuch thatdKM(s,I ) = d−1 ands′ ∈ Φ(s,a) where

a∈ KM(s)). But thenM |= s a j for somej. Due to the clauses in (4)M |= s amax−1.

Using the clauses in (2) and the fact thats′ ∈ Φ(s,a), it is known thatM |= s′max−1.
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Thus, using the lemma, there is a path inTM from s′ to a final state inG . For a state

s∈ S , if there is a path fromI to s, then the length of the shortest path is at most

max−1. This implies that induction step considers all states that are reachable from

I . This concludes the induction and the proof of (2).

The following example illustrates the encoding and its use in computing strong

cyclic plans.

Example 28. Consider the strong cyclic planning problem in Example 27. Its SAT

encoding is as follows:

Clauses (0): b0 ⇒ b1. b1 ⇒ b2. b2 ⇒ b3.

c0 ⇒ c1. c1 ⇒ c2. c2 ⇒ c3.

d0 ⇒ d1. d1 ⇒ d2. d2 ⇒ d3.

e0 ⇒ e1. e1 ⇒ e2. e2 ⇒ e3.

Clauses (1): b1 ⇒ b x1∨b y1. b2 ⇒ b x2∨b y2.

b3 ⇒ b x3∨b y3. c1 ⇒ c x1∨c y1.

c2 ⇒ c x2∨c y2. c3 ⇒ c x3∨c y3.

d1 ⇒⊥ . d2 ⇒⊥ . d3 ⇒⊥ .

Clauses (2): bx3 ⇒ c3. b y3 ⇒ d3.

c x3 ⇒ e3. c x3 ⇒ b3. c y3 ⇒ d3.

Clauses (3) bx1 ⇒ c0. b x2 ⇒ c1. b x3 ⇒ c2.

b y1 ⇒ d0. b y2 ⇒ d1. b y3 ⇒ d2.

c x1 ⇒ b0∨e0. c x2 ⇒ b1∨e1.

c x3 ⇒ b2∨e2.

c y1 ⇒ d0. c y2 ⇒ d1. c y3 ⇒ d2.

Clauses (4): bx0 ⇒ b x1. b x1 ⇒ b x2. b x2 ⇒ b x3.

b y0 ⇒ b y1. b y1 ⇒ b y2. b y2 ⇒ b y3.
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c x0 ⇒ c x1. c x1 ⇒ c x2. c x2 ⇒ c x3.

c y0 ⇒ c y1. c y1 ⇒ c y2. c y2 ⇒ c y3.

Clauses (5): b3.

Clauses (6): b0 ⇒⊥ . c0 ⇒⊥ . d0 ⇒⊥ .

This SAT instance is solvable, and one of its models is M= {b3,c2,c3,e1,e2,e3,b x3,c x2,c x3}.

Using Proposition 22, A strong cyclic planπ can be constructed from M given by

π(b) = {x} andπ(c) = {x}.

Horn SAT Encoding

[Horn SAT encoding of strong cyclic planning] Let a planningproblem P =
〈D ,I ,G 〉, whereD=〈S ,A ,Φ〉. Supposemax= |S | − 1. P is translated into
a Horn encodingS-Cyclic(P):

(0) for all s∈ S andi, 0< i ≤ max: si ⇒ si−1

(1) for every states∈ S \G , and for alli, 0< i ≤ max:
∧

a∈poss(s) s ai ⇒ si.

(2) for every statess, s′ ∈S such thats′ ∈Φ(s,a) for some actiona: s′max⇒ s amax

(3) for every states ∈ S , action a ∈ poss(s), and for all i, 0 < i ≤ max:
∧

s′∈Φ(s,a) s′i−1 ⇒ s ai

(4) for every states∈ S , actiona ∈ poss(s), and for alli, 1< i ≤ max: s ai ⇒
s ai−1

(5) for s∈ I : smax⇒⊥

(6) for s∈ S \G : s0

While S-Cyclic(P) is constructible in polynomial time fromP, it cannot auto-

matically be inferred that finding strong cyclic plans is polynomial, since SAT is a

canonical NP-hard problem. However, a closer look at the structure of the clauses

in S-Cyclic(P) reveals that this instance is solvable in polynomial time. Indeed, it

is a reverse Horntheory; i.e., after reversing the propositions, the theoryis Horn.
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Using propositionssi, which intuitively mean the converse ofsi, the Horn theory

corresponding toS-Cyclic(P), denotedS-Cyclic(P), is illustrated in Algorithm 6.3.

As computing a model of a Horn theory is a well-known polynomial problem

[DG84], the following result holds.

Theorem 2. Strong cyclic plans can be computed in polynomial time.

Maximal Plan

An interesting aspect of the above is that, as well-known, each satisfiable Horn

theoryT has the least model,M∗(T), which is given by the intersection of all its

models. Moreover, the least model is computable in linear time, cf. [DG84]. This

model not only leads to a strong cyclic plan, but also leads toa maximalplan, in

the sense that the control is defined on a greatest set of states outsideG among

all possible strong cyclic plans for initial statesI ′ and goal statesG such that

I ⊆ I ′. This gives a clear picture of which other states may be addedto I while

the property of strong cyclic is preserved.

Lean Plans

On the other hand, intuitively a strong cyclic plan constructed from some maximal

model ofS-Cyclic(P) with respect to the propositionssk is undefined to a largest

extent, and works merely for a smallest extension. Startingfrom any model of

T, such a maximal model ofT can be generated by trying to flip step by step all

propositionssk which are f alse to true, and change other propositions as needed

for satisfiability. In this way, a maximal model ofT on {sk | s∈ S \G } can be

generated in polynomial time, from which a “lean” control can also be extracted in

polynomial time.
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Genuine Procedural Algorithm

From the encoding to Horn SAT above, a direct algorithm Strong Cyclic Plan can

be distilled to construct a strong cyclic plan, if one exists. It mimics the steps

which a SAT solver might take in order to solveS-Cyclic(P). For each states∈ S

and actiona∈ poss(s), countersc[s] andc[s a] ranging over{−1,0, · · · ,max} and

{0,1, · · · ,max}, respectively, are used. Intuitively,c[s]= i represents that so fars0,

s1, · · · , si are assigned true; in particular,i=−1 represents that nosi is assigned

true yet. Similarly,c[s a]= i represents that so fars a1, s a2, · · · , s ai are assigned

true. In particular,c[s ai ]=0 means that nos ai is assigned true yet.

Based on Proposition 22 and the fact that Strong Cyclic Plan mimics the compu-

tation of the least model ofS-Cyclic(P) in Algorithm 6.3, the following proposition

is true.

Proposition 23. Algorithm 6.3 on Strong Cyclic Plan finds a strong cyclic plan

in a planning problem. Furthermore, for every inputD and P, it terminates in

polynomial time.

Remark that algorithm Strong Cyclic Plan can be made more efficient by prun-

ing in a linear time preprocessing all states which are not ona path between some

statess∈ I ands′ ∈ G .

A more detailed account of the complexity of Strong Cyclic Plan and possible

improvements are given in Section 6.6.

Strong Cyclic Planning Using an Answer Set Solver

This section, shows how computing strong cyclic plans can beencoded as a logic

program, based on the results of the previous section. More precisely, an encod-

ing to non-monotonic logic programs under the Answer Set semantics [GL91] is

described, which can be executed on one of the available Answer Set solvers such
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[Strong cyclic plan]

Input: A planning domainD = 〈S ,A ,Φ〉, and a planning problemP =
〈D ,I ,G 〉.

Output: A strong cyclic plan ofP if such plan exists. Otherwise, output that no
such plan exists.

(Step 1) Initialization:

(i) For everys∈ G , setc[s] :=−1.

(ii) For everys∈ S \G , if poss(s) = /0 then set
c[s] := max else setc[s] := 0.

(iii) For eachs∈ S \G anda∈ poss(s), setc[s a]:=0.

(Step 2) Repeat until no change orc[s]=maxfor somes∈I :

(i) For every states∈ S \G such thatposs(s) 6= /0,
c[s] := max(c[s], i) wherei = mina∈poss(s) c[s a].

(ii) For every states∈S , a∈ poss(s), ands′∈Φ(s,a), if c[s′] = max, then
c[s a] := max.

(iii) For every states∈ S anda∈ poss(s),
c[s a] := max(c[s a], i+1) wherei=mins′∈Φ(s,a) c[s′].

(Step 3) Ifc[s]=max for somes∈I , then output that there is no strong cyclic
plan; halt.

(Step 4) Output the planπ : S → 2A defined on the statess ∈ S \G with
c[s]≤maxandπ(s)={a | a∈ poss(s), c[s a] = minb∈poss(s) c[s b]}.

as DLV [PFE+06] or Smodels [SNS02]. These solvers support the computation of

answer sets (models) of a given program, from which solutions (in this case, strong

cyclic plans) can be extracted.

The encoding is generic, i.e., given by afixed programwhich is evaluated over

instancesI represented by input factsF(I). It makes use of the fact that non-

monotonic logic programs can have multiple models, which correspond to different

solutions, i.e., different strong cyclic plans.

The following first describes how a system is represented in alogic program,
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and then develops the logic programs for both deterministicand general, nondeter-

ministic domains. The syntax of DLV is adopted here. Only minor revisions are

needed to adopt other Answer Set Solvers (e.g. Smodels).

Input RepresentationF(I)

The inputI can be represented by factsF(I) as follows.

• The following facts represent the planning domainD = 〈S ,A ,Φ〉 and the

planning problemP= 〈D ,I ,G 〉:

– state(s), for eachs∈ S ;

– action(a), for eacha∈ A ;

– trans(s,a,s′), for eachs,s′ ∈ S anda∈ A such thats′ ∈ Φ(s,a);

• the set of statesI is represented by using a predicatestart by factsstart(s),

for eachs∈ I ;

• the set of statesG is represented by using a predicategoalsby factsgoal(s),

for eachs∈ G ;

• finally, the ranges 1. . .max and 2. . .max are represented using predicates

range1 andrange2, respectively.

ProgramPSC

The programPSC, executable on the DLV engine, for computing a strong cyclicplan

is as follows.

%ranges

range1(N) :- #int(N), N>0.

range2(N) :- #int(N), N>1.

% 0
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s_bar(S,J1) :- s_bar(S,J), J=J1+1.

% 1

s_bar(S,I) :- state(S), not goal(S), range1(I),

not some_path(S,I).

some_path(S,I) :- range1(I), trans(S,A,Y),

not s_a_bar(S,A,I).

% 2

s_a_bar(S,A,#maxint) :- trans(S,A,Y), s_bar(Y,#maxint) .

% 3

s_a_bar(S,A,I) :- trans(S,A,Y), range1(I),

not some_a_path(S,A,I).

some_a_path(S,A,I) :- range1(I), I=I1+1, trans(S,A,Y),

not s_bar(Y,I1).

% 4

s_a_bar(S,A,I1) :- range2(I), I=I1+1, s_a_bar(S,A,I).

% 5

:- s_bar(S,#maxint), start(S).

% 6

s_bar(S,0) :- state(S), not goal(S).

% single out a plan

pi(S,A) :- not s_a_bar(S,A,J), not goal(S), range1(J),

not neg_max(S,A,J), trans(S,A,Y).

neg_max(S,A,J) :- s_a_bar(S,A,J), range1(J), range1(J1) ,

s_a_bar(S,A,J1), J < J1, trans(S,A,Y).

Besides the input predicates ofF(I), the program employs predicatess bar(S,I)

and s a bar(S,A,I) which intuitively correspond toSI and S AI respectively. The

predicatesfail body(S,I)andfail a body(S,A,I)are used to uniformly represent clauses

in (1) and (3), respectively, with varying body size; they amount to the negation of
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s bar(S,I) and s a bar(S,A,I), respectively. The plan is computed in the predicate

pi(S,A).

Example 29. The logic program encoding F(I) of the strong cyclic planning prob-

lem in Example 27 is as follows:

#maxint=3.

state(b). state(c). state(d). state(e).

start(b). goal(e). action(x). action(y).

trans(b,x,c). trans(c,x,b). trans(c,x,e).

trans(b,y,d). trans(c,y,d).

The program PSC∪F(I) has one answer set. Filtered to the atomsfail a body(s,a,i)

andpi(s,a), the output is:

{ some_a_path(c,x,1), some_a_path(b,x,2),

some_a_path(c,x,2), some_a_path(b,x,3),

some_a_path(c,x,3), pi(b,x), pi(c,x) }

Hence, the strong cyclic planπ given byπ(b) = {x} andπ(c) = {x} is obtained.

Preferred Plans

In general, there can be multiple answer sets, each corresponding to a different

plan. Moreover,π can be non-deterministic; if in Example 29 a further actionz

would lead fromc to e, thenπ(c,e) would be in the result computed, and thus

π(c) = {x,z}. By adding further rules inPSC, A deterministic planπdet can be

generated, e.g. by nondeterministically selecting one action from π(s):

pi_det(S,A) :- pi(S,A), not drop(S,A).

drop(S,A) v drop(S,B):- pi(S,A), pi(S,B), A<>B.

For the case where multiple solutions exist, features available in Answer Set

Solvers can be explored to select preferred plans. For example, using weak con-
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straints offered by DLV, prioritization between differentactions can be expressed.

For illustration, the weak constraints

:˜ pi_det(c,x). [:1] :˜ pi_det(c,z). [:2]

express that as forπdet, taking actionz in statec is preferred over takingx.

Using weak constraints, users can also easily modelcostsfor action execution, pos-

sibly dependent on the state, which add up in execution. In this way, optimal (i.e.,

most preferred) plans among the candidates can be computed,possibly combining

different criteria like deterministic actions and execution cost.

6.4 Finding Strong Plans

Finding strong plans can be approached in three ways: (i) as aspecial case of

finite maintainability, when there are no exogenous actions; (ii) further constraining

strong cyclic planning; or (iii) by a generic SAT encoding.

As for (ii), a Horn SAT encoding and genuine algorithm for strong planning are

as follows:

Horn SAT Encoding Strong(P): The clauses (0), (1), (4), (5), (6) fromS-Cyclic(P)

and the following clauses:

(7) For every states∈ S and actiona∈ A , for all s′ ∈ Φ(s,a), and for alli,

0< i ≤ max: s′i−1 ⇒ s ai

Genuine procedure Strong Plan: Steps 1, 2.(i), 3, and 4 from Strong Cyclic Plan

plus the new Step:

(Step 2) (ii′) For any states∈ S , if s′ ∈ Φ(s,a) for a∈ poss(s) andc[s′] = i

such that 0≤ i ≤ max, then doc[s a] := max(c[s a], i+1).

As discussed later, this yields algorithms of the same orderas for strong cyclic

planning.
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The Horn SAT encoding in Algorithm 6.4 and the correspondinggenuine pro-

cedure is more efficient.

[Horn SAT encoding of strong planning] Given a planning problemP=〈D ,I ,G 〉,
whereD = 〈S ,A ,Φ〉, the Horn instanceStrong

+
(P) contains:

(0) for everys∈ G : s

(1) for every states ∈ S \G and actiona ∈ poss(s) such that Φ(s,a) =
{s′1, . . . ,s

′
m}, m> 0:

s′1∧·· ·∧s′m ⇒ s and s′1∧·· ·∧s′m ⇒ s a.

(2) ForI = {s1, . . . ,sl}: s1∧·· ·∧sl ⇒⊥.

Theorem 3. For a planning problem P=〈D ,I ,G 〉,

(i) a strong solution exists iffStrong
+
(P) is unsatisfiable iff⊥ is derivable from

Strong
+
(P).

(ii) π = {〈s,a〉 | s a ∈ T i
P′ ,s /∈ T i−1

P′ , for some i≥ 1}, is a (non-deterministic)

strong solution, where T1P′ = G and Ti+1
P′ = {ℓ | ℓ1∧·· ·∧ℓl ⇒ ℓ∈ Strong

+
(P)

andℓ1, . . . , ℓl ,∈ T i
P′} for i ≥ 1, are the powers TiP′ of the logic programming

immediate consequence operator TP′ (see e.g. [DEGV01]) for the program

P′ = Strong
+
(P) (viewing⊥ as atom).

A strong planπ as in the theorem can be constructed inO(|Φ|+ |S |) time start-

ing from P, sinceStrong
+
(P) is easily constructed and, as well-known, the powers

of TP′ are incrementally computable in linear time using proper data structures, cf.

remarks in [DEGV01].

6.5 Finding Weak Plans

One way to think about finding weak plans is as relaxing strongcyclic planning.

A respective Horn SAT encoding and genuine algorithm for Weak planning are as

follows:
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Horn SAT Encoding Weak(P): The clauses (0), (1), (3), (4), (5), (6) fromS-Cyclic(P).

Genuine procedure: It consists of Steps 1, 2.(i), 2.(iii), 3, and 4 of algorithm

Strong Cyclic Plan. (It does not contain the Step 2 (ii).)

Again, this yields algorithms of the same order as for strongcyclic planning.

More efficient ones emerge from the encoding in Algorithm 6.5.

[Horn SAT encoding of weak planning] Given a planning problem P=〈D ,I ,G 〉,
whereD = 〈S ,A ,Φ〉, the Horn instanceWeak

+
(P) is as follows:

(0) for everys∈ G : s

(1) for every states∈ S \G , actiona∈ poss(s), ands′ ∈ Φ(s,a): s′ ⇒ s a and
s′ ⇒ s.

Theorem 4. For a planning problem P=〈D ,I ,G 〉,

(i) a weak solution exists iff for each s∈ I , Weak
+
(P)∪{¬s} is unsatisfiable if

and only if each s∈I is true in M∗(Weak
+
(P)), the least model ofWeak

+
(P).

(ii) π = {〈s,a〉 | s a∈ M∗(Weak
+
(P))}, is a (non-deterministic) strong solution,

if any strong solution exists.

Note thatWeak
+
(P) is definite Horn, and thus its least modelM∗(Weak

+
(P))

does exist. Furthermore, it is computable in linear time in the size ofWeak
+
(P).

Since the latter is easily constructed, finding a weak plan w.r.t. P is thus feasible in

time O(|Φ|+ |S |), i.e., in linear time.

6.6 Complexity Analysis and Relations with Existing Algorithms

This section starts with the complexity analysis of the algorithms in this chapter.
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Complexity

For any planning domainD = 〈S ,A ,Φ〉 and planning problemP = 〈D ,I ,G 〉,

denote by‖D‖ = |S |+ |A |+ |Φ| and‖P‖ = ‖D‖+ |I |+ |G | the representation

size ofD andP, respectively (whereΦ is viewed as set of triples〈s,a,s′〉).

Proposition 24. Strong Cyclic Planning can be solved, via the Horn SAT encoding

S-Cyclic(P) and, by a suitable implementation of Algorithm StrongCyclicPlan, in

time O(|S |·‖P‖) and O(|S |·|Φ|), respectively.

Proof. (Sketch) As for the first part, the clauses in (0), (1), (2), (3), (4), (5), and (6)

of S-Cyclic(P) can be generated in timeO(|S|2), O(|S|·|Φ|), O(|Φ|), O(|S|·|Φ|),

O(|S|·|Φ|), O(|I |), andO(|S|), respectively. HenceS-Cyclic(P) can be generated

in time O(|S|(|Φ|+ |S|)) = O(|S|·‖P‖). Moreover, it can be solved in linear time

in its size, i.e., in timeO(|S|·‖P‖). From any modelM obtained,CM, lM can be

computed in timeO(|M|), and thus alsoKM is computable in timeO(|M|). In

summary, some controlKM as in Proposition 22 is computable in timeO(|S|·‖P‖).

For the second part, Step 1 ofStrong Cyclic Plancan be done in timeO(|S|+

|Φ|). For efficient realization of Step 2, employ auxiliary variables and data struc-

tures: a variableMin act(s) := min(c[s a] | a∈ poss(s)) for eachs∈ S , a variable

Min next(s,a) := min(c[s′] | s′ ∈ Φ(s,a)) for eachs∈S anda∈ poss(s), such that

for eachs a Min act(s) is accessible in one step and likewise for eachs′ ∈ S a list

Ls′ of all Min next(s,a) such thats′ ∈ Φ(s,a). Furthermore, a setUpd of counters

c[s] andc[s a] is maintained which are inspected for possible update.Upd hasO(1)

membership, inclusion and exclusion tests (e.g., it is organized as a ring-list with an

additional index), and is initialized with all counters (inO(|S |+ |Φ|) time). While

Upd is not empty, a counterc[s] resp.c[s a] is removed from it for inspection. For

the former, the update in 2.(i) and a possible follow update in 2.(ii) are efficiently
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possible inO(1) time. For the latter, the update in 2.(iii) is also feasible in O(1)

time.

Whenever one of the countersc[s] resp.c[s a] is increased, the elementsMin next(s′,a)

in Ls resp.Min act(s) are updated, and the corresponding countersc[s′ a] resp.c[s]

are inserted inUpd upon a change. Ifc[s] increased tomax−1 ands∈ I , then the

computation branches without this update to Step 3 (and halts); upon emptyUpd,

Step 3 can be skipped.

The number of updatedMin next(s′,a) resp. insertedc[s′ a] for one update of

counterc[s] is |{〈s,a〉 | 〈s,a,s′〉 ∈ Φ}|; sincec[s] can increase no more than|S |

times, over alls∈ S the total number of such updates resp. inserts is bounded by

|S |·|Φ|. The total number of updatedMin act(s) resp. insertedc[s] via c[s a] is

also bounded by|S |·|Φ|. In total, Step 2 can be executed in timeO(|S|·|Φ|).

Step 4 can be done, usingMin act(s), in O(|Φ|) time.

In total, the time for Steps 1-4 isO(|S |·|Φ|).

Remark that algorithmStrong Cyclic Plancan be made more efficient by prun-

ing in a linear time preprocessing all states which are not ona path between some

statess∈ I ands′ ∈ G .

Comparing to [CPRT03], the algorithm for strong cyclic planning in this chapter

works differently. Basically, their algorithm iterativelycomputes weak plans by

backtracking from the goal states and prunes the planning problem until a weak

plan which is also a strong cyclic plan is obtained. The algorithm, instead, has no

such intuition and simply aims at establishing the necessary logical conditions, as in

the seminal planning as satisfiability approach [KS92]. A simple implementation of

the Cimattiet al. algorithm hasO(|S |2|Φ|) time complexity, while a sophisticated

one hasO(|S |·|Φ|) comparable to ours. Section 6.6 compares these two algorithms

in detail.
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For finding strong plans and weak plans by constrained and relaxed strong

cyclic planning, respectively, the following propositionholds.

Proposition 25. Strong Planning (resp., Weak Planning) can be solved, via the

encodingStrong(P) (resp.,Weak(P)) in time O(|S |·‖P‖), and by a properly im-

plemented algorithm Strong Plan (resp., Weak Plan), in timeO(|S |·|Φ|).

Proof. (Sketch) The clauses (3.2’) inStrong(P) can be generated inO(|S|·|Φ|)

time, andWeak(P) is a subset ofS-Cyclic(P). The proof of the first part is thus

very similar as in Proposition 24. The second part is also shown similarly as the

second part of the Proposition 24.

Simple implementations of the algorithms for strong and weak planning in

[CPRT03] have time complexityO(|S|·|Φ|), while more sophisticated ones have

O(‖P‖), i.e., linear time. For the special Horn encodingsStrong+(P) andWeak+(P),

the same time bound is obtained. They are closely related to the respective algo-

rithms in [CPRT03] and may be viewed as declarative descriptions of the plan con-

struction method. Nicely, an efficient implementation comes for free by the efficient

algorithms for solving Horn theories.

As for the computational complexity of the planning problems, the following

proposition is true.1

Proposition 26. Deciding whether a given planning problem〈D ,I ,G 〉 has

1. a strong cyclic solution isP-complete,

2. a strong solution isP-complete, and

3. a weak solution isNLOG-complete.

1Reference for these results cannot be found, which might be known to the specialists, though.
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The P-hardness results are an easy consequence of complexity results on k-

maintainability [BEBN08]. TheNLOG -membership of weak solutions is explained

by the fact that as shown above, this reduces to solving for eachs∈ I a Horn SAT

instance (Theorem 4) that is also a 2-SAT instance, which is feasible inNLOG . The

NLOG -hardness follows from a simple reduction from the canonical graph teach-

ability problem. Exploiting Theorem 4, also computing someweak plan is feasible

in nondeterministic logspace.

Characteristics of the Algorithm

Now discuss the difference of this algorithm and the algorithm proposed in [CPRT03]

on finding strong cyclic plans.

The algorithm is based on evolving from the set of goal states. Labels are as-

signed to states to indicate that there is a path from the state to a state inG . Besides,

states that do not have a path to a state inG are removed as well when their labels are

increased tomaxin the algorithm. On the other hand, the algorithm in [CPRT03]is

proceed by iteratively removing states and actions that arenot able to reach a goal

state. The “envelope” of possible solutions is reduced rather than being extended

for computing the greatest fix point.

In the case that a plan can be easily found and the plan involves a small subset

of states in transition graph, this approach is more efficient. With the approach in

[CPRT03], the whole transition system still need to be explored thoroughly before

a plan can be found.

This chapter first encodes the problems in SAT. One thing keepin mind that

any heuristics are avoided in the encoding so that the approach can be named as

“finding algorithms from specification”. However, in most cases, heuristics are

the basis for the encodings to be solved faster. For example,in the strong cyclic

planning encoding, if users want to find a maximal or lean plan, they need to encode
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beforehand on choices of actions in a state.

Now consider a few possible modifications to improve the performance of the

algorithm here.

• One limitation of this algorithm is that it is not “guided”. The algorithm is

based on a SAT encoding thus no search heuristics are encodedin the al-

gorithm. Performance of the approach proposed here heavilydepends on

ordering in exploring states and in changing labels. In the iteration step in

Algorithm 6.3, if all neighbors of a state do not change theirlabels, it is not

possible that the state will change its label. However, thisalgorithm may still

need to check these states repeatedly. One approach to improve the perfor-

mance of this algorithm is to prefer states or actions whose neighbors change

their labels recently when examining labels of states and actions.

Another observation is that the not “guided” algorithm might exploit part of

the transition graph that not related to the finial plan. For example, if there is

a sub-graph in the transition graph such that nodes in the sub-graph connect

to each other but none of these states has a path to a state inG . This algorithm

needs to increase labels of these nodes repeatedly until their labels reachmax

before they can be excluded from consideration. However, asthere is no weak

plan from states to a state inG , states can be removed from consideration

and the label of states is set tomaxdirectly.

Also note that in some cases, there is no need to set variablemax to |S | −1.

The following proposition illustrates one such case.

Proposition 27. Iff there is a strong cyclic plan such that the length of the longest

path from the initial state to the goal state involves at mostk nodes, a strong cyclic

plan can be found by setting max= k−1 in Algorithm 6.3.
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Based on Proposition 27, a parameterk can be introduced in the logic program

encoding of the algorithm. This simplifies the algorithm. However, given a plan-

ning problem, the value ofk is not known. What can be done is to increase the

value ofk incrementally before a solution to the planning problem is found.

6.7 Applying the Approach to otherπ-CTL∗ Goals

Consider applying the approach to otherπ-CTL∗ goals. Consider some variations

of the strong cyclic planning. As encoding the problem in reverse Horn SAT in the

most critical step, in this section, only the reverse Horn SAT encoding of each prob-

lem is considered. The rest steps of translating to Horn SAT or extracting a genuine

algorithm follow the same approach as strong cyclic planning in Section 6.3.

Planning for GoalApol2(E3p)

The goalApol2(E3p) is considered. It is different from strong cyclic planning

Apol2(Epol3p) in that symbolE states that the path satisfying3p may not be one

path of the agent. This can be done by the Horn SAT specification in Algorithm 6.7.

In the SAT encoding, for each states and actiona, propositionssi, si , ands ai

are used, wherei ≥ 0 is an integer. Intuitively,si will mean that there is a path

from s to a state satisfyingE3p, following the execution structureK = 〈Q,T〉, of

length at mosti. Similarly, s ai will intuitively mean that there is a path froms to

a state satisfyingE3p of length at mosti, following T of the execution structure

K = 〈Q,T〉, and witha as its first action.si means that there is a path from states

to G , of lengthi, not necessarily followingT of the execution structure.

maxis defined as|S |−1. It is the upper bound ofi. If there is no path of length

at mostmax, there is no path at all.

This planning problem is easier than the strong cyclic planning. Finding one

such plan is not very interesting since if there is a weak planfrom the initial state,

then the plan that takes the action “nop” in the initial state is a valid plan.
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[Reverse Horn SAT encoding for planning with the goalApol2(E3p)]
Suppose given a planning problemP=〈D ,I ,G 〉 whereD=〈S ,A ,Φ〉. Suppose
max= |S |−1. P is translated into a reverse Horn SAT encoding as follows:

(0) for all s∈ S andi, 0< i ≤ max: si−1 ⇒ si; si−1 ⇒ si.

(1) for every states∈ S \G : si ⇒
∨

a∈poss(s) s ai

(1.2) for every states∈ S \G , and for any states′ ∈ S , if s′ ∈ Φ(s,a) for any
actiona: s′i ⇒ si+1

(3’) for every states∈S , actiona∈ poss(s), and for alli, 0< i ≤max: s ai ⇒ s′i−1

(3”)for every states∈ S , s0 ⇒ smax

(4) for every states∈ S , actiona∈ poss(s), and 1< i ≤ max: s ai−1 ⇒ s ai

(5) for s∈ I : smax

(6) for s∈ S \G : ¬s0

(7) for s∈ G : s0

Planning for GoalApol3(E3p)

The encoding of this problem is the same as the encoding ofApol2(E3p). It is easy

to check that in a domain, a strong cyclic plan also satisfy the goalApol2(E3p) and

Apol3(E3p).

Planning for GoalA2(Epol3p)

A policy satisfy this goal if for any state that is reachable from the initial state,

there is always a path to a state withp being true by following the policy. This goal

differs from the strong cyclic plan in that it takes care of all states that are reachable

from the initial states besides the states that are reachable from the initial states by

following the policy. If states inG are all the states that have propositionp true,

then the goal can be presented inπ-CTL∗ asA2(Epol3p). A plan satisfying this

goal is also a strong cyclic plan.
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Suppose given a planning problemP=〈D ,I ,G 〉 whereD=〈S ,A ,Φ〉. To

solve the problem, a new planning problem is defined such thatP′=〈D ,I ′,G 〉

whereD=〈S ,A ,Φ〉. Let I ′ be the set of states that are reachable fromI . Any

weak plan ofP′ is a plan forA2(Epol3p) in P. This observation is utilized in the

following encoding.

In the SAT encoding, for each statesand actiona, define propositionssi, si , and

s ai, wherei ≥ 0 is an integer. Intuitively,si will mean that there is a path froms to

G , following the execution structureK = 〈Q,T〉, of length at mosti. Similarly,s ai

will intuitively mean that there is a path froms to G of length at mosti, following

T of the execution structureK = 〈Q,T〉, and witha as its first action.si means that

there is a path from states toEpol3p, of lengthi, not necessarily followingT of the

execution structure.

An upper boundmaxfor i is defined, depending on the number of states inS ;

if there is no path of length at mostmax, there is no path at all.

Planning for GoalA3(Epol3p)

Remove Item (5”) from Algorithm 6.7.

6.8 Planning with a Pref-π-CTL∗ Goal

This section finds plans for the planning problemApol2((Apol3p�Apol2(Epol3p))�

Epol3p) in Pref-π-CTL∗. This goal states that in any state of the plan starting from

the initial state, a strong plan is always preferred to a strong cyclic plan, which is

in turn preferred to a weak plan. Thus it is possible that the agent is starting with

a weak plan, but switch to a strong cyclic plan if it happens toget to a state with

a strong cyclic plan. The agent may further switch to a strongplan if he is lucky

enough to get to a state with a strong plan exists. This goal states that in any state

of the agent, the agent checks all policies available to him and choose the best one.

This is different from the goal(Apol3p�Apol2(Epol3p))�Epol3p that finds the
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[Reverse Horn SAT encoding for planning of the goalA2(Epol3p)]
Suppose given a planning problemP=〈D ,I ,G 〉 where D=〈S ,A ,Φ〉. Let
max= |S |−1. P is translated into a SAT encodingS-Cyclic(P) as follows:

(0) for all s∈ S andi, 0< i ≤ max: si−1 ⇒ si

(1) for every states∈ S \G , and for alli, 0< i ≤ max: si ⇒
∨

a∈poss(s) s ai

(3) for every states∈ S , actiona ∈ poss(s), and for alli, 0< i ≤ max: s ai ⇒
∨

s′∈Φ(s,a) s′i−1

(4) for every states∈ S , actiona∈ poss(s), and 1< i ≤ max: s ai−1 ⇒ s ai

(5) for s∈ I : smax

(5’) for s∈ S , s′ ∈ Φ(s,a): si+1 ⇒ s′i

(5”) for s∈ S , smax⇒ smax

(6) for s∈ S \G : ¬s0

(7) for s∈ G : s0

(8) for s∈ S , s0 ⇒ smax

strong planning from the initial state first, if there is no strong plan from the initial

state, finds alternative plans such as strong cyclic plans orweak plans.

Weak, strong, and strong cyclic planning problems are first investigated in [CPRT03].

Later, in [BEZ05], a different approach was taken by following the method first

proposed in [BEBN08] that first encode each problem in reverse Horn. Later, an

algorithm was extracted by simulating the approach of solving the reverse Horn.

Strong, weak, and strong cyclic planning problems all can besolved inO(S·P),

whereS is the number of states in the transition graph, andP is the total number of

states, actions, and transitions in the transition graph.

One way of solving the problem given above is to find strong, weak, and strong

cyclic plans from all states in the transition graph, and then merge the plans found.

With this approach, the Pref-π-CTL∗ goal above can be solved inO(S2 ·P). Now

show that based on the properties of these planning problems, a better solution can
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be found. Note that the algorithm proposed is not a reverse Horn encoding that

solves this Pref-π-CTL∗ goal. The algorithm is composed of a few steps:

Input : A planning domainD = 〈S ,A ,Φ〉, and a planning problemP =
〈D ,I ,G 〉.
Output : A plan π to Pref-π-CTL∗ goal Apol2((Apol3p� Apol2(Epol3p))�
Epol3p) if such plan exists. Otherwise, output that no such plan exists.

1. Step 1: (Strong plan extension): For states∈ S \ G and actiona in the
transition system, ifΦ(s,a) ⊆ G , add states to G , and add the pair(s,a) to
the planπ, which is a set of pairs of states and actions.

2. Step 2: (Strong cyclic plan extension): For states∈S \G with actiona such
thatΦ(s,a)∩G 6= /0. Run Algorithm 6.3 to find a strong cyclic plan froms to
G if there is one. Suppose the output of the algorithm isπ ′ andπ ′ is defined
on a set of satesS′. Let G = G ∪{s|s∈ S′}, andπ = π ∪{(s,π ′(s))|s∈ S′}.

Repeat the process until no states can be added toG .

3. Step 3: (Weak plan extension): For states∈S \G and actiona in the transi-
tion system, ifΦ(s,a)∩G 6= /0, add states to G , and add the pair(s,a) to the
planπ, which is a set of pairs of states and actions.

4. Step 4: (Output) IfS ⊆ G , return the policyπ. Otherwise, output that no
such plan exists.

In the worst case, time complexity of the algorithm isO(s2 ·P). But it is faster

than the approach of finding strong, weak, and strong cyclic plans from all states

in the transition graph, and merging the plans found. The algorithm can be imple-

mented more efficiently as follows:

1. In Each step of the algorithm in expanding the current plan, a few state-action

pairs are added to the plan after each step.

2. In the process of growing the plan, an index is maintained such that only

actions leads to states inG are considered in the checking process.

3. Alternate Step 1 and Step 2, as after extendingG in Step 2, there may be

more states that have strong plans to the currentG .
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A Program Simulating the Algorithm

Weak, strong, and strong cyclic planning problems are encoded in dlv [PFE+06]

logic program [GL88]. A Python program as described in Algorithm 6.8 is given.

It invokes DLV for solving planning problems with differentinitial states and goal

states.2

In particular, the logic program encoding of strong cyclic plan is the same as in

Section 6.3. Logic program encoding of strong plan is as follows:

% ranges

range1(N) :- #int(N), N>0.

range2(N) :- #int(N), N>1.

% 0

s_bar(S,I1) :- s_bar(S, I), I=I1+1, range1(I).

% 1

s_bar(S, I) :- state(S), not goal(S), range1(I), not some_p ath(S,I).

some_path(S,I) :- range1(I), trans(S,A,Y), all_a_path(S ,A,I).

all_a_path(S,A,I) :- not s_a_bar(S,A,I), not self_loop(S ,A),

trans(S,A,Y), range1(I).

self_loop(S,A) :- trans(S,A,S).

% 7

s_a_bar(S,A,I1) :- s_bar(Y,I), I1=I+1, range1(I), trans( S,A,Y).

% 4

s_a_bar(S,A,I1) :- range2(I), I=I1+1, s_a_bar(S,A,I).

% 5

:- s_bar(S, #maxint), start(S).

% 6

s_bar(S,0) :- state(S), not goal(S).

2The Python program and logic program encodings of strong, weak, and strong cyclic planning
are available at: http://www.public.asu.edu/∼jzhao6/find-best-plan.rar
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% single out the plan

pi(S,A) :- all_a_path(S,A,J), not goal(S), range1(J),

not neg_l_M(S,A,J), trans(S,A,Y).

neg_l_M(S,A,J) :- s_a_bar(S,A,J), range1(J), range1(J1) ,

s_a_bar(S,A,J1), J < J1, trans(S,A,Y).

One thing to note is that in the logic program encoding of the strong planning,

rules corresponding to Item (1) are different from the corresponding rules in strong

cyclic planning and weak planning. Apparently, a strong plan cannot have actions

that leads a self-loop. An actiona in states with s∈ Φ(s,a) need to be removed

from any strong plan.

Running the program on the transition graph in Figure 3.1 is illustrated in Ex-

ample 30.

Example 30. Consider the transition domainD in Figure 3.1. Initially, in the

planning problem P= 〈D ,I ,G 〉, I = {s1}, G = {s4} and the policyπ = /0.

In Step 1 of the algorithm, state s2 and s3 are checked as they are states which

have actions lead to states inG . s2 is the only state that has a strong plan toG .

ThusG now is{s2,s4} andπ = {(s2,a2)}.

In Step 2, check states s1 and and s3 as they are states which have actions lead

to states inG . s3 is the only state that has a strong cyclic plan to currentG . Thus

G now is{s2,s3,s4} andπ = {(s2,a2),(s3,a3)}.

In Step 3, the only state to be check is s1. There is a weak plan from s1 toG . Thus

after adding s1 to G and (s1,a1) to the policy, it is known thatG = {s1,s2,s3,s4}

andπ = {(s1,a1),(s2,a2),(s3,a3)}.

AsS ⊆G , it is known that the planπ is a plan satisfies the goalApol2((Apol3p�

Apol2(Epol3p))�Epol3p) in the transition domain in Figure 3.1.

Also note that the policy return in the algorithm is a “power policy” where
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multiple actions might be defined for the same state.

6.9 Related Work

This work belongs to the reasoning about action community. One major part of

the work is to define languages for expressing goals of agentsin non-deterministic

domains and then study the relations of goals and policies incomplicated domains

for semi-automatic agents. With the goals expressed, it is an interesting topic to

explore the approach of finding plans for some special temporal goals by following

a “representation, translation, and simulation” approach.

A few work in planning community relate to what this chapter is doing. One

direction is to have temporal domain knowledge in planning as in [BK98, NN01,

SBTM02]. HTN planning [NCLMA99] also loosely related to this as it involves

temporal logic in defining strategies. Recently PDDL extension with temporal as-

pects and other work also related to what this chapter is doing.

Another direction related to this work is to have an representation of the prob-

lem firstly, and then translating the encoding to a similar problem with known tech-

niques. Early work in this direction are planning via satisfiability encoding [KS92]

or logic programming encoding with answer set semantics [GL91]. The symbolic

representation such as BDD of the planning problem is also related to this work. In

recent years, there have been some work on planning in non-deterministic domains

for particular temporal formulas [DLPT02, CPRT03, JVB04].

The central motivations in the first direction mentioned above is to use known

planning techniques for temporal domain. Some of them translate the temporal goal

so as to use traditional planning techniques. Some of them use temporal logics as

heuristics to guild the search. In this work, in stead of finding planning heuristics,

the focus is on how the goals are precisely defined when the domain is becoming

more and more complicated.
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The central motivations in the second direction mentioned above is to use sym-

bol representation to reduce search space or use existing general purpose symbolic

solver. Different from them, in stead of finding general approach that is good for

any planning problem, we focus on a subset of planning problems that can be solved

in polynomial time when the input is the state space.

6.10 Discussion

This section discusses a few issued related to the approach of finding plans forπ-

CTL∗ goals. As planning with goals inπ-CTL∗ is EXPTIME-hard, no plans can be

found for anyπ-CTL∗ with this approach. However, there are still some planning

problems that can be found in polynomial time by applying theapproach.

Applying the Approach to Other Planning Problems

As goal specification languages becoming more and more expressive, more proper-

ties of the domain and the agent can be captured in the goal specification language.

Thus planning with goals expressed in these language are more difficult. On the

other hand, as goal specification languages becoming more and more expressive,

some goals expressed in the language might become easier solve as more restric-

tions are enforced on the goal.

One motivation of the work is that there is a need of pointing out a set of desired

states. By analyzing the relations of these desired states, initial states, and other

states, a SAT program and, further, an Horn program is specified. The general

idea of making use of the approach is that different labels can be defined for each

state and then consider the relations of labels among related states. For example,

in strong cyclic planning andk-maintain problem, there are only two labels: True

and False. The indexes in algorithms in this chapter are alsoused in defining the

right ordering of propagating the labels. Initially, only the set of goals states are

labeled as True. These labels are propagated hence the relations of different labels
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are encoded as reverse Horn rules.

Due to the property that there is a need of pointing out a set offinal state in the

SAT encoding, it is not easy, if possible, to use the approachfor P-CTL∗ goals due

to the lack of dealing with quantifying over policies in the approach.

Reasoning and Planning as Goal Specification Revision

In general, a goal is to define what the plan is regardless of the transition system.

While a plan is generated by given a specific transition system.

By considering a policy as a strategy taken for the agent, the goal specification

is to have some requirement on properties of such a structurein any domain. As

the goal specification languages becoming more and more specific, given a domain

and a goal specification, it might be easier to find out a policythat satisfies such

a goal. In the other word, the difference of goal specification and the planning is

minimized and they only differ in the availability of the domain configuration and

the availability of the action formula. For example, in the extreme case, if the goal

specification defines the action to take in any possible situations, then given the do-

main and the possible actions in the domain, the plan can be naturally deduced by a

table lookup. Apparently, users do not want to give such a toospecific specification

but only want to give a general direction in the goal specification. One problem is

that to what extend users think a goal specification expressive enough and general

enough?

6.11 Summary

This chapter shows that the methodology in [BEBN08] can be usedto develop poly-

nomial time planning algorithms for various kinds of problems in a non-deterministic

domain, viz. for weak, strong, and strong cyclic planning. Small modifications to

the algorithm obtained for strong cyclic planning, whose complexity is comparable

to a sophisticated implementation of the Cimattiet al. algorithm, yield polynomial
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algorithms for strong and weak planning. Furthermore, simple, genuine Horn en-

codings give efficient (linear time) implementations of Cimatti et al.’s strong and

weak plan construction method at an abstract level. This matches with a complexity

analysis of the problems which is provided in this chapter. This chapter also shows

how strong cyclic planning can be declaratively done in non-monotonic logic pro-

gramming, using an Answer Set Solver. By exploiting featuresof such solvers, a

(most) preferred among multiple candidate plans, depending on criteria like deter-

ministic actions, action preference, or action cost might be singled out.

Finally, the approach in this chapter can be considered as another illustration

of automatically generating algorithms from specifications. The propositional en-

coding ofk-maintainability, and weak, strong, and strong cyclic planning can be

thought of as a specification of these problems. Thus the results here and the results

in [BEBN08] illustrate the realization of a long standing goalof many software

engineers and algorithm designers who were interested in the problem of automat-

ically obtaining algorithms or programs from specifications.
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Chapter 7

CONCLUSION

Over the previous chapters, a few temporal logics for representing goals of an agent

are proposed. Logics are defined in giving directions to agents in non-deterministic

domains. As the domain or the intension users have for the agent may change

after the initial goal was given to the agent, languages are proposed to handle non-

monotonic aspects of goal specification. Besides, as an agentmay have different

preference relations among its sub-goals at different stages of its plan, a language

capable of dealing with dynamic preferences is defined. Planning algorithms for a

few goals represented in these logics are also given in previous chapters.

This chapter summarizes contributions of this dissertation, and points out some

future directions.

7.1 Summary

A systematic design of an autonomous agent has three main aspects: (i) domain

description: actions that an agent can do, their impacts, environment, and etc.;

(ii) control execution of an agent; and (iii) directives foran agent. Focus of this

dissertation is on the goal specification aspect in autonomous agent design, and its

relation with other aspects.

In defining a goal specification language, the following questions need to be

answered: What is a goal? What is a goal specification language?Whether a goal

is represented in a language? Whether the set of goals expressed in one language

is a superset of the goals expressed in the other language? Whether the set of goals

expressed in a language depends on the ability (or the policystructure) of the agent?

These questions are formally answered in this question. A framework for checking

goals expressed in a language and for comparing goal specification languages is
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proposed.

In a non-deterministic domain, many interesting goals cannot be expressed us-

ing existing temporal logics such as LTL and CTL∗. A formal proof of this is given

in the dissertation. A policy in a non-deterministic domainleads to a set of paths

thus users need to distinguish the paths in a policy from all paths of the domain.

This is captured in the proposed languageπ-CTL∗. In order to compare policies

that are available to an agent so that the agent can choose themost fit ones, language

P-CTL∗ is proposed to capture the intuition of quantifying over policies. Besides,

policies of an agent play an important role in defining goal specification languages.

There are also paths in the domain that is not in any policy of the agent. Goal spec-

ification languages with different policy structures are also defined to address this

issue.

One interesting aspect of this work is that it illustrates the difference between

program specification and goal specification. Temporal logics are developed in the

context of program specification, where the program statements are deterministic

and there are no goals of the kind “trying one’s best”. (Thereis no specifications

for a program to try its best to do something.) In cognitive robotics, actions have

non-deterministic effects and sometimes one keeps trying until one succeeds, and

similar attempts to try one’s best. The proposed language P-CTL∗ allows the spec-

ification of such goals. P-CTL∗ has the ability of letting the agent to compare and

analyze policies and “adjust” its expectations accordingly.

Also, the policy structure of an agent plays an important rule on what goals can

be expressed in the language, and what goals can be achieved by the agent. This

work is the first one pointing out the impact of policies on theset of goals expressed

in the language. A policy structures can be defined as a mapping from states to

actions, and as a mapping from histories to actions. Different policy structures can

be defined for different agents. For example, for agents withsensing actions, or
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agents who can reason about knowledge of other agents, policy structures can be

defined by taking the sensing actions and other abilities of the agent into account.

It is a challenge problem to define languages for different agents and compare these

languages.

The second part of the dissertation is about defining goals that can change non-

monotonically. In many domains, users need to specify goalsthat might be further

revised or partially retracted due to incomplete information users have about the

domain. Thus non-monotonic temporal logics are needed to specify goals which

can then be revised in an elaboration tolerant manner. Two non-monotonic exten-

sions of LTL are proposed. Labels are used to denote sub-goals. Sub-goals can be

defeated when there are exceptions. This work borrows the idea of completion and

exception from logic programming. It borrows the idea of a surface non-monotonic

logic from Reiter. Their applications in modeling revisionsare illustrated. The way

of progressing an ER-LTL program is also discussed. This is important as agents

receiving new requirements might have already executed some actions to satisfy

earlier goals. Thus, the agents need to progress the previous requirements and the

new requirements based on their earlier states. A program oftranslating an ER-LTL

program to LTL is given.

In defining non-monotonic goal specification languages, it is challenge to han-

dle temporal operators in a formula. It is common to define a non-monotonic logic

as a set of rules, and semantics are based on models entailed from the rules. Sim-

ilarly, in defining N-LTL and ER-LTL, a goal is considered to bea set of rules.

Instead of computing models for the program, labels are usedto connect rules into

one temporal formula. These labels are also used to denote exceptions. These labels

enable users in representing many interesting changes to the initial goals.

The third direction considered in this dissertation is the preferences in goal spec-

ification. A goal specification language with preferences isproposed. The language
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is based onπ-CTL∗. A binary connective� is introduced to compare state formu-

las. Comparing to other goal specification languages with preferences, the new

language Pref-π-CTL∗ is the only one for non-deterministic domains. Besides, by

treating the� operator the same way as other temporal operators, languagePref-

π-CTL∗ has some interesting properties such as allowing nested preferences and

dynamic preferences. For example, different preference relations among sub-goals

can be defined in one formula. More importantly, the preferences relations might

change as the agent proceeds in satisfying other sub-goals.

This dissertation also examines some planning problems in the proposed goal

specification languages. This dissertation follows the approach proposed in [BEBN08]

that solves planning problems by encoding the problem in a reverse Horn SAT,

translating the reverse Horn to Horn SAT, and then extracting algorithms by simu-

lating the steps of finding models of the Horn SAT. New algorithms algorithms for

strong, weak, and strong cyclic plan are found. Logic program encodings of these

planning problems are also proposed. By writing a program of calling DLV solvers

on these different logic programs, plans can be found for oneinterpretation of the

goal of “trying one’s best”.

The work on goal specification has great impact in autonomousagent design, es-

pecially for designing agents in a non-deterministic domain or a open world where

states or goals of the agent may be changed dynamically.

7.2 Future Directions

It is important to represent and reason about goals of an agent. In order to design an

autonomous agent, goals and policies of the agent need to be incorporated with the

domain of the agent. There are some directions in goal specification deserve more

investigation. They are listed in the following:

• In Chapter 4, it is mentioned that the definition of the policy structure affects
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the set of goals expressed in a language. The impact of policystructures on

goal specification languages is investigated. It is interesting to consider goal

specification languages with other definitions of the policystructure. It is

also interesting to define a language that can incorporate multiple definitions

of the policy structure.

• There are a lot of well known non-monotonic logics defined fordomains

other than temporal logics. In [PSBZ10], authors attempted to apply de-

fault logic on defining a non-monotonic temporal logic. Whether other non-

monotonic logics can be directly used in defining non-monotonic temporal

logics is still unclear. On the other hand, the mechanism in N-LTL and ER-

LTL can also be applied to other logics such as propositionallogic. Com-

paring the resulted logic with well known non-monotonic logics is a work

needs further investigations. These studies will reveal more insights on non-

monotonic temporal logics, and on non-monotonicity in general.

• There are also work on goal specification with a different transition system.

Recently there are work in planning in an open world [TBS+10]. Non-

monotonic properties of goal specifications in such a domainis an interesting

topic.

• In defining preferences of a goal specification language, it is unclear how to

define a goal specification language that can deal with point-wise preferences

where distances between trajectories and the partial satisfaction of a temporal

formula are considered.

• Also, in logic Pref-π-CTL∗ that deals with dynamic preferences, binary con-

nective� is defined for comparing states.s f1�s f2 states that policies satis-
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fying s f1 are preferred to policies only satisfyings f2, etc. Other semantics of

the binary connective� are interesting to look at.

• Finally, in Chapter 6, a few goals that can be solved in polynomial time are

studied. Which other subsets of goals can be solved in polynomial time is a

direction of big impact.
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with stable models. InLPNMR, pages 200–212, 2001.

[NS00] Rajdeep Niyogi and Sudeshna Sarkar. Logical specification of goals.

In Proc. of 3rd international conference on Information Technology,

pages 77–82, 2000.

[Nut87] Donald Nute. Defeasible reasoning. InProceedings of the 20th

Hawaii International Conference on System Science, pages 470 –

477, 1987.

185



[Ped87] E. P. D. Pednault. Formulating multiagent, dynamic-world problems

in the classical planning framework. InReasoning about Actions and

Plans: Proceedings of the 1986 Workshop, pages 47–82, 1987.

[Ped89] Edwin P. D. Pednault. Adl: exploring the middle ground between

strips and the situation calculus. InProceedings of the first inter-

national conference on Principles of knowledge representation and

reasoning, pages 324–332, San Francisco, CA, USA, 1989. Morgan

Kaufmann Publishers Inc.

[PFE+06] Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-

mona Perri, and Francesco Scarcello. The dlv system for knowl-

edge representation and reasoning nicola leone.ACM transactions

on Computational Logic (TOCL), 7(3):1–57, 2006.

[Pnu77] A. Pnueli. The temporal logic of programs. In18th IEEE Symp. on

Foundation of Computer Science, pages 46–57, 1977.

[PR89] A. Pnueli and R. Rosner. On the synthsis of a reactive module. In

ACM POPL, pages 179–190, 1989.

[PSBZ10] Enrico Pontelli, Tran Cao Son, Chitta Baral, and Jicheng Zhao. Goal

default theory with priorities as a non-monotonic goal specification

language. InNonMon’30, 2010.

[PT01] M. Pistore and P. Traverso. Planning as model checking for extended

goals in non-deterministic domains. InIJCAI’01, pages 479–486,

2001.

186



[Rei87] R. Reiter.Readings in nonmonotonic reasoning, chapter A logic for

default reasoning, pages 68–93. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1987.

[Rei91] Ray Reiter. The frame problem in the situation calculus: a simple

solution (sometimes) and a completeness result for goal regression.

In Vladimir Lifschitz, editor,Artificial intelligence and mathematical

theory of computation: papers in honour of John McCarthy, pages

359–380. Academic Press Professional, 1991.

[Rei01] Ray Reiter.Knowledge in action : logical foundations for specifying

and implementing dynamical systems. MIT Press, 2001.

[Sae87] M. Saeki. Non-monotonic temporal logic and its application to

formal specifications (in japaneese).Transactions of IPS Japan,

28(6):547–557, 1987.

[SBTM02] Tran Cao Son, Chitta Baral, Nam Tran, and Sheila Meilraith.

Domain-dependent knowledge in answer set planning. CS 007, New

Mexico State University, 2002.

[SC79] L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial

games.SIAM Journal on Computing, 8(2):151–174, 1979.

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear

temporal logics.Journal of the ACM, 32(3):733–749, 1985.

187



[Sch87] M. Schoppers. Universal plans for reactive robots in unpredictable

environments. InIJCAI 87, pages 1039–1046, 1987.

[Sch03] Ph. Schnoebelen. The complexity of temporal logic model checking.

Advances in Modal Logic, 4:393–436, 2003.

[Sho87] Y. Shoham.Reasoning about change. MIT Press, Boston, MA.,

1987.

[SNS02] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and
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Appendix A

DEFINITION ON DEPTH OF A FORMULA
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The depth of a formula used in proofs is defined here.

Definition 51. Let s f , s f1 and s f2 be state formulas, p f , p f1 and p f2 be path

formulas in CTL∗. Let the depth of a CTL∗ formula g be depth(g).

The depth of a state formula is given as follows:

• The depth of an atomic proposition is 1;

• depth(¬s f) = 1+depth(s f);

• depth(s f1∧s f2) = depth(s f1)+depth(s f2)+1;

• depth(s f1∨s f2) = depth(s f1)+depth(s f2)+1;

• depth(Ep f) = 1+depth(p f);

• depth(Ap f) = 1+depth(p f);

The depth of a path formula is given as follows:

• if the path formula p f is defined in terms of a state formula s f ,then depth(p f)=

depth(s f);

• depth(¬p f) = depth(p f)+1;

• depth(©p f) = depth(p f)+1;

• depth(3p f) = depth(p f)+1;

• depth(2p f) = depth(p f)+1;

• depth(p f1∧ p f2) = depth(p f1)+depth(p f2)+1;

• depth(p f1∨ p f2) = depth(p f1)+depth(p f2)+1;

• depth(p f1Up f2) = depth(p f1)+depth(p f2)+1; 2
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Definition 52. Let s f , s f1 and s f2 be state formulas, p f , p f1 and p f2 be path

formulas inπ-CTL∗. Let the depth of a formula g be depth(g).

The depth of state formulas and path formulas are the same as that defined

for CTL∗ formulas in Definition 51. Besides that, depth of formulas with two new

operatorsApol andEpol are as follows:

• depth(Epolp f) = depth(p f)+1;

• depth(Apolp f) = depth(p f)+1. 2

Definition 53. Let s f , s f1 and s f2 be state formulas, p f , p f1 and p f2 be path

formulas in P-CTL∗. Let the depth of a formula f be depth( f ).

Depth of state formulas of new operators are given as follows:

• depth(E Ps f) = depth(s f)+1;

• depth(A Ps f) = depth(s f)+1.

Depth of state and path formulas with other operators are the same as that

defined in Definition 52. Depth of Pσ -CTL∗ andπσ -CTL∗ formulas are the same as

that in P-CTL∗ andπ-CTL∗. 2
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Appendix B

YET ANOTHER APPROACH OF DEFINING THE EXPRESSIVENESS OF A

GOAL-SPECIFICATION LANGUAGE
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There are other ways of defining expressiveness of a goal specification language.

This section elaborate on one of such alternatives. Each goal specification language

defines a set of formulas, each formula maps a transition graph and an initial state

to sets of trajectories. Two goal specification languages may differ in that one has

more formulas defined, or each formula is mapped to a different set of trajectories

for each initial state and transition graph. We now present an approach for defining

expressiveness of goal specification languages.

Some notations are defined first. LetL be a goal specification language. Let

g be a formula inL, Φ be a transition function ands0 be a state in it,|=L be the

entailment relation in languageL. We usePset(g,s0,Φ, |=L) to denote the set{π :

(s0,Φ,π) |=L g} as the set of policies satisfyingg in L. By Gset(π,s0,Φ, |=L), we

denote the set{g : (s0,Φ,π) |=L g} as the set of goal formulas satisfied by policyπ

in L. Let GL be all formulas in languageL. Let PL(s0,Φ) be all policies in language

L in Φ starting froms0.

A goal g, which is a mapping from pairs of transition graph and initial state to

sets of trajectories, isnot expressiblein a goal specification languageL if there are

Φ1, Φ2, s1
0, s2

0 such that

1. For any policyπ1 that is valid inΦ1 starting froms1
0 and valid inΦ2 starting

from s2
0, we have thatπ1 is mapped by the same set of formulas in(s1

0,Φ1)

and(s2
0,Φ2).

2. However, a policyπ1 is mapped by the goalg in Φ1 and s1
0 but π1 is not

mapped by the goalg in Φ2 ands2
0.

The reason is that ifg can be expressed in languageL asφg, according to Item 1,

we knowφg maps(s1
0,Φ1) and(s2

0,Φ2) to the same set of policies. Thus a policy

is mapped by the goalg in Φ1 ands1
0 iff it is mapped by the goalg in Φ2 ands2

0.
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This and Item 2 are contradict each other, thus the goalg cannot be expressed in

languageL.

With this definition, we are able to compare languages that rely on the same

definition of policies. However, we are not able to compare two languages that rely

on irrelevant definitions of policy. We will discuss the comparisons of languages

with different, but related notions of policies in Section B.2.

B.1 Notation on Comparing Languages

With the proof that some goals cannot be expressed in a goal specification language,

we can define the expressiveness of a goal specification language. It can be used to

compare two different languages based on sets of goals can beexpressed in them.

Besides, to compare two languages that are similar, we may consider whether one

language is a “superset” of the other. When one language has more constructs than

the other, we can define a notion of equivalence between them by considering only

the common subset of goal formulas and policies in them. Formally, we have the

following definition for comparing languages that are similar in both goal formulas

and policy structures.

Definition 54 (�equalSyntax,equalPolicy). Consider two languages L1 and L2. L1�equalSyntax,equalPolicy

L2 if

1. GL2 ⊆ GL1;

2. ∀Φ, ∀s0, PL2(s0,Φ)⊆ PL1(s0,Φ);

3. ∀g∈ GL2, ∀Φ, ∀s0, Pset(g,s0,Φ |=L1)∩PL2(s0,Φ) = Pset(g,s0,Φ, |=L2);

4. ∀π ∈ PL2, ∀Φ, ∀s0, Gset(π,s0,Φ, |=L1)∩GL2 = Gset(π,s0,Φ, |=L2). 2

Intuitively, L1 �equalSyntax,equalPolicyL2 if for any formulag2 in L2, there is a for-

mulag1 in L1 such that the set of policies satisfyingg1 in L1 is the same as the set of
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policies satisfyingg2 in L2. The subscript “syntax,policy” in�equalSyntax,equalPolicy

indicates that the two languages share a comparable syntax and a comparable notion

of policy.

Proposition 28. In Definition 54, Items (1-3) and Items (1-2, 4) are equivalent.

Proof. We first prove Item (4) given items (1) - (3).

For anyΦ ands0, for any policyπ ∈PL2(s0,Φ), if a goal formulaG∈Gset(π,s0,Φ, |=L2

), according to the definitions, we knowπ ∈Pset(G,s0,Φ, |=L2). From Item (3), we

know ∀G ∈ GL2, ∀Φ, ∀s0, Pset(G,s0,Φ, |=L1)∩PL2(s0,Φ) = Pset(G,s0,Φ, |=L2).

Thus,π ∈ Pset(G,s0,Φ, |=L1). This is the same asG∈ Gset(π,s0,Φ, |=L1). Since

G ∈ Gset(π,s0,Φ, |=L2), we knowG ∈ GL2. ThusG ∈ Gset(π,s0,Φ, |=L1)∩GL2.

This implies thatGset(π,s0,Φ, |=L1)∩GL2 ⊇ Gset(π,s0,Φ, |=L2).

On the other hand, for anyΦ and s0, for any policy π ∈ PL2(s0,Φ), if G ∈

Gset(π,s0,Φ, |=L1)∩GL2, then according to the definitions, we haveπ ∈Pset(G,s0,Φ, |=L1

). According to Definition 54, sinceπ ∈ Pset(G,s0,Φ, |=L1)∩PL2(s0,Φ), we know

π ∈Pset(G,s0,Φ, |=L2). This is equivalent toG∈Gset(π,s0,Φ, |=L2). ThusGset(π,s0,Φ, |=L1

)∩GL2 ⊆ Gset(π,s0,Φ, |=L2).

By combining the results above, we haveGset(π,s0,Φ, |=L1)∩GL2 =Gset(π,s0,Φ, |=L2

). Thus Item (4) is true if Item (1) - (3) are true.

Similarly, if Item (1), (2), and (4) are true, Item (3) is true.

Note that when we defineL1 �equalSyntax,equalPolicyL2, we require that these two

languages have similar policy structures and goal formulas. However, in general,

two languages may differ in policy structures and goal formulas. For example, in

comparingπ-CTL∗ andπσ -CTL∗, even though for any policy inπ-CTL∗, we can

construct another policy inπσ -CTL∗ that corresponds to the same set of trajectories,

these two policies are quite different: A policy inπ-CTL∗ is a mapping from states

to actions while a policy inπσ -CTL∗ is a mapping from state sequences to actions.
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We now define a more general notion for comparing two languages that may differ

in policy structures or goal formulas.

Definition 55 (�equalPolicy). Given two languages L1 and L2, L1 �equalPolicyL2 if

there is a one-to-one mappingϕ from GL2 to GL1 such that for allΦ and s0, and for

all g ∈ GL2, Pset(g,s0,Φ, |=L2) = Pset(ϕ(g),s0,Φ, |=L1)∩PL2(s0,Φ). 2

Definition 56 (�equalSyntax). Given two languages L1 and L2, L1 �equalSyntaxL2 if

there is a one-to-one mappingψ from PL2(s0,Φ) to PL1(s0,Φ) for any transition sys-

temΦ and state s0 such that for all policyπ, Gset(π,s0,Φ, |=L2)=Gset(ψ(π),s0,Φ, |=L1

)∩GL2. 2

The subscript “equalPolicy” in�equalPolicy indicates that the two languages

share a comparable notion of policies. The subscript “equalSyntax” in�equalSyntax

indicates that the two languages share a comparable syntax,formulas defined in

these two languages are the same. It is easy to check that�equalSyntax,equalPolicy,

�equalSyntax, and�equalPolicyare all partial orders.

Before we compare specific languages, now consider the relationship between

the various notions.

Proposition 29.Let L1, L2 be two goal specification languages. If L1�equalSyntax,equalPolicy

L2, then L1 �equalPolicyL2 and L1 �equalSyntaxL2.

Proof. 1. If L1 �equalSyntax,equalPolicyL2, then

a) GL2 ⊆ GL1;

b) ∀g∈ GL2, ∀Φ, ∀s0, Pset(g,s0,Φ, |=L1)∩PL2(s0,Φ) = Pset(g,s0,Φ, |=L2

);
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Let ϕ be a one-to-one mapping fromGL2 to GL1 such thatϕ(g) = g. We have

∀g∈ GL2, ∀Φ, ∀s0, Pset(g,s0,Φ, |=L2) = Pset(ϕ(g),s0,Φ, |=L1)∩PL2(s0,Φ).

ThusL1 �equalPolicyL2.

2. If L1 �equalSyntax,equalPolicyL2, then

a) ∀Φ, PL2(Φ)⊆ PL1(Φ);

b) ∀π ∈ PL2, ∀Φ, ∀s0, Gset(π,s0,Φ, |=L1)∩GL2 = Gset(π,s0,Φ, |=L2).

Let ψ be a one-to-one mapping fromPL2(s0,Φ) to PL1(s0,Φ) for anyΦ ands0

such thatψ(π)= π for any policyπ. Thus, for alls0, andπ, Gset(π,s0,Φ, |=L2

) = Gset(ψ(π),s0,Φ, |=L1)∩GL2. As a result,L1 �equalSyntaxL2.

Similarly, we can also define the comparison of languages having different sets

of formulas or policies by defining a mapping from policies inone language to

policies in the other language, or a mapping from goals in onelanguage to goals in

the other language. We are not going to elaborate on them.

B.2 Compare Different Goal Specification Languages

We defined when one language is more general than the other language, it is related

to the the notion of a goal is not expressive in a language.

Proposition 30. If language L1�equalSyntaxL2, and for allΦ and state s, PL1(s,Φ)=

PL2(s,Φ), then any goal that can be expressed in L2 can be expressed in L1.

Proof. If languageL1�equalSyntaxL2, and for allΦ and states, PL1(s,Φ)=PL2(s,Φ),

then we have the following conditions:

1. For allΦ and states, PL1(s,Φ) = PL2(s,Φ);

2. ∀Φ and states, ∀π ∈ PL2(s,Φ), ∀s0, Gset(π,s0,Φ, |=L2) = Gset(π,s0,Φ, |=L1

)∩GL2.
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If there is a goalg that cannot be expressed inL1, there areΦ1, Φ2, s1
0, s2

0 such

that

1. Existsπ1 ∈ PL1(s
1
0,Φ1)∩PL1(s

2
0,Φ2) such that

Gset(π1,s1
0,Φ1, |=L1) = Gset(π1,s2

0,Φ2, |=L1);

2. Goalg is satisfied by the policyπ1 w.r.t. (s1
0,Φ1, |=L1) but not w.r.t.(s2

0,Φ2, |=L1

).

We now prove that such a goalg cannot be expressed inL2:

1. Since for allΦ and states, PL1(s,Φ) = PL2(s,Φ), we knowπ1 ∈ PL2(s
1
0,Φ1)∩

PL2(s
2
0,Φ2).

Gset(π1,s
1
0,Φ1, |=L2) = Gset(π1,s

1
0,Φ1, |=L1)∩GL2

= Gset(π1,s
2
0,Φ2, |=L1)∩GL2

= Gset(π1,s
2
0,Φ2, |=L2);

2. For allΦ and states, PL1(s,Φ) = PL2(s,Φ). Thus, goalg is satisfied by the

policy π1 w.r.t. (s1
0,Φ1, |=L2) but not w.r.t.(s2

0,Φ2, |=L2).

Thusg cannot be expressed inL2.

Similarly, we have the following relation on two languages:

Proposition 31. If language L1 �equalPolicyL2, and GL1 = GL2, then any goal that

can be expressed in L2 can be expressed in L1.

Now we know there are two related approaches of comparing goal specification

languages:

1. find a goal that is not expressible in one language while is expressible in the

other, or
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2. compare the policy-goal relations in two languages.

Compare Different Languages

We now utilize these notions in comparing proposed languages. A goal specifica-

tion language is considered as a mapping from pairs of transition system and initial

state to sets of trajectories.

We now use the definitions we have to compare the languages listed above to

formally prove the relations of the languages. We first compare pairs of languages

that have the same set of policies while the syntax of one language in each pair is

a superset of the other. We then compare pairs of languages that have the same

syntax.

Compareπ-CTL∗ with P-CTL∗

Given a transition graph and an initial state, languagesπ-CTL∗ and P-CTL∗ have

the same set of policies. On the other hand, language P-CTL∗ has more goal for-

mulas thanπ-CTL∗. But each formula inπ-CTL∗, there is a formula in P-CTL∗

that maps to the same set of policies. That is, if we restrict language P-CTL∗ on a

subset of goal formulas, the resulted mapping from formulasto policies is identical

to π-CTL∗.

This means that more goals can be represented in P-CTL∗, and for any goal

that can be represented inπ-CTL∗, the same goal can be represented as the same

formula in P-CTL∗.

Lemma 4. Consider languagesπ-CTL∗ and P-CTL∗.

(i) For any transition functionΦ, state s0, a policyπ as a mapping from states to

actions, and state formulaϕ in π-CTL∗, (s0,Φ,π) |= ϕ in languageπ-CTL∗

iff (s0,Φ,π) |= ϕ in language P-CTL∗;
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(ii) For any transition functionΦ, state s0, policy π as a mapping from states

to actions, path formulaψ in π-CTL∗ and pathσ in Φ, (s0,Φ,π,σ) |= ϕ in

languageπ-CTL∗ iff (s0,Φ,π,σ) |= ϕ in language P-CTL∗.

Proof. The proof is based on the induction on depth of formulas.

Base case: It is easy to see that for any state formula or path formula ofdepth

1, the conditions (i) and (ii) hold.

Induction: Assume that it is true for formulas of depth less thann, and show

that it is true for formulas of depthn.

Consider state formulas of depthn. It can be of the following forms: (a)s f1∧s f2

(b) s f1∨s f2 (c)¬s f1 (d) Ep f (e)Ap f (f) Epolp f (g)Apolp f , wheres f1,s f2 andp f

have depth less thann.

Consider (d)Ep f . By definition, (s0,Φ,π) |= E p f in π-CTL∗ iff there ex-

ists a pathσ in Φ starting froms1 such that(s0,Φ,π,σ) |= p f in π-CTL∗. By

definition, (s0,Φ,π) |= E p f in P-CTL∗ iff there is a pathσ in Φ starting from

s1 satisfying(s0,Φ,π,σ) |= p f in P-CTL∗. According to induction hypothesis,

we know (s0,Φ,π,σ) |= p f in π-CTL∗ iff (s0,Φ,π,σ) |= p f in P-CTL∗ since

depth(p f) < n. Hence,(s0,Φ,π,σ) |= Ep f in π-CTL∗ iff (s0,Φ,π,σ) |= Ep f

in P-CTL∗.

The proofs for formulas of other forms are similar.

Consider path formulas of depthn. It can be of the following forms: (a)p f1∧

p f2 (b) p f1∨ p f2 (c)¬p f1 (d) p f1 U p f2 (e)©p f1 (f) 3p f1 (g)2p f1, where depth

of p f1 and p f2 are less thann. The proof of each of these cases is similar to the

proof of state formulas.

Proposition 32. P-CTL∗ ≻equalSyntax,equalPolicyπ-CTL∗.

Proof. It is easy to know thatGπ−CTL∗ ⊆ GP−CTL∗ and for allΦ, Pπ−CTL∗(Φ) ⊆

PP−CTL∗(Φ). We now need to prove that for any goalg∈Gπ−CTL∗, for anyΦ ands0,
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Pset(g,s0,Φ, |=P−CTL∗)∩Pπ−CTL∗ =Pset(g,s0,Φ, |=π−CTL∗). SincePπ−CTL∗(Φ) =

PP−CTL∗(Φ), this is equivalent toPset(g,s0,Φ, |=P−CTL∗) = Pset(g,s0,Φ, |=π−CTL∗

). That is, for all g ∈ Gπ−CTL∗, for all transition functionΦ, for all states0,

(s0,Φ,π) |=π−CTL∗ g iff (s0,Φ,π) |=P−CTL∗ g. This is the result of Lemma 4. Thus

P-CTL∗ �equalSyntax,equalPolicyπ-CTL∗.

Further, asGπ−CTL∗ ⊆ GP−CTL∗, we know P-CTL∗ 6=equalSyntax,equalPolicy π-

CTL∗, thus P-CTL∗ ≻equalSyntax,equalPolicyπ-CTL∗.

According to Proposition 30, since P-CTL∗ �equalSyntax,equalPolicyπ-CTL∗, we

know that all goals expressed inπ-CTL∗ can be expressed in P-CTL∗, and there is

a goal in P-CTL∗ that cannot be expressed inπ-CTL∗.

Compareπσ -CTL∗ with Pσ -CTL∗

The relation betweenπ-CTL∗ and P-CTL∗ holds for πσ -CTL∗ and Pσ -CTL∗ as

well. This means that more goals can be represented inPσ -CTL∗, and for any goal

that can be represented inπσ -CTL∗, the same goal can be represented as the same

formula inPσ -CTL∗.

Lemma 5. Consider languagesπσ -CTL∗ and Pσ -CTL∗.

(i) For any transition functionΦ, state s0, policy π that maps from state se-

quences to actions, and state formulaϕ in πσ -CTL∗, (s0,Φ,π) |= ϕ in πσ -

CTL∗ iff (s0,Φ,π) |= ϕ in Pσ -CTL∗;

(ii) For any transition functionΦ, state s0, policy π that maps from states se-

quences to actions, path formulaψ in πσ -CTL∗ and pathσ in Φ, (s0,Φ,π,σ) |=

ϕ in πσ -CTL∗ iff (s0,Φ,π,σ) |= ϕ in Pσ -CTL∗.

Proof. The proof is based on the induction on depth of formulas.

Base case: It is easy to see that (i) and (ii) are true for any state formula or path

formula of depth 1.
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Induction: Assume that it is true for formulas of depth less thann, and show

that it is true for formulas of depthn.

Consider state formulas of depthn. It can be of the following forms: (a)s f1∧s f2

(b) s f1∨s f2 (c)¬s f1 (d) Ep f (e)Ap f (f) Epolp f (g)Apolp f , wheres f1, s f2 andp f

have depth less thann.

Consider (d)E p f . By definition, (s0,Φ,π) |=πσ−CTL∗ E p f iff there exists

a pathσ in Φ starting froms1 such that(s0,Φ,π,σ) |=πσ−CTL∗ p f . By defi-

nition, (s0,Φ,π) |=Pσ−CTL∗ E p f iff there exists a pathσ in Φ starting froms1

such that(s0,Φ,π,σ) |=Pσ−CTL∗ p f . According to the induction hypothesis, we

know (s0,Φ,π,σ) |=πσ−CTL∗ p f iff (s0,Φ,π,σ) |=Pσ−CTL∗ p f sincedepth(p f) <

n. Hence,(s0,Φ,π,σ) |=πσ−CTL∗ Ep f iff (s0,Φ,π,σ) |=Pσ−CTL∗ Ep f .

The proofs for formulas of other forms are similar.

Consider path formulas of depthn. It can be of the following forms: (a)p f1∧

p f2 (b) p f1∨ p f2 (c) ¬p f1 (d) p f1 U p f2 (e)©p f1 (f) 3p f1 (g) 2p f1, wherep f1

and p f2 have depth less thann. The proof of each of these cases is similar to the

proof for state formulas.

Similar to the relations inπ-CTL∗, we have the following result.

Proposition 33. Pσ -CTL∗ ≻equalSyntax,equalPolicyπσ -CTL∗.

Proof. It is easy to know thatGπσ−CTL∗ ⊆ GPσ−CTL∗ and for allΦ, Pπσ−CTL∗(Φ)⊆

PPσ−CTL∗(Φ). We now need to prove that for any goalg ∈ Gπσ−CTL∗, for any

Φ and s0, Pset(g,s0,Φ, |=Pσ−CTL∗) ∩ Pπ−CTL∗ = Pset(g,s0,Φ, |=π−CTL∗). Since

Pπ−CTL∗(Φ)=PP−CTL∗(Φ), this is equivalent toPset(g,s0,Φ, |=P−CTL∗)=Pset(G,s0,Φ, |=π−CTL∗

). That is, for all g ∈ Gπ−CTL∗, for all transition functionΦ, for all states0,

(s0,Φ,π) |=π−CTL∗ g iff (s0,Φ,π) |=P−CTL∗ g. This is the result of Lemma 5. Thus

Pσ -CTL∗ �equalSyntax,equalPolicyπσ -CTL∗.
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SinceGπσ−CTL∗ ⊆GPσ−CTL∗, we knowPσ -CTL∗ 6=equalSyntax,equalPolicyπσ -CTL∗,

thusPσ -CTL∗ ≻equalSyntax,equalPolicyπσ -CTL∗.

According to Proposition 31, we know all goals expressible in πσ -CTL∗ are

expressible inPσ -CTL∗. We now show there is a goal inPσ -CTL∗ but not inπσ -

CTL∗.

Lemma 6. ConsiderΦ1, Φ2 in Figure 3.4, andπ = {(s1,a2),(s1,s2,a2),(s1,s2,s2,a2), · · ·}.

(i) For any state formulaϕ in πσ -CTL∗, (s1,Φ1,π) |= ϕ iff (s1,Φ2,π) |= ϕ.

(ii) For any path formulaψ in πσ -CTL∗ and any pathσ in Φ1 (or Φ2) (s1,Φ1,π,σ) |=

ψ iff (s1,Φ2,π,σ) |= ψ.

Proof. The proof is based on the induction on the depth of formulas.

Base case: It is easy to see that (i) and (ii) are true for formulas of depth 1.

Induction: Assume that (i) and (ii) are true for formulas of depth less thann,

and show that (i) and (ii) are true for formulas of depthn.

Consider state formulas of depthn. It can be of the following forms: (a)s f1∧s f2

(b) s f1∨s f2 (c)¬s f1 (d) Ep f (e)Ap f (f) Epolp f (g)Apolp f , wheres f1,s f2 andp f

have depth less thann.

Consider (d)Ep f . By definition,(s1,Φ1,π) |= E p f iff there exists a pathσ in

Φ1 starting froms1 such that(s1,Φ1,π,σ) |= p f . It is observed thatσ is a path

starting from s1 in Φ1 iff σ is a path starting from s1 in Φ2. Since depth ofp f is less

thann, by induction hypothesis,(s1,Φ1,π,σ) |= p f iff (s1,Φ2,π,σ) |= p f . Hence,

(s1,Φ1,π,σ) |= Ep f iff (s1,Φ2,π,σ) |= Ep f .

The proofs for formulas of other forms are similar.

Consider path formulas of depthn. It can be of the following forms: (a)p f1∧

p f2 (b) p f1∨ p f2 (c)¬p f1 (d) p f1 U p f2 (e)©p f1 (f) 3p f1 (g)2p f1, where depth

of p f1 and p f2 are less thann. The proof of each of these cases is similar to the

proof for state formulas.
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Proposition 34. There exists a goal in Pσ -CTL∗ which cannot be expressed inπσ -

CTL∗.

Proof. Consider the following goalG:

“All along your trajectory

if from any state p can be achieved for sure

thenthe policy being executed must achieve p,

elsethe policy must make p reachable from any state in the trajectory.”

It can be expressed inPσ -CTL∗ asApol2((E PApol3p⇒Apol3p)∧(¬E PApol3p⇒

Apol2(Epol3p))). Assume thatG can be expressed inπσ -CTL∗ and letϕG be its

encoding inπσ -CTL∗.

ConsiderΦ1 andΦ2 as described in Lemma 6, and

π = {(s1,a2),(s1,s1,a2),(s1,s2,a2),(s1,s1,s1,a2),(s1,s1,s2,a2),(s1,s2,s2,a2), · · ·}.

The policyπ is a policy for goalG and initial states1 with respect toΦ2 as neither

from s1 nor from s2, p can be achieved for sure (by any policy), andπ makesp

reachable from any state in the trajectory.

Thus,(s1,Φ2,π) |= ϕG. (1)

But π is not a policy for goalG and initial states1 with respect toΦ1 as froms1,

p is guaranteed achievable by another policyπ2= {(s1,a1),(s1,s2,a2),(s1,s2,s2,a2), · · ·}.

With the policyπ, we cannot guarantee the achievement ofp.

Thus,(s1,Φ1,π) 6|= ϕG. (2)

Lemma 6 contradicts with (1) and (2). Hence, the assumption that G can be

expressed inπ-CTL∗ is wrong.G cannot be expressed inπ-CTL∗.

Compare Languages having the Same Syntax

We now compare languages that have the same syntax but with different definition

of the policy structure.

Given a transition graph and an initial state, goal formulasdefined inπ-CTL∗
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andπσ -CTL∗ are the same. For each policy inπ-CTL∗, there is a policy inπσ -

CTL∗ that maps to the same set of goal formulas. That is, if we restrict the set of

policies inπσ -CTL∗, it can be isomorphic to the one ofπ-CTL∗. We will also prove

that it is not the case for P-CTL∗ andPσ -CTL∗.

Proposition 35. πσ -CTL∗ ≻equalSyntaxπ-CTL∗.

Proof. To prove thatπσ -CTL∗ �equalSyntaxπ-CTL∗, we need a one-to-one mapping

ψ from Pπσ−CTL∗(Φ) to Pπ−CTL∗(Φ) for any Φ such that for alls0, and π, we

have Gset(π,s0,Φ, |=π−CTL∗) = Gset(ψ(π),s0,Φ, |=πσ−CTL∗) ∩ Gπ−CTL∗. Since

Gπ−CTL∗ =Gπσ−CTL∗, we need to prove thatGset(π,s0,Φ, |=π−CTL∗)=Gset(ψ(π),s0,Φ, |=πσ−CTL∗

). That is, for each policypi in π −CTL∗, there is one policyπ ′ in πσ −CTL∗ such

that (s0,Φ,π) |=π−CTL∗ g iff (s0,Φ,π ′) |=πσ−CTL∗ g, and two differentπs map to

two differentπ ′s. We define the mappingψ such that for a policyπ ∈ π-CTL∗ that

is a mapping from states to actions, we construct a policy that is a mapping from

state sequences to actions such that these two policies correspond to the same set of

trajectories from the initial state. They are satisfied by the same set of goal formulas

in these two languages.

To prove thatπ-CTL∗ 6�equalSyntaxπσ -CTL∗, we need to find a policyπ ∈

Pπσ−CTL∗, a transition functionΦ, and a states0, such that there is noπ ′ ∈ Pπ−CTL∗

whereGset(π,s0,Φ, |=πσ−CTL∗)=Gset(π ′,s0,Φ, |=π−CTL∗)∩Gπσ−CTL∗ =Gset(π ′,s0,Φ, |=π−CTL∗

).

In the transition function denoted by Figure 3.5, the policyπ2 in πσ -CTL∗ such

that {π2(s1) = a1;π2(s1,s2) = a2;π2(s1,s2,s1) = a3; · · ·} satisfies the goalg3 =

Apol3(p∧3q) thusg3 ∈Gset(π2,s0,Φ, |=πσ−CTL∗). By enumerating all policiesπ ′

in π-CTL∗, we know that there is no policyπ ′ in π-CTL∗ suchg3∈Gset(π ′,s0,Φ, |=π−CTL∗

). Thusπ-CTL∗ 6�equalSyntaxπσ -CTL∗.

From the proof, we know that a goalApol3(p∧3q) in πσ -CTL∗ cannot be ex-
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pressed inπ-CTL∗. From Proposition 30, we know all goals that can be represented

in π-CTL∗ can be represented inπσ -CTL∗.

Proposition 36. Pσ -CTL∗ 6�equalSyntaxP-CTL∗. P-CTL∗ 6�equalSyntaxPσ -CTL∗.

Proof. To prove thatPσ -CTL∗ 6�equalSyntaxP-CTL∗, we need to find a policyπ ∈

PP−CTL∗, a transition functionΦ, and a states0, such that there is noπ ′ ∈ PPσ−CTL∗

whereGset(π,s0,Φ, |=P−CTL∗) = Gset(π ′,s0,Φ, |=Pσ−CTL∗)∩GP−CTL∗.

Let the policyπ be{π(s1) = nop}, the transition function be that correspond-

ing to Figure 3.5, the initial states0 = s1. It is easy to know that the goalg1 =

Apol2(¬E PApol3(p∧3q)) is in Gset(π,s0,Φ, |=P−CTL∗). We now prove that

no policy π ′ ∈ PPσ−CTL∗ satisfies this goal. According to the definition of lan-

guagePσ -CTL∗. (s0,Φ,π) |=Pσ−CTL∗ g1 if ¬E PApol3(p∧3q) is true in all states

reachable from the initial states by following the policy. However, the initial state

s1 is one state in the policy. There is a policy inPσ -CTL∗ that does not satisfy

¬E PApol3(p∧3q). Such a policy isπ2 such that{π2(s1) = a1;π2(s1,s2) =

a2;π2(s1,s2,s1) = a3; · · ·}. Thus there is no policy satisfiesg1 in Pσ -CTL∗. Pσ -

CTL∗ 6�equalSyntaxP-CTL∗.

To prove that P-CTL∗ 6�equalSyntaxPσ -CTL∗, we need to find a policyπ ∈

PPσ−CTL∗, a transition functionΦ, and a states0, such that there is noπ ′ ∈ PP−CTL∗

whereGset(π,s0,Φ, |=Pσ−CTL∗)=Gset(π ′,s0,Φ, |=P−CTL∗)∩GPσ−CTL∗ =Gset(π ′,s0,Φ, |=P−CTL∗

).

The policyπ2 in Pσ -CTL∗ such that{π2(s1)= a1;π2(s1,s2)= a2;π2(s1,s2,s1)=

a3; · · ·} satisfies the goalg3 = Apol3(p∧3q) thusg3 ∈ Gset(π2,s0,Φ, |=Pσ−CTL∗).

We now prove that there is no policyπ ′ in P-CTL∗ suchg3∈Gset(π ′,s0,Φ, |=P−CTL∗

). This can be proved by enumerating all policiesπ ′ in P-CTL∗. Thus P-CTL∗

6�equalSyntaxPσ -CTL∗.

The above result is mildly surprising. From the proof, we have that the goal
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Apol2(¬E PApol3(p∧3q)) in P-CTL∗ cannot be expressed inPσ -CTL∗. Simi-

larly, the goalApol3(p∧3q) in Pσ -CTL∗ cannot be expressed in P-CTL∗.
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