Representing and Reasoning about Goals and Policies of Agents

by
Jicheng Zhao

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved November 2010 by the
Graduate Supervisory Committee:

Chitta Baral, Chair
Subbarao Kambhampati
Joohyung Lee
Vladimir Lifschitz
Huan Liu

ARIZONA STATE UNIVERSITY
December 2010

ABSTRACT

Goal specification is an important aspect of designing artaus agents. A
goal does not only refer to the set of states for the agentaichreA goal also de-
fines restrictions on the paths the agent should follow. Twalgogics are widely
used in goal specification. However, they lack the abilityd@present goals in a
non-deterministic domain, goals that change non-monoatigj and goals with
preferences. This dissertation defines new goal specditéinguages by extend-
ing temporal logics to address these issues.

First considered is the goal specification in non-deterstimdomains, in which
an agent following a policy leads to a set of paths. A logiagpesed to distinguish
paths of the agent from all paths in the domain. In additioraddress the need of
comparing policies for finding the best ones, a languageltad quantifying over
policies is proposed. As policy structures of agents playrgortant role in goal
specification, languages are also defined by considerifeyelift policy structures.

Besides, after an agent is given an initial goal, the agent chayge its ex-
pectations or the domain may change, thus goals that ar@psty specified may
need to be further updated, revised, partially retractedyen completely changed.
Non-monotonic goal specification languages that can mageetlthanges in an
elaboration tolerant manner are needed. Two languageselgatn labeling sub-
formulas and connecting multiple rules are developed toesddon-monotonicity
in goal specification.

Also, agents may have preferential relations among sulsgaad the preferen-
tial relations may change as agents achieve other sub-gdalsesting a compar-
ison operator with other temporal operators, a language adyihamic preferences
is proposed.

Various goals that cannot be expressed in other languagesxpressed in the
proposed languages. Finally, plans are given for some gpaisified in the pro-

posed languages.

This work is dedicated to my parents.

ACKNOWLEDGEMENTS

This work would not be possible without my mentors, collesgywand friends.

| would like to thank Prof. Chitta Baral, my supervisor, for hilp through the
years and his collaboration on all the work in this dissenatWithout his help and
guidance, | would know much less about research.

| would like to thank Profs. Thomas Eiter, Vladimir LifschjtTran Cao Son,
and Yan Zhang for their help and collaboration in the pasthayf@ers. The work in
Chapter 6 evolved from the collaboration with Prof. ThomasEiProf. Vladimir
Lifschitz gave valuable advice on representing goals inaeterministic domains.
The work on complexities of temporal logiecs CTL* and P-CTL was enhanced
by discussion with Prof. Tran Cao Son. An early version of tbhekwon preferences
in goal specification was done with Prof. Yan Zhang.

| thank Profs. Subbarao Kambhampati, Joohyung Lee, Vladiifgchitz, and
Huan Liu for serving as committee members.

I would also like to thank many of my colleagues who have giveradvice and
helped me in different ways during my time as a graduate studehey are Luis
Tari, Xin Zhang, William Cushing, Nam Tran, Zheshen Wang, &mg Meng,
Marcos Alvarez Gonzalez, Shanshan Liang, Ravi PallaH@ Nguyén, Yan Qi,
Jorg Hakenberg, Lei Tang, Hui Zhang, Yang Qin, Hairong Xieyd-Zhou, Zhibin
Zhou, Yin Yin, Jiayu Zhou, Juraj Dzifcak, Jianhui Chen, Nan Guofeng Deng,

Wenlan Jing, Tie Wang, Jiancun Fan, Ning He, and Jian Tang.

TABLE OF CONTENTS

Page
TABLE OF CONTENTS \Y
LISTOFTABLES e X
LISTOF FIGURES e Xi
1 INTRODUCTION 1
1.1 AgentDesign 1
1.2 Goal Specification with Temporal Logics 3
Goal Specification in Non-deterministic Domains 5
Non-monotonicity in Goal Specification 6
Preferences in Goal Specification 8
1.3 Planning 9
1.4 Outline of Contributions 9
1.5 Dissertation Organization 01
2 BACKGROUND e 12
2.1 Background: LTLandCTL 12
Goal Representation UsingLTL 12
Goal Representation Using Branching Time Temporal Logic . . 14
2.2 k-maintainability 16
3 TM-CTL* AND P-CTL*: GOAL SPECIFICATION WITH TEMPORAL

LOGICS IN NON-DETERMINISTIC DOMAINS 25
3.1 Introduction and Motivation 26
Components of AgentDesign 28
Domain Description and Transition Systems 28
Control Programs and Policies 29
WhatisaGoal? 30

iv

Chapter Page

A Motivating Exampleo o oL 34
Contribution 39
Structure ofthe Chapter 39
3.2 Limitations of CTL: Extending CTE to=CTL* 40
Limitations of CTL* in Non-deterministic Domains 40
Syntax of=CTL* 42
Semantics of =CTL* 43
Goal Representation ircCTL* 44
m-CTL* differs from CTL* 44
Reachability Goals Corresponding to Example2 45
Maintainability Goals a7
Goals Composed of Multiple Sub-goals 47
3.3 P-CTL: The Need for Higher Level Quantifiers 49
Quantifying Over Policies 49
Syntax of P-CTE 52
Semanticsof P-CTL 53
Goal RepresentationinP-CTL 55
Goals Corresponding to Example 2. 56

Maintenance Goals and Other Goals Specified in P-CTL 58

3.4 P,;-CTL*: Need for Different Notions of the Policy Structure 59
3.5 Expressiveness of a Goal Specification Language 62
3.6 Discussionand Related Work 65
Goal Specification with Different Policy Structures 65
Limitations of Goal Specification with Temporal Logics 67
ComplexityIssues e 67
Related Works 71
3.7 Summary ... e e e 74

Chapter Page

4 N-LTL AND ER-LTL: NON-MONOTONIC TEMPORAL LOGICS THAT
FACILITATE ELABORATION-TOLERANT REVISION OF GOALS . 76

4.1 Introduction 76
4.2 N-LTL: A Non-monotonic Extensionof LTL 48
Syntax e e e 84
Semantics of N-LTL Programs 85
Properties and N-LTL in Goal Specification 87
4.3 ER-LTL 89
Syntax e e 90
SemanticCs 91
ER-LTL in Goal Specification 93
Exceptions and RevisionsinER-LTL 94
Exceptions 95
Weak Exception and Strong Exception 95
Exceptionto Exception 96
Revision: Change User Intentions 96
Changing Consequents 97
Changing Preconditions 97
Revision after Revision 98
Nested Revision 98
Allow Sub-formula to be Modified 99
Representing John’s RequirementsinER-LTL 99
4.4 ProgressingER-LTL 101
Strengthening and Weakening in ER-LTL 101
Strong Equivalence inER-LTL 102
Progressing ER-LTL 107
4.5 Non-monotonic Extension of CTL-CTL*, and P-CTLE 111

Vi

Chapter Page

4.6 A Program Translating an ER-LTL goaltoalLTLgoal 113

4.7 DISCUSSION o 114
Comparing ER-LTLand N-LTL 114
Related Works 115

Applying the Techniques in ER-LTL to Propositional Logic . . . 116
4.8 Summary e e 117
5 PREFFI-CTL*: GOAL SPECIFICATION WITH DYNAMIC PREFER-

ENCE IN NON-DETERMINISTIC DOMAINS 118
5.1 |Introduction 118
5.2 Prefs-CTL*: Extending CTL with Preferences 122
5.3 Propertiesof PrefeCTL* 124
5.4 Compare PrefeCTL* with Related Languages 130

Compare Prefr-CTL* with other Goal Specification Languages in

Non-deterministic Domain 130
Compare Prefi-CTL* with other Languages with Preferences . . . 131
55 DISCUSSION o 133
Point-wise Preference 133
5.6 Summary e e e 134

6 PLANNING WITH GOALS SPECIFIED IN TEMPORAL LOGICS1-
CTL* AND PREFII-CTL* e, 135
6.1 Introduction 135

6.2 Background: Strong, Weak, and Strong Cyclic Plans in Naterdhinistic

Domains 137
6.3 Finding Strong CyclicPlans 139
SAT EncodingSCyclic(P) 140
Horn SATEncoding 145
MaximalPlan 146

Chapter Page

LeanPlans 146
Genuine Procedural Algorithm 147
Strong Cyclic Planning Using an Answer Set Solver 471
Input RepresentatioR(l) 149
ProgramPsc. 149
PreferredPlans 151
6.4 FindingStrongPlans 152
6.5 FindingWeakPlans 153
6.6 Complexity Analysis and Relations with Existing Algoritk 154
Complexity e 155
Characteristics of the Algorithm 158
6.7 Applying the Approach to other-CTL* Goals 160
Planning for GoaRpoO(EOP) o oL 160
Planning for GoalpoO(ECP) o o o oo 161
Planning for GoaAO(Epo®p) . . . o . v oo oo 161
Planning for GoaAO(Epgi®Op) - v - v o v oo 162
6.8 Planningwitha PrefeCTL* Goal 162
A Program Simulating the Algorithm 165
6.9 RelatedWork 167
6.10 DiSCUSSION 168
Applying the Approach to Other Planning Problems 168
Reasoning and Planning as Goal Specification Revision 169.
6.11 Summary e e 169
7 CONCLUSION e 171
7.1 SUMmMary e e e e e e 171
7.2 FutureDirections 174
BIBLIOGRAPHY 177

Chapter Page

A DEFINITION ON DEPTHOFAFORMULA 191
B YET ANOTHER APPROACH OF DEFINING THE EXPRESSIVENESS

OF A GOAL-SPECIFICATION LANGUAGE 194

B.1 Notationon ComparinglLanguages 195

B.2 Compare Different Goal Specification Languages 198
Compare Different Languages 200
Comparer-CTL* withP-CTL*, 200
Comparer,-CTL* with Po-CTL* 202
Compare Languages having the Same Syntax 205

LIST OF TABLES
Table Page
3.1 Different P-CTL andr-CTL* goal specifications and the policies sat-
isfyingthem 57

LIST OF FIGURES

Figure Page
1.1 Transition diagram in a non-deterministicdomain 6
3.1 Transition diagram in a non-deterministic domain 35
3.2 The preference relation between policies 36
3.3 Transitions that show limitationsof CTL. 40
3.4 Transitions that show limitations afCTL* 49
3.5 Atransition with different policy structures 59
3.6 Differences of ATL and P-CTLin specifyinggoals 73
5.1 Transition diagram in a non-deterministicdomain 120
6.1 Transition diagram of the planningdoma&n 139

Xi

Chapter 1

INTRODUCTION
Reasoning about actions and their effects in changing thieoemuent is an impor-
tant aspectin designing autonomous agents. Systematgnagsemi-autonomous
agents involves specifying (i) domain description: acitmat an agent can do, their
impacts, environment, and etc.; (ii) control executionrofgent; and (iii) directives
for an agent. There has been a large body of work on (i) [FN&d38P, GL98a] and
a significant amount of work on (ii) [Sch87, BGOO, DLPT02, BDHi9Blowever,
there has been relatively less work on (iii), which is ofteferred to as goal spec-
ification. This dissertation focuses on (iii) and its redas with other components
in agent design. In specifying goals of an agent, tempogit#oare widely used.
However, there are many interesting goals which cannot peesged using exist-
ing temporal logics. For example, a lot of interesting gaalson-deterministic do-
mains cannot be represented. Existing temporal logicsatrabte to handle elabo-
ration tolerance in goal specification. Also, existing tsgare not able to represent
preferences that may change dynamically in specifyingggoélan agent. This
dissertation extends existing temporal logics in différinections to cover them.
The following section begins with the components in desigra semi-autonomous

agent.
1.1 Agent Design

In designing an agent, components considered are the anvémat of an agent, the
ability of an agent, and the requirements for an agent.

The environment of an agent is often modeled as a transitiaphg It defines
states and actions in a domain, the value of each fluent in gatd, and the ef-

fects of executing an action in each state. In planning conity(5TRIPS [FN71],

1

ADL [Ped89], and PDDL [McDO0O0] are defined to model effects cfiens. In rea-
soning about actions community, different mechanisms asdate calculus [MH69,
Rei91], event calculus [KS86], action language [GL98Db], rituealculus [Thi98]
are proposed to precisely represent the transition grapecgally for modeling the
frame problem [MH69]. These logics are also extended to indifferent proper-
ties of a reasoning task or different properties of a domain.

The second aspect in automatic agent design is to define ilitg aban agent.
Given a transition graph, ability of an agent is often modeig a policy program, or
a policy structure of the agent. For example, in a deterriind®main, each agent
might execute a sequence of actions to achieve its goal.\ltaisa take actions by
following a mapping from states to actions. In a non-detarstic domain, besides
the two definitions above, a policy may also be a mapping frequsnces of states
to actions [HF85, AHKO02, BDH99]. In a multi-agent settingtians taken by one
agent may depend on its knowledge about the domain and @éetsa In a domain
where agents have sensing actions, actions taken by oneraggepend on other
properties of the transition graph. There are also othenitiefis of the policy
structure, where each definition of the policy structurectjes the ability of an
agent. Once the ability of an agent is specified, a plan or iaypof the agent is
one instance of its policy structure.

Given an agent with a policy structured defined, the agerdwggs in an envi-
ronment leads to a structure of states. Requirements usezsfdrathe agent are
then defined as goals. A goal is not necessarily about a st&dtesdor the agent to
reach. It may also define how the agent behaves before repohenof the desired
states. Given that a trajectory is a sequence of states geatin a goal specifica-
tion language specifies a trajectory, or a set of trajectareulted from executing
a plan or a policy in the domain. Each goal of an agent distsigs the set of

desired policies from undesired ones for the agent. Thigtessary in designing
2

autonomous agents, as often an agent needs to be given tvdirea high level

goal specification — regarding the behavior desired fromiitectives given to the
agent may not easily be described. The following sectiobaktes on why a goal
specification language is needed and why existing goal gegtcdon languages are

not adequate in representing some interesting requirenienthe agent.
1.2 Goal Specification with Temporal Logics

In most cases, a goal is considered as a set of states sajistyine properties. An
agent satisfies a goal if it finds a path in the transition griapbne of the states.
Currently, most planners in the planning community are gyio find a plan to
reach one of the states.

However, besides reaching a set of states, there are oti@raments for an
agent. The need of specifying goals of an agent was first gexpan [McC59,
MHG69]. Since then, comparing to other components in autam@agent design,
there is relatively less work in the goal specification aspéagent design. Tem-
poral logics such as LTL [Pnu77] and CT[EC82, ES89, Eme90] are introduced
in representing goals of an agent.

If an agent is to reach a state, there are requirement on reostdke is reached.
If an agent is asked to maintain some properties, there isnab gtates to reach.
In both cases, linear temporal logic (LTL) can be used in ifyiag properties of a
sequence of states of reaching a state or maintaining a coatign.

Also, there are requirements on other paths other than ttietalken by the
agent. For example, as the agent driving from a city to therotity, it may be
required to have a gas station in 4 miles at any time beforaragrin the destina-
tion. Note that the 4 miles driving to the gas station may nothe main path of
the agent. Branching time logics such as CTL and Ctan be used to deal with

such branches in goal specification.

Many extensions of linear and branching time temporal ge used for
goal specification. For example, LTL and CThre extended to have metric in-
tervals [BK98] or qualitative measures on elapsed time betwtbe occurrences
of the events [Pnu77]. Also in a timed transition system, éfirdng a cost func-
tion on CTL states and paths, min-max CTL [DCDS01] was propogealbwing
the quantification of CTL states and paths. Languages ATL arid' AAHKO02]
extend LTL and CTE to game-like multi-agent systems to quantify over paths of
each agent. Besides these, temporal logics are often seddesispecifying non-
Markovian rewards [BBG96, BBG97, TG®6] in the decision theoretic planning
community.

Most of the temporal logics mentioned above were developéka context of
program specification and model checking [HNSY92]. Thisertation shows that
in representing goals of an agent, some properties of gealfggations that are not
exist in model checking need to be addressed. For examgles #ie no goals of
the kind “trying one’s best” in specifying a program while sea may have a goal
for an agent to try its best to reach a state.

In defining a goal specification language, the first questothat “what is a
goal?”. A goal is considered as a mapping from possibledtajes for the agent
to choose to sets of trajectories (or sets of set of traj@spchosen by the agent,
where each trajectory is a sequence of states. A plan of an sggsfies one goal if
for all domains, the trajectory (or the set of trajectoriefshe plan is one element
in the set.

There are some limitations of existing goal specificatiorglaages. This dis-
sertation addresses these limitations by extending egigjoal specification lan-
guages. CTLis extended tar-CTL* and P-CTL to capture goals in non-deterministic
domains. Languages N-LTL and ER-LTL are proposed to add@ssmonotonicity

in goal specification. Also, language Pmef€TL* is proposed to address goals with
4

dynamic preferences.

The following sections elaborate on the importance of tloppsed extensions.

Goal Specification in Non-deterministic Domains

Goal specifications in a non-deterministic domain are jirstinsidered. Non-
deterministic domains have some properties that are natiegpin existing lan-
guages. For example, in a non-deterministic domain, du@tedeterministic ef-
fects of actions, each plan leads to a set of trajectoriescapbure properties of
the plan, Dal Lago, Pistore, and Traverso [DLPT02] sugdestttajectories in the
plan need to be distinguished from all trajectories in thadn. Instead of defining
a new language as in [DLPTO02], by extending CTh languagerCTL* is pro-
posed in this dissertation based on the same observatien, &d there are multiple
plans in a domain, it is necessary to compare propertiesamispgbefore choosing
a particular set of plans among them. The way of comaringspkneferred to as
guantifying over policies [AHKO02]. This dissertation prages language P-CTL
to capture the motivation of quantifying over policies farad specification. These
two languages are discussed in Chapter 3. Now, the trangjtagsh in Figure 1.1
is illustrated to show the importance of policies in definegyoal specification
language.

Assuming that the agent is in stagg the goal of the agent is to “try its best”
to reach a state whengis true. In order to achieve “trying its best”, the agent
should be able to know all policies it has, and should be abt®empare them. The
goal of “trying its best” may have an interpretation thatttiere is a policy in the
domain with some desired properties, the policy taken byatient should have
such properties”. In statg of the transition graph in Figure 1.1, as there is a policy
which is a mapping from states to actions to repgcthe policy that takes acticag

in states; is not trying its best in reaching. Similarly, properties of policies can

5

Figure 1.1: Transition diagram in a non-deterministic doma

be compared so as to find the most preferred policy. In pdaticthis dissertation
shows that by grouping trajectories in the same policy, andjdmntifying over
policies, any policy in this example can be distinguishemirfrother policies by

comparing different properties policies have.

Non-monotonicity in Goal Specification

After an agent is given an initial goal, the agent may chatg@xpectations or
the domain may change. Thus the agent may modify, enhancksaard previ-
ously specified goals. The agent may also make one changeaafither on its
initial goal. The following example illustrates the needsnon-monotonicity in

goal specification.

Example 1. John has an agent in his office that does errands for him. Joémn m
ask the agent to bring him some coffee. But soon he realiaethia coffee machine
was broken. He is not sure if the machine has been fixed or nahéterevises his
directive to the agent telling it that if the coffee machisesiill broken then a cup
of tea would be fine. Just after that he gets a call from a colleagho says that

he had called a coffee machine company and asked them t@dalivew coffee

6

machine. Then John calls up the agent and tells it that if e noffee machine
is already there then it should bring him coffee. (Note thatald coffee machine
may still be broken.) He also remembers that he takes sughrhigttea and that
the tea machine has various temperature settings. So fsethellagent that if it is
going to bring tea then it should bring him a pack of sugar aetitee tea machine

setting to “very hot".

To represent these goals, a non-monotonic goal specificlEinguage that en-
ables the agent to modify its goals in an elaboration tolemsnner is required.
While there have been a lot of non-monotonic logics such as fpggrams [GL88],
default logic [Rei87], autoepistemic logic [Moo085], onlydawapers [FHI1, Sae87]
are found on defining non-monotonic logics for goal spedificebut neither work
addresses the elaboration tolerantissue in goal spemficdtis a question whether
these non-monotonic logics can be applied directly to teagormulas. Chap-
ter 4 of this dissertation proposes languages N-LTL and ER-ERch goal in the
languages is represented as a set of rules. Similar to detfeémyic [Nut87], sub-
formulas in a rule are defeated if there are exceptions difiorethe sub-formula.
The idea of completion is used to capture all possible exzeptor a sub-formula.
Labels are used to combine multiple rules to one temporahtdita. The idea
of completion was used for defining exceptions. Reiter’s idka surface non-
monotonic logic [Rei01] that gets compiled into a more tratdastandard logic is
used and thus avoid increase in complexity. With these tgales borrowed from
other languages, each step in Example 1 can be represeniel fmoposed ER-
LTL language. Chapter 4 of this dissertation proposes tlagpiages and gives an

approach of progressing goals after the agent has execaitedffts plan.

Preferences in Goal Specification

The third direction considered in this dissertation is tloalgspecification with
preferences. In specifying goals of an agent, users oftera Hdferent prefer-
ence relations among sub-goals. Users may have some prefardations under
one condition but other preference relations under othaditions. The prefer-
ence relation may also change dynamically as the agent guieceith its current
plan. Thus a goal specification language capable of handingrdic preferences
is needed. Son and Pontelli define a preference relationahspecification lan-
guageZ & [SP06]. However, it only works for deterministic domain ahdoes
not allow changes in the preference relations. The follgvexample illustrates the
needs of dynamic preferences and motivates our languaerC&L*.

Consider that a user has a goal for the agent that provides#renith plans of
commuting between her home and the workplace. The user tzar @alk, take
a bus, or hire a taxi to go from her home to the workplace. Slseohgectives
of going to the workplace on time, spending less money on tipe @and other
objectives such as keeping warm and dry. With these prefeserelations among
sub-goals in mind, if she gets up late, she may hire a taxi tadaveing late. If
it is raining outside, she does not want to walk. The agerit itigke plans for
this user needs to determine the preference relations athesg sub-goals based
on the current state of the user. For example, if it startsimgi while the user
walking to the workplace, the preference relation mightngea In order to handle
all these dynamics, the agent should be able to adjust itssgoh that a sub-goal
is preferred to the other gohlunder some conditions, bhtis preferred ta under
other conditions. Note that whether a sub-goal is prefeokest other sub-goals is
not determined in the initial state when the agent is deployidne agent can only
know the preference relations among sub-goals after thehaseexecuted part of

8

her plan, as the execution of the plan may lead the user tadetbit is different
from the inital state.

In Chapter 5, language PraCTL* is proposed to represent goals with dy-
namic preferences. The language enables users to repggsdatconsist of dy-

namic preferences among sub-goals.
1.3 Planning

After a goal in a goal specification language is specifieds & istill a challenge
problem to find planning algorithms for the goal. It is diffiguf possible, to find
general planning heuristics for goals specified in thesguages. Chapter 6 takes
some specific goals ir-CTL* such as strong, weak, strong-cyclic plans [CPRTO03]
and their variations, and find plans by utilizing the apphoamposed in [BEBNOS]
that first encodes the planning problem as a Reverse-Horn $#dlgm, further
translates the encoding to a Horn SAT, and then derives apolial time algorithm

by simulating the way of solving the Horn SAT. Logic programplementations of
these plans and a plan that “tries its best” to reach statis$ysiag some conditions

are proposed.
1.4 Outline of Contributions

Different extensions of temporal logics are studied in Ceep8 to 6. In particular,

the main contributions of the dissertation are as follows:

e Extending temporal logics to non-deterministic domains Chapter 3 gives
a formal definition on “what is a goal”’. LanguagasCTL* is proposed to
distinguish the set of trajectories of the agent and aletiaries in the do-
main. Language P-CTLis proposed by quantifying over policies. The con-
sideration of policies plays an important role in goal speations in non-
deterministic domains. The definition of a policy also imigabe set of goals

expressed in the language, thus languages defined witheatitfdefinitions
9

of the policy structured are proposed. An approach on pgoaigoal cannot
be expressed in a language is proposed. The set of goalssegdran goal

specification languages are then formally compared.

e Non-monotonic extension of temporal logicsChapter 4 presents logics N-
LTL and ER-LTL that enable users in revising goals in an elabon tolerant
manner. The way of progressing a goal is proposed to dealthgtbase that
the agent has already executed some actions. Also, antalgaf translating

an ER-LTL goal to an equivalent LTL formula is implemented.

e Extending temporal logics with preference Chapter 5 presents a logic
Pref--CTL* with dynamic preference relations defined among sub-goals.
This dynamic preference relation enables users in reptiagegoals with

different preference relations in different states.

¢ Planning with goal specified in proposed language<hapter 6 studies the
planning problems for some goals specified in proposed kEges The ap-
proach in [BEBNOS8] is used for strong, weak, strong cyclic piag [CPRT03],
and their variations. A logic program implementation of arpthat “tries its

best” in reaching a set of states is also given.
1.5 Dissertation Organization

The rest of the dissertation is organized as follows: Chaptatroduces temporal
logics LTL and CTL*. All logics defined in the dissertation are extended from
these logics. An approach in [BEBNOS8] that find plans fok-maintainability
problem is also discussed. Some planning algorithms in @nh&pare based on a
similar approach. Different extensions of temporal logios studied in Chapters 3
to 6. In Chapter 3, languages for goal specifications in ndargenistic domains

are proposed. Chapter 4 studies non-monotonic goal spéicifidanguages. In

10

Chapter 5, a language for representing preferences in gpardoals is proposed.
In Chapter 6, planning algorithms for some goals in proposeduages are studied.

The dissertation is concluded with a summary and futurectioms in Chapter 7.

11

Chapter 2

BACKGROUND

This chapter contains some background materials usedandatapters. It starts
with linear temporal logic LTL and branching time temporadjic CTL*. Logics
proposed in later chapters are based on these two logicke Isetcond part of this
chapter, a planner for tHemaintainability [BEBNO8] problem is reviewed. Some
planning algorithms in Chapter 6 are proposed by followireggame approach.

2.1 Background: LTL and CTL
As languages proposed in this dissertation rely a lot ontiegigemporal log-
ics, In this section existing formulations [ES89, Eme90, BK8IS00, BKTO1,
PTO01] of specifying goals using linear and branching timeperal logics are dis-
cussed. This section starts with goal specification usirgitiear temporal logic

from [BK98, BKTO1].

Goal Representation Using LTL

The syntax of the language is now discussed. Syntacti¢dllyformulas are made
up of propositions, propositional connectives A, and—, and future temporal

connectiveg), O, ¢ andU.

Definition 1. Let (p) be an atomic proposition,f) be an LTL formula. LTL for-

mulas are defined as follows:

() == @A) [)V) [=5 [O) [B(f) [O(F) [(FHU(T)

O

A trajectoryis an infinite sequence of states. The truth of an LTL formsla i

defined with respect to a trajectory and a reference state.
12

Definition 2. Leto given by §,s1,...,S%;, S.1, --- D€ a trajectory, p be an atomic

proposition, $ be a state, and f and<be LTL formulas.

e (5j,0) =piff pistrueins.

o (sj,0) =~fiff (sj,0) - f.

o (8,0) = f1v hhiff (s),0) = fror(sj,0) = .

o (s5,0) = f1Afiff (s),0) = frand(sj,0) = fa.

o (s5,0) = Ofiff (5j+1,0) = 1.

o (sj,0) =0Ofiff (5,0) = f, forallk> j.

o (s5j,0) = Ofiff (s,0) = f, for some k> j.

e (sj,0) = f1 U f, iff there exists k> j such that(s,, o) |= f» and for all i,
j<i<k,(s,0)F f1. O

The notion of trajectories consistent with an initial statel a transition function

is defined so as to specify goals of an agent in LTL.

Definition 3 (Trajectory of a transition function)A trajectory $, Si, - - - iS cOnsis-
tent with an initial state s and a transition functiemif s = s and for i> 0, there

is an action @ such that g1 € P(s,&). O

Using the above definition, for any LTL formulfy, ¢ (s, ®) is now defined as
the set of trajectorie$o : o is conistent withrsand® and(s,0) = ¢}. A goalg
can be expressed as a formglan languagd. if ¢(s,®) = g(s,P) for all states
and transition functior®. Now, a policy it satisfies an LTL goad if the set of
trajectories consistent witltis a subset 0 (s, P).

Note that this definition is slightly different from the omgl definition as we

define a goal as a mapping frofg ®) to set of trajectories instead of simplyly
13

a set of trajectories. This definition is adopted to be ceoestswith the rest of
the dissertation. The importance of having this definit®liscussed in the next
chapter.

Often [BK98, BKTO01], planning with respect to LTL goals are lghed with
the assumption that there is complete information abouiritiel state, and the
actions are deterministic. In that case there is at mostrafextory consistent with
the policy. The role of LTL in specifying planning goals haeh well studied and

examples of that can be found in [BK98, NS00, BKTO1].

Goal Representation Using Branching Time Temporal Logic

The use of a branching time temporal logic in specifying plag goals that cannot
be specified using LTLs are studied in [NS00, PTO1, BKTO1]. fkeessity of
branching time operators arise for several reasons. licphat, it is needed when
a user wants to specify conditions on other paths startiog fthe states in the
agent’s main path. For example, a robot going from posifido positionB may
be required to take a path so that from any point in the patretlsea charging
station within two steps. Note that these two steps do nat tabe in the path of
the robot. This goal cannot be expressed using LTLs and aliragntime logic
such as CTL is needed. The syntax and semantics of CIHES89, Eme90] is now
given below.

There are two kinds of formulas in CTL state formulas and path formulas.
Normally state formulas are properties of states while patimulas are properties

of paths. The syntax of state and path formulas is as follows:

Definition 4. Let (p) be an atomic propositionsf) be a state formula, an¢pf)
be a path formula.
(sf) = (p) | (sf)A(sf) | (s)V (sf) | ~(sf) [E(pf) | A{pf)

(pf) = (st) [(pF) vV (pf) [~ (pF) | (PF)A(PT) [(pF) U (pf) |O(pf) | (pf) [O(pf)
14

The symbolsA andE are the branching time operators meaning ‘for all paths’
and ‘there exists a path’ respectively. As the quantificatizanching time’ sug-
gests, specification in the branching time logic CHre evaluated with respect to
the branching structure of the time. The term ‘path’ in theameg of A andE
refers to a trajectory in the branching structure of time.

Now define the formal semantics of CTtormulas, which are defined depend-

ing on whether they are state formulas or path formulas.

Definition 5 (Truth of state formulas)The truth of state formulas are defined with
respect to a pair(sj, ®), where § is a state andd is the transition function. In
the following p denotes an atomic propositionssdre state formulas, and {sfare

path formulas.
o (sj,®) =piff pistrueins.
o (Sj,®) = —sf iff (s, P) b~ sf.
o (5,®) =sfinshiff (s),®) =sfand(sj,®) =sh.
o (5j,®P) =sfVvshiff (sj,®) =sfor(sj,P) =sh.

e (sj,?) = E pf iff there exists a trajectory in ® starting from § such that
(sj,®,0) |= pf.

o (5j,®) =Apfiff(sj,®,0) = pf for all trajectorieso in ® starting from s.

O

Definition 6 (Truth of path formulas) The truth of path formulas are defined with
respect to a triplet(sj, ®,0) where® is a transition function,o is a trajectory

0,81, - - - consistent withd, and g is a state ino.
15

o (5j,®,0) =sfiff(sj,P) =sf.

o (Sj,P,0) =—pfiff (s;,P,0) = pf.

o (5),P,0) = pfLVvphiff (s;,®,0) = pfLor (s, P,0) = pf.
o (5),®,0) =pfiAphiff (s;,P,0) = pfrand(sj,P,0) = pfa.
o (5,,0) = Opt iff (Sj41,9,0) | pf.

o (5j,P,0) =0Opfiff (5, P,0) = pf, forallk> j.

o (5),P,0) = <pfiff (s, P,0) = pf, for some k> j.

o (5j,®,0) = pf1 U pfy iff there exists k> j such that(s,®,0) = pf, and
foralli, j <i<Kk,(s,P,0) = ph. O

Using the above definition, similar to the definition in LTlorfany CTL* for-
mulag, ¢ (s, ®) is defined as the set of trajectorigs : o is conistent withs and® and(s,®,0) =
¢ }. A policy rrsatisfies a CTE goal ¢ if the set of trajectories consistent withis
a subset ofp (s, P).
Now the goal of getting t@ such that from anywhere in the path, a state where
p holds can be reached in at most two steps, can be represar@d.i as: (p V
EOp VEOQEQOp) U at B. Additional examples of the use of branching temporal
logics CTL and CTL to specify goals are given in [BK98, NS00, PTO1, BKTO1].

2.2 k-maintainability
This section recalls various definitions, algorithms ansuits from [BEBNOS].
They are used in Chapter 6 in proposing new algorithms fomgtreveak, and
strong cyclic plans. In this section, the definitionkefmaintainability is defined
first.

Definition 7 (System) A system is a quadruplg = (., o/, @, poss, where
16

< is the set of states;

</ is the set of actions, which is the union of two disjoint setsabibas:

agents actionsgzag, and environmental actionszen.

poss: .# — 27 is a function that describes which actions are possible in

which states; and

o O:.¥ x .o/ — 27 is a non-deterministic transition function that specifies

how the state of the world changes in response to actions.

Assume here that possible actions always lead to some saccsates, i.e., in
any system, the claim tha&(s,a) # 0 whenevem € posgs) holds for any state
and actiore. On the other hand, gived, if a € posgs) wheneverd(s,a) # 0, then

9 = (Y, o, ®,poss is abbreviated ay = (.7, o7, P) by default.

Definition 8 (Control, super-control policy)Given a systen¥ = (., o7, ®, poss

and a seta/ag C o7 of agent actions,

e a super-control policy forz w.r.t. @,q is a partial function K: ./ — 2%ag

such that Ks) C posgs) and K(s) # 0 whenever Ks) is defined.

e acontrol policy forZ w.r.t. «Z4g is a super-control such that §) = 1 when-

ever K(s) is defined.

Definition 9. Given a systen¥ = (.¥,.o/,®, poss and a state s, R7,s) C .7 is
the smallest set of states that satisfies the following clamdit (i) s€ R(Z,s), and
(i) if s’ € R(Z,s), and ac posss), thend(s,a) CR(Z,s). R(Z,s) is the smallest

set of states that are reachable from s by following actiongdss. O

Definition 10 (Closure) LetZ = (., .o/ ,®, poss be a system and letS.¥ be a
set of states. Then the closure®@fw.r.t. S, denoted by Closui® 2), is defined by

ClosurdS 2) = UssR(Z,9). 0
17

Definition 11 (Unfold, (s, Z,K)). LetZ = (., &7, ®, pos$ be a system, lets.7,
and let K be a control forz. Then Unfolg(s, Z,K) is the set of all sequences
0 = ,a1, S1,a,...,&,5 where Kk and g=s such that a1 € K(sj) is defined

forall j<l, sj11€®P(sj,aj11), and if | <k, K(s) is undefined. O

Informally, Unfold, (s, Z,K) contains all maximal paths in the system that emerge
by taking agent actions, startingsasuch that the total length of each path is at most
K.

Now define the notion ok-maintainability. In it, the functiorexo: .7 — 2
specifies which exogenous actions can occur in which stdtes Zx exo be the

system(., o7, ®, POSK exq)» Whereposk exq(s) = K(s) Uexds).

Definition 12. [k-Maintainability] Given a systeny = (,.</,®, poss, a set
of agent actionsa/ag C 7, and a specification of exogenous action occurrence
exo, a control K for A w.rt. lag k-maintains.# C . with respect t¢g C .7,
where k>0, if it holds for each state s Closurg.#, %« exo) and each sequence
0=%,a1,%,a,...,a,5 in Unfold (s, Z,K) with = s and{sp,...,§} N¥Y # 0.

A set of states C .7 (resp. 2, if .# =.¥) is k-maintainablek > 0, w.r.t. a set
of statess C .7, if there exists a control K which k-maintaing w.r.t. 4. Further-
more,.# (resp.?) is calledmaintainablen.r.t ¢, if .# (resp.2) is k-maintainable

w.r.t. ¢ for some kK> 0. O

Note that as easily verifiek-maintainability fork>|.#| and |.#|-maintaina-
bility always coincide.

The approach above is used in [BEBNO8] to develop an algorittanfindsk-
maintainable policies. The problem is referred t&-&daintain. It has the following

input and output:

IHere onlyK(s) for s € ClosurdS, Zk exo) is of relevance. For all othex K(s) can be arbitrary
or undefined.

18

Input: Aninputl is a systeny = (.7, o/, @, poss, sets of state¥ C . and
J C .7, asetdg C o7, afunctionexg and an integek > 0.

Output: A controlK such that forZ w.r.t. o/ag k-maintainsg w.r.t. .7, if such
a control exists. Otherwise, output the answer that no santral exists.

Before describing the encoding, the following definition nfapath is needed.

Definition 13 (a-path) In a systeny = (., </, ®, poss, there exists a-path

of length at most k> 0 from a state s to a set of stat@s if either
1. se¥, or

2. s¢ ¢, k> 0and there is some action@.a/agN posgs) such that for every

s € d(s,a) there exists an a-path of length at most k from S to 4. O

In the following encoding of an instandeof problemk-Maintain to SAT, re-
ferred to assat (1), s will intuitively denote that there is an a-path frasio ¢ of
length at mosi. The propositiors_a;, i > 0, will denote that for sucls there is
an a-path froms to ¢ of length at most starting with actiora (¢ posgs)). The

encodingsat (1) has groups (0) — (5) of clauses as follows:
(O) Forallse ., and for allj, 0 < | < k
Sj = Sj+1
(1) Forallse ¥n.7: S
(2) For any stats € . ands' such that' € ®(a, s) for some actiora € exqs):
= S
(3) For every statsc .\ ¢ and for alli, 1 <i <k:

Bl s= Vaedagmposis) S.ai;

19

(3.2) for everya € </agNposgs) ands eP(s, a):

Sa = §_y;

(3.3) for everya € a/3gN posgs), if i <k

Sa = Saji1.
(4) Forallse 7\ ¥: S
(5) Forallse .7\ ¢: -0

Proposition 1. [BEBNO8] Let | consist of a systei = (., &/, @, poss, a set
alag C o/, sets of states”, 4 C ., an exogenous function exo, and a positive
integer k. For any model M of sét), letGy = {s€ . | M =}, and for any state
se€Cu \¥ let/y(s) denote the smallest index j such thatVs_a; for some action

a € a/agN posgs), which is called the-levelof s w.r.t. M. Then,
(i) .# is k-maintainable w.rt¥ iff sat'(1) is satisfiable;

(i) given any model M of s4t), the partial function K; : . — 2 which is

defined on @ \ ¢ by

Ku(s) ={a|lM Esay, s}
is a valid super-control; and

(iii) any control K which refines K for some model M of s4i) k-maintains.#

w.rt. ¢.

The encodingat (1) is a reverse Horn theorgat (1) can be rewritten to a Horn
theory,sat (1) by reversing the propositions, where the intuitive mearmihg and
S is the converse of the meaningsfands_a; respectively. The encodirgat (1)

is as follows:
20

(0) For allse. andj, 0<j<k:
S41=5).
(1) Forallse ¥n .7

5= L.

(2) For any stats € . ands' such that' € ®(a,s) for some actiora € exqs):

g = .

(3) For every statsc .\ ¢ and for alli, 1 <i < k:

(3D (Aacomgposss ST) = S

(3.2) for everya € .a7agNposgs) ands' e d(s, a):
i | =5sa;

(3.3) for everya € /59N posss), if i < k:
Sa 1= Sa.

(4) Forallse 7\ ¥:
5= L.
(5) Forallse .7\ ¥:
%.
Theorem 1. [BEBNO8] Let | consist of a syste = (., o/, @, poss, a set
olag C o7, sets of states?,¥ C ., an exogenous function exo, and a positive

integer k. Let, for any model M &at (1), Cy = {s| M [~ %}, and let/y(s) =
min{j | M }~saj, ac o/agn posga)}. Then,

(i) .# is k-maintainable w.r.t¢ iff the Horn SAT instancsat (1) is satisfiable;

21

(ii) Given any model M oBat (1), every control K such that () is defined iff

s€ Cw \ ¥ and satisfies
K(s) € {a€ oagN posss) | M £ 53, j = m(9)},
k-maintains.¥ w.r.t. 4.

From the encoding to Horn SAT above, a direct algorithm tostarct ak-
maintainable control, if one exists, can be distilled. Tlygwathm mimics the steps
which a SAT solver might take in order to solgat (I). It uses counters[s] and
c[s.a) for each stats € . and possible agent acti@nin states, which range over
{=1,0,...,k} and{0,1,... k}, respectively. Intuitively, valueof counterc[s| (at a
particular step in the computation) represents that sgfar., 5 are assigned true;
in particular,i = —1 represents that r® is assigned true yet. Similarly, valuéor
c[s.a (at a particular step in the computation) represents thérs®ay,...,5&
are assigned true (and in particuliat O that nos—g is assigned true yet).

Starting from an initialization, the algorithm updates nthnd of the clauses
in sat (1) the counters (i.e., sets propositions true) using a comragoik, i): ‘if
c < ithenc:=1i"towards a fix-point. If a counter violation is detected, @spond-
ing to violation of a clausgy — L forse #/N¥ in (1) org — L forse 4\¥
in (4), no control is possible. Otherwise, a control is camngted from the counters.
The algorithm is illustrated in Algorithm 2.2.

Algorithm 2.2 is easily modifiable if users simply want to put a super-control
such that each of its refinements ik-enaintainable control, leaving a choice about
the refinement to the user. Alternatively, such a choicedasepreference infor-
mation can be implemented in Step 4.

The following proposition states that the algorithm worksrectly and runs in

time polynomial ink and].

22

[k-Control]

Input: A system? = (., 7, ®,poss, a Seta/agent C &/ Of agent actions, sets of
states#,¥¢ C ., an exogenous functioexg and an integek > 0.

Output: A control K which k-maintains.# with respect ta¢, if any such control
exists. Otherwise, output that no such control exists.

(Step 1) Initialization

(i) SetPeyo= {(s,a,9) | s€ ., ac exqs),sc d(s,a)},

dbfoss: {{s,a,9) | se S\ ¥, acposss),s €P(s,a)}, and for every
S€ .Y, P0S$y(S) = Fagent(1 POSES).

(i) For everysin ¢, setcs| := —1.

(iii) For everysin #\¥, setc[s] := kif s€ .7 andposgy(s) =0; otherwise,
setc[g := 0.

(iv) For eachs € \¢ anda € posgg(s), setc[s a] := 0.
(Step 2) Repeat the following steps until there is no changesbek for some
se .7\ ¥ orc[g>0 for somese .¥ N¥Y:
(i) For any(s,a,s') € ®eyowith c[s|=k do upd(c|[g],k).

(i) Forany(s,a,s) € QD%SSsuch that[s'|=i and 0<i < kdo upd(c[s-a],i +
1).

(i) For any statese .\ ¢ such thatposggy(s) # 0 andi= min(c[s.d] |
a€posggy(s)) do upd(c[s];i).

(Step 3) Ifc[s|=k for somese .# \ ¢4 or c[g>0 for somese .# N¥, then output
that.7 is notk-maintainable w.r.t% and halt.

(Step 4) Output any contrd : .7\ 4 — agent defined on all statese .”\¥
with c[g] <k, such thaK(s) € {a € posgg(s) | c[s-a] = minbepos%g(s) c[s.b]}.

Proposition 2. [BEBNO8] Algorithm k-Control solves problem k-Maintain, and

can be implemented to run in timekj1 ||) for any input I.

Sincek-maintainability fork > || and|.#’|-maintainability coincide, problem
k- Maintain can be solved usirgControl in polynomial time.

With the preparation of the background knowledge, the ¥alhg chapters pro-

23

pose the languages for different goal specification requergs and give algorithms
for some of the goals. The next chapter starts with the gaaipations in non-

deterministic domains.

24

Chapter 3

M-CTL* AND P-CTL*: GOAL SPECIFICATION WITH TEMPORAL LOGICS
IN NON-DETERMINISTIC DOMAINS
Reasoning about actions and change is an important aspexgighthg autonomous
agents. Closely tied to reasoning about actions and chandelso an important
aspect of designing autonomous agents, is the issue offgpgailesired trajecto-
ries — that satisfy the action and change principles — of gemtwhich is referred
to as goal specification for an agent. This is necessary iiguieg autonomous
agents, as often an agent needs to be given a directive — dewghgoal spec-
ification — regarding the behavior desired from it. Tempdogics such as LTL
and CTL* have been used in goal specification in deterministic dosaim are not
adequate for non-deterministic domains. For example, alsigoal of achieving
p in a non-deterministic domain has many nuances such asghhwenpossibility
of achievingp, making sure thap is achieved, preferring guaranteed achievement
of p over possible achievement, trying one’s best to achgvand so on. These
different nuances cannot be distinguished in LTL or CTICTL* is extended to
m-CTL* by adding two new quantifiers, exists a path following thagyoand for
all paths following the policy. This distinguishes paths@sated with the policy
from all paths in the domainz-CTL* is further extended to P-CTLlby adding two
new quantifiers, exists a policy and for all policies. Langesare also proposed for
agents with different policy structures. With these exi@ms, many useful goals
that cannot be expressed in LTL, or CTtan be specified. The new languages
also allow specification of goals that are adaptive to domaimd agent’s ability.
With formal definitions of goals, a framework on comparingesssiveness of goal

specification languages is proposed. It helps in formalbvimg that some goals

25

cannot be expressed in some goal specification languages.
3.1 Introduction and Motivation

In his pioneering paper [McC59], John McCarthy envisionedsiesy with com-

monsense which he called “Advice Taker” and said:

The advice taker is a proposed program for solving problenmmsdmip-
ulating sentences in formal languages. The main differbeteeen it
and other programs or proposed programs for manipulatimgablan-
guages (the Logic Theory Machine of Newell, Simon and Shahtlag
Geometry Program of Gelernter) is that in the previous @ogr the
formal system was the subject matter but the heuristics aleeenbod-
ied in the program. In this program the procedures will beedbed as
much as possible in the language itself and, in particliarheuristics

are all so described.

The main advantages we expect the advice taker to have igsHm-i
havior will be improvable merely by making statements tdetling

it about its symbolic environment and what is wanted frorfiagtmake

these statements will require little if any knowledge of finegram or
the previous knowledge of the advice taker. One will be ablag-
sume that the advice taker will have available to it a fairlgewlass of
immediate logical consequences of anything it is told asgbievious
knowledge. This property is expected to have much in commitim w
what makes us describe certain humans as having common s&ase
shall therefore say that a program has common sense if ireatically
deduces for itself a sufficiently wide class of immediatesgmuences

of anything it is told and what it already knows.

26

In the paper, McCarthy shows how to use logic to describe ptiegeof a world,
the conditions of executing actions in that world, the dffgactions on the world,
and what is desired from the world. He then shows how to usaaeh with the
above kinds of logical description and comes up with a plat dthieves what is
specified as desired. In a later paper, McCarthy and Hayes fyibi6e a more
formal and more general presentation of the above, wheyeintrduce the Situ-
ation Calculus. Since then a large body of research has beenatothe topic of
reasoning about actions.

Restating the various kinds of “premises” that McCarthy'’s iséviaker in [McC59]

has, asystematic desigof a (semi)-autonomotisagent has three main aspects:

(i) the domain description that describes actions of thengdlee description of
the world including the relationship between objects invloeld, the condi-
tions when actions can or cannot be executed, and the imp#wt actions

on the world;
(i) the control execution of the agent in the system, and

(i) the directives given to the agent regarding how it skdobehave or what is

expected from it.

In the literature a large body of work has been done on topi{€{N71, Ped87,
GL98a], and a significant amount of work has been done on {opi§ch87, BG0O,
DLPTO02, BDH99]. However, despite McCarthy’s use of thent predicate in spec-
ifying what is wanted, besides this research there has l&atively less work on

topic (iii). This chapter focuses on topic (iii). But sinceetie three aspects are

IHere the agents considered are not fully autonomous agémssan choose their own goals
or improve their control execution. This work is not workitagvards building agents that can make
human beings their slaves.

27

interrelated and they relate to the main purpose of thisteinaa brief overview of

all three of them is covered in the following.

Components of Agent Design

The first component is on defining the environment of the agent

Domain Description and Transition Systems

The main research issue in describing the domain of an agjentievelop ways that
allow natural and succinct, and hence often implicit, d@sion of the transition
between states of the world due to execution of action(s). f@&uthe purpose of
this chapter, it is simpler to use an explicit notion of tiéina systems.

A transition system is defined [GL98a] usingation signaturavhich consists
of three nonempty sets: a sétof value names, a se¥ of fluent names, and a set
</ of action names. Each fluent name represents a particulpeyof the system.
A stateis an interpretation of the set of fluent names. The set adsiatthe system

is denoted a8 LetM(f,s) € ¥ be the value of fluent € .% in statese€ S

Definition 14. [GL98a][Transition System] A transition system of an antgigna-

ture (v,.%, o/ consists of
1. aset of states S,
2. afunction M from% x S into”?’, and
3. atransition functiorp from Sx .« into the powerset of S. O

The states' such thats' € d(s,a) are possible results of executing actian
in states. Action a is considerecexecutablen s if |P(s,a)| > 0. Action a is
deterministidn sif |®(s,a)| = 1. Actionais non-deterministién sif |®(s,a)| > 1.

A domain isnon-deterministidaf it has at least one actioa and one stats such

28

thatais non-deterministic irs. For convenience, assume that there is an actogn
such that for each state= S we haved(s,nop) = {s}.
In this dissertation, assume that the world is given by alsitignsition system,

and the transition system is known to the agent.

Control Programs and Policies

The control of an autonomous agent in a domain specifies ity ah the agent.
It can be a purely deliberative type, a purely reactive typa dybrid type. In
a purely deliberative control, the agent continually falothe cycle of observe,
plan-or-replan, and act. In a purely reactive control, takberation for or of the
agent has been done beforehand and in run time it contintalws the cycle
of observe, simple table-look-up and act. In one kind of id/bontrol the agent
may deliberate in certain states and react in others andetitgedation may itself
be of various degrees. In a second kind of hybrid controlabéetlook-up requires
evaluating formulas over the past states and actions. Fd¢hs chapter is mainly
on reactive control. However, sometimes other definitiointhe control are also
considered.

As mentioned earlier a reactive control involves makingeobations and then
looking up a table to decide on how to act. However, the srecof the table
may vary from agent to agent. This structure of the tablefesrred as theolicy
structureand denote it ag”. Assume that an agent has a fixed policy structure.
A policy T of an agent is an instantiation of its policy structur& A commonly
used policy structure is a mapping from states to actionsggradicy following that
structure is a particular mapping from a specific set of st&tea specific set of
actions.

When an agent starts in an initial situation and follows aipaldr policy, the

world of the agent evolves in a particular way. This evolatie formally repre-

29

sented as a sequence of states, also referred to as a ajéxte@ can thus define
when a particular sequence of states (or a trajectory) isistamt with the execution

of a particular policy.

Definition 15 (Trajectories consistent with a policyAn infinite sequence of states,
or a trajectory 9, s1, --- IS consistent with a policyr that maps from states to

actions, if ;1 € d(s, m(s)) fori > 0. O

The above definition allows users to link policies with tcdggies and it is use-
ful in connecting policies with goal specifications whicle aften about specifying

desired trajectories.

What is a Goal?

Given a transition system and a policy structure, an agentbaose a policy con-
forming to its policy structure to execute. The policy chosgen executed starting
in a particular initial state will lead to a particular trefery. In a domain where
actions have deterministic effects this trajectory can teelg@termined. But in do-
mains where actions may have non-deterministic effecsstthjectory may not be
predetermined; one can at best determine a set of trajestoirhow the world may
progress. Under these circumstances, how does an agededelaich policy to
execute?

This will depend on what the agent wants or desires. An agegtsimply want
to end up in one or one among a set of particular states; onjitwvaat to have more
general restrictions on how the world evolves. Such wantisdmsires of an agent
are referred as its goal.

In classical planning, the agent’s goals were to reach a $taad that satisfies
certain conditions. It was soon realized that in many cdseslésired goal may be
such that there is no final state (such as in many maintenasals)gand even if

there is a final state, the desire may also include restnstom how a final state is
30

reached. One example of this would be for the robot to getd@anrwithout hitting
the wall in the process of getting there. Goals were thenrgdined as a set of
trajectories so that the agent or the robot at least follavesas them. But things get
more involved when actions have non-deterministic effeAsmentioned earlier,
execution of a policy under such circumstances may lead ¢éoamnong a set of
trajectories. In that case a goal may be to prefer some sg@isssible trajectories
over others; exemplified by accepting some policies oveersthin other words
each goal would now correspond to a set of desired set ottogjes.

The above notions of goal are all subjective or absolute: tienwhat options
(in terms of what actions it has at its disposal and how thoserss may change the
world and what the initial state may be) the agent may hawegtal is about the
trajectories. However, often a goal of an agent may inclggeets corresponding
to choosing the “best options” among the ones that are dlaita the agent. To
express the options that are available to the agent, thaticangraph and the initial
state need to be taken into account. l.e., if the transitraply or the initial state
of the agent is different, then the policies that are avélédx the agent to choose
from could be different. Thus a goal is no longer absolutesbaotapping from a
set of ways about how the world may evolve to the set of ways thenevolution
is desired. How the world may evolve can be expressed by #alisiates and a
transition functiond® and how the evolution is desired can be expressed as (a) a set
of trajectories or in some cases as (b) a set of set of trajesto

Since in most cases a user cannot explicitly express a goakjmessing the
above mentioned mapping, a succinct way of expressing goaeeded. Thus the
need for a goal specification language which is the raisomedt# this chapter.

In the literature various logics, including temporal Iagibave been proposed as
goal specification languages. For example, Temporal Iagich as linear temporal

logic LTL [Pnu77], branching time temporal logic CTL[EC82, ES89, Eme90],
31

and their extensions [BK98, NS00, BKTO01] have been proposddiaad as goal
specification languages in the autonomous agent commundypkanning com-
munity [BKSD95, BK98, GV99, NS00, SSD00, PT01]. In the deaisibeoretic
planning community there are suggestions to use tempaigdn specifying non-
Markovian rewards [BBG96, BBG97, TG96].

Extension of LTL and CTL are also studied. One direction is to extend the
logic to have metric intervals [BK98] or qualitative measore elapsed time be-
tween the occurrences of the events [Pnu77]. Following #iteer] timed CTL
(TCTL) [AH93], real time CTL (RTCTL) [EMSS92], and more gendyatjuali-
tative logics [BEH95a, BEH95b] focus on the expressions ofitaize bounds on
the occurrences of events (c.f. [ET99]).

Also in a timed transition system, Min-max CTL [DCDS01] was pweed by
allowing the quantification of CTL state and path propertieterms of a cost func-
tion over real time. It uses “min” and “max” calculation ingrggating the proper-
ties of states and paths.

Another extension of LTL and CTLis to the game-like multi-agent systems
and the languages ATL and ATILJAHKO02] were invented that quantify over paths
belonging to the execution of each agent. CATL [vdHIJWO05] fertextends ATL
with a ternary counterfactual commitment operator of thenf@;(o, ¢), with the
intended reading “if it were the case that agebmmitted to strategy, then
¢". By using this operator in combination with the ability optoars of ATL, it is
possible to reason about the implications of different s <hoices of agents.

In considering using temporal logics for goal specificatimost of these papers
— except [PTO1], only consider the case when actions arendetistic. Following
that direction, in [DLPTO02], a question was raised regaydirnether the existing
temporal logics are adequate to specify many intuitive goadpecially in a non-

deterministic domain, and an alternative language wasgsexh In this chapter, it
32

is formally proved that in the case that actions have noerdahistic effects, there
are goals (as motivated above) which cannot be expressedting temporal log-
ics such as LTL and CTL However, departing from [PTO1, DLPTO02], extensions
to these temporal logics are proposed. The proposed eatenaie able to express
the richer goals and nuances that one encounters in theetemanistic domains.
To do that the formal notion that a goal is a mapping from aniahistate s and

a transition function® to a set of trajectories (or a set of set of trajectories) is
needed. This is argued in previous paragraphs.

To relate this notion of a goal as a mapping and the notionalgatal in a goal
specification language is a formula in that language, theviahg notations and
definitions are needed.

Consider a goad. Let the set of trajectories thgtmaps an initial stats and
a transition functior® be g(s,®). Now consider a goal specification language
and a formulagp in .. To match the notion of a goal, the semantics®fneeds
also to be defined with respect to an initial state and a tiansunction. In other
words, given ars and a®, the semantics afZ will map formulas in.Z to a set
of trajectories. Intuitively, this set of trajectories tisdy” the formula¢ givens
and®. It is denoted a® (s, ®). The notion of “satisfaction” and a corresponding
entailment relation) will be precisely defined by the semantics of the language
. For example, in CTL the entailment relatioh= is defined between triplets
(s,®,0) (whereo is a trajectory) and formulas of CTL Using that for a CTE
formula ¢, the expressiog (s,®P) denotes the sdto : (s,P,0) = ¢}.

Now a goalg can be expressed as a formglan language? if

¢(Sv (D) = g(S,CI)) (31)

for all states and transition functiomp.

In the above definitions the notion of a goal as a mapping fromniéial states,
33

a transition functior to a set of trajectories is used. They can be easily extended
to the case when a goal is a mapping from an initial fagéetransition functiorp

to a set of set of trajectories.

A Motivating Example

The previous section alluded to the added complexity of vgoails mean in do-
mains with non-deterministic actions. The following exdenfiustrates the diffi-
culty of expressing goals in such domains. Later sectiofisfevmally show the
inadequacies of existing goal specification languages pressing some of the
goals mentioned in this subsection. New languages will bpgsed to address the
inadequacies.

In a non-deterministic domain, sometimes there does net exdlefinite strat-
egy under which one can guarantee the achievement of ayartfroperty of the
world, sayp. In that case the agent may be directed to “try its best” tohreestate
wherep s true. This idea of “trying ones best” has many nuances lagy ¢annot

be expressed in existing temporal logics.

Example 2. Consider a domain which has five states; %, 3, &4, and . The
proposition p is only true in state,sThe other states are distinguishable based on
other fluents which are not elaborated here. Suppose the aslsilple actions and
their consequences are given in Figure 3.1, except thatch state there is always

an action nop that keeps the agent in the same $tate. O

Consider that the agent would like to try its begi get to a state wherp is
true. The agent and its controller are aware that some ofviigahle actions have

non-deterministic effects. Thus they are looking for magpifrom states to actions

2Although in the examples, to save space, state space diagmaused. These diagrams can
easily be grounded on action descriptions. For an examplgHePT02].

SNote that special cases of ‘try your best’ are the well-stddin Al) notions of strong planing,
strong cyclic planning, and weak planning [CPRTO03], &ngReach p of [DLPTO02].

34

Figure 3.1: Transition diagram in a non-deterministic doma

instead of plans consisting of action sequences. Moreduerto non-deterministic
effects of actions, they are worried about how to specifir ip@al so that the goal is
not so strict that it is not achievable and still conveys tleamng of ‘trying its best’.
The notion of ‘trying one’s best’ would then have a differerganing depending on
the ability of the agent, and also depending on where thetagjem states;, one
would prefera; to ag because ibg is executed irs;, the agent can never reaph
Similarly, insp, doingay is better than doings, since executing, guarantees that
p will be reached while by executirgs; one may not reacp in the worst case. In
sz, doingag is better than doingy because by executiray in s3, the agent always
has a hope of reaching, but executingay may lead toss, from which the agent
can never reaclp. So one interpretation of ‘trying one’s best’ is to only gate
the policy that daa; in s1, a2 in S, andag in s3. But one may also have a weaker
goal and consider some of the other policies acceptablendlyze this further, the
following policies that are mappings from states to actiares considered. Each
policy is represent by a set of pairs of states and actioneeofdrm (s,a) which
will mean that in stats, actiona should be executed. It is assumed that if no action

is explicitly specified for a statethen(s,nop) is implicitly present.

35

1. Policym = {(s1,a1), (S2,a2), (S3,a3)}
2. Policyms = {(s1,a1), (S,), (S3,a4)}
3. Policyrs = {(s1,a1), (%2, 3s5), (S3,a3) }

4. Policyry = {(s1,a1), (2, 5), (S3,24) }

(2]

. Policyms = {(s1,85) }

Considers; as the initial state. Based on the preference relations afrecin
each state, Figure 3.2 shows the relation between the fil@gxoin terms of which
one is preferable to the other with respect to the goal ofigrgine’s best to get to a
state where is true. A directed edge froms to 1;; meansrs is preferable tar and
this preference relation is transitive. Note that givenfeedgnt transition system, a
different initial state, or a different goal, users mighv@ather preferences among

policies, or may even not have a preference relation.

Figure 3.2: The preference relation between policies

First, try to use existing temporal logic formalisms to sfyethe goal of ‘trying
one’s best to reaclp.” Since the use of policies lead to multiple trajectories, a
user cannot directly use the specificatidp from linear temporal logic with future
operators (LTL) [MP92, Eme90]. Thus try to express this goahe branching
time temporal logic CTL, where there are operatofs(meaning ‘for all paths’)
andE (meaning ‘there exists a path’).

Suppose the initial state of the agensisFroms; there is a path te,. Thus the

CTL* goalE< p will be true with respect tg; and the transition function regardless
36

of which policy one chooses including. Clearly, 7 is not a policy that is trying

to get top. Thus the specificatioB<Cp is incorrect. Alternatively, consider the
goal ACp. This goal is too strong as, even if a user considers theairstate as

s, from which there is a policy that guarantgess reached, the go&< p will not

be true with respect ts, and the transition system. This is because the semantics
of E andA are tied to the overall transition function. With these @pers, a user
cannot distinguish the set of transition relations tied ¢ivan policy from the over-

all transition function in the domain. One way to overcomis th to either tie the
semantics ok andA to the policy under consideration [CPRTO03] or introduce new
operators (saykpo andAyg) that tie the paths to the policy under consideration.
The second approach is chosen in this chapter, as to expraamogoals it be-
comes necessary to have both versidns\ Epoq andApg) of the branching time
operators. For example, to specify the intuition of havingpécy that guarantees
to reach a safe state that will never regcfrom then on no matter what happens,
both versions are needed in formlgy CO(—-E<$p). The intuitive meaning of the
operatorA g is ‘for all paths that are consistent with the policy undensidera-
tion’ and the operatok o is ‘there exists a path that is consistent with the policy
under consideration.” When each policy is a mapping fromest&t actions, this
new language is called-CTL*. As will be described in the following sections, in
rm-CTL*, if a goal is represented &S,,<Cp, policy m, &, ™8, and iy satisfy the
goal while policyrg does not satisfy the goal.

However, inf-CTL*, a goal that only accepts but rejects other policies can-
not be represented. One step further, a user may want a gecifisg for each
subset of m, &, 18, T4, TB}. How can they be specified? Now select one such sub-
set to explain what is needed in representing a goal thaptcoe and 7 while
rejects other policies. Policiegg and e have the same actica in s1, implying

that if there is a policy that can guarantee tpawill be reached, the policy cho-
37

sen by the agent should guarantee to rgachn general, mechanisms are needed
to compare policies to indicate thait there is a policyin the domain to satisfy

f, the agent should take a policy to satidfy Languagernr-CTL* is extended to
P-CTL* by having two new operators’ &7 and &<, which mean for all poli-
cies and exist a policy from a state. Latter sections in thegpter will show how
various nuances of this example can be encoded in the extéadguage having
these two new operators. For example, this goal can be sgaifiP-CTL as
ApolB((& ZEpoiOp = Epoi®p) A (E P ApaiCp = Apoi©p)). Intuitively, it says
that in any state following the given policy, if there is aipglthat makeg reach-
able then the policy chosen by the agent should npaleachable. Besides, if there
is a policy that can always reaghno matter the non-deterministic actions, then in
the policy chosen by the agemtmust be reached. Given this domain, there might
be other specification im-CTL* to distinguishrg and 7 from other policies, but
the formula given above is more intuitive with the quantifica over policies.

One intuition to be captured with the quantification overig@ek is that the
expectation we have for the agent may change in the processeofittng For
example, in terms of the goal of trying the best in reachpngnitially, the agent
may not be able to guarantee thawill be reached. However, in the process of
executing, it may get lucky enough to reach a state from wteaehingp can be
guaranteed. When specifying the kind of policy that a usertsyahe user may
require that the agent should guarantee reaching fodbm then on. It seems in
[PTO1, DLPTO2], the authors also tried to capture the im@nibf modifying plans
during the execution, but their method is insufficient inrdpso [BZ04].

Going further, certain goals necessitates more generansobf policies; in
particular, policies that map from state sequences toratather than just states to
actions are needed. To compare the various goal specifidatiguages proposed

in this chapter, formal methodologies are developed forpammg languages and
38

for defining expressiveness of languages. They are usedve firat there is a goal
that can be expressed irCTL* but cannot be expressed in CTland there is a
goal that can be expressed in P-CTiut cannot be expressed imnCTL*. On the
other hand, all goals expressedrmCTL* can be expressed in P-CTLEXxpres-
siveness of a goal specification language in this contextm#gpon the definition
of the policy structure in the language. A few variationg®eCTL* and P-CTL are
defined by considering different definitions of the poliawsture. These languages

are also formally compared.

Contribution

In summary, the main contributions in this chapter are:

e Formally answering the question of “what is a goal”;

e Extending temporal logics for goal specification in nonedetinistic do-

mains by having different branching operators@€TL*;

e Further extending goal specification languag€TL* by quantifying over

policies in P-CTL;

e Pointing out that goal specification may depend on the defindf policies,
and then proposing variations gfCTL* and P-CTL that depend on differ-

ent notions of the policy;

e Proposing mechanisms and using them in formally comparpgessiveness

of goal specification languages;

e Motivating on goal specification languages that are adeptvdomains.

Structure of the Chapter

The rest of this chapter is organized as follows. SectionlBi&rates limitations

of existing logics in specifying goals in non-determirgsiomains and introduces
39

m-CTL*. Section 3.3 shows some limitations tfCTL*, and proposes a further
extension P-CTL Section 3.4 demonstrates the importance of the policgttre

in a language. Variations af-CTL* and P-CTL are then introduced. Section 3.5
formally compares expressiveness of goal specificatioguages. Some general
issues in goal specifications such as complexity and relatell are discussed in

Section 3.6. This chapter is end with summary and some futark in Section 3.7.
3.2 Limitations of CTL: Extending CTL to -CTL*

This section starts by showing that in a hon-deterministimdin, there are goals

that cannot be expressed in CTICTL* is then extended ta-CTL*.

Limitations of CTE in Non-deterministic Domains

First consider the following lemma.

Lemma 1. Consider the transition relatio®; and®, in Figure 3.3.

Figure 3.3: Transitions that show limitations of CTL

1. For any state formulg in CTL", (s, ®1) |= ¢ iff (51, D,) = ¢;

2. Leto be any trajectory ind1 (or ®,). For any path formulay in CTL",
(51, ®P1,0) = Yiff (51,P2,0) = .

Proof. The proof is based on the induction on depth of formulas. Tdéten of

“depth” of formulas is defined in Appendix A.

40

Base Caselt is easy to see that (1) and (2) are true for CTarmulas of depth

Induction Assume that (1) and (2) are true for CTtormulas of deptm < k.
That is, ifdepth{¢) < kanddeptHy) <k, then(s;, ®1) = Giff (s1,P2) = G and
(s1,P1,0) = Giff (s1,P2,0) = G.

Letn=k.

Consider state formulas of depkh It can only be the following forms: (a)
sfinsh (b)sfivsh (c) -sf (d) Epf (e) Apf, wheresf;, sf, andpf have depth
less thark.

Consider (asf; Asf. Since depth o§f; andsf, are less thak by induction
hypothesis(s;, ®1) = sfi iff (s1,P2) =sfL and (s, P1) = sh iff (s1,P2) =sh.
By definition, (s1,®1) = sfiAshiff (s1,®P1) =sf and(sy, 1) | sfo. Similarly,
(s1,®2) =sfiAshiff (s1,P2) =sfiand(sy, P2) = shh. Thus(sy, ®1) E=sfiAsth
iff (s1,P2) EsfiAsh.

The proofs for formulas of the forms (b) and (c) are similar.

Consider (dE pf. By definition,(s;, ®1) |= E pf iff there exists a trajectoryg
in @4 starting froms; such thats;, @1, 0) |= pf. itis observed thatr is a trajectory
in @4 iff o is a trajectory in®,. Sincedepti{pf) < k, by induction hypothesis,
(s1,®1,0) = pfiff (s1,P2,0) = pf. Hence,(s;,P1) = Epfiff (s1,P2) = Epf.

The proof for formulas of the form (e) is similar.

Consider path formulas of depkh It can be of the following forms: (apfi A
pfz2(b) pfivpfa(c)—pfi(d)pfiUpfa(e)Opfi(f) Opfi(9) Opfi, (h)sf, where
pf, and pf, have depth less thadn The proof of each of these cases is similar to

the proof for the corresponding state formula. O

Proposition 3. There is a goal defined as a mapping from a state and a transitio

function to a set of trajectories that cannot be expressediin*.

41

Proof. Consider the goay that maps(s;, ®1) to the set of trajectories;s;s;,
wheres; $S; is the set of trajectories with the first state besigand all remain-
ing states beingy. g maps(sy, P2) to the set of trajectories; ss; U s 5385. That is
g(s1, P1) = S192S;5, andg(sy, P2) = 195, US1S:S5.

Now show by contradiction that this goal cannot be express@IL*.

Suppose goaj can be expressed in CTlas@. In that casep (s;, P1) = s19S;
and¢ (si, P2) = 5195, Us15355. Consider the trajectorsi sz which is in the second
set but not in the first. Lets refer to it @. Based on the Definition of (s, ®),
(s1,®D1,0") £ ¢ while (s, P2,0") = ¢ in CTL*.

But, according to Lemma 1s,®1,0") | ¢ iff (s,$2,07) E ¢.

There is a contradiction and hence, ggahnnot be expressed in CTL [

Note that the proof is based on a non-deterministic domaira deterministic
domain the execution of a policy in an initial state leads tonéque trajectory
and one can simply use LTL to specify properties of that ttajy and use the
branching time operators to refer to arbitrary trajectogtarting from states in the
main trajectory. In case of non-deterministic domainsreree multiple possible
trajectories for a policy starting from an initial state. igtset of trajectories is
a subset of all trajectories from the initial state. Thus oeeds to distinguish
trajectories that areonsistent with respect to the policy of the agand arbitrary
trajectories. To express the former the operattys (and Apo) are introduced
which means that there exists a path (and for all paths, cégply) consistent with
the policy of the agent.

The syntax and semantics of this extended branching time fe@TL* is now

formally defined, in which a policy is mapped from states ttces.

Syntax of-CTL*

The syntax of state and path formulag#CTL* is as follows:
42

Definition 16. Let (p) be an atomic propositionsf) be a state formula, an¢p f)
be a path formula.
(sf)u=(p) [(sHHA(H) [(shHv(s) | ~(sH)E(pf) [A{pf) [Epai(PT) | Apai(PT)

(pf) = (sh) [(pF)V(pf) [~(pf) [(PF)A(PT) [(Pf) U (pf) |O(pf) | O(pf) | O(pf)
O

Semantics of--CTL*

The semantics oft-CTL* is similar to the semantics of CTL

Definition 17 (Truth of state formulas imt-CTL*). The truth of state formulas is
defined with respect to a triplgsj, ®, 1) where § is a state,® is the transition

function, andrtis a policy that maps from states to actions.
o (sj,®,m) = piff pistrueins.
o (sj,®,m) = —sfiff (sj, P, m) = sf.
o (5j,®,m) =sfiAshiff (sj,®,m) =sfand(sj, P, m) =sh.
o (5j,®,m) =sfvshiff (sj,®,m) =sfor (sj,®,m) =sh.

o (sj,®,m) = E pf iff there exists a patlw in ® starting from § such that

(sj,®,mM,0) = pf.
o (5j,®,m) = A pfiff (sj,®,m0) |= pf for all pathso in @ starting from §.

o (sj,®,m) |= Epg pf iff there exists a patly in @ starting from g consistent

with the policyrt such that(sj, @, ,0) |= pf.

o (Sj,®, 1) |=Apg pf iff (sj,P,mm,0) |= pf for all pathso in @ starting from

sj, and consistent with the poliay. O

43

Definition 18 (Truth of path formulas imr-CTL*). The truth of path formulas is
now defined with respect to the quadrupde, ®, 17, 0), where s is a state ® is the

transition function,ris a policy, ando is a trajectory $,Sj.1,.. ..
o (sj,®,m0) =sfiff (sj,®,m) = sf.
o (5j,®,m,0) = —pfiff (s;,P,m0) £~ pf
o (5j,®,m0) = pfiAphiff (s;,®,m0) = pfrand(s;, P, m,0) = pf.
e (5),®,m0) = pfLVvphiff (sj,P,m0) = pfLor(s;,P,m0) = pf.
o (8j,®,m0) = QOpfiff (sj11,®P,m,0) |= pf.
o (5j,®,m0) =0Opfiff (s, P, m0) = pf, forallk> j.
o (5j,®,m0) = <Opfiff (s, P, m,0) = pf, for some k> j.

o (sj,®,m0) = pfL U pfaiff there exists k> j such that(s., ®, 1,0) = pf,

andforalli, j<i<Kk,(s,®,m0)F pfr. O

Using these definitions, for a-CTL* formula ¢, a policy T satisfies a goap
from s, if (So, P, 1) = ¢ in T-CTL*. The setp (s, ®) denotes the set of set of tra-
jectories

{1y : (s,®,) = ¢ andrt; is the set of trajectories that are consistent with potigy

Goal Representation im-CTL*

Various kinds of goals which cannot be appropriately exggdsn LTL or CTL

can be expressed mCTL*. It is shown in the following.

-CTL* differs from CTL*

A few goals that cannot be represented in Cake illustrated now. Given a policy,

which is a mapping from states to actions, a user is able tckolvbether the policy
44

satisfies the goal im-CTL*. According to the definition, a policy satisfies a goal
¢ from s if (s, P, 1) = ¢. A user needs to check properties of paths in the policy
against the whole transition system. This is different fiGiL*, in which there is

no explicit distinction of the paths in the transition systand the paths follow the

policy.

1. From the initial state, if there is a path that is possiblesachp, the agent’s
policy should also allow that possibility. This goal can lkeeresented imr-
CTL" asECp — Epor©p. In a domain, given a policy, to check whether the
policy satisfies a goal or not, a user also needs to refer tespghat are not
consistent with the policy. This goal is one such exampla ¢lomain, if no
path can reaclp by following any policy of the agent, then any policy taken
by the agent would satisfy this goal. On the other hand, ifel®a policy in
the domain that has a chance of reachinthe agent must take a policy that

has a chance of reachimg

2. Navigate among states that have chances of reaghibgt do not have to
reachp. This goal specifies that from the initial state, each statae policy
has a path of reaching, where those paths may not be in the policy. This

can be represented mCTL* as:ApqJ(ECD).

Reachability Goals Corresponding to Example 2

How various kinds of reachability goals can be specifiedH€TL* is illustrated

here. The domain in Example 2 is considered.

1. G = Epoi©p: This goal specifies that from the initial state, a state wiper
Is true may be reached by following the given policy. Thisagerred to as

weak planning in the literature. In Example 2, with respedhe initial state

45

s1, the policiesrn, 1, 1B, andmy satisfy this goal, while the policys does

not.

2. GI' = Apoi©p: This goal specifies that from the initial state, a state wiger
is true will be reached by following the given policy. Thisreferred to as
strong planning. In Example 2, with respect to the initiatss;, no policy
satisfies this goal. But if the initial state 35, the policy{(s;,a2)} satisfies

this goal.

3. GL = ApaiD(Epar©p): This goal specifies that all along the trajectory — fol-
lowing the given policy — there is always a possible path ttateswvherep
Is true. This is referred to as strong cyclic planning [CPRT0%th respect
to the initial states;, this goal is not satisfied as no policy can make this true.

But if the initial state issp, policies{(s;,as)} and{(sp,ay)} satisfy this goal.

4. Gy = ApaD(ECP — Epgi©p): This goal specifies that in any stegehat
is reachable from the initial state by following the polidfyjt is possible
to reachp from s, then the agent’s policy should allow that possibility. In
Example 2, policiesn, v, 18, and 1y satisfy this goal while the policys

does not.

Given the initial state and a policy, if a propenpycan be reached in all paths
consistent with the policyt or cannot be reached in any path consistent with the
policy m, then by following the policy, the reachability of propepys not changed.
Otherwise, due to non-deterministic effect of actions, m&gent proceeds with
the execution of its policy, its situation regarding a goaynkeep changing. For
example, initially, a formula can be reached by the policy the formula is not
guaranteed by the policy. During the execution of actionthépolicy, when the

agent gets to some states, it may realize that the formuigemded to reach can no
46

longer be reached. When the agent gets to other states, itlstaealize that one
can guarantee that the formula can be reached even takingptitdeterministic

property of the domain into account.

Maintainability Goals

Reachability goals are mainly considered previously. Maiability can be con-
sidered as the opposite of reachability. For example, irdéterministic domain,
given a plan, the path formulamaintained iff—-¢ cannot be reached. It is also the
case in the non-deterministic domain. In languag€TL", Epo ¢ and —Apg—¢
are equivalent for any path formuda As a consequence, in formulating the goals
about maintainability, a user can indeed translate themthe goals of checking
whether a state can be reached or not, thus the various satfarachability from
the previous section have corresponding notions of maiakality.

For example, according to the relationship between realdiyadnd maintain-
ability, here are a few observations in the following.

If a propositional formula can be maintained in all trajece consistent with
the policy or cannot be reached in any trajectories congistéh the policy, then
the maintainability of this propositional formula will nohange during the execu-
tion of the policy. In other cases, for example, in the ihisi@te, by following the
policy, a formula can be maintained in some trajectoriesniotiin all trajectories.
During the execution of the policy, the agent may find out thatpath formula can
be maintained in all trajectories starting from the stats ih. It is also possible
that the agent may find out that the path formula cannot betaiagd in any of the

trajectories starting from the state it is in.

Goals Composed of Multiple Sub-goals

Now consider goal specifications that are composed of twegsalls. The com-

position is based on asking the following questions: Doesatpent has to reach
47

the first goal? When does the agent give up the first goal? Whefirshgoal is
reached, does the agent still need to reach the second goa¢h thh first goal
cannot be reached, does the agent need to reach the secéhdingibee process of

reaching the second goal, does the need to keep an eye orstigoél?

1. The policy must reach, and must reach after reachingp. The agent starts
to considerg only after reachingp. The agent does not care whetligis
reached or not in the process of reachmgThe -CTL* representation of

this goal isApoi O (P A Apoi<0).

2. In a state if it is possible to reagh try to reachp until it is impossi-
ble to do so. From the state thptcan never be reached, try to reagh
until it is impossible to do so. Tha-CTL* representation of this goal is

ApoID((EOp — Epol<>p) A ((FECPAESCH) — EpoIOQ))-

3. If there is a trajectory that makes it possible to reaclry to reach it. If
you are in a state thgi can never be reached, you must regdinom that
state. Ther-CTL* representation of the goal Mo 0((ECP — EpoiOp) A
(=(EOP) = Apai©a)).

4. Make sure that goglV qis reached finally. Besides, in any state, if it is pos-
sible to reactp and the action cannot lead the agent to a state where neither
norq can be reached, the agent tries to repchherr-CTL* representation of

this goal is(ApoiC(PV d)) A ApaiT((ECPAApel O AC(pV) — Epai©p).

In these examples, in some cases, the agent not only wantew Whether
there is a path from a state that can repar not, but also wants to know whether
there is a policy from a state such that all paths consistétht tive policy from
that state can reaghor not. To better satisfy this, operators that quantifyingro

policies are needed.
48

3.3 P-CTL: The Need for Higher Level Quantifiers

In Example 2, when considered from the starting ssateartitions the set of poli-
cies{m,..., 15}, T-CTL* can be used to express a few goals but no specifications
only acceptgy is given. Sometimes, there is a need of comparing propestias
policy with properties of other policies in the domain. Inrfpaular, if accepting
only s means that only the best policy is accepted, this goal carecepresented

in -CTL*. The following shows that this goal and other partitiond o, . .. , 75}

can be expressed when there is an enhanced language thet gli@antification

over policies.

Quantifying Over Policies

An example to illustrate the need of quantifying over p@gis given firstly.

Example 3. Consider the two transition diagran®; and ®, of Figure 3.4, which
may correspond to two distinct domains. The two diagrams hiatesss and 9,
and actions aand @. In state g the fluent p is false, while p is true in state &
both transition diagrams ais a non-deterministic action which when executed in
state § may result in the transition to state er may stay in g, and when executed
in s, stays in s. The action ais only present in the transition diagradm and if it

is executed in statg $hen it causes the transition te.s

a

2 a2 az a2

. a

S5

sl \312/ s2 sl s2
®; ®;

Figure 3.4: Transitions that show limitations@fCTL*

Now suppose the agent, which is in state(where p is false), wants to try

its best to get ts, wherep is true. Aware of the fact that actions could be non-
49

deterministic and there may not always exist policies tlaat guarantee that the
agent reachep, the agent and its handlers are willing to settle for lesshsas
a strong cyclic policy, when no better options are availafdleus for the domain
corresponding to transition diagrafyp, the policy m= {(s1,a2),(S,a2)} is an
acceptable policy. But it is not an acceptable policy for thendin corresponding
to transition diagran®1, as there is a better option. ¢y if one were to executa;
in 51 then one is guaranteed to reaghwherep is true. Hence, with respect tby
only the policyr” = {(s1,a1), (S2,a2)} is an acceptable policy.

The following proposition shows that the above discussed gidguaranteeing
to reachp if that is possible and if not then making sure tpas always reachable’

cannot be expressed usimgCTL*. For that the following lemma is needed.

Lemma 2. Consider®4, ®, in Figure 3.4, andit = {(s1,a2), (S2,a2) }-

(i) For any state formulap in -CTL", (s1,®1, 1) = ¢ iff (S, P2, 1T) = @.

(i) For any path formulayp in -CTL* and any patto in ®1 (or), (51, P1,1T,0) =
Yiff (s, Do, M,0) = .

Proof. The proof is based on the induction on the depth of formulas.

Base caselt is easy to see that (i) and (ii) are true for formulas oftteh

Induction Assume that (i) and (ii) are true for formulas of depth ldssntn,
and show that (i) and (ii) are true for formulas of depth

Consider state formulas of depthlt can be of the following forms: (fy Asf,
(b)sfivsth (c)—sfy (d)Epf (e)Apf (f) Epaipf (9) Apaip f, wheresf;, st andpf
have depth less than

Consider (dEpf. By definition, (s, ®1, 1) = E pf iff there exists a patlo in
®; starting froms; such that(s;, ®1,7,0) = pf. It is observed that is a path
starting from g in @ iff g is a path starting fromsin ®,. Since depth opf is less

thann, by induction hypothesigs;, ®1, 1, 0) |= pf iff (s1, P2, 11, 0) = pf. Hence,
50

(s1,®P1,1M,0) = Epfiff (s1,P2,11,0) = Epf.

The proofs for formulas of other forms are similar.

Consider path formulas of depth It can be of the following forms: (apfi A
pf2 (b) pfav pfz (c) =pfi(d) pfa U pfz (e) Opfa (f) Cpfi(9) Opf, wherepf;
and pf, have depth less tham The proof of each of these cases is similar to the

proof for state formulas. O

Proposition 4. There is a goal defined as a mapping from a state and a tramnsitio

function to a set of set of trajectories that cannot be exgedsn-CTL".

Proof. This proposition is proved by defining a goal and proving itruat be ex-
pressed im-CTL*. Consider the goaj that mapgs;, ®;) of Figure 4 to the set of
set of trajectories expressed f§1s,s5} and mapss;, ®,) of Figure 4 to the set of
set of trajectories expressed {81S;S,S5}. This is denoted ag(si, P1) = {1555},
andg(sy, ®2) = {s1S75s;}. Now show by contradiction that goglcannot be ex-
pressed in languageCTL*.

Otherwise, supposg can be expressed in-CTL* as¢. According to For-
mula 3.1, if goal can be expressed as formglan -CTL*, Letg(s,®) = ¢ (s, P)
in -CTL* for all states and transition grapl®. Thus¢(s;,®1) = {s15s;} and
¢ (s1,P2) = {s15/%5}-

Let policy mbe{(s1,a2), (2, a2)}.

Now show that(s;, ®1,) = ¢. According to the definitiong (s, ®) denotes
the set of set of trajectories
{1y : (s,®, M) = ¢ andry; is the set of trajectories that are consistent with potigy
If (s1,®1,m) = ¢ in T-CTL*, the set of trajectories consistent within (s, ®1)
is in ¢(s1,P1). However, the set of trajectories consistent withn (s;,®1) is
1819285, ands1S(S; & @ (S1, P1). Thus(sy, @1, 7M) = ¢.

Now show that(s;, ®», 1) = ¢. According to the definitiong (s, ®) denotes
51

the set of set of trajectories

{1y : (s,®, M) = ¢ andry; is the set of trajectories that are consistent with potigy

As s15;9S5 € @ (s1, D7), there is a policyT in @ such tha(s;, ®,,) = ¢ and the

set of trajectories consistent witll is s;S;s,s5. 1Tis the only policy such that the

set of trajectories consistent with itsgs;s,s;. Thusim= 17 and(s, ®2, 1) = ¢.
Thus(sy, ®1, 1) £~ ¢ and (s, P, 1) = ¢. According to Lemma 2, for all for-

mulas¢ in T-CTL*, (s,®1, 1) = ¢ iff (s,P2, 1) = ¢.

There is a contradiction. Hence the ggalannot be expressed mCTL*. [

The goal defined in the proof satisfies the following requieatn
“All along your trajectory
if from any state p can be achieved for sure
thenthe policy being executed must achieve p,
elsethe policy must make p reachable from any state in the trajgét
While the therand elseart of this goal can be expressed®CTL*, the if part
can be further elaborated athére exists a policy which guarantees that p can be
achieved for surg and to express that, one needs to quantify over policidgisT
a new existence quantifiéf.”” and its duale &7 are introduced, meaning ‘there
exists a policy starting from the state’ and ‘for all polgistarting from the state’
respectively.

Syntax of P-CTL

The syntax ofr-CTL* is extended to incorporate the above mentioned two new

quantifiers.

Definition 19. Let (p) denote an atomic propositiofs f) denote a state formula,
and(pf) denote a path formula. Intuitively, state formulas are pufes of states,
path formulas are properties of paths. With that the synfestate and path formu-

las in P-CTL* is as follows.
52

(sf) = (p) | (sT)A(sf) | (sf) Vv (sf) | ~(sh)| E(pf) | A{pf)
| Epol(Pf) | Apol(pf) | £2(st) | 7 Z(sf)

(p) i=(sH) [(PF)V(PF) [=(pf) [(P)A(PH)| (pf) U (pf) [O(pf) [O(pf) | O(pf)

O

Note that in the above definitiofi. (s f) is a state formula. That is because
once the policy part o’ < is instantiated, the reminder of the formula is still a
property of a state. The only difference is that a policy hasrbinstantiated and
that policy needs to be followed in the reminder of the foranuhless specified

otherwise. The semantics of P-CTis defined as follows.

Semantics of P-CTL
The semantics of P-CTLis related to the semantics ofCTL*.

Definition 20 (Truth of state formulas)The truth of state formulas are defined with
respect to a triplg(sj, @, 1) where § is a state,® is the transition function, anar

is a policy as a mapping from states to actions.
o (sj,®,m) = piff pistrueins.
o (sj,®,m) = st iff (s, P, m) - sf.
o (5, ®,m) =sfiAshiff (sj,®,m) =sfand(sj, P, m) =sh.
o (5j,®,m) =sfVvshiff (sj,®,m) =sfor (s, P, m) =sh.

o (sj,®,m) = E pf iff there exists a patlw in ® starting from § such that

(sj,®,mM,0) = pf.
o (sj,®,m) =Apfiff (sj,®,m0) = pf for all pathso in @ starting from s.

o (sj,®,m) |= Epg pf iff there exists a patly in @ starting from $ consistent

with the policyr such that(sj, @, m,0) = pf.
53

o (S, ®,m) = Apo pf iff (sj,®,m,0) = pf for all pathso in @ starting from

sj consistent with the policy.

e (sj,®,m) = &2 sf iff there exists a policyr being a mapping from states

to actions consistent witt such that(sj, @, 1) |=sf.

o (si,®,m) o/ P stiff (s,®,) |=sf for all policiesr” that are mappings

from states to actions consistent with O

Definition 21 (Truth of path formulas)The truth of path formulas are now defined
with respect to the quadruple;, ®, 11, 0), where $,® and T are as before andr

is an infinite sequence of statgss., 1, ..., called a path.
o (sj,®,m0) =sfiff (sj,®, m) = sf.
o (5j,®,m0) = —pfiff (s;,P,m0) £~ pf
o (5,®,m0) =phAphiff (sj,®,m,0) = pfrand(s),®,m0) = ph.
o (5j,®,m0) = pfLvphiff (s;,®,m,0) = pfLor(s;, P, m0) = pf.
o (8j,®,m0) = QOpfiff (5j11,P,m,0) |= pf.
o (5j,®,m0) =0Opfiff (s,P,m0) = pf, forallk> j.
o (5j,®,m0) = Opfiff (s, P, m0) = pf, for some k> j.

e (8j,®,m0) |= pfL U pfiff there exists k> j such that(s., ®, 11, 0) |= pf,

andforalli, j<i<Kk, (s,P,m0) = pfi. O

Now define when a policyr that maps from states to actions satisfies P-CTL
goal ¢ given an initial statep, and a transition functio.
Similar to the definitions in-CTL*, for a P-CTL' formula¢, a policy it satis-

fies a goalp from o, if (So, P, 1) = ¢ in P-CTL". Let the setp(s,®) denotes the
54

set of set of trajectories
{1y : (s,®, M) = ¢ andry; is the set of trajectories that are consistent with potigy
For any transition functiorp, a patho in ® and for all policiesrt that map
from states to actions, and a formglan m-CTL*, (sp, P, 11,0) = ¢ in -CTL* iff
(S0, P, 1m,0) = ¢ in P-CTL". Which implies that with each policy being a mapping
from states to actions, all goals that can be expresseelGiL* can be expressed
in P-CTL*. Considering Proposition 4, P-CTls a proper superset of language
CTL* and is strictly more expressive. More on this will be disedss Section 3.5.

Goal Representation in P-CTL

Several goal examples that can be expressed in P-@hile cannot be expressed
in -CTL* or other languages such as CTik now illustrated.

Section 3.2 explored various goals that can be expresseddmL*. Based
on goal specification&Z, G, andGL, the new quantifiers in P-CTLs used to
express conditions similar to the ones mentioned in theno@gy of Section 3.3.

Cw = & ZEpq©p: This is a state formula, which characterizes states with re
spect to which (i.e., if that state is considered as an Instiate) there is a pol-
icy such that if one were to follow that policy then one cant bat guaranteed
to, reach a state whengis true. Similarly, defineCs = & ZA 0 Cp, andCse =
& P ApolD(Epoi¥p).

These three formulas are not expressibled@TL*, and are state formulas of
P-CTL*. But, by themselves they, or a conjunction, disjunction @atien of them,
are not meaningful goal formulas with respect to which oneldary to develop
policies (or plan) for. Nevertheless, they are very usefilding blocks.

Recall the transition function in the proof of Propositiorgi/en as:

All along your trajectory,

if from any statep can be achieved for sure,

55

thenthe policy being executed must achigye
elsethe policy must make reachable from any state in the trajectory.

Now the above goal in P-CTLcan be expressed &§,00((&ZApoCp =
ApolOP) A (=8 PApoiOP = ApolZ(Epoi©p))).

The policy it in Figure 3.4 defined ag(s;) = 11(sz) = a2 achieves the above
goal with respect tab,, but not with respect t@b1, while the policy” defined
as1'(s) = a1, and 17 (sp) = ap achieves the above goal with respecidtp. The
reasonrt does not satisfy the goal with respectdg, is that& ZApOp is true

with respect tes, (in ®y), but the policyrr does not satisfi o <.

Goals Corresponding to Example 2

Now use P-CTE formulasCs, Cy andCsc and -CTL* formulasGZ, GZ, andG,

to express various goals with respect to Example 2.

e G, = Apold(& PEpai©p = Epoi©p): This goal specifies that all along the
trajectory following the given policy, if there is a polichat makes reach-
able then the given policy mak@sreachable. The policies, ™, 13 andm

satisfy this goal whilew does not.

As a rarity, ther-CTL* goal Gjj = Ay O(EOpP = Epg©Op) also satisfies

these four policies.

o GY = Apog0(&PApa&p = Apoi&p): This goal specifies that all along the
trajectory following the given policy, if there is a polidyat can always reach
p no matter the non-deterministic actions, then in the poticgsen by the
agent,p must be reached.” The policies, ™ and g satisfy this goal while

8 andy do not.

° Gspc = ApalO(E PApoi0(Epai®p) = ApolO(Epai©p)): This goal specifies

that all along the trajectory following the given policy,tlere is a policy
56

that is a strong cyclic policy fop, then the policy chosen by the agent is a
strong cyclic policy forp.” The policiesrs, 13, andTg satisfy this goal while

policiesm® andr do not.

e G AGE AGE: This goal specifies that all along the trajectory followihg
given policy, if there is a policy that guarantees tpawill be reached, then
the agent’s policy must guarantee to regglelse-if there is a strong cyclic
policy for p, then the policy chosen by the agent must be a strong cyclic
policy; and else-if there is a policy that makpseachable then the policy
makesp reachable. This can be considered as one formal specifiaaitibe
goal of “trying one’s best to reacp’. Only i, amongrg — 1§ satisfies this

goal.

Goal Satisfiable policies
G, G T, T, TR, Th
GEC h, 1B, T
GE T,), Th
G\',Dv/\ GE q, T
G, A GE, Th, T8
GP AGP A GE, 0
GE A-GE, 5]
GE.A-GE B
Gl A—GE.A-GE A
GE A-GF %
GI 0

Table 3.1: Different P-CTLand-CTL* goal specifications and the policies satis-
fying them

Based on these formulations, users may have various spéoifisa Some of
these specifications and the subset of the polimes 5 that satisfy these goals
are summarized in Table 3.1. In this example, users may ha\alatrary par-

tition of {rm,---, 75}, while most of these partitions cannot be done in existing

57

languages. Language P-CTis more powerful in expressing the intention of com-

paring among policies.

Maintenance Goals and Other Goals Specified in P-CTL

In expressing goals about maintainability, the relatiamrs#CTL* goals still hold
here. Apoi@ is equivalent to-Epq—¢@ for any path formulap. Besides,o” Z¢ is
equivalent to~& Z—.

Some goals that involve two subgoapsandq are specified in P-CTL They
illustrate that the additional expressive power of P-CTd_not just for expressing

the “if-then” type of conditions discussed earlier.

e Suppose there is an agent that would like to regqblat wants to make sure
that all along the path if necessary it can make a new (coatitygoolicy
that can guarantee thatwill be reached. Hereg may be the destination
of the robot andp may be the property of locations that have recharging
stations. This goal can be expressed in P-Ca$A /0 ((& ZApaOp)UQ).

Alternative specifications in CTLor -CTL* cannot capture this goal.

e Consider an agent that would like to reach eitlpeor g, but because of
non-determinism the agent is satisfied if all along its pdtteast one of
them is reachable, but at any point if there is a policy thargntees thap
will be reached then from that point onwards the agent waldkel to make
sure thatp is reached; otherwise, if at any point if there is a policyttha
guarantees thag will be reached then from that point onwards the agent
would like to make sure thay will be reached. This can be expressed in P-
CTL* asApolT(Epol(PV Q) A (&P Ao P = ApaiOPp) A ((—& PApaOpA
& PApoi©q) = Apoi©Q))-

e Consider an agent whose goal is to maingatnue and if that is not possible
58

for sure then it must maintaig true until p becomes true. This can be ex-
pressed in P-CTLasA 0 ((o7 ZEpo~0p = Apal(QUP)) A (& P ApaDp=

ApoIDp))-

The proposed language P-CTallows the specification of such goals. P-CTL
has the ability of letting the agent to compare and analyzieips and “adjust”
accordingly. Hence, it is useful for the agent to plan in a-deterministic or
dynamic domains in which current states are unpredictable.

Although P-CTL is a rich goal specification language, it still has limitago
These limitations are partly due to the policy defined in tieguage. The next
section formally elaborates on having a different policysture in defining a lan-
guage.

3.4 P;-CTL*. Need for Different Notions of the Policy Structure

In languagest-CTL* and P-CTL, the policy structure is defined as a mapping
from states to actions. Now illustrate that the definitionpmticy structure in a

language has a great impact on the set of goals expressezllantjuage.
@ ’ @

al a2 a3

S

Figure 3.5: A transition with different policy structures

For example, in Figure 3.5, suppose the gphbs a property that it maps tran-

sition graph® and initial states; to the sets of set of trajectorigs;s;S3s14S) U

59

195148,). This goal states that the agent needs to reach (a state)wh@serue)
first and then reach.

This goal cannot be expressed by a formula in P-Cdile to the policy defined
in the language. By analyzing the transition graph, givemttiagent is initially
in states;, the agent can take the following strategy that corresptmdise set of
trajectoriess; SyS3s sy U s1514S;. The agent can initially execute actieq in
states;, and then taking action; in the resulting stats,. If a, happens to take
the agent to stats;, the agent then takes actiay. If the execution ofy in state
s, takes the agent to stasg, the agent should then execwg followed by as to
reach states,. However the strategy described above is not a mapping ftatess
to actions. It takes different actionsstthe two times it is there. It is not an action
sequence either as actiap has non-deterministic effects and no common actions
can be executed in the resulted states. In fact, given tbanital state iss;, there
IS no action sequences or mappings from states to actioasisfysthe requirement
of reachingp and then reaching in the domain. In order to capture the strategy

described above, a policy as a mapping from state sequemeaesidns is defined.

Definition 22 (Policy as a mapping from state sequences to actighgplicy 1Tis
a mapping from each sequence of finite number of states T totaomaA. A policy
is valid if for each trajectoryo € T of the form g, s, ---, fori > 0, it is true that

S11€ D(s,m(s0, 81, -+, S))- O

Having policies as mappings from state sequences to adtor new. There
are some similar definitions in the literature. It is oftetlezha strategy, an algo-
rithm, or a protocol [HF85, AHKO02]. In [BDH99], a policy is dekd as a mapping
from state-action sequences to actions. Each state-asrence is a sequence of
states and actions from the initial state to the currenéstat[DLPTO02], acontext

is attached to each state, which encodes the propertiestofibal states. As users
60

usually do not care about actions taken in the past in a gealfsgation language,
a policy is now defined as a mapping from state sequencesitmadbstead of a
mapping from state and action sequences to actions.

A trajectory consistents with a policy that is a mapping fretate sequences to

actions is now defined.

Definition 23 (Trajectories consistent with a policyA trajectoryo = 9,1, - - IS
consistent with a policyrthat maps state sequences to actions f s ®(s, 11(S,S1, - ,S))

fori > 0. O

This notion of policies is related to the notion of policies mappings from
states to actions. If a policy that is a mapping from trajgetoto actions has a
property that trajectories with the same last states argethfo the same action,
it can be simplified to a mapping from states to actions. Foh gmlicy that maps
states to actions, there is a policy that maps historiestiorescsuch that a trajectory
is consistent with one policy iff it is consistent with thénet one.

With each policy being a mapping from state sequences toreg;tgoal spec-
ification languagest,-CTL* and P;-CTL* are defined in a similar approach as
nm-CTL* and P-CTL. Relations of these languages are discussed in the next sec-
tion.

Now consider the goal of reachingand then reaching in transition graph
in Figure 3.5. The goal is representedrin-CTL* asApq&(pA <q). A policy
{(s1,a1), (5192, 82), (S152%3,83), (519251, @), (S1S28381,@4)} in Py-CTL* satisfies
this goal. This goal cannot be represented in langua@dL* or P-CTL".

Definitions of policy structures are not limited to the onedimed above. A
policy may also defined as a mapping from states to sets afre;tor from pairs
of LTL/CTL */etc. formulas to actions, etc. A goal specification languagy also

defined such that the policy of the agent can be the combmafitwo other policy
61

definitions. The policy structure represents the architecdf the agent, it denotes
the ability of the agent. For two agents with different al&k, the same instruction

given to them may lead to different outcomes.
3.5 Expressiveness of a Goal Specification Language

In previous sections, different goal specification langasagre proposed in repre-
senting goals, where each ggas a mapping(s, @) from a transition grapk and
an initial statesto a set of trajectories (or a set of set of trajectories). tfo$éor-
mulas are defined in each goal specification language. Goathen represented
by these formulas with the definition that a gagils represented by a formutfa

in the language i§(s,®) = ¢ (s, P) for any transition grapkb and states. In each
language, the definition @f(s, ®) implies the relations of goals and formulas. With
this definition, this chapter showed that there is a goal @R~ which cannot be
expressed im-CTL*, and there is a goal IR;-CTL* which cannot be expressed in
P-CTL".

In addition to this, a relation between formulas and poficgedefined based on
the entailment relation in each language. For examplas@TL*, policy rrsatisfies
a goalg from statesy in @ if (o, P, 1) |= ¢.

Comparing formulas and policies in different languages, lamguages are dif-
ferent for different reasons. The set of formulag€TL* is a proper subset of set
of formulas in P-CTL, and in both languages, each policy is a mapping from states
to actions thus these two languages share the same set@épollhis relation is
denoted asyntax-advanced

On the other hand, the set of formulas in P-CTdnd the set of formulas in
P;-CTL* are the same, while policies definedRg-CTL* are mappings from tra-
jectories to actions, and policies defined in P-CTHre mappings from states to

actions. As policies in P-CTLis a proper subset of polices Ry-CTL*. this is

62

denoted apolicy-advancedThese relations between goal specification languages

are formally defined as follows.

Definition 24 (syntax-advanced)Given two languagesiLand Ly, L; is syntax-

advancedhan Ly if

1. the set of policies in both languages are the same for amsttion systen®

and state s,
2. the set of goal formulas inplis a proper subset of goal formulas in,land

3. for a formulag¢ in Lo, an initial state s, and a transition systet a policy it

satisfiesp in L iff it satisfies¢ in Lj. O

Definition 25 (policy-advanced) Given two languagesiLand Ly, L; is policy-

advancedhan Ly if

1. the set of policies indis a proper subset of policies in lfor any transition

systentb and state g,
2. the set of goal formulas in both languages are the same, and

3. for a policymrin Ly, an initial state s, and a transition syste#y policy i

satisfies a formula in Ly iff it satisfies¢ in L. O

Based on the semantics of each language, P*GF kyntax-advanced tham
CTL*. To prove it, it is easy to check Item 1) and 2) in Definition 2em 3) is
proved by showing that for a formul@ in =CTL*, the set of policies satisfying
¢ in -CTL* is the same as the set of policies satisfygngn P-CTL*. That is,
(s,®,m) = ¢ in -CTL* iff (s,®,) = ¢ in P-CTL*. This can be implied by the
semantics of-CTL* and P-CTLE. Similarly, P,-CTL* is syntax-advanced than
;-CTL*.

63

Similarly, r-CTL* is policy-advanced tharm-CTL*. To prove it, Item 1) and
Item 2) in Definition 25 are easy to check. Item 3) states thmtly rTin T-CTL*
satisfies a formulg in -CTL* iff it satisfies the same formula in P-CTL This
can be implied by the semantics@fCTL* andrg,-CTL*.

However,P;-CTL* is not policy-advanced than P-CTLIn checking the Item
3) in Definition 25, for the same formula, semanticséo#” and.v &2 in two lan-
guages are different. They states the comparison of altipslin the language,
while these two languages have different sets of policies.

Note that in languages-CTL*, P-CTL", r-CTL*, andP,;-CTL*, ¢ (s, P) are
all defined as a set of set of trajectories
{1y : (s, P, m) = ¢ andry; is the set of trajectories that are consistent with potigy
Thus these languages can be compared based on the set aéxmalssed in each

of them.

Proposition 5. Given a goal that is a mapping from states and transition gsafo

sets of set of trajectories,
e A goal expressed im-CTL* can be expressed in P-CT,L
e A goal expressed im,;-CTL" can be expressed in,FCTL".

Proof. Let ¢ (s, ®)™ T be ¢ (s, ®) in languager-CTL*. Let ¢(s,®)PCTL pe

¢ (s,®) in language P-CTL Suppose a gog can be expressed mCTL* as¢.

g(s, @) is defined agp(s,®)™CT for any states and transition grapl®. Now
prove thatd (s, ®)™CTH = ¢ (s, @)PCT As P-CTL* is syntax-advanced than
-CTL*, the set of policies satisfying in these two languages are the same, and
policies defined in these two languages are the same@.(4sp) is defined as

{1y : (s, P, M) = ¢ andry; is the set of trajectories that are consistent with potigy

64

¢ (s, ®)TCTH = ¢(s,®)P~CT. Thus a goal expressed m-CTL* can be ex-
pressed in P-CTL
It is similar to prove that a goal expressedng-CTL* can be expressed in

Ps-CTL*. O

However, there is no such relations betwee@TL* and,-CTL* or between
P-CTL* andP,;-CTL*. For example, considering a goal that mapsand®; to a
set of set of trajectoriefs; s;$,S5, $1S,S5 } in transition graph; of Figure 3.4. This
goal can be be representediirCTL"* asApq&p. However, this goal cannot be
represented a&po O pin 1;-CTL*. The formulag = Ao p mapss; and®; to a
set of set of trajectories that consists of a lot more elemdfar example, a set of
trajectoriess; S15S; U $1S2S;5 is one element i (s, ®1). A policy in 1,-CTL* that
try actionay twice before taking action; in states; is a policy satisfying this goal
in 1;-CTL*.

There are other approaches of defining expressiveness dlapecification
language. In Appendix B, another approach of defining exwessss of a goal
specification language is proposed. It has different ptegseras the framework

proposed above.
3.6 Discussion and Related Work

In this section, a few issues related to goal specificatiomgiacussed. This section

starts with the importance of the policy structure in a gpaicification language.

Goal Specification with Different Policy Structures

The goal “try your best to reach” has properties of comparing policies of the
agent. Thus the agent need to be aware of the set of policadsalale to her before
she can choose the best one. This goal cannot be capturestlopiparing sets of
trajectories in the transition graph, as some sets of t@jes may not be available

to the agent even though they are the best trajectories.
65

As there may be different definition of policies in a traritsystem. Depend-
ing on different initial states and different transitiorssm the agent is in, a goal is
a mapping from the “possible ways the world could evdiwethe agentto “some
desired ways”. Each “possible ways the world could evolvetlie agent” stands
for a possible state structure that are available to thetaggch is usually ties to
the policy structure of the agent. This implies that in soaes, users may not only
need to consider how the world may evolve, but also need tsidenhow the world
may evolvefor the agent This is interesting as different agents may have different
policy structures. Thus for the agent to choose the “besbigt among the ones
that are available, the agent need to know all the optiortsattgaavailable to her.
How the world may evolve for the agent can be expressed byle wf an initial
states, a transition functior, and a policy structure” of the agent. In previous
section, when one specifies a goal in the languag€3L*, ri,-CTL*, P-CTL" and
P»-CTL*, a particular policy structure is assumed implicitly or kxifly. However,
sometimes, users may have a requirement in mind while usersoaaware of the
particular ability (i.e., policy structure) of the agenthus the following definition

on goals might be needed.

Definition 26. A goal g is a mapping from triples of initial state s, transitifunc-
tion @, and policy structure?’ to sets of trajectories (or sets of set of trajectories),

which is denoted as(g, ®, &).

Let g be a formula in goal specification langudges be the initial statep be
the transition function. Now a goal can be expressed as aulargnin language.
if

P(s, P,) =9g(s,P, 7).
With this definition, when a goal is given to the agent, usersot need to be

aware of the policy of the agent. Each agent can interpratettpgirement based on
66

its own policy structure and then choose the corresponditigips to execute.

Limitations of Goal Specification with Temporal Logics

A few limitations of current goal specification with tempblagic approach are
listed now. All temporal logic approach in goal specificatgiare these limitations.

Firstly, there is no elegant way of comparing states expliciCurrent goal
specification languages only specify properties of thecgdiken by the agent in
terms of relations of fluents. There is not explicit repréggon and comparison
of states, which is necessary in some cases. For exampts,raag want to make
sure that the agent stays in the first state where flpastreached, or users may
want to prevent the agent from visiting the same state twiRepresenting such a
requirement in an elegant way is a challenge problem.

Secondly, current goal specification languages are not gobdndling paths
consist of a finite number of states. For example, users venagent to find
a policy such that the agent cannot regghbut must stay in the first state from
where there is a policy that guarantees to repdh.g., a state s.t& ZA0 O p).

In a non-deterministic domain, users can try to encode tred goP-CTL" as
(AparCO(E ZApa©P)) A ApoD—p but the formula does not exactly capture the
intention of staying in that state. Given a finite state segagit can be extend
to an infinite state sequence by appending the last statehvidithe result of the
action ‘nog. On the other hand, given an infinite state sequence, itiasy to

get a properly defined state sequence of a finite number efstat

Complexity Issues

So far in this chapter the issue of complexity of planning plath checking with
respect to goals in the various proposed languages hasemelplored. The com-
plexity results not only depend on the goal language but@tsloow the transition

diagram is encoded. This section points to some of the e@digers on complex-
67

ity with respect to temporal logics [WDO05, JL03, LMOO06, BKTCdhd presents
one sample result where the transition diagram is encoded @ action lan-
guage. In particular, the language considered is STRIPSextansion of STRIPS
representation of the transition system in [FGO0O] thatvedl@actions to have non-
deterministic effects. In short, actions in STRIPS+ compasfepreconditions in
pre, deterministic effects il_eff, and non-deterministic effects ireff. The input
and output of the problem is now defined:

Given an action signaturg/’, ., <7, a statesy in Sdenoted as the initial state,
the transition functior® defined by the action language in [FGO0O0], and a temporal
formulag in goal specification languade thePlan Existence Checkingoblem is

about deciding whether there is a polimysuch thatfsy, @, 1) =L 0.

Proposition 6. Deciding whether there is a policy in a non-deterministic dom

that satisfies ar-CTL* formula is EXPTIME-hard.

Proof. To prove that the problem is EXPTIME-hard, EXPTIME-complptoblem
G4 [SC79] is reduced to a plan existence checking problem.

In a G4 problem, a 1BNF formula f and two sets of variables are given as
input. There are two players in the game. Each play has ored satiables. Each
player can choose one variable belong to him and flip it. Tvay@is take turns
with passing allowed in flipping variables. The outpui@jf problem is true if the
first player has a policy to guarantee winning the game. Thpubus false if no
such policy exists for the first player.

The translation from &, problem to a plan existence checking problem is
defined as follows:

For each variable in the G4 problem, there is a fluemtin the non-deterministic
planning problem. Let the set offluents corresponding to playArbe Ra. The set

of r fluents corresponding to playBrbe Rg. Besides, there is an extra flueRtm
68

for the planning problem. It indicates whether it is playés turn to execute the
next action.

In the planning problem, there are two sets of differentoansti Conceptually,
one set of actions corresponds to actions of pl&yexhile the other set playes.
One action belonging to playér can be executed only A is true in the state.
On the other hand, one action belonging to plagean be executed only Am
IS not true in the state. The set of actions executable byeplyare deterministic
actions. The number of actions executable by pl#ydoubles the size dRa. For
each fluent in Ra, there are two action8lip,; and flip,; such that they will make

the fluentr true if it is false, and make it false if it is true.

flipr pre: Awm,r
d_eff : =Awm,r

fliprs pre: Awm,
d_eff : =Awrm,r

Besides, there is a dummy action, which corresponds to the thasugh of

playerA:

dummy pre: Awm

d_eff : =Awm

Only one action can be executed whig, is not true, it changes at most one

fluent fromRg.

actiorg pre: —Awrn

d,eﬁ: Aturn
i_eff: {rb]_}, {_‘rbl}7 Ty {rbr}a {_'rbr}

69

Whererpy,---,rpe are all fluents inRg. Note thatactiong may not chance value
of any fluent, which corresponds to the pass through of plByaVhenaction B
changes value of fluents, it can only change value of at masflaent at a time.
Length of theaction B is polynomial to the number of fluents Rs. It is a polyno-
mial time translation. Note that ays action will makeAy,n, false and the action
actiong will make Ay true. By this, playeA andB take turns in flipping fluents.

Given the formula inG4 problem beingf, the -CTL* goal to be checked is
Apol(=(Aumn A T)U(=Awm A)). The claim is that there is a policy for playér
iff there is a policy, i.e., a mapping from states to actidnssatisfy the goal in the
transformed planning domain.

Firstly, it is easy to see that it is a polynomial time redocti Now prove the
correspondence of these problems:

If there is a policy for playeA to win the game, then playérhas a policy that
while execute the action he choose, no matter what pRpecute, will guarantee
to reach a state wherkis true while in the process of reaching that state, there is
no state that persddmakesf true. Note that the policy taken by play&must be
a mapping from states to actions.

On the other hand, if there is a policy satisfying th&CTL* goal, there is a
policy for playerA.]

From the proof, it is known that the program can be encoded aiP-CTL
formula. Thus deciding whether there is a policy in a noredatnistic domain
that satisfies a P-CTLformula is EXPTIME-hard.

Now define the policy checking problem to check whether a goahtisfied
by a policy. Given an action signatute’,.#,<7), a statesy in S denoted as the
initial state, the transition functio® defined by the action language in [FGO0O],

a policy T that is a mapping from states to actions (or a policy that isetion

70

sequence, or a mapping from state sequences to actionsy,tangoral formula
in goal specification languade the em Policy Checking problem is about deciding

whether or no{sy, @, M) = g in languagd..
Proposition 7. The policy checking problems farCTL* is PSPACE-complete.

Proof. Itis known that the model checking problem for CTis PSPACE-complete [EL85,
Sch03] in deterministic domain. The model checking for LEPSPACE-hard [SC85].
Similarly, the model checking for-CTL* is PSPACE-hard as well.

The following shows that the policy checking problem fsCTL* is in PSPACE.
An algorithm is constructed based on the algorithm for CTIwo transition func-
tions are defined. They proceed simultaneously. One of éimsition function isb,
and the other one @, the transition function corresponding to the policyf the
agent. Take a similar approach as in Section 4 of [AHKO2] afdormulag, all its
sub-formulas are considered. Label each state and ®,; with all sub-formulas
of ¢ that are satisfied in the state. A sub-formula is constructedrsively. If the
sub-formula is constructed by precedifig, or Eyq, check and update on the tran-
sition function®;. If the sub-formula is constructed by precediagr E, check
and update on the transition functign All the remaining are the same as CTL
in both transition function. As the checking for CTis in P-SPACE, the policy
checking problems for-CTL* is in P-SPACE. [

Related Works

In the history of computer science, there has been a lot efarek in specifying
purpose of programs, and proving correctness of prograrisrespect to given
specification, using temporal logic. Temporal logics wesedifor specification and
verification of concurrent systems and some of the work agsented in the books
such as [CM88, MP92] and surveyed in [Eme90]. Some work hasteen done

on automatically and semi-automatically synthesizing [MMMBES81, PR89, ES84]
71

parts of a concurrent programs. Most of the work is on extemltigics to have met-
ric intervals [BK98], qualitative measure on elapsed timgveen the occurrences
of the events [Pnu77, AH93], or having a timed transitiontesys[DCDSO01], or
in a game-like multi-agent system [AHKO02, vdHJWO05]. There some work on
making use of temporal connectives for specifying the admirograms of semi-
autonomous systems. The early research on this includdatelsmsed temporal
logic in [McD82b], the interval based logic in [AlI84], anté interval based gen-
eralization of state based temporal logic in [Sho87]. Howge temporal logic to
specify goals of agents is not well studied in those direstio

Different from those work, in using temporal logics in gopksification, this
chapter points out that as richer and richer goal specificdéinguages are devel-
oped, languages that are intimately associated with theypstiucture of the agent
are needed. For agents with different policy structuresbdities, the same intu-
ition might have different interpretations. For exampfea user asks the agent to
try its best to reaclp, one agent may not even execute a single action as long as
he can convince the user that he is not able to rgacim that case, the user still
consider the agent as tried his best. The other agent in the site might have to
reachp as he has a different policy structure and is capable of neggh

Languagerr-CTL* captures the intuition of grouping the set of trajectories a
sociated with the policy under consideration. Some contrfitom [DLPTO02] cap-
ture the same intuition. However their language is somewtthbgonal to tempo-
ral logics and as a result using their language one canntat bpion the existing
expressiveness of temporal logics such as LTL and*CTQn the other logics pro-
posed in this chapter build up on existing temporal logingBZ04] a more detailed
and critical analysis of their language is given. The pajs points point out ad-
ditional limitations of the work in [DLPTO02]. Similar tar--CTL*, in [dLPdB08],

logic a-CTL* was proposed by branching on actions instead of the setjettoa
72

ries in a policy.

Quantification over policies was proposed in the contextashgs in the lan-
guage ATL and ATE [AHKO2]. An extension of that called CATL [vdHJWO05]
has also been proposed. They are similar to P-CTHowever, their focus in on
games. If a user considers the domain to be non-deterngiistnain, there is no
easy way of single out each path. If a single deterministio@a is considered, it is
not obvious that one can have a 1-1 correspondence betwesanfthrmalisms and
ours as the transition considered in P-CT& non-deterministic. For example, one
may have a translation from this formalism (one person, lilt mon-deterministic
transitions) to their formalism (two person games with detaistic transitions) to
take care of the non-deterministic effects of actions. kangle, the actiom; and

ag in states; in Figure 3.1 is translated to actions in Figure 3.6.

Figure 3.6: Differences of ATL and P-CTlin specifying goals

Note that states; ands, are new states ara, a;, a, andag are new deter-
ministic actions.a andag are actions of the first agent aag), a;, a; andag are
actions belong to the second agent. A similar translatiorotber states and ac-
tions can be done. With this translation, their formalism ba used to take care
of non-deterministic actions. However, their formalisrmigat be used to represent
all goals in-CTL* and P-CTL. In P-CTL", Ef and& ZEq f correspond to dif-
ferent set of paths. The latter only consider the paths thikiws a policy while

the first formula consists of all possible paths in the dom&imilarly, Af and

73

o PApo f have different meaning. In general, P-CTallows non-deterministic
domains, it distinguishes between the definitions of alhpaind the set of paths due
to the agent actions while this distinction is not capturedTL, ATL* or CATL.
However, it might be true that their formalism can be usedefareésent goals in
P-CTL*. Definition of the policy plays an important role in thesedaages while

the impact of policy definitions is not considered in ATL antlLA.
3.7 Summary

Systematic design of semi-autonomous agents involvesfgimec(i) the domain
description: the actions the agent can do, its impact, tve@@ment, etc.; (ii)
the control execution of the agent; and (iii) directivestfug agent. While there has
been a lot of research on (i) and (i), there has been relalizes work on (iii). This
chapter made amends and explored the expressive powesthgxemporal logic
based goal specification languages. This chapter showeith fi@sence of actions
with non-deterministic effects many interesting goalsnmrbe expressed using
existing temporal logics such as LTL and CTLThis chapter gave a formal proof
of this, and showed showed that by introducing additionahbhing time operators
Apol @andEpo Where the path is tied to the policy being executed users xjamress
the goals that were thought inexpressible using tempogat lm [DLPT02]. A
new languaget-CTL* was proposed. This chapter then illustrated the necessity
of having new quantifiers which are called “exists policy'ddffior all policies”
and developed the language P-CMhich builds up orrr-CTL* and has the above
mentioned new quantifiers. The chapter further extendedytia¢ specification
languagest-CTL* and P-CTL to r,-CTL* andP,-CTL* by adopting a different
and more expressive policy structure. It turns out that reavgliages with such
new policy definition exhibit different properties tharCTL* and P-CTL. Such a

result reveals the importance of agent structure in goalip&tion languages. In

74

particular, in goal specification languages, to betterthgitagent, one should take
the agent architecture into account. This chapter showadrhany of the goals
that cannot be specified in earlier languages can be speicified newly proposed
languages.

An interesting aspect of this work is that it illustrates thiference between
program specification and goal specification. Temporalckgiere developed in
the context of program specification, where the progranestants are determin-
istic and there are no goals of the kind “trying one’s besti.cbgnitive robotics,
actions have non-deterministic effects and sometimes eepstrying until one
succeeds, and similar attempts to try one’s best. The pegblasiguage P-CTL
allows the specification of such goals. P-CTas the ability of letting the agent to
compare and analyze policies and “adjust” its current goabadingly.

An orthogonal expressiveness issue is related to the pstiiagture. This chap-
ter focus on the policy structures as a mapping from statextions, and as a
mapping from histories to actions. A framework of formalbneparing expressive-
ness of goal specification languages is proposed. Theaetabietweenr-CTL",
P-CTL, ,-CTL*, andP,-CTL* are examined. The approach for comparing these
languages can be easily extended to compare richer langusigeh as the ones
with policies that map LTL and CTLformulas to actions.

In terms of future work, the connection of goal specificatmal planning is an
interesting topic. This chapter illustrates that in morpressive goal specification
languages, some strong requirement of the goal reduces#iehsspace. One
conjecture is that as the goal specification languages gaesamd more expressive
and specific, some categories of the planning problems wgpeact to such goals

might become easier to solve.

75

Chapter 4

N-LTL AND ER-LTL: NON-MONOTONIC TEMPORAL LOGICS THAT
FACILITATE ELABORATION-TOLERANT REVISION OF GOALS
In many domains such as in a human-robot interaction donileenal rescue and
recovery situation, as the situation unveils physicallynathe user’s mind as time
goes by, goals once specified may need to be further updatased, partially re-
tracted, or even completely changed. Retract the earliarifggion and give a
completely new specification is undesirable as it costsipusctime in terms of
communication and formulation for the new specificationd amay not even be
appropriate, as the agent may have started acting basede aather specifica-
tion. ldeas from the knowledge representation commungyeatrapolated, where
non-monotonic knowledge representation languages apoped for elaboration
tolerant knowledge representation, and propose the davent of non-monotonic
temporal logics N-LTL and ER-LTL that rely on labeling sub+faulas and con-
necting multiple rules. The chapter also proposes the agprof progressing an
ER-LTL program to take care of the case that the agent haggtacting based on

earlier specifications.
4.1 Introduction

This chapter summarizes and elaborates on the papers [BAQTBZ08]. It starts
with why it is important to have non-monotonic goals, and wign-monotonic
requirements in goal specification languages are diffdrent that in classical log-
icS.

The previous chapter illustrates that an important compboé autonomous
agent design is goal specification. Often goals of agents@trgust about or not

necessarily about reaching one of a particular set of statdsalso about satis-

76

fying certain conditions imposed on the trajectory. Besideactive agents with
maintenance goals may not have a particular set of finalsstateeach. Also,
agents acting in non-deterministic domains may lead to ipleltrajectories in-
stead of one. Temporal logics such as linear temporal loglg branching time
temporal logics CTLE, m-CTL*, and their extensions [BK98, NS00, BKTO1] are
invented. Thus the use of temporal logics and temporal adives to specify
goals has been suggested in the autonomous agent commuoahipfaaaning com-
munity [BKSD95, BK98, GV99, NS00, PTO1]. In the decision thetar planning
community suggestions have been made to use temporal logspecifying non-
Markovian rewards [BBG96, BBG97, TG®86]. The previous chapter studies tem-
poral logic extensions-CTL* and P-CTL to better capture properties of goals in
non-deterministic domains.

However, in many domains such as in a human-robot interadionain like a
rescue and recovery situation, goals once specified maytadedfurther updated,
revised, partially retracted, or even completely changéds could be because at
the time of initially specifying the goal, the user did notvBaomplete information
about the situation, or he was in haste and hence he did ngetety think through
the whole situation, and as the situation unveiled phyisicalin the user’s mind,
he had to change his specification. In other cases, it is nzgssary to consider
all possible cases in giving the initial goal. The followiegample illustrates these

points.

Example 4. John has an agent in his office that does errands for him. Joégpn m
ask the agent to bring him some coffee. But soon he realiaetih coffee machine
was broken. He is not sure if the machine has been fixed or nahéterevises his
directive to the agent telling it that if the coffee machiaesiill broken then a cup

of tea would be fine. Just after that he gets a call from a colieagho says that

77

he had called a coffee machine company and asked them t@dalivew coffee
machine. Then John calls up the agent and tells it that if e noffee machine
is already there then it should bring him coffee. (Note thatald coffee machine
may still be broken.) He also remembers that he takes sugarhigttea and that
the tea machine has various temperature settings. So fsethellagent that if it is
going to bring tea then it should bring him a pack of sugar aetitee tea machine

setting to “very hot”.

One may wonder why does not John in the above example giveldheaght
out directive at the start without making further changderahat. As mentioned
earlier, some of it is because he lacked certain informasach as a new coffee
machine having been ordered; in another case he had fangditeit the coffee ma-
chine being broken, and since he takes tea less often, hddtanhitially forgotten
about the extra sugar.

In specifying goals of agents, often itis needed to spe@bignon-monotonically.
For example, initially, an agent may be given a goal of hayprtgue through the
trajectory while reaching. Later, the agent may decide to weaken its goal so that in
certain exceptional casgsdoes not have to be true. It is quite common that goals
need to changed non-monotonically. In rescue and recovetions with robots
being directed by humans, there is often so much chaos tgeith the gradual
trickling of information and misinformation that the humampervisors may have
to revise their directives to the robots quite often.

Another motivation for having a non-monotonic goal speatiien language that
allows easy updating through adding is that users may not wwagive the agent a
directive that is too specific, too complicated, and thaesaikto account all pos-
sible exceptions, from the very beginning. Besides users moagven know all

the exceptions initially. A good non-monotonic goal speaifion language should

78

allow users to specify a simple goal initially and shoulawallusers to refine it by
adding new exceptions. All in elaboration tolerance manner

To deal with the problem that the goals are unclear initi@iiyneed to be
changed later on, one approach would be for the agent toceeilaoriginal goal
by a revised goal, coming up with a completely new revised, gwabtaining the
revised goal by doing surgery on the original goal specibcatHowever, that may
cost precious time in terms of communication and formutatibthe new specifica-
tion, and may not be even appropriate, as the agent may glheaé started acting
based on the earlier specification. Besides, this violategptimciple of elabora-
tion tolerance. These are limitations of existing temptwgics. What is needed is
a goal specification language that allows users to updatgdakspecification by
simply adding new statements to the original specificat®uch a goal specifica-
tion language would be non-monotonic.

This raises the question of choosing a goal specificatioguage that can be
revised or elaborated easily. As McCarthy says in [McC98], tanahlanguage
would be more appropriate. However, there is still a need foriaal language,
sometimes as an intermediary between a natural languagéhandachine lan-
guage and other times as a goal specification language. @oingjdhe necessity
and usefulness of temporal logics in specifying trajee®iin standard planning
and in specifying non-Markovian rewards in decision th@onqganning, to remain
upward compatible with existing work in these directiomss tvork stays with the
temporal connectives in temporal logics. The question thekVhat kind of tem-
poral logic will allow users easy revision of specificati@ns

In other aspects of knowledge representation, the use ehmmotonic logics
for elaboration tolerant representation [McC98] is oftemadted and for reasons
similar to the example above: Intelligent entities neectespn and make decisions

with incomplete information and in presence of additiomébrmation they should
79

be able to retract their earlier conclusions. Thus a nonatamc temporal logic
could be a good candidate for the purpose.

Looking back at the literature, although there have beenynpaoposals for
non-monotonic logics [McD82a], so far only two [FH91, SapB@n-monotonic
versions of temporal logics are found. The first extends-apistemic logic with
temporal operators and does not explore issues such asatlahdolerant repre-
sentation of exceptions and weak exceptions. The seconsehaantics issues that
are mentioned in the first.

This chapter proposes non-monotonic versions of tempogads$. The focus is
on the overall aim of having non-monotonic goal languages.ather than follows
the path of non-monotonic modal logics and auto-epistengeclthis chapter fo-
cuses on specific aspects of knowledge representationekdtmon-monotonicity
and borrows some specific techniques that allow such noretonitity.

One of the important use of non-monotonicity is the abilitgkpress normative
statements such as “normatiis have the propertp.” This resonates well with the
need of non-monotonic goal languages as users may needcitydpat “normally
a state should satisfy the propeqy. Accompanying normative statements users
have various kinds of exceptions. For example, consideateeold normative
statement “birds normally fly”. One kind of exception to swcktatement is that
“penguins are birds that do not fly”. It is called a strong gta. Another kind of
exception, referred to as weak exceptions, is that “injlieds are weak exceptions
to the normative statement about birds flying;” as for wouhbdeds users do not
know whether they fly or not. There is a need of similar exaaiwith respect
to goal specifications. A normative goal specification magcdy that “normally
a state should satisfy the propep¥ Strong exceptions may be states that satisfy
some other conditions, while weak exceptions may be thesdittans do not need

to be satisfied.
80

To accommodate the above, proposed language N-LTL intesdtweo special

notations

The intuitive meaning of the first one is that normagiyolds in a state and the label
r lists the weak exceptions. The intuitive meaning of the sdame is that normally
@ holds in a state and the labelists the strong exceptions. The rolerohere is
similar to the role of labeling defaults and normative stegats when representing
them in logic programming. There, often the label is used aarameter with
respect to thab predicates.

This formulation is related to what we human beings commateiamong our-
selves. Users used to state something and then furthertoetarsing words such
as “that” or “the”. Users are referring to a sub-formula wéHabel in a similar
way. Users use these labels also because users want to keepnhoral relations
of sub-formulas that are specified in earlier formulas.

Since the non-monotonicity in goal languages is not due Wingancomplete
knowledge about the states, but rather due to the specifiguite precisely know-
ing what she wants, N-LTL does not use operators such as taioe as failure
operator hot' from logic programming. Here the issue is different fronfieiring
or assuming negation by default.

On the other hand N-LTL borrows the idea behind program cetigpt in logic
programming to specify and interpret the conditions listedresponding to the
labelr. Thus there may be a set of conditions written as

(rign) .. (ridu

lUnlike traditional exceptions and weak exceptions, N-LTanis the specifier to have pre-
decided control over whether a particular goal fragmentccbave a weak exception or an excep-
tion, but not both.

81

that specify the exception or weak exception conditionk waspect ta. Given the
above, the overall condition associated wittecomegl; V...V). One is allowed
to add additional conditions. For exampleiif: Y, 1) is added to the above set
then the overall condition associated withecomesy; V...V Uk V Yk 1.

It is illustrated with respect to the following example.

Example 5. Suppose initially the agent wants to maintain p true while neag for
s. The agent knows beforehand that the aim to maintain p istnot; & is just that
the agent does not know yet, under what conditions truth ofypnoabe necessary.
After a while, the agent realizes that when q is true there ise®drto have p true.
The initial goal can be written in the language @g: (O[r|p) A <s). It says that
the agent should maintain p while reaching s. If the exceptibappens in some
states, the agent may not need to maintain p in those stakesw&ak exception r

is then specified a§ : q).

To informally illustrate how non-monotonicity is manifesitin the above ex-

ample, when a language is monotonic is defined.

Definition 27. A logic L together with a query language Q and entailment refat

= is monotonicif forall T, TinLandtin Q, T=timplies TUT' |=t. O

With respect to Example 5 18t be {(g: (O[r]p) A<CS)}, T/ = {(r : @)}. Intu-
itively, T = OpandT UT’ is equivalent tad(pVv g) A<sin LTL thusTUT' = Op.
Hence the proposed language N-LTL is hon-monotonic.

The language N-LTL has many limitations such as it only afastrong ex-
ceptions and weak exceptions but does not allow arbitrargirg or retracting
existing sub-formulas. Besides, when there is an exceptid+-LTL, it must be
predefined whether it is a weak exception or a strong exageplibese limitations
restrict the ability of N-LTL to specify goals in an evolvirsgenario.

82

This chapter continues on developing an appropriate nometoaic temporal
goal specification language that allows elaboration tolemevision of goal specifi-
cations. The language ER-LTL is developed, which is alsodase TL [MP92].

Each ER-LTL program is composed of a set of rules of the form

<h: [r](f1«» f2>> (41)

The symbohis referred to as the head of the rule and Rule 4.1 states tiratatly,

if formula fq is true, then the formuld, should be true, with exceptions given by
rules withr in their heads and this rule is an exception to a formula &bélyh.
ER-LTL also takes a similar approach as N-LTL and use Reitd€es iof a surface
non-monotonic logic [Rei01] that gets compiled into a moaetable standard logic
and thus avoid increase in complexity; The idea of compteigsoused when rules
about exceptions are given for the same precondition. Witple rules as Rule 4.1,
users are able to express various ways to revise goals. fidiigles specification
of exceptions to exceptions, strengthening and weakenimgezonditions, and
revision and replacement of consequents.

This chapter is organized as follows: Section 4.2 propdsesyntax and se-
mantics of a new language N-LTL. Section 4.3 proposes th@agyand semantics
of language ER-LTL, and illustrate with examples on how ER-ICHN be used in
specifying goals and revising them in an elaboration tolem@anner. As users may
revise the goal of an agent after the agent has already exkpatt of his plan, the
approach of progressing an ER-LTL program is discussed itiddet.4. Applying
the approach to other monotonic goal specification langu&gbriefly discussed
in Section 4.5. Section 4.7 compares languages N-LTL and HR-tiscusses
related works, and discusses properties of applying thentqaes in ER-LTL to

propositional logic. The chapter is concluded with a sunynaaud future work.

83

4.2 N-LTL: A Non-monotonic Extension of LTL

This section extends LTL to capture non-monotonic requénets in specifying a
goal. The new language is called N-LTL which standsifon-monotonic LTLThe

syntax and semantics of N-LTL is first defined.

Syntax
While designing the language two questions need to be addiess

e If syntactically the goal is one temporal formula, how carrggevise it to

have new goals by just adding to the original formula?
e How to refer to one part of a specification in another part efgpecification?

For the first N-LTL borrows ideas from Reiter’s approach taaiton calculus [Rei01]
where he compiles his specification to classical logic. Wihigeclassical logic part
IS monotonic, reasoning with respect to the specificatinguage is non-monotonic
and the non-monotonicity is achieved through the compitgirocess. For the sec-
ond N-LTL borrows ideas from logic programming. Similar tdagic program
consisting of a set of rules, each N-LTL program is a set adgand rule labels are

used such asin Example 5 to link these rules into one temporal formula.

Definition 28. Let{g}, R, and P be three disjoint sets of atoms. {réthe an atom

inR, (p) be an atom in P, & {g} UR. (f) is a formula defined below:

(f)i= " (PIHAE)V E () O B |
() [(HUE) TIIMIACH) [INIICH)
An N-LTL program is a set of rule&:), Where e is thdiead and f is the

bodyof rule (e: f). O

In an N-LTL program,g is a special symbol that stands for the final goal for-

mula. Ris the set of labels to be used to define corresponding exceydind weak
84

exceptions. A formuld defines the conditions of atoms or the conditions of

g. Intuitively, [(r)]({f)) means that normally is true, with the weak exceptions
denoted through. [[(r)]]({f)) means that normally is true, with the strong excep-
tions denoted through The weak and strong exception conditions corresponding

tor are defined through other rules.

Definition 29 (Atom Dependency, Loop-free) et (e; : f1) be a rule in an N-LTL
program. If & € R occurs in the body ofe; : f1), then e dependsn g. The
dependency relation is transitive. An N-LTL prograntasp-freeif no atom in R

depends on itself in the program. O
Semantics of N-LTL Programs
As mentioned earlier, the semantics of N-LTL programs isaefiby following the

approach taken in Reiter’s situation calculus [Rei01]: N-Lddograms are com-

piled to LTL theories.

[Translate N-LTL program to LTL formula] A loop-free N-LTLrpgramT is trans-
lated to an LTL formulal'r(T) as follows:

1. Let(e: f1),(e: fp),---,(e: fy) be all the rules il with e in the headg
{g}UR. Aformulafi Vv faV---V fyis constructed, and it is calldgi(e). Do
this for any atone if the set of rules withe in the head is not empty.

2. If atoma; depends on atormy, andE(a;) is defined, replace any occurrence
of [ag](f) in E(az) with f\VVE(a;). The revised formula is still calleB(ay).

3. If atoma; depends on atomp, andE(a;) is defined, replace any occurrence
of [[a1]](f) in E(a2) with E(a;). The revised formula is still calleH(ay).

4. Do Step 2 and Step 3 recursively until no ataaepending oy while E(e)
is not empty occurs ii(Q).

5. Finally, inE(g), replace all remainingr](f) and[[r]](f) with f. The revised
goal formula isTr(T). O

This algorithm is illustrated with an example.

85

Example 6. Consider N-LTL program T as follows:

(g: (Clral(p)) Alrs](a))
(re: [[r2ll(v))

(rp: 0t)

(rp:s)

According to the definition, initially Eg) = <[r1](p) Ar3](d), E(r1) = [[r2]](v) Vv
Ot, and Ery) = s. By replacing the formulas according to the dependence re-
lations, E(g) = < (pV [[r2]](v) vV Ot) Afrs](q) = S(pVvsv Ot) Afrg)(q). There is
no rules with g as the head. Thus(@) = ¢(pVvsvdt) Ag. Further, T(T) =

O(pvsvOt)AQ.

The program in Example 6 is loop-free. Loop-free N-LTL praxas have the

following property:

Proposition 8. Tr(T) is a well defined LTL formula for loop-free N-LTL program

T.

Proof. Define a formula as close-to-good if after replacing all ofoaula [a;|(f)
and[[a;]](f) to f in the formula, the formula is an LTL formula. According teeth
definition of N-LTL formulas in Definition 28, the body of eachle in an N-LTL
program is a close-to-good formula.

Now check on the translation of the program in Algorithm 4&2e) for eache
in the head in Step 1 is a close-to-good formula. In Step 2 aepl § after the re-
placement, eacB(ay) is a close-to-good formula. Finally, Step 4 in Algorithm 4.2

removes al[ag|(f) and[[a1]](f) to f. The resulted programis an LTL formulal]

Given this property, when a plan satisfies a goal specified-ItTIN can be

defined.
86

Definition 30. Let T be a loop-free N-LTL program. Given a state s, and a trajec
tory 0 = %,51, S, +» (5,0) E T in N-LTL if (s,0) = Tr(T) with respect to
LTL. O

Definition 31 (Plans with respect to N-LTL goals).et T be a loop-free N-LTL
program. A sequence of actionsg,a--, a, is a plan from the initial state s for
the N-LTL goal T, ifo is the trajectory corresponding to s and,a- -, a,, and

(s,0) =T in N-LTL. O

Temporal logics such as LTL have a different property whehElngoal for-
mula is considered to be a set of temporal formulaB.iff a plan with respect to an
LTL goal TUT’ thenP is a plan with respect t®. In LTL, adding more formulas
reduces (or at best leaves it unchanged) the set of plasfysagiit while in N-LTL,
this is not the case.

Properties and N-LTL in Goal Specification

Now, the notion that N-LTL is non-monotonic is defined. LTLnsnotonic since
T =timpliesTUT’ =t whereT andT’ are two sets of LTL temporal formulas and

tis an LTL temporal formula. The following entailment in N-LTis considered.

Definition 32 (Entailment) T =T if Tr(T) = Tr(T’), where T and Tare two

loop-free N-LTL programs. O
Proposition 9. The entailment in Definition 32 is non-monotonic.

Proof. To prove that the entailment is non-monotonic, now find a @oygr, To,
andT’ such thaflf =T butTUT, £ T/, whereT, T" andT U T, are all loop-free
N-LTL programs.

For example, leT andT’ be(g: [r1](Op)). Itis clear thafl =T’ asTr(T) =
Tr(T') =0Op. LetT> be (r1: [r2](0q)). Tr(TUT;) = Og. Itis not the case that

Tr(TUT,) = Tr(T’) in LTL. Thus the entailment is non-monotonic. O
87

Consider one example to illustrate the way of using N-LTL.

Example 7. One professor asks his robot to make a photocopy of one dodame
fetch a cup of coffee. However, before the robot goes out fiwe othe professor
finds out that the coffee is sold out. No plan can satisfy thé gjgan to the robot.

The professor would now like to weaken the goal. Following aretipossibilities:

1. He would be happy with a cup of tea instead;

2. He just needs the copy of the document and is willing to faxgeut the

coffee;

3. The robot may come back to his office with the document capiggdo about

looking for the coffee later.

If the professor was using N-LTL and from past experience knloathe may

have to revise his goal, especially with respect to coffeedmeexpress the initial

goal as:

(g: <O(([r]coffeg A copyA <office))

It is equivalent to satisfying>(coffeen copy <office) in LTL.

Later on, according to the new conditions and new alterrestj\the professor

may revise his original goal by adding one of the followinge#hrules:

1. Adding the new rulér : tea) which makes the overall goal equivalent to

O((coffeev tea) A copyA <office) in LTL;

2. Let T denote true andL denote false. Adding the new rule: T) which
makes the overall goal equivalentdd (coffeev T) A copyA <office) in LTL,

which is equivalent t&>(copyA <office) in LTL;

88

3. Adding the new rulér : &(coffeen <office)) which makes the overall goal
equivalent to®(coffeen copyA <office) vV <& (copyn Sofficen O (coffeen Coffice))
in LTL. Now it allows the agent to get the document copied firkirbevait-

ing for the coffee.

If users want to get the tea instead of coffee, users should kmitially that
the sub-task of getting coffee can be replaced by a diffeyeat. Now, the initial
formulation is

(g: <O(([[r]]coffeg A copyA <office))

When users add a new gogl: tea). The goal afterwards is equivalent to(tean
copyA <office) in LTL.

Note that “copy” must be satisfied in this domain as the prajesies not
want to weaken this condition. While the robot is on its way dirggthings done,
some other exceptions may happen. With N-LTL, users maefusfine part of

the goal.

Note that if a rule in the formula has a sub-strifig]|(f), then removing rules
(r1: L) may affect the semantics of the formula. If there is no suing{[r1]](f)
in any part of the formula, then users can remove rites L) without affecting
the semantics of the formula. Herestands for any temporal formula.

4.3 ER-LTL
N-LTL has some limitations. Firstly, it needs to be pre-sfied whether an excep-
tion is a strong exception or a weak exception. Secondlywtneof dealing with
rules is limited. In some cases, it may end up having a lot ahges to the initial
program. The non-monotonic temporal logic ER-LTL that isdshen LTL is pre-

sented; ER stands foEXceptions andRevisions”. It takes care of some limitations

89

of N-LTL. Besides, it is more powerful in expressing excepsi@nd revisions. The

syntax and semantics of the language is defined firstly.

Syntax

Definition 33 (ER-LTL program) Let G, R, and P be three disjoint setsatbms
Let g be the only atom in G. Lét) be an atom in R{p) be an atom in P. An

ER-LTL formula(f) is defined recursively as:

(f) == (MO AE) V) =) [Of) |
O(f) [S5 TIHUE) TN ~ ()

An ER-LTL ruleis of the form¢(h : [r](fy ~ f2)), where he GUR, re R, and
fy and £, are two ER-LTL formulas; h is referred to as thead and|r](fy ~ f2)

as thebodyof the rule. ArER-LTL programis a finite set of ER-LTL rules. O

The symbolsl” and_L are abbreviations for propositional formulas that evauat
to true andfalserespectively. For example, for atogre P, qV —q is abbreviated as
T, andgA —q is abbreviated as .

The same as in N-LTL, rules in ER-LTL with heapexpress the initial goal
which may later be refined.

In comparison to LTL,[r|(f; ~ f2) is the only new constructor in ER-LTL.
f1 is referred to as the precondition amglas the consequent of this formula. It
states that normally if the preconditidia is true, then the consequeftt needs
to be satisfied, with the exceptions specified miaThe conditions denoting the
exceptions labeled by are defined using other rules. When those exceptions are
presented in the program, other goals insteathafeed to be satisfied. If the sub-
formula is preceded with a head atdne RUG as in(h: [r](fy ~ fp)), it further

states that this sub-formula is an exception to formulaslé&bbyh.

90

Similar to N-LTL, several auxiliary definitions that will besed in defining the

semantics of ER-LTL are defined.

Definition 34 (Atom dependency)Let T be an ER-LTL program. Lethhy be
atoms in RUG. Atom h dependson hp in T if there is a rule in T such thatsh
occurs in the body of the rule while, lis the head of the rule. The dependency

relation is transitive. 0

Example 8. Consider the following rules:

(ra:fral(p~ ((Ba)~T1))) (4.2)

(ro:[ra]((OpVrsl(Ba~ (pU a))) ~ (©q))) (4.3)

Rule 4.2 is not a syntactically valid ER-LTL rulé(Cq) ~ r) in it is not a valid
ER-LTL formula. It should be preceded by a label in R. RuléglaBvalid ER-LTL

rule. With respect to a program consisting of Rule 4;3jepends ongand rs.

Definition 35 (Loop-free, Leaf) An ER-LTL program itoop-freeif in the program,
no atom in R depends on itself. An atom is calldéaf in the program if it does

not depend on any atom in R. O

Semantics

Now define a translation from ER-LTL to LTL so as to relate themantics of ER-
LTL to the semantics of LTL. A similar technique as in N-LTLused to capture
temporal relations among different rules to combine therbne@ne temporal for-

mula. Atomr, depends om; states that, should be fully expanded before.

91

[Translate ER-LTL program to LTL formula] A finite loop-freeRELTL program
T is translated to an LTL formul&r(T) as follows:

1. For each sub-formula ifi of the form(r¢|(lio ~ fio) where for all rules with
ry in the head:

(re s [rea) (e~ fra))

(re - [roe] (e~ fr))
ri (1 <i <Kk)are leaf atomdl;, f;j (0 <i <K) are LTL formulas.

a) If [ri](lto~ fio) is not preceded with “:”, the formulay|(lio ~ fio) is
replaced with(lig A —lgg A« - A=l = fio) A (koA ltr = fra) A< A(lto A
lik = fik). The program is still called;

b) If [r](lo ~ fio) is preceded with “:” and it is in a rule of the form
(ry : [rt](lio~ fto)) wherery € GUR, the rule is replaced with:

<rv . [H]('to/\ _‘ltl FARERWAN ﬁhk“ﬁ ft0)>
(rv:[reJ(ko A~ fra))

(rv i [re (ko Al ~ frc))
The resulting program is still callen.

2. Repeat Step 1 until it can no longer be applied further.

3. Supposég: [ri](li~ f;)) (0<i < n)are all rules with the heagl Tr(T) is
defined as\' ,(li = fj). O

Example 9. An ER-LTL program T is given as follows

(g: [r1](bird ~ fly))
(rq : [r2](penguin~ —fly))
(rq:[rs](wounded-» T))

(ro : [r4](flyingPenguin- fly))
2Here and in a later example the flying bird example that has besed a lot in the non-
monotonic reasoning literature is used. This is only forclullustration purposes, and not to
suggest that ER-LTL is an alternative to traditional nonaetonic languages. There has been sig-
nificant progress in the research on non-monotonic reagoriftR-LTL is not one alternative of

these logics. The claim is only with respect to non-monaté@mporal logics, which have not been
explored much. 92

After the first processing of step 1 of Algorithm 4.3, the atitpthe set of rules:

(9 [r1] (bird ~ fly))
(r1 : [r2](penguim\ —=flyingPenguin- —fly))
(rq:[rs](wounded-» T))

(r1: [r2](penguin flyingPenguin fly))
After the second processing of step 1, the set of rules is:

(9 [r1](bird A —penguim —wounded fly))
(9 [r1)(bird A penguim —flyingPenguin> —fly))
(g: [r1](bird Awounded-» T))

(g [r1)(bird A penguim\ flyingPenguin. fly))

Finally, based on step 3, TT) is the output. It can be simplified tgbird A
—penguim —wounded=- fly) A (bird A penguim\ —flyingPenguin=- —fly) A (bird A
penguim flyingPenguin=- fly).

ER-LTL in Goal Specification

Loop-free ER-LTL programs have the following property.
Proposition 10. Given a loop-free ER-LTL program T, TT) is an LTL formula.

Proof. Define a formula as close-to-good if after replacing all efoaula [r](l ~
f) with (I = f), the resulted is an LTL formula. According to the definitioh o
ER-LTL formulas in Definition 33, the body of each rule in an ERELprogram is
a close-to-good formula.

Now check on the translation of the program in Definition /A&er each pro-
cessing in Step 1 in the definition, each formula in the pnogisaa close-to-good.

Thus Step 3 makes the final program an LTL formula. O
93

Given this property, when a plan satisfies an ER-LTL programbzadefined.

Definition 36. Let T be a loop-free ER-LTL prograns, = S,S1,--- ,S, - be a
trajectory, and i be an index af. (i,0) =T in ER-LTL if(i,0) = Tr(T) in LTL.

O

An ER-LTL programT is equivalent to an LTL formuld’ if Tr(T) andT’ are
equivalent in LTL. For any LTL formul&s, there is an equivalent ER-LTL program.
When planning with an ER-LTL godl, find plans for LTL formulaTr(T).

WhenT is updated taf UT’, users need to find plans for LTL formula(TUT’).

Definition 37 (Entailment) Given that T and b are loop-free ER-LTL programs,
T1 |: T ifTI’(T]_)): TI’(Tz) in LTL. (Il

Proposition 11. The entailment in Definition 37 is non-monotonic.
Proof. Consider the following two ER-LTL rules:

(9:[ra](T ~ Op)) (4.4)

(ro:[rz](Gg~ <0q)) (4.5)

Let T; be a program consisting of Rule 4.4, aide a program consists of Rule 4.4
and Rule 4.5Tr(T1) = dpwhile Tr(Tz) = &gy Op. Itis easy to see thdy =Ty
while T, = Ty U{Rule4.5} andT, [~ T1. Thus the entailment relation defined in

Definition 37 in ER-LTL is non-monotonic.]

This implies that a plan possibly satisfy an ER-LTL progr&m T, but notT;.
It should be noted that the opposite is also true.

Exceptions and Revisions in ER-LTL

Now illustrate the application of ER-LTL in modeling excepts and revisions.
This sub-section starts with the modeling of exceptions tizgpen mainly be-

cause the user has incomplete information about the dortteirdomain has been
94

changed after the initial goal is given, or the user does aet fa clear specification
for the agent initially.

Exceptions

First consider modeling weak exceptions and strong exmeptn goal specifica-

tion.

Weak Exception and Strong Exception As discussed earlier, strong exceptions
are to refute the default conclusion when exceptions hgpeak exceptions are

to render the default inapplicable. In terms of goal spedtifon, supposdi A f

is the initial goal users have, after having the weak exoeptin f1, users do not
know whether sub-goal; should be true or not, users thus can remove the sub-
formula f1 from the existing specification. On the other hand, if userseha strong
exception onfy, users should conclude thitis no longer true, and cannot be true.
Thus, users need to have; as a part of the revised goal specification. Consider
the following example, again, for simplicity, given withsgect to the birds flying

scenario.

Example 10. Birds normally fly. Penguins are birds that do not fly. Usersndo
know whether wounded birds fly or not.

The initial statement can be written as
(g [r1) (bird ~ fly)) (4.6)
It is equivalent to the LTL formula bire> fly. If append rule
(rq : [rz2](penguin~ —fly)) 4.7)

to it, the program is equivalent to the LTL formulébird A —penguin = fly) A

((bird A penguin = —fly). If append rule

(r1:[rs](wounded~ T)) (4.8)
95

about wounded birds to Rule 4.6, output is a program that is\vedent to the LTL

formula ((bird A —wounded = fly).

This example shows that when users need a strong excepsiens, can specify
the negation of the initial consequents explicitly as in Rule. When users need
a weak exception, users can simply say as in Rule 4.8 that dmelexception, no

consequents are needed.

Exception to Exception The way of dealing with exceptions to exception in ER-

LTL is illustrated by the following example.

Example 11. Birds normally fly. Penguins are birds that do not fly. Howewer,
flying penguin is a penguin that can fly.

The initial statement is written as Rule 4.6. Later, Rule 4d a rule
(ro @ [ra](flyingPenguin- fly)) (4.9)

are appended. Rule 4.9 is an exception to the exceptiondstatBule 4.7. The
program consisting of the three rules is equivalent to thé fdrmula (bird A
(=penguinv flyingPenguin = fly) A (bird A penguinA —flyingPenguin=- —fly).

Revision: Change User Intentions

Various revisions of the goal are allowed if it is represdnte ER-LTL. ER-LTL
splits the requirements to preconditions and consequeantsthat users may have
goals as “if some conditions are satisfied, the agent shauisfys some goals”. A
few approaches of revising preconditions and consequentissed now. They help
to revise any part of the initial ER-LTL goal. In the following simple example is

considered where the initial ER-LTL program is:

(9:[ra](fi~ f2)) (4.10)

wheref; andf; are two LTL formulas.
96

Changing Consequents Ways to change consequents in the goal are considered

first.

Example 12. Given Rule 4.10, if the ER-LTL rule

(rozfref(fi~ f3)),

is appended wheresfis an LTL formula, the revised program is equivalent to the
LTL formula((fi A—f1) = f2) A((f1 A f1) = f3), or f; = f3. Now the consequent

has changed fromyfto fs.

The consequent can be changed to be stronger or weaker thamtil speci-
fication. It can also be revised to one that is different from initial specification.

Similar revisions can be made for preconditions as well.

Changing Preconditions Now list a few examples illustrating how to change

preconditions in a goal specification.

Example 13 (Making Preconditions Strongerpuppose users want to refine the
goal given as Rule 4.10 by having a new preconditigriofjether with f. The

program can be refined by appending the rule:
(ry:[ra](=fz3~T)). (4.12)

The new formula states that-ffs is satisfied, then the goal is satisfied naturally.

The refined program is equivalent to the LTL formpfan f3) = fo.

Example 14(Making Preconditions Weakerpuppose users want to refine the goal
given as Rule 4.10 so that under a new conditigncbnsequentsfalso need to be
satisfied. This refinement will weaken the preconditipn The program can be
refined by appending the rule:

(g:[ra](fa~ f2)).
97

The new program is equivalent to the LTL formgfaV f3) = f».

Example 15(Changing Preconditionspuppose users want to refine the goal given
as Rule 4.10 so as to change the preconditiptoffz. This can be done by append-

ing the following rules

(ro:[ra)(fa~T))

(9:[rs](fz~ f2))

to the program consisting of Rule 4.10. The new program isva¢gnt to the LTL
formula((fiA—f1) = f2) A(f1 A f1 = T)A(fz = f2), which can be simplified as

f3 = fo.

Revision after Revision Now consider an example that needs further revision

after the first revision.

Example 16. In Example 12, the revised program is equivalent to the LTintda
f1 = f3. If users want to further revise the consequentscahd make the program
equivalent to f = fg4, the rule(r,: [r3](fL ~ f4)) can be added to the existing

program.

Nested Revision Nested revisions are also common when users introduce a new
goal to the domain while not clear about the preconditiords@msequents of the
new goal. Rules that specify that the preconditions and cpresgs will be given

later. We illustrate this by the following example.
Example 17. Suppose the initial ER-LTL program is

(9:[ra] (T~ f1)).

Suppose now we know in addition tp Some thing more needs to be done; but

we do not yet know what. We can append the following rule to accoalata that
98

possibility:
(riz[ra) (T~ fLA[rg] (T~ T))),

It will allow users to add additional requirements later.

Allow Sub-formula to be Modified

The agent given the initial goal may not know which sub-gaakbich part of the

formula might be revised further. As seen in ER-LTL, in ordentake revisions or
define exceptions for a sub-formula, the sub-formula ned&e eclared as modifi-
able firstly. Thus a way of declaring a sub-formula to be madi#é is needed. The

following example illustrates this:
Example 18. The initial goal is given as
(g:[ra](T ~ frAf2))

As the user may aware thas might be further modified without affecting. f

The following rule can be added to capture such a motivation.

(ro:[ra(T ~ f2A[r3)(T ~ f2)))

The modified and the original program are equivalent to thened. TL formula

f1 A fo.

Thus ER-LTL enables users in revising goals of an agent inawoeation tol-
erant manner. The following sub-section elaborates on hevevolution of John’s

requirement introduced in the Introduction section candpeesented.

Representing John’s Requirements in ER-LTL
Now show the way of applying ER-LTL in representing the probie Example 4.
Example 19. John can specify his initial goal in ER-LTL as:

(g:[ro)(T ~ <&(coffeen Oback)). (4.12)
99

It is equivalent to the LTL formul& (coffeen Cback). It states that the agent needs
to get a cup of coffee and then come back.
After realizing that the coffee machine might be brokennJmn refine his goal

by adding the following two rules:

{ro: [r1](T ~ <&([r2] (T ~ coffeg A Oback)) (4.13)

(ro: [r3](broken~ tea)) (4.14)

Rule 4.13 now allows the sub-formula about coffee in theaingoal to be further
refined. The overall specification is now equivalent to thie iofmula< ((—broken=-
coffeg A (broken=- tea) A Oback). Notice that John did not have to retract his
previous goal and give a new goal; neither did he have to ckahg earlier spec-
ification; he just had to add to his previous specification #mel semantics of the
language takes care of the needed change. This is an exarhpddaboration
tolerance” of a language.

Later, after knowing from a colleague that a new coffee maxiiight be in-
stalled, John can give the agent a new command by adding one nme to the
existing goal:

(r3: [ra](newMachine- coffeg)

The overall goal is now equivalent to the LTL formgté broken\ —newMachine=-
tea) A (—(broken\ —-newMaching = coffeg A Oback).

Finally, John can give the agent a new command by adding tleniog rule.
(r3: [rs](=newMachine- (hotA O(teaA sugar))))

The overall goal is now equivalent to the LTL formuiaf (brokem\ -newMachine=-

(hotA O(tean sugar) A (—(brokenA —newMaching = coffeg) A Gback).

Note that in this example, the way of expanding and revisirgggoal in an

elaboration tolerance manner is introduced by introduairifferent consequent,
100

weakening the requirements, introducing exceptions texans, and introducing

nested exceptions.
4.4 Progressing ER-LTL

When represent a goal in ER-LTL, it is interesting to study hbe goal can be
simplified, and how the goal can be progressed based onrestdies in the tra-
jectory. In order to do so, how a new rule added to a prograecathe models of
existing program, and under what condition two programs'streng-equivalent”
are presented below. These definitions are helpful whee tkex need to simplify

a progressed ER-LTL program.

Strengthening and Weakening in ER-LTL

This section considers how the new rules added to a progréeat diie existing
ER-LTL program.

With the introduction of preconditions and consequents,LER-branches on
preconditions. Given a loop-free ER-LTL program, adding & ngle with heady
correspond to adding a new branch. Adding a new rule with heal correspond
to adding a new branch, or revising existing branches. Brsene added and
removed based on the new rules added. For example, given & ERHe of the
form:

<I’1: [rz](fl'\» f2)>

Another rule with head, of the form

<I’2: [rg](fg'\a f4)>

introduces a new branch g |~ f;. Otherwise, the existing branch dnis removed
and the new branch ofy is added.

With different rules added, a goal can be made easier or niificutt to satisfy:

101

Definition 38. Given two ER-LTL programs;&nd b, if U T, |= Ty, T2 is called

a strengthener of T if T =T UTy, T, is called a weakener of;T

After union with a weakener of a program, the new ER-LTL prograsatisfied
by more or equal number of policies. After union with a stitseger of a program,
the new ER-LTL program is satisfied by fewer or equal numbemtties.

Note that if there is a similar definition as Definition 38 forLL, any LTL for-
mula is a strengthener of any other LTL formula. Adding ratea monotonic tem-
poral logic always strengthening the logic. This also exyg#hat LTL is monotonic
while ER-LTL is non-monotonic.

However, in non-monotonic logic ER-LTL, some programs aweagk strength-

ener to other programs.

Proposition 12. A rule of the form

(g:[r](f1~ f2)) (4.15)

is a strengthener of any loop-free ER-LTL program, wheee@®, r € R, and { and

f> are well defined ER-LTL formulas.

Proof. Let I be a loop-free ER-LTL program and its corresponding LTL folanu
is Tr(M). Let a rule of the form 4.15 be According to the translation in Algo-
rithm 4.3, before Step 3, the corresponding prograii of{t} will have one more
rule than the program dfl. The rule is of the formg: [r](f3 ~ f4)) wherefz and
f4 are LTL formulas that correspond f@ and f, accordingly. Finally;Tr(Mu{t})

is of the formTr(M) A (f3 = f4). AsTr(M) A (fz3= f4) =Tr(MN), Rule 4.15is a
strengthener of loop-free ER-LTL progrdm]

Strong Equivalence in ER-LTL

Now check the programs that have the same consequents iemeglor strength-

ening other programs. The notion of strong equivalence finel@ similar to that
102

in logic program [LPVO01] that helps to simplify the progranithout affecting the

rest of the program.

Definition 39 (strong equivalence)Two ER-LTL programsiland T, are strongly
equivalent if pUT and LUT are loop-free programs, and,TUT = T,UT and

To,UT ETLUT for any ER-LTL program T. O

It is easy to know that if two ER-LTL programs are strongly eqient, then a
policy in a domain satisfies the goal denoted by one programdfonly if it satisfies

the other one. Now list some ER-LTL programs that are stroaglyivalent:

Proposition 13. Letre R, he RUG, g€ G, and 1, f2, and & be arbitrary ER-LTL

formulas.

My: (h:r](fy~ f2))

(h:[r](fz~ f2))

and

Ma: (h:[r]((frV f3) ~ 2))

are strongly equivalent.

Proof. Firstly, it is safe to assume th#, f,, andfsz are LTL formulas. According
to the semantics of ER-LTL, occurrences of the same ER-LTL @tanwill be
translated to the same LTL formula.

Given a progranfil, now prove thafluTl1; andlMuUTl; are equivalent. For each

occurrence of in programll, suppose the set of rules withn head are:

(r:[ra(fiz~ fj2))

(= [rn](fin ~ fjn))
103

wherer,---,ry do not occur in the head of other rules. According to the seicegn

of ER-LTL, in MUy, the set of rules will be replaced by

(he[r]((faA=fig A A=fin) ~ 2))

(h:[r]((fiA fin) ~ fj1))

(= [r]((f2A fin) ~ fjn))
(h: [((faA=fis A A=fin) ~ 2))

(h: [r]((faA fix) ~ fj1))

(h[r]((faA fin) ~ fjn))
In MUy, the set of rules will be replaced by

(h: [I’](((fl\/ f3)/\—|fi1/\~-~/\—|fin)mf> fz))

(I (((F2V f3) A fig) ~ fja))

(= [rJ(((f2V £3) A fin) ~ fjn))

For each occurrence ¢fin the body of a rule that is preceded by

form

(t:[h(fhe~ fr2)),

104

“" of the

the corresponding rule in prograrmu Iy is replaced by

) ((fra A= (foA=fig A A=fin) A=(FL A fin) Ao A=(FL A fin) A
—(faA=fig A A=fin) A=(faAfin) A A=(F3A fin)) ~ fr2))
(t:[h((fra A foA=Tia A A=fin) ~ 2))

<t . [h]((fhl/\ f]_/\ fil) ~> fj1)>

([((fha A LA fin) ~ fjn))
[((fra A faA=fig A A=fin) ~ f2))

(N ((fra A f3A fiz) ~ fj1))

(t:[((fheA f3A fin) ~ fjn))
the corresponding rule in programuTl; is replaced by

([((faa A=((frV) A=fig Ao A fin)
A=((foV) Afi) Ao A= ((FLV f3) Afin)) ~ fr2))
<t : [h]((fhl/\(fl\/ fg)/\—lfil/\---/\—\fin)v f2)>

(t: [((faa A (fLV f3) A fi) ~ fj1))

(t: [A((Fra A (F2V 13) A fin) ~ fjn))
Both above two rules will be simplified as

{t:[h((fraA=(fLV f3)) ~ fr2)) (4.16)

It is easy to see that the other rules are equivalent to the ainformulas.

105

For each occurrence afin the body of a rule that is not preceded by “:” of the

form
(t 2 [r]([h](ha~ hg)), (4.17)

the corresponding rule il U4 is translated as

((foA=fir A A=fin) =) A((fLA fi) = fjn)) A A((FL A fin) = fjn) A

((fg/\—'fil/\H-/\—'fin) = fz)/\((fg/\ fil) = fjl)/\H-/\((fg/\ fin) = fjn)
the corresponding rule il UM, is translated as
(((fl\/ f3)/\—\fi1/\- . -/\—\fin) = fz)/\(((fl\/ f3)/\ fil) = fjl)/\- . -/\(((flv f3)/\ fin) = fjn)

it is easy to see that these two LTL formulas are equivalent.
Thus thel1U M, andlM U, are equivalentl1; andll, are strongly equivalent.

O

Proposition 14. Letre R, he RUG, g€ G, and f, fo, and & be arbitrary ER-LTL

formulas.
M3 (h:[r](fi~ f2))

and

Ma: (h:[r](fi~ fiAfo))

are strongly equivalent.

Proof. Given any progranfil, now prove thafl UMz andln U, are equivalent.
The rule inM3 andl4 only differ in the right part of the-». They share the same

formula in the left part of symbol», meaning that all occurrence of (f; ~ f2)

in Tr(MUM3) are replaced witi r(f1 ~ (f1 A f2)), and the output iSr(MUMy).

Based on properties of LTLf; = fo and f, = (f1 A f2) are equivalent. ThuBl3

andl,4 are strongly equivalent. O
106

Similarly, the following proposition is true. It helps tangply a program.

Proposition 15. Letre R, he RUG, ge G, and f, fo, and § be arbitrary ER-LTL

formulas

Ms: (g:[r)(fi~T))
and

Me: (ro:[ra)(L~ f1))

and0 are strongly equivalent.

These definitions on strongly equivalent will be more ingéirey if they can be
used to simplify a program. The following sub-section d&sas its application in

progressing an ER-LTL program.

Progressing ER-LTL

In [BK98], authors proposed the progressing for MITL. Therageh can be easily
adopted in progressing LTL formulas with a different way eating with the sym-
bol U. Now consider the way of progressing an LTL progranafter observing a
sequence of stateg, - - - , 5. Itis illustrated in Algorithm 4.4.

Now extend the work on progressing to non-monotonic logiés. ER-LTL

programT is progressed after observing a stateis illustrated in Algorithm 4.4.

Definition 40. ProgressT,s) for an ER-LTL program T, and a state s is defined as

(T/g)u | Progressl,s) (4.18)
leT

where T/g is the set of rules in T with the head not{ig}.

A programT can be simplified by removing rules whose heads do not occur in
the body of any rule.
Note that in the progressing of the formulas, a set of rulesr@roduced that

progress one step on stattor each rule in the existing program. Also note that the
107

[Progressing LTL]nputs: A states;, with formula labelf.

Output: a new formulaProgressf,s) representing the temporal formula for the
successor state.

Algorithm :

1. If f = p, and the current state withtrue, thenProgressf,s) = T;
2. If f =1y, thenProgres$f,s) = —Progres$fi,s);

3. If f = fyV fp, thenProgresgf,s) = Progres$fi,s) vV Progressfa, s);
4. If f =(Ofy, thenProgressf,s) = fi;
5

. If f = f1Uf,, then Progresg¢f,s) = Progressf,,s) vV (Progres$fi,s) A
(fiUf2)).

As usual-(—fy Vv —f,) is denoted byf; A fp, TUT is denoted byo f, and—<—f is
denoted by f.

[Progressing ER-LTL] For a rule of the form(h: f) in an ER-LTL programT.
Progressl,s) is defined ag (hs: Progressf,s))} if he R, or {(h: Progressf,s))}
if h e {g}, whereProgres$f,s) for a formulaf and a statsis as follows:

1. If f = p, and the current state withtrue, thenProgresgf,s) = T;
2. If f =—fq, thenProgressf,s) = —Progressfi,s);

3. If f = fyv fy, thenProgressf,s) = Progressfi,s) v Progressfo, s);
4. If f = (Ofq, thenProgressf,s) = fq;
5

. If £ = fiUf,, then Progresgf,s) = Progresgfa,s) vV (Progres$fi,s) A
(f]_U fz));

6. If f =[r](fp~ f2), then
Progressf,s) = [rs](Progres$fi,s) ~ Progressfa, s)).

new rules introduced with head for r € R. This helps to link this rules to other

rules.

Definition 41 (ProgressT, (so;S1;---;S)))- Progres$T, (so;S1;---;S)) is defined
as

Progress. .. ProgresgProgressT,%),S1), - ,S)-

108

The progressed program can be simplified by strong equivateproperties of

programs. This is illustrated in the following example.

Example 20. Suppose the agent has the goal:

(9: [ra]((©p) ~ (Olrsl (T ~ ©0))))
(ry:[r2]((Op) ~ (Or)))

(r3:[rgj(r~T))

The goal is equivalent to LTL formula

(CpA=Op) = (O(rveg)) A(Op=0Or) (4.19)

Suppose the agent is initially in a staf@, g, —r} and has executed an action

and get to a stat¢—p,q,r}. Now progress the goal by one step on stgteqg, —r }

to:
(re: [r2((Op) ~ (Or))) (4.20)
(r3:[ral(r~T)) (4.21)
(9: [ras](T ~ ([rs3](T ~ ©0)))) (4.22)
(ris: [rag] (P~ 1)) (4.23)
(ras: [rasl(L~T)) (4.24)

As in Formula 4.18, Rule 4.20 and Rule 4.21 argTryg), which are copied
from the previous program. The last 3 rules are it Progressl,s).

This program can be simplified as

(r3: [ral(r~T))
(9 [ras] (T~ ([r3] (T~ ©0))))

(ris: [ras|(p~ 1))
109

which is equivalent to LTL formula
(rvoq)A—p (4.25)

Itis equivalent to the LTL formula after progressing Foramdl19 on staté p,q, —r }.
In reality, it is possible that this goal after progressirg refined by append-
ing new rules. For now, after executing another action, tigerd gets to a state

{=p,—q,—r}. Further progress the goal:

(r3:ral(r~T))

(r1s: [ras] (P~ 1))

(rat s [ra](L~T))

(9: [rast] (T~ ([ra] (T ~ ©0))))

(rast: [rast](L ~ L))

It can be simplified as

(9: [rast] (T~ ([ra] (T ~ ©0))))

Itis equivalent to LTL formul&q, and is equivalent to the formula after progress-

ing Formula 4.25.

Note that the initial program can be more complicated tharotke given in this
example. For example, if the initial program has a rule offthven (g: [r1](p~
(Ofr3](T~<q)))), itwould be complicated to evaluate the sub-formalag| (T ~
<q) when progressing on a state.

Due to the recursive nature in the definition of translatind=®-LTL program
to a LTL program, and due to the only difference in the progjregsteps, it is easy

to prove the following proposition:
110

Proposition 16. Let ErProgress be the progressing approach defined for laggu
ER-LTL. Let LtIProgress be the progressing approach deffoethnguage LTL. It
is true that

Tr(ErProgress$T, o)) = LtIProgresgTr(T), 0)

This implies that the progressing steps are well-definedv Ngers can specify
a goal in ER-LTL and give it to agents. Once users want to chéamgegoal of an
agent, they can do so by appending new rules and send theseathe agent. The
agent receiving the new instructions can change its goahmamotonically. In the
case that the agent has executed some actions. The agembgassp its ER-LTL
goals based on earlier states in the trajectory beforelétamg the ER-LTL goals

to LTL for further executions.
4.5 Non-monotonic Extension of CTLmCTL*, and P-CTL*

The approach of defining N-LTL can be applied to other temiplogics. Dif-
ferent from LTL, in CTL* [ES89, Eme90];-CTL* [BZ04], and P-CTL [BZ06],
formulas are categorized as state formulas and path fosnéla a consequence,
the corresponding non-monotonic languages should be defiitke respect to path
formulas and state formulas respectively. Now define the ofagxtending the
definition of non-monotonic temporal logics for CTLcalled N-CTL*. Language

N-CTL* is based on CTL

Definition 42. Let{g}, Ryt, Rs¢ and P be four disjoint sets of atoms. Leg¢) be
an atom in Ry, (rsf) be an atom in B, (p) be an atom in P, & {g} URs+. Let
(sf) denote a state formula, anghf) denote a path formula.
(sf) = (p) | (sTYA(SF) | (sf) v (sT) | ~(sF) [E(Pf) | A(p) |

[(rsn)](sf) [[[{rsp)]](sf)
(pf) = (sh) [(pf) v (pF) | ~(pF) [{PH)A(PT) [O(ph |

(pf) U{pf) | >(pf) [B(pf) !£<1fgf>]<pf> | [[{rpe)]1(PT)

An N-CTL formulais a set of rulege: sf), or (rps : pf). Each of e or ps is the
headof the rule, and each of sf or pf is th@dyof the rule(e: sf) or (rps : pf).

O

The semantics of N-CTLis defined in a way similar to the definition of the se-

mantics of N-LTL. Now illustrate the usefulness of N-CTihrough two examples.

Example 21. The initial goal is to require that p be true until q is reachddow-
ever, itis realized that in some domain, this goal is toorggras no plan can always
have p until reaching g. If in some states in the main pathpadisible trajectories
will have p true in the future, then it may considered as an gttae and there is
no need to have p. The initial goal can be representetasr](p)Uq) in N-CTL".
This goal is equivalent tolpq in CTL". It can be further refined by adding one rule
about the exception r as : ACp). The revised goal is equivalent (p\v ASp)UQ,

which is equivalent tdA< p)UQ.

Example 22. Initially, the goal is to make sure that in most trajectorsarting
from the initial state,Cp is true. However, later on, users may require that once
Oqis satisfied by some trajectories, those trajectories aresered as exceptional
ones and users do not require them to satisfy. The initial goal is represented as:
(g: A[r](¢p)). Later, the goal can be weakened by adding one more rule aheut t
exceptionsyr : (<Qq)).

The initial goal is equivalent to the CTlformula A< p and the revised goal is

equivalent tAA(Cp Vv <Q).

It is noted that the approach in N-LTL and ER-LTL can be appliedather
temporal logics such as CTL-CTL* and P-CTL.

112

4.6 A Program Translating an ER-LTL goal to a LTL goal

To help translating a goal represented in ER-LTL to a LTL folarso as to be used
by other existing systems that accept LTL formulas, a progsétranslating an ER-
LTL program to LTL is given. The program first call a Lexicaladyzer generator
Lex and a Yacc compatible compiler Bison [bis] to generatesgmr Afterwards,
an implementation of the Algorithm 4.3 translates the pdus®gram to an LTL

formula. The program is available at http://www.public.&slu~jzhao6/erltl.tar.

A few programs and their corresponding outputs are listéalhoe

1. Input:

{90 :[r1](a \arrow b) }

{rl : [r2](c \arrow d) }.

Output:

g . [] (Mop \arrow ((a \and \not (c)) \arrow (b)) \ and
(((c) \and (a)) \arrow (d)))

2. Input:

{90 :[r1](a \arrow b) }

{rl : [r2](c \arrow d) }

{r1 : [r3](e \arrow \diamond p) }.

Output:

g : [l (\top \arrow ((a \and \not (c) \and \not (e))
\arrow (b)) \and (((c) \and (a)) \arrow (d)) \and
(((e) \and (a)) \arrow (\diamond p)))

3. Input:
{90: [r1](a \arrow ([r2]((\diamond c) \arrow (\Box d))))}
{r2: [r3](top \arrow (\not e))}.

113

Output:

g : [l (op \arrow ((a) \arrow (((\diamond c¢ \and
\not (top)) \arrow (\Box d)) \and (((top) \and

(\diamond c)) \arrow (- €)))))

4.7 Discussion

Languages ER-LTL and N-LTL are compared now to check whetlgecan trans-

late program in one language to an equivalent program inttier tanguage.

Comparing ER-LTL and N-LTL

ER-LTL and N-LTL different in the way of using completion: NFL does comple-
tion on the formulas disjunctively, and ER-LTL does compmeton preconditions
of the exceptions conjunctively.

In ER-LTL, the weak exceptions in N-LTL are discarded. Both kvezception
and strong exception will be taken care of by the new symbol The way of
distinguishing preconditions and consequents with theb®m» in ER-LTL is
more intuitive. Arbitrary revision of the goals is allowedtor example, in the
extreme case, All existing requirements can be eliminayelddving a set of rules
of the form({[ri] : (T ~ T)) wherer; occurs in the ER-LTL program, and then add
the new requirements. In N-LTL, not all existing requirertsecran be eliminated as
in ER-LTL.

These two languages are also related. If an N-LTL programohés strong
exceptions and having at most one rule for eachR, it can be translated rule
by rule to an ER-LTL program. The N-LTL program and the trateslaER-LTL
program are equivalent to the same LTL program. The traoslas as follows:

Given the rulglh: f1), it is written as
(h:[r-]J(T~ f1))

114

where there is no rule in the program with head Further, for any sub-formula in

f, of the form([[r]](f2), it is replaced agr1|(T ~ f2).

Example 23. Given an N-LTL program as follows.

(g:[[ra]](f2))
(ro:[[r2]](f2) A f3)

It can be translated to an ER-LTL as

(@:[r-]J(T~ [ra](T ~ f1)))

(ro 2 [r=](T~ [r] (T~ f2) A f3))

They are equivalent to the same LTL program.

Related Works

There are a few work that are related to the non-monotonicsqgoposed in this
chapter.

Paper [FH91] has somewhat similar aim as ours. It extendseqistemic logic
with temporal operators. Itis very different from this woakd does not discuss the
iIssues such as exceptions, weak exceptions, elaboraksvarioe that are discussed
in N-LTL and ER-LTL.

N-LTL and ER-LTL are related to traditional non-monotonigis including
logic program and default logic, especially when the underformula in the de-
fault logic are considered as LTL formulas. The occurrerafethe symbols are
considered as the triggering of exceptions. The idea of ¢etiop are used when
rules are defined for exceptions. However, they are difteirewvarious aspects.
For example, semantics of default logic depends on modélsegbrogram, and it
does not allow revision of sub-formulas in a formula. Sencanof the objective
language such as entailment relations are involved in defisemantics of the de-

fault logic. On the other hand, semantics of ER-LTL reliestmmtranslation of the
115

logic to LTL before the temporal operands are examined. ER-d[§0 has a great
advantage in terms of complexity.

Recently, a paper [PSBZ10] on applying default logic to teraptogics was
published. Different from default logic, the logic replagach propositional for-
mula with a temporal formula. One limitation of the work isaticalculating a
model of the logic is of high complexity. Also, it is not naalito apply the logic to
real applications, especially when a part of the previoaphcified goal need to be
changed.

This work is also similar to defeasible logic [Nut87] suchtthules are treated

as preconditions and effects.

Applying the Techniques in ER-LTL to Propositional Logic

The constructs in ER-LTL can be used to define a defeasible logere LTL is
replaced by simple propositional logic. Lets call this bgs ER-POP. It has some
interesting properties.

ER-POP shares some common properties with defeasible ogncl [its exten-
sion plausible logic [Bil98]. Labels are used in both langestp denote rules. Be-
sides, an ordering on rules are defined in each language amddaring is acyclic.

However, ER-POP differs defeasible logic in a few aspectsstlizi ER-POP
allows nested rules. In defeasible logic, each programesvaskts of rules together
with an ordering on rules. Nested rules are not allowed. &algpthe ordering in
these two languages have different semantics. The treetwteuordering in ER-
POP denotes the ordering of revising sub-formulas. On therdiand, the ordering
in defeasible logic denotes whether a rule can be fired or fibie ordering in
defeasible logic is a linear order. A rule cannot be firedsifddnclusion contradict
with that is implied by rules with higher priority. Finallthe models of ER-POP

rely on a translation to propositional logic. The models efedsible logic rely on

116

a gradually growing set of literals by firing rules.
4.8 Summary

In many domains, goals specified might be further revisecdrally retracted due
to incomplete information users have about the domainaityti Non-monotonic
temporal logics can be used for specifying goals which cen the revised in an
elaboration tolerant manner. This chapter discussed twenmanotonic extensions
of LTL. The idea of completion and exception from logic pragnming and the idea
of a surface non-monotonic logic that can be translated tom@otonic logic, from
Reiter, are borrowed. The approach of extending LTL can bd tesextend other
monotonic temporal logics such as CTL and CTL

The chapter motivated the need for such non-monotonic teahfgics from
the point of view of needing ways to express goals that carhbaged in an elab-
oration tolerant manner. Several properties of such logiespresented and their
application in modeling revisions is illustrated.

This chapter also discussed progressing of an ER-LTL progréhis is im-
portant as agent received new requirements may alreadytexesome actions to
satisfy earlier goals. Thus the agent need to progress évéopis requirements and
the new requirements based on the trajectory of the agent.

In terms of future work, the approach used in syntactic fdennavision is not
restricted to temporal formulas. Its implications visia-gxisting non-monotonic
logics, belief revision mechanisms, and formalizing nattlanguage discoursés

needs to be explored.

3Sentences in natural language have references such ds“tiase”, “the” may hint about the
replacement. However, it is a challenge problem for theaeghent.

117

Chapter 5

PREFF1-CTL*: GOAL SPECIFICATION WITH DYNAMIC PREFERENCE IN
NON-DETERMINISTIC DOMAINS
In this chapter, a goal specification language Rr&TL* for representing goals
with dynamic preferences in a non-deterministic domairrappsed. Pref+-CTL*
extendsr-CTL* by introduction a new binary operater to denote preferences
among temporal formulas. This language is more intuitivé iarsimpler in repre-
senting nested preferences and dynamic preferences astlogprratok is treated
the same way as other temporal operators. Some of theseogmailst be captured
in other temporal logics with preferences. Further, a paogrs given for finding
one particular planning problem in PrefCTL* that defines preferences relations

among weak, strong, and strong cyclic plans in a non-detestia domain.
5.1 Introduction

An important aspect of designing autonomous agent is tofypebat users want
for the agent. This is called goal specification. Differentlgspecification lan-
guages were proposed. Among them, temporal logics suchaseimporal logic
LTL [Pnu77], branching time temporal logic CTL[EC82, ES89, Eme90], and
their extensions [BK98, NS00, BKTO01] have been proposed aed as goal spec-
ification languages in the autonomous agent community aadnplg commu-
nity. CTL* is also extended to non-deterministic domains by quangfybver
plans [AHKO02, BZ04, BZ06].

Each goal specification language defines a set of goal fosnaial specifies a
set of plans satisfying each goal formula. In the case thdtipteiplans satisfy a
goal, it is interesting to find out more preferred plans amtivam. This is often

done by defining a preference relation among goals, or amiang.pOne approach

118

of defining the preference relation among plans is to consdme goals as soft
constraints [BCGR99]. As in PDDL3 [GLO05], all plans satisfyingrd constraints
are considered acceptable plans, while plans also satisgome soft constraints
are more preferred among them. Preference relation carbalsderpreted differ-
ently. In &% [SP06], a preference relation among plans is defined for gaah
formula. The preference relation is defined to get the masepred plans. As a
consequence, gogl prefers tog, meaning that if plans satisfyingy exist in the
domain, choose such a plan. Otherwise, choose other plastyisa gs.

This chapter uses the notion of preference a%ie¥ but consider non-deterministic
domains. A plan in non-deterministic domain is also callgubkcy. This chapter
argues that given that each goal is a mapping from transgraphs and initial
states to sets of trajectories (or sets of set of trajedpréand given that agents can
guantify over policies, preference relations among gogls & & can be captured
without explicit comparison of temporal formulas.

For instance, in language P-CT,leach goal is a mapping from transition graphs
and initial states to sets of set of trajectories. As a camsece, goals defined are
adaptive to domains, meaning that for a given goal in thedagg, the same set of
trajectories (or policy) is acceptable in one transitioapr while not acceptable in
the other transition graph, if there are more preferred s&apectories (or policy)
in the domain. This implies that among the set of policiessBang the goal,
users usually prefer some policies over the others. For pkait® 2g; = g1) A
(REZg1 N EPY2) = g2) is a goal in P-CTL states that users prefer policies
satisfyingg; to policies satisfyingy,. In a transition graph, if there is a policy
satisfyinggi, the agent needs to take a policy satisfymg Otherwise, a policy
satisfyingg is acceptable. Even though the preference relation cangiarea in
P-CTL". The goal stated above is not as intuitive as the forngula g2, which

explicitly defines the preference relations among tempfmahulas, or policies
119

satisfying the temporal formulas.

Now consider another example from [BZ06] given as in Figufet8.illustrate
that P-CTL! is capable of expressing preferences among sub-goalsadaitguage
with explicit preference relation among formulas is moriitive in capturing the

goals.

Figure 5.1: Transition diagram in a non-deterministic doma

In the example, a goal that is adaptive to domains and chaisgegectation in
different states is defined as follows: In any state of thealanthe agent is trying
to find a strong plan, and then a strong cyclic plan if no strplagn can be found,
and a weak plan if no strong cyclic plan can be found. Stroag,mtrong cyclic
plan, and weak plan can be expressedH@TL" asA o p, ApolC(Epoi©p), and
Epol© prespectively. This goal above is expressed in P-OBZ06] asA po|0((8 PEpaOp=
Epoi®p) A (& PApoiTD(Epoi®P) = Apol I(Epoi®p)) A (E PApaiOp = Apal¥p)).
Note that in this example, any strong plan is also a strontjocglan, which in turn
is a weak plan. Without this property among sub-goals, thedita above will be
more complicated. This goal states that the agent has a feangpn any state of

the planning problem and a preferences relation is definemhgrinese options. A

120

more intuitive representation of the goal would be:
ApolD((strong<i strongcyclic) <weak

or

Apol B((ApoO P < ApalB(Epoi®p)) <Epai©p). (5.1)

It states that in any state of the plan, users always prefeaie a strong plan, and
users prefer to have a strong cyclic plan if it is not possibleave a strong plan.

This goal is useful. For example, suppose that the strongkwend strong
cyclic plans be the different operation plans a Doctor hasfooperation. Due to
non-deterministic outcome of the actions, the Doctor néedsake sure to try his
best to save the patient’s life. Thus the Doctor need to ahdios best actions in
any state of the plan.

This chapter proposes language PmeGTL* that is based om-CTL* but with
a preference relation between state formulas. It shows that the goal above can be
represented in Pref~CTL* as Formula 5.1.

Language Pref+-CTL* has some good properties comparing to other goal spec-
ification languages with preferences. It is noted that thed gbove cannot be ex-
pressed inZ & [SP06] even after extending” %? to non-deterministic domains.
In &2 22, to capture preference relations, logics are defined bgldttg rules about
preference relations to underline goal specification laggs. It does not allow
temporal operators to wrap around general preferencese Mygortantly, it is not
easy, if it is possible to express preference relationsaratdynamic w.r.t. given
conditions inZ? #2. One such example is that users prejeover g, under one
condition but prefeg, overg; under other conditions. New language Pre€GTL*
allows nested preferences and allows dynamic prefereitetgores as users do not
need to distinguish between basic desire formulas and gepesferred formulas

as in [SP06].
121

The rest of this chapter is organized as follows. Sectiondgfhes syntax
and semantics of language PrefSTL*. Section 5.3 studies properties of Pref-
CTL*. Section 5.4 compares PrafCTL* with related languages. This chapter is

end with summary and future work.
5.2 Prefs-CTL*: Extending CTL with Preferences

Now syntax and semantics of the goal specification languatiepreferences are
defined. The logic extends-CTL* by adding a preference relation to temporal
formulas. The logic is called Pref-CTL*.

Similar to -CTL*, formulas in Prefr-CTL* are either state formulas or path

formulas.

Definition 43. Let (p) be an atomic propositionsf) be a state formula, an¢p f)
be a path formula.
(sf)u=(p) [(sH)A(sT) [(sT)v(st) | (s E(pf) [A(Pf) [Epoi(PT) [Apai(PT) |
(sf) < (sf)
(pf) = (sH) | {pH)v(pf) [~(pF) [(PH)A(PT) [(pf) U (pf) |O(pf) | &(pf) [B{pf)

O

The operatok is allowed to occur recursively on state formulas. For edamp
(ApolT0) < Apoi<(p <) states that users prefén0d to Apg&(p<q), and in
Apai®(p <), users prefer to reach a state whpiis true to a state wheugis true.

A goal satisfying “a state is preferred over another stageiaw defined.

Definition 44 (Truth of state formulas in Pref=CTL*). Truth of a state formula
is defined with respect to a triplesj, ®, 1) where § is a state,® is the transition
function, andrtis a policy that is a mapping from states to actions for alktesan

the transition graph.

122

o (8j,®,m) = p, —sf, siAsh, sfvsh, E pf,A pf, Ego pf, Apol pf are

defined similarly as im-CTL".
o (Sj,®,m) =sf<shiff

— (sj,®,m) =sf, and(sj,®, m) = sh, or

— (sj,®,) = sfy, and no other policies such théas;, ®, 75) = sf; and
(Sj, P,) =5, or

— (sj,®, m) = sh, and no other policiess such that(sj, ®, &) = sfi, or

— No policiesrs such that(sj, ®, %) = sf; or (s}, P, ®) = sh. O
Truth of path formulas is defined similarly asiRCTL*.

Definition 45 (Truth of path formulas in PrefeCTL*). The truth of path formulas
is now defined with respect to the quadrufdg, ®, 17, 0), where s is a state,® is
the transition functionsris a policy, ando is a trajectory $,Sj1,.. ..

(sj, @, m0) =sf,-pf, piiApf, pfrv ph, Opf, Opf, Opf, pfilUpf, are

defined similarly as im-CTL";
Based on the semantics of PRCTL", (sj,®, 1) =sf <st iff

(s, P, 1) |= (ShASh) V(-6 P (sfiAsh)) Ash)
V(=& Pst) Ash)V (-8 PshN-EPsh).

in P-CTL*. This implies that each formula in Pre-CTL* can be translated to a
formula in P-CTL:.
Now define when a policy satisfies a ggaiven an initial statesp, and a tran-

sition function® in Pref-i-CTL*.

Definition 46 (Policy satisfies a PrefeCTL* goal). Given an initial state g a
state mapping policyt, a transition function®, and a Pref-CTE goal ¢, mis a

policy for ¢ from g, iff (s, P, 1) |= ¢ in Pref--CTL". O
123

Note that in a transition system, if there is no policy satigf either¢, or ¢»,
any policy in the transition system satisfig¢s<i ¢,. In the case users prefey
over ¢, while want a least one of them is satisfied, users can refgrédsegoal as
(p1V ¢2) A (91 < ¢2). The following section lists a few properties of a PrefTL*

program before illustrates its applications.
5.3 Properties of PrefrCTL*

This section shows a few properties of Pref2TL* that helps in simplifying a

program.

Proposition 17. Let sf, sk, and s§ be state formulas in PrefeCTL*. It is true

that(s,®,m) = (sfiAsf) <(sfhoAsh)if (s,P,m) = (sfi<sh) Ast.

Proof. Given that(s, @,) |= (sfy <sf) Asfs, itis known that(s, ®, T) = sf; and

one of the following is true:
1. (s,®,m) =sfiAsh,
2. (5,0,m) =-~&P(sfinsh) Ast,
3. (5P, m) =-~&Psf Ash,
4. (s,®d,1) = -EPshN-EPsh.

To prove that(s, @, M) = (sfi As) < (sh Asfs), it is sufficient to prove that

any of the following is true:
o (P, =sfiAshAsT,
o (P,) -EP(shiAshhAsT) A(STiAST),
o (5P, M E-EX(sfinsh)A(shAsh),

o (SO, MM E-EX(shASB)AN-EP(shAsT).
124

In case of Item 1, it is easy to know theg @, 1) =sfi Ash Asf;. In case
of Item 2, as there is no policy satisfyirsg; andsf, there is no policy satisfying
sfinshAsfzas well. (s,®,) = sfi is true and(s, ®,) |= sf3, thus(s,®,) =
&P (sfinsfhAnsT) A(sfiAsT). Incase of Item 3, as there is no policy satisfying
sfi, there is no policy satisfyingf; andsfs. It is known that(s, ®,) = sf, and
(s,®,m) = sk, thus(s,®,) | -&P(sfiAsk) A(sfaAsh). In case of Item 4,
as there is no policy satisfyingff, there is no policy satisfyingf; Asfs. As there
is no policy satisfyings f, there is no policy satisfyingf, Asfs. Thus(s,®,) =

ﬂéi@(Sfl/\ng)/\ﬂ(g)@(sz/\ng). O

Proposition 18. Let sf, sf, and s§ be state formulas in PrefeCTL*. It is true

that
o (5P, (sfixsh)Vv(sh<sh)if (sP,m) =sfi<(shVvsh),
o (SO, (sfiash)V(shash)if (sP,m) = (sfivsh)<st,
o (SO, m = (sfi<sh)A(sfiash)onlyif (s,®,m) =sfi<(shAsf),
o (P, 1) = (sfi<sh)A(sfra<sfz) onlyif (s,®,m) = (sfiAsh) <sts.

Proof. First prove that(s, ®,) = (sfy<sh) v (sfi<sh) if (5P, m) s
(sz\/Sf3).

Given that(s, @, 1) = sfy < (sf Vsfz), one of the following is true:
1. (s,@,m) sfin(shVsh),

2. (5P, =-&P(sfin(shVsf))Ash,

3. (s®, 1) E (~&Psf)A(shVsh),

4, (S,CD, T[) |: —\@@@Sfl/\—\gy(sz\/ng).

125

To prove that(s, @,) |= (sfi<sh) VvV (s <sh), it is sufficient to show that one

of the following is true:
o (5P, =sfiAsh,
o (P, M) -EX(sfiAsh)AsT,
o (5P,) = (-EPsf)Ash,
o (SO, M) -EXsHN-EPsST,
o (5P, =sfiAsf,
o (5P, E-&X(sfiAnsh) Ast,
o (5P,) = (-E&Psh)NsT,
o (SO, 1) -EXsHN-EPsT.

It is easy to check the case in Item 1 and Iltem 3. Consider theindtem 2.
Given that(s,®,) = ~&Z(sfi A (sfaVsz)) Asfy, it is true that(s, P, m) =
&P (stiNn(shVsh))Asf. Thus(s,®,m) =sfiiA-&P((sfiAsh) Vv (sfiA
sfz)). Thus(s,®,m) =sfi A& P (sfiAsh). Similarly, given Item 4, it is known
that(s,®, 1) = =& Psfi A& Pst.

Similarly, it can be proved thas, @, 1) = (sfi<sf) vV (sh<sh)if (s,P,) =
(sfivsh)<st.

Now prove that giver(s,®,m) |= (sfi<sh) A (sfi<sfz), (5P, M) Esh <
(sfoAsth) is true.

Given that(s, @, 1) |= (sfy<sh) A (s <sf), it is known:
1. (s, m) =sfiAsh,

2. (5,0, &P (sfinsh) Ast,

126

3. (8P, 1) | (—&Pst) Ash,

4. (S,D,1) = ~ELPsthN-EPsh.
and

1. (s;®,m) =sfiAs,

2. (P, E-EP(sfinsfz) Ashy,

3. (5P, = (—~&Psh) Ast,

4. (5,@,1) = ~&PsthN-&Pst.

To prove(s,®,) =sfy < (s Asf), itis needed to show one of the following is

true:
1. (s®,m) =sfin(shhAsh),
2. (5;0,m) E-~EZ(sfin(shAsh))Ash,
3. (8P, m) E (—-EPsf) A (sfaAsT),
4. (5;P,1) =~ EPshN-EP(shAsh).

Now check the 16 combinations {i$f; <sf) A (sfi <sf3) and show that in
each of them, one of the 4 cases above is satisfied.

Given that(s,®,) =sfiAsh, if (5P, 1) =sfiAs, (P, M) EsfiA(ShA
sf). If (5@, m) = -~&P(sfinsf) Asf, (5P, M) = -EP(stiA(shhAsH))A
sf.

Given that(s,®,n) = -&Z(sfi Asf) Asfy, in all cases, it is known have
(5P, 1) = —-&P(sfin(shAsh)) Ast.

Given that(s,®,m) = (-&Psf) Ash, if (5P, n) =sfiAsk, (sP,1) =

siin(shAsh). If (5P, = -&P(sfiAnsh)Ash, (5P,) =-&P(sfiA
127

(sfoAsk))Ast If (s,P, 1) = (-&Psf) Asth, (S,P, 1) = (—-EPs) A(sh A
sh). If (5P, 1) =& PshHN-EPsH, (S,P,N) =& PshAN-EP(shhAsT).
Giventhat(s,®,) = & PsfiiA—-& Psh, inany casess, P,) = ~& PsfLA
&P (sfhAst) is true.
Thus it is known tha(s, @,) |= (sfy <sf) A (sfy<sfz) only if (s,®, 1) =
sfi<(sfaAsf3). Similarly, it can be proved thas, @, M) = (sfi<sf) A(sfa<ast)

only if (s,®,m) = (sfiAsh) <sfs. O

Proposition 19. Let @ be a transition graph, s be a state fh. Let sf be a
state formula in PrefR-CTL". (s,®,m) = (sfi< T) iff (s,®,m) = (L <sh) iff
(s, P, m) =sfvV-&Pst.

Proof. The proof is based on the semantics of PmeGTL*.
(s;d,m) = (shi<T) iff (sP,mM) E(SEAT)V(mEL(shiAT))Ash)V
(REPst)AT)V(=mEPSHN-EPT) iff (s,P, 1) =sfV-&EPst.
Similarly, (s,®,) = (L <sfy) iff (s,®,m) = (LASH)V((-EZ(LAST))A
LYV (~EZLL)ASH)V (~EPLNAN-EPsh) iff (s,P,1) =sh V& Psh.
Thus(s, @, m) = (sfi< T)iff (s,®,m) = (L<sf). O

Given the transition system and the initial state, each tdamepresents the set
of states or paths satisfying it. Let the transition graphhen initial state bes,

the set of policies satisfyin§; is denoted a®(®, s, f1).
Proposition 20. Let st and s$ be two state formulas in Pref-CTL".

1. If sk | sfy, it is known that(s,®, 1) = (sfy<sh) iff (5P, m) EshV
(=& Psh) Ash) V& Ps.

2. Ifsh=-sf, orsfy |=—st, itis known tha(s, ®,) =sf<shiff (s,®,) =
sh V(=& Psf) Nsh) V(=& Pst A& Psh).

128

3. (5@,m) |= (shasfh)A(sh<ash) iff (s®,m) = (sfiv & Psh)A(sfV
~& Psty).

Proof. Each of them is proved based on semantics of Rre&ffL*:

1. Given thatsf, = sfy, it is known that(s,®, 1) = (sfy <sf) iff (s,P,m) =
(sfinsh)V ((=&P(sfiAsh))Ast) V(-8 Psh) Ash)V (=& PsTL A
=& Psh)iff (5,P,m) EshV((—~&Psh)Ash)V((-&Pst)Ash)V-E&Psh
iff (s,®,m) =shV ((—~&Psh)Ash)V & Pst.

2. Giventhasf, = —sfy, orsf; = —sh, itis known that(s, @, 1) = (sfy <sf)
iff (s,®,m) = (sfiAsh)V ((—~&P(sfinsh))AsT)V ((~&Psf)Ash)V
(2EPsHN-EPsh)iff (s,P,m) =LV (&P L)AsT)V((-EPsh)A
Ssh)V(=EPstHN-& Psh)iff (s, m) EshV((-EPs)Ash)V (=& PshA
& Psh).

(5@, m) = (sfi<sh)A(sh<sh)iff (SiASh)V (=EXSHA-EPSshH)V
(m&P(sfinsh) Ash) V (m&EPstiAsh) A ((-mEP(sfiAsh) Ash) V
(=& Pstonsh))iff (shASh)V (=& PSHA-EPshH)V (ShA-EPsT)V
(stoA=EPsh) iff (s,P, 1) = (shV-EPsh)A(shV-&Psh).

]

These properties of Pref-CTL* help users in simplifying a Prei~CTL* pro-

gram. Consider the following example.

Example 24. Given the transition graph as in the example in Section 5dly n
check whether the policy= {(s1,a1), (S2,8s), (S3,a4) } satisfies Prefr-CTL* goal
(EpolOP A Epol0—p) <<Apo©p. Let si, sk and s§ be EpqOp, EpgD—p and

Apoi©p respectively. The goal (sfi Ash) <ists.

129

According to Proposition 18, the policy satisfies the godyohit satisfies the
goal (sfy<sfs) A (sfr<1sf3). According to Proposition 20, assf=sfiand s§ =
—sf,, the goal is equivalent to P-CTlgoal (sf3 V ((—& Psf3) Asfr) V=& Psh) A
(shV((m&Psh)Ash) V(=& PShA-EPsT)).

As policyr satisfies sff, and s$, and there is no policy in the domain satisfies
sf3. The goal above is satisfied. Thuosatisfies the PrefeCTL* goal (EpgOpA

Let sf;, sf,, andsf; be state formulas. It is noticed théd, ®, 1) = sf; <
(sf, <sfz3) does not imply thats, @, M) = (sfy <sh) <sf;. For example, given a
states in system®. Suppose there are only two policies and e starting from
states in ®. Policy rp satisfies state formulasf; but notsf, andsfs. Policy o
satisfies state formulasf;, s, but notsfs. Thus(s, ®,m) |=sf < (sf, <sf) but

(s @,mm) j~= (sf<sh) <sfs.
5.4 Compare PrefeCTL* with Related Languages

As mentioned in Section 5.1, language Pre€TL" is related to other goal spec-
ification languages in non-deterministic domain. Now coredrefs-CTL* with
m-CTL* and P-CTL.

Compare Prefr-CTL* with other Goal Specification Languages in

Non-deterministic Domain

Goal specification language PrafCTL* is based on languageCTL*. Accord-
ing to the definition on one language is Syntax-advanced tth@amther language
in Chapter 3, P-CTLis syntax-advanced than PrefCTL*, and Prefr-CTL* is
syntax-advanced thamCTL*.

Further, the following proposition on the set of goals espeal in the languages

is true.

130

Proposition 21. Given a goal that is a mapping from states and transition sap

to set of set of trajectories, it is known that:
e A goal expressed im-CTL* can be expressed in Pre#CTL";
e A goal expressed in Pref-CTL* can be expressed in P-CTL

Proof. Let¢(s,®)™ T beg (s, @) in languager-CTL*. Let ¢ (s, d)Pref-mCTL:
be ¢ (s,®) in language Pref+-CTL*. Suppose a goal can be expressed in-
CTL* as¢. Itis known thatg(s, ®) = ¢ (s, ®)™ T for any states and transition
graph®. Now prove thatp (s, ®)™ CT = ¢ (s d)Pref-T-CTL Ag Prefs-CTL*
Is syntax-advanced thanCTL", it is known that the set of policies satisfyiggin
these two languages are the same, and policies defined mtinedanguages are
the same. A® (s, ®) is defined as
{1y : (s,®, M) = ¢ andr1; is the set of trajectories that are consistent with potigy
it is known thatg (s, ®)™ €T = ¢ (s, d)Pe~-CTl Thus a goal expressed in
CTL* can be expressed in PrafCTL*.

Similarly, it can be proved that a goal expressed in PFETL* can be ex-

pressed in P-CTL O

On the other hand, there are some goals in Pr€TL* that cannot be ex-
pressed im-CTL*. This is implied by Proposition 4 in Chapter 3. It is to showttha
strong p) <istrongCycli¢ p) cannot be expressed in pi-CTL

Compare Prefr-CTL" with other Languages with Preferences

Now compare Pref+CTL* with other goal specification languages with prefer-

ences. ltis illustrated in the following example in a detigristic domain.

Example 25. Tom needs to go to school this morning to attend a semina. éfengsr
to have breakfast before leaving for school. But if he gotatg or have other things

to do, he might have to skip the breakfast.
131

The goal is presented &s(break fast\ CatSemina< CatSemina, which states
that is there is a plan for Tom to have breakfast before aitemthe semina, take
that plan. Otherwise, try to attend the semina. If there is lam ffor Tom to attend
the semina, Tom may skip the semina as well. It does not matetharhTom will
have breakfast or not in this case.

Also note that this goal is different frox((breakfast< T) A GatSeming,
which is equivalent to P-CTlformula< ((break fast/ =& Zbreak fasj A GatSeming
according to Proposition 19.

Now check how this goal is represented in other goal spedificdanguages
with preferences. In PDDL3, attending the semina is consil@s a hard goal
while having breakfast is considered as a soft goal. Amongles, as long as
Tom has attended the semina, the goal is considered as sdtisfien though Tom
may not have had the breakfast.

In 22, the goal is represented as(break fast\ CatSemina< CatSemina.

Plans satisfying this formula are the same4n?” and in Prefs-CTL".

Language? &7 [SPO06] is defined for deterministic domains. Now extend it to
non-deterministic domains first before comparing with BreCTL*.

In & 22, an ordering between trajectories w.r.t. single desirggat) is defined.
Now define an ordering between policies w.r.t. single dediete that in a non-

deterministic domain, a policy leads to a set of trajectorie

Definition 47 (Ordering between Policies w.r.t. Single Desiregt ¢ be a basic
desire formula and letr and 3 be two policies. Policyr is preferred to policy3 in
transition systen® with initial state s if(s,®,a) = ¢ and (s, @, 3) £ B.

Policy a and 3 are indistinguishable in transition syste#nwith initial state s

if one of the following two cases occurs: (§ P, a) = ¢ and(s,P,3) = ¢, or (ii)

(s,@,0) [~ ¢ and(s,P,B) -~ .
132

With this definition, &7 can be extended to non-deterministic domains. The
preference relation defined i¥ &7 can be captured by quantifying over policies.

As discussed above, nested comparisons of the formuladlaned. A for-
mula &(p<iq) or ApgO(strong p) < strongCycligp)) in Pref-r-CTL*cannot be
captured inZ &. Besides, comparing to languagé?, Pref--CTL*allows dif-
ferent preference relations under different conditionsr &le, suppose the
goal is expressed agcy = (f1 <1 f2)) A (c2 = (f2 < f1)).

Language? & and Prefr-CTL* are different in defining semantics of formu-
las such ady <1 fo < fo. This formula is undefined in Pref-CTL*. Meanwhile,

22, formulas(fy < fo) < fz and f1 < fp < f3 have different semantics.

5.5 Discussion
Point-wise Preference

The preferences relation defined in the language is a rukdlqaeferences relation,
meaning that when checking therelations, a policy either satisfies a formula or
does not satisfy the formula. There is no definition on phadéaisfaction of a
formula. It is also unheard that a policy is more “closer” atisfying a goal than
other policies.

However, there are cases where the preference relatiordefined on “sub-
goals” that contradict with each other. In some cases, dvamgh the most pre-
ferred goal cannot be satisfied by a policy, users may watigpsatisfaction of the
goal.

The following example illustrates the case that point-vpseferences might be

needed.

Example 26. Joe always do exercise before dinner. However, Joe get a pladine ¢
from a friend to meet him tomorrow before dinner. Joe havekip the exercise

tomorrow but will continue the exercise in the following days.

133

The initial goal is represented asexercise. A second rule is appended as
O(—exerciseé\meetFriend. Users might want a revised goal as exereige (—exercise\
meetFriend A O O Oexercise. This revisions cannot be done in Pre&-TL".

How to define a goal specification language to handle thisilsasthallenging

issue.
5.6 Summary

This chapter proposed a goal specification language witiegece for goal spec-
ifications in non-deterministic domain. The language isebasn-CTL*. A bi-
nary connectiveq is introduced to compare state formulas. Comparing to other
goal specification languages with preferences, RF&fTL* is the only language
for non-deterministic domains. Besides, by treating theperator the same way
as other operators, language PreGTL* has some interesting properties such as
allowing nested preferences and dynamic preferences.

In terms of future work, an interesting topic is to utilizeestpreference rela-
tion in other temporal logics, especially the non-monatagyoal specification lan-
guages. Another interesting topic is to make use of the guadication languages
with preferences in defining non-monotonic goal speciftcalanguages. Defining
goal specification languages that can deal with point-wredepences is also an

interesting topic.

134

Chapter 6

PLANNING WITH GOALS SPECIFIED IN TEMPORAL LOGIC31-CTL*
AND PREF{1-CTL*

Given a goal specified im-CTL* or P-CTL*, planning and plan checking prob-
lems are more difficult that traditional planning problerk®r example, planning
problems with goals in-CTL* is EXPTIME-hard. However, for specific subsets
of goals specified im-CTL*, Polynomial time algorithms can be found by using
the same approach as Baral et. al. propose&-oaintainability problems. The
method first encodes the problem in reverse Horn SAT, and tilaeislates it to
Horn SAT. Finally, a genuine algorithm is developed by siatinlg the way of solv-
ing the Horn SAT program. This chapter shows that this apgprad obtaining
polynomial time algorithms for problem solving can be fiuilly applied to finding
plans for variougt-CTL* goals including weak, strong, strong cyclic plans and a
few otherr-CTL* goals. Some interesting properties of these planning probl
can be found by comparing their reverse Horn SAT encodingghEr, a program

solving a particular PrefeCTL* program is given.
6.1 Introduction

In recent years, one of the approaches that is used in findingans to Al prob-
lems is to find “models” of a logical encoding of the problenxaEples of this
include finding planning via satisfiability encoding [KS9&] logic programming
encodings with answer set semantics [GL91]. The later isnederred to as answer
set programming. But in most of these cases, problems sofead the complexity
class NP-complete or beyond. One outlier is the work [BEBNOBictv takes ad-
vantage of the lower complexity results about specific Ipgagramming and SAT

sub-classes to come up with a polynomial-time algorithnfifading maintenance

135

policies.

In that paper, the authors first give a propositional revétsen encoding of
the problem and show that the models of the encoding comelstaodesired agent
policies. They then give a transformation of that encodng propositional Horn
encoding. The fix-point iteration approach to compute moadéIHorn theories,
which is feasible in linear time, is then exploited to deyetogenuine polynomial-
time algorithm for finding agent policies. If one were to vighe logical encod-
ing as a specification, then the above mentioned approachecaonsidered as a
systematic way to develop algorithms from specificationke driginal software
engineers dreamed of finding ways where algorithms are radaladirom problem
specification in a systematic way. This dream is partly come now.

In recent years, there have been some important work on ipgnn non-
deterministic domains [DLPT02, CPRTO3]. In particular, ZHRTO03] the notions
of strong planning, weak planning, and strong cyclic plagnivere introduced,
and algorithms for finding such plans were presented. In @n&obf this disser-
tation, temporal logics are extended to better capture gatdifications in a non-
deterministic domain. In particular, language€TL* and P-CTL are proposed.
Itis noted that strong planning, weak planning, and strgrgjcplanning problems
can be encoded im-CTL* asEpgOp, ApgOp, andApe 0 (EpeOp) respectively.
This chapter explores the possibilities of making use ofgheroach in [BEBNO8]
in solving strong planning, weak planning, strong cycliarpling and a few other
n-CTL* goals. Encodings inspired by the encoding in [BEBNOS] are gz,
leading to polynomial time algorithms for finding plans. thar, the relations of
these problems are studied by comparing their encodings.

The approach is generalized to obtain polynomial time algms for a few
otherr-CTL* goals in a non-deterministic domain.

Contributions of this chapter are as follows:
136

e This chapter illustrates the novel algorithm design apgmoaf [BEBNOS]
to systematically develop an algorithm from a logical sfieation. Passing
through Horn SAT specifications, new polynomial time algoris for weak,
strong, and strong cyclic planning are developed; thusdihgdadditional
insights about these notions. As part of that, the encodindiriding weak

plans is a subset of the encoding for finding strong cycliogla

e Show how strong cyclic plans can be declaratively genenatttdanswer set
programming at an abstract level. Discuss how particulapgrties of the
encodings and features of answer set solvers can be expfoiteomput-
ing (most) preferred plans among alternative candidatesplén particular,
based on the encoding, maximal plans and least defined pdanisecfound

in polynomial time.

e How this approach can lead to algorithms for other kind oflgda non-

deterministic domains is discussed.

e Complexity results about weak, strong and strong cyclicrulamare given.

(No such results appear in previous papers.)

6.2 Background: Strong, Weak, and Strong Cyclic Plans in Naterdhinistic

Domains

This chapter start with recalling the notions of weak, siy;aand strong cyclic plans
from [CPRTO3]. Such plans manifest in non-deterministic dors. In such do-
mains, plans map states to actions or to sets of actions. K plaa to achieve is

a plan that says that at least one of the paths (based on fiofdhat plan) leads to

p. A strong plan to achievp is a plan that says that all paths (based on following
that plan) would lead t@. A strong cyclic plan to achieve is a plan that says

all along the path (based on following that plan) there iast one of the paths

137

(based on following that plan) that would leado These goals are expressed as
Epol®ps ApolOp, andApg O (Epei©p) in languager-CTL* [BZ04], respectively,
where & means eventually] means alwaysk o means exists a path following
the plan under consideration, aAg, means all paths following the plan under
consideration.

Now give the formal definitions.

Definition 48 (Planning problem)Let ¥ = (., .o/ ,®, poss be a system. A plan-
ning problem forZ is a triple (2,.7,%) where.¥ C .#, and¥ C ..

Definition 49 (Execution structure)Let 1T be a control policy, or a plan of a plan-
ning problem(2,.7,%) where2 = (., </ ,®, poss. The execution structure in-
duced byt from the set of initial states” C . is a tuple K= (Q, T) with QC .

and T C . x . inductively defined as follows:

1. Ifse ¢, then s Q, and

2. If se Q, action ac r1(s), and $ € ®(s,a), thensc Q and(s,s) € T.

A state sc Q is a terminal state of K if there is nd s Q, S # s, such that

(s,8)€eT.

In the following, it is assumed that there is always an actiopin each state
S, such thad(s,nop) = {s}, thus the planning problefa”’, o7, ®, poss can be
simplified as(.¥, o7, ®).

A states, € Q is reachable from sta® € Q if there is a path frons; to s, in

T.

Definition 50 (Plans with respect to a planning problerhpt 2 = (.7, o7, ®) be
a planning domain, P= (2, .#,%) be a planning problenvt be a plan inZ. Let

K = (Q,T) be the execution structure induced tsyrom .7
138

1. mis a weak plan with respect to P iff for any state i some terminal state

in ¢ is reachable from the state.

2. mis a strong plan with respect to P iff K is acyclic and all thertenal states

of K are in¥.

3. mis a strong cyclic plan with respect to P iff from any state indgng terminal

state is reachable and all the terminal states of K aré¢/in

—c)
@‘\\Xg
y

Figure 6.1: Transition diagram of the planning dom&in

Example 27. Consider a planning domaiy = (., <7, ®). Let. = {b,c,d,e},
o/ = {x,y}, and the transition functio® as in Figure 6.1. Then, pofs = {X,y}
while posge) = 0. For the planning problem %, .7,%) where .# = {b} and
¢ = {e}, the mappingt such thatr(c) =x and ri(b) =X, is a strong cyclic plan.
Its execution structure is K= {{b,c,e},{(b,c), (c,b), (c,e)}}. In this planning

problem, no strong plan exists, whiteis also a weak plan.
6.3 Finding Strong Cyclic Plans

This section uses the approach in [BEBNOS8] to develop algostthat construct
strong cyclic plans. To start with, a propositional SAT etiog of a planning
problem is given. It is shown that the models of this theorgogle strong cyclic

plans, if one exists, and vice versa.

139

SAT Encoding S-CycliP)

In the SAT encoding, for each staseand actiona, propositionss ands g are
used, where > 0 is an integer. Intuitivelys will mean that there is a path from
sto ¢, following T of the execution structur = (Q,T), of length at mosi.
Similarly, s_a will intuitively mean that there is a path frosito ¢ of length at
mosti, following T of the execution structurk = (Q,T), and witha as its first
action. Let an upper bourdax= |.| — 1 for i, depending on the number of states

in .¢; if there is no path of length at mostax there is no path at all.

[SAT encoding of strong cyclic plannindgs-Cyclic] Suppose a planning problem
P=(2,7,9) is given whereZ = (., o/, ®). Letmax=|.”| — 1. P is translated
into a SAT encoding-Cyclic(P) as follows:

(O)forallse . andi,0<i<max §_1=S5§
(1) for every stats € .\, and for alli, 0 <i < max s = Vacposgs) S-a
(2) for every states, s € .7 such that' € ®(s,a) for some actior: S amax=" Snax

(3) for every states € .7, actiona € posgs), and for alli, 0 <i < max sa =
\/s’ecb(s,a) ﬁl—l

(4) for every states € .7, actiona € posgs), and 1< i <max Sa_1 = S
(5) fors€ . smax
(6) forse .S\ ¥: -5

The encoding in Algorithm 6.3 uses the step numbers in [BEBN@3&s to
reflect the closeness between this encoding and the encsaliraf [BEBNO08] for
k-maintainability. In case ofat, the numbek is part of the input. The clauses in
(0), (5) and (6) are the same assat (1) with one exception; instead &f max-1 is
used. The clauses in (1) and (4) are also very similar to thegponding clauses
insat(1). The main difference are the genuine clauses in (2) andif@)ttat (2) of

sat' (1) is missing in this encoding (because there are no exogemtiossihere).
140

The intuition behind this encoding is as follows. The clause(0) state that
if there is a path frons to ¢ of length at most-1, then there is a path of length
at mosti. The clauses in (4) make a similar statement for paths wihdictiona.
The clauses in (1) state that if there is a path fiota ¢ of length at most, then
there must exist an actianwhich is the first action of such a path. The clauses in
(2) state that for any stag there is a path frors to ¢4 of length at mosmaxwith
aas its first action only if from every statee ®(s,a) a path to¢ of length at most
maxexists. This takes into account the possibility teabhay be in the closur®
of the execution structur@, T). This rule makes sure that in the resulted plan, for
any state reachable from the initial state by following thenpthere is a path to a
state in¢4. The clauses in (3) state that a path freto ¢ of length at most with
a as its first action exists only if there is a path from someetat ®(s a) to 4 of
length at most-1. The clauses in (5) state that every initial state muse lzapath
of length at mostax Finally, the clauses in (6) exclude paths of length zero for
non-goal states.

Strong cyclic plans with respect Band the models d-Cyclic(P) are formally

connected as follows.

Lemma 3. For any state t, a model of the program M, if Mt; where0 < i < max,
then there is a path inyf from t to a final state irf¥ and the length of the path is

not larger than i, where \ is in the execution structure corresponding to M.

Proof. Itis proved by the induction on

In the base casd/ |~ to. From the clauses in (6), it is known thahas to be in
¢. According to the definition 0&Cyclic, there is a path iy of length O from
statet to a final state ir¢¢. Thus the statement holds for the base case.

For the induction step, suppose for all staeghereM |=s;, for j <i, there is

a path inTy from sto a final state ir¢¥ with the length no larger thap For a state
141

s,if M =g andM = 5_,, there are two different cases. & ¢, the induction
step is proved. On the other handsi .\¥¢. SinceM must satisfy the clauses in
(1), there is an actior.a such thatM = s_g;. SinceM must satisfy the clauses in
(3), there is a statd € ®(s,a) with M |=5_;. Based on the induction, there is a
path no larger than— 1 steps frons to a terminal goal state. By taking actier,
there is a path from stateto a terminal goal state and the length of such a path is

less than or equals 1o The induction step is proved. O]
Proposition 22. 1. P has a strong cyclic plan iff S-Cyc{le) is satisfiable;

2. For any model M of S-Cycli®), the partial functionry : . — 2 defined
byriv(s) ={a|M [=s.aj,j =miniM =5} on all states & .\ ¢ such that

M |= s for some i, is a strong cyclic plan of P.

Proof. First prove (1). Suppode has a strong cyclic plar.

Let .7 (m) be the set of terminal states of policy A policy 77 is defined such
that 77(s) = ri(s) for all s¢ ¢; 1'(s) are not defined fos € 4. It is clear that
T (m C 7(m') C¥ andr is also a strong cyclic plan &. Denote the execution
structure induced byt by (Q, Tr).

According to the definition of strong cyclic plan, for anytstain Qy, there is
a path (viaTy) from sto a state in7 (17). Consider states iQ,y. Letd(s,¥) be
the length of one of the shortest path (Wig) from s to any state irf¢. For each
states € Qp, if d(s,¥) is n, then defines, - - - , 5,1 to be false and, - - - ,Smax-1
to be true. For each actiansuch that7(s) =aandd(s,4) =n,saj,---,San_1
are defined to be false asdh,, - - - , S.amax_1 t0 be true. All othels ands_a; atoms
are assigned false. Denote this propositional interpogtdty N. Now argue that
N satisfies all clauses i8-Cyclic(P). By construction oiN all clauses in (0) are
satisfied byN. All clauses in (1) are satisfied by because when their left hand

side is true, that mearsss Q. Sinces¢ ¢, and.7 (') C ¢, scannot be a terminal
142

state, and thug’(s) must be defined. Then by the constructiomathe right hand
side of (1) must be satisfied . For the clauses in (2) the left hand side is satisfied
by N only whens € Q, anda € 17(s). By definition of Qy, all s € ®(s,a) are
going to be inQ;y. ThusN must satisfy the right hand side of the clause whose left
hand side it satisfies. Consider the clauses in (3N #atisfies its left hand side
then there must be a path froso ¢ via (viaTy). Let the length of the shortest
such path ben, anda is the first action in one such path. Since this is one of the
shortest paths, one of the states ®(s,a) must have a path of length-1 to 4.
Thus the right hand side of the corresponding clause in @tisfied byN. Hence,

N satisfies the clauses in (3). By constructiom\pfit is easy to see thaN satisfies
the clauses in (4), (5) and (6). This proves part (1) of theppsdion.

To prove part (2) of the proposition, IBt= (2,.7,9), with = (L, o/ , D),
and|.”| = max LetM be a model of5-Cyclic(P)Ky be as defined, an@@w, Tm)
be the execution structure induced Ky from .#. From the construction dfy
and since it is not defined on states4nit is needed to show that for any state in
Qw, there is a path from this state to a final stat&in

Let the distancel,, (S,-#) be the length of the shortest path (Vi) from any
state in.# to s. By using induction ord,, (s,.#), and the above lemma, that for
every state irQy, there is a path (vidy) from this state to a final state .

The base casék,, (s,.#) =0, is abous € .#. From the clauses in (5), for these
statess, M |= spax-1. Thus, by using the lemma, there is a path freto a final
state in®. Thus the statement holds in the base case.

Now for the induction step, assume thatiif, (s, .#) < d, then there is a path in
Qu from sto a final state ir#. Now prove the case whetg,, (s,.#) = d. Since
dk,, (S,-#) =d, there is a statesuch thatlk,, (s,.#) =d — 1 ands € ®(s,a) where
ac Ku(s)). ButthenM = s_aj for somej. Due to the clauses in () = S.amax-1.

Using the clauses in (2) and the fact tBat ®(s,a), itis known thatM =5/, ;.
143

Thus, using the lemma, there is a patffjpfrom s’ to a final state ir¢. For a state

se .7, if there is a path from¢ to s, then the length of the shortest path is at most

max—1. This implies that induction step considers all statesdhareachable from

. This concludes the induction and the proof of (2). O

The following example illustrates the encoding and its mseoimputing strong

cyclic plans.

Example 28. Consider the strong cyclic planning problem in Example 23 SAT

encoding is as follows:

Clauses (0):

Clauses (1):

Clauses (2):

Clauses (3)

Clauses (4):

b:> b1. b1 = b2. bz = b3.
Co= C1. CLp = Co. C2 = C3.
do = dl. d1 = d2. d2 = d3.

€ =€1. 61 = €. = €3.

b= DbxiVvby:. bo=bxVvb.ys,.
b3 = bXx3Vbys Cc1=CXx1VCyi.
C2 = CX2VCY2. C3= CX3VCYVa.

di=L1l. dbh=1.d=1.

bx3 = ca. b,y3 = ds.

CX3=€3. CXz3=Db3. Cy3=ds.

X1 = ¢cp. bxo = c1. bxg= .
b.ys = do. by, = dy. by = dbo.
CX1 = bgpVey CXo=byVe.
CXz3=hVe.

C.y1 = do. C.y2 = dl. CyY3 = dz.

bxo = b_x1. bxg = bxo. b_Xxo = b_Xxs.

byo=-Dby:. byi=Dby, by,=bys.
144

C_Xp = CX1. CX1 = CX2. C_X2 = C_X3.
C.Yo = C.Y1. C.y1 => Cyo. Cy2 = Cya.
Clauses (5): b.

Clauses (6): b=1.co=1.do=L1.

This SAT instance is solvable, and one of its modelsis{¥s, C,, 3, €1, €, €3,b_X3,C X2, C X3}.
Using Proposition 22, A strong cyclic plamcan be constructed from M given by
ri(b) = {x} and m(c) = {x}.

Horn SAT Encoding

[Horn SAT encoding of strong cyclic planning] Let a plannipgoblem P =
(9,7,9), wherey = (7, o/ ,®). Supposenax= || —1. P is translated into
a Horn encoding-Cyclic(P):

(O)forallse ¥ andi,0<i<max§=5_1
(1) for every stats € .\, and for alli, 0 <i < max Aacposgs) S& = §.
(2) for every states, s € .7 such thas' € d(s, a) for some actiord: Sy.x= S@max

(3) for every states ¢ ., action a € posgs), and for alli, 0 < i < max
/\s’etb(s,a) 511_1 =S&q

(4) for every states € .7, actiona € posgs), and for alli, 1 <i < max Sg =
Sa-1

(5) forse 7 Snax=_L
(6)forse S\¥:'

While S-Cyclic(P) is constructible in polynomial time fromR, it cannot auto-
matically be inferred that finding strong cyclic plans isypmmial, since SAT is a
canonical NP-hard problem. However, a closer look at thecsire of the clauses
in SCyclic(P) reveals that this instance is solvable in polynomial timmedeled, it
is areverse Horrntheory; i.e., after reversing the propositions, the thasryorn.

145

Using propositions, which intuitively mean the converse af the Horn theory
corresponding t&Cyclic(P), denoteds-Cyclic(P), is illustrated in Algorithm 6.3.
As computing a model of a Horn theory is a well-known polynahgproblem

[DG84], the following result holds.

Theorem 2. Strong cyclic plans can be computed in polynomial time.

Maximal Plan

An interesting aspect of the above is that, as well-knowchesatisfiable Horn
theoryT has the least modeM*(T), which is given by the intersection of all its
models. Moreover, the least model is computable in lineae ficf. [DG84]. This
model not only leads to a strong cyclic plan, but also leadsrtaximalplan, in
the sense that the control is defined on a greatest set o statside4 among
all possible strong cyclic plans for initial stated’ and goal state¥ such that
& C #'. This gives a clear picture of which other states may be atlet while

the property of strong cyclic is preserved.

Lean Plans

On the other hand, intuitively a strong cyclic plan conseddrom some maximal
model of S-Cyclic(P) with respect to the propositiorsg is undefined to a largest
extent, and works merely for a smallest extension. Stafftiogn any model of

T, such a maximal model of can be generated by trying to flip step by step all
propositionssg which arefalseto true, and change other propositions as needed
for satisfiability. In this way, a maximal model df on {5 | s€ .\ ¢} can be
generated in polynomial time, from which a “lean” controhadso be extracted in

polynomial time.

146

Genuine Procedural Algorithm

From the encoding to Horn SAT above, a direct algorithm SjrGyclic Plan can
be distilled to construct a strong cyclic plan, if one exists mimics the steps
which a SAT solver might take in order to sol8Cyclic(P). For each statec .
and actiora € posgs), counters[s] andc[s_a] ranging ove{ —1,0,--- ,max} and
{0,1,--- ,max}, respectively, are used. Intuitivelgis =i represents that so fag,
S, .-+, § are assigned true; in particulae- —1 represents that ng is assigned
true yet. Similarlyc[s.a] =i represents that so farag, Sap, - - -, S& are assigned
true. In particularc[s_a;] =0 means that ngg; is assigned true yet.

Based on Proposition 22 and the fact that Strong Cyclic Planesithe compu-
tation of the least model & Cyclic(P) in Algorithm 6.3, the following proposition

is true.

Proposition 23. Algorithm 6.3 on Strong Cyclic Plan finds a strong cyclic plan
in a planning problem. Furthermore, for every inpgt and P, it terminates in

polynomial time.

Remark that algorithm Strong Cyclic Plan can be made moreaftitiy prun-
ing in a linear time preprocessing all states which are na path between some
statesse .# ands € 9.

A more detailed account of the complexity of Strong CyclicrPdad possible

improvements are given in Section 6.6.

Strong Cyclic Planning Using an Answer Set Solver

This section, shows how computing strong cyclic plans caarm®ded as a logic
program, based on the results of the previous section. Maegely, an encod-
ing to non-monotonic logic programs under the Answer Setaseits [GL91] is

described, which can be executed on one of the available &nSet solvers such
147

[Strong cyclic plan]

Input: A planning domainZ = (.,«/,®), and a planning problen =
(9,9,9).

Output: A strong cyclic plan ofP if such plan exists. Otherwise, output that no
such plan exists.

(Step 1) Initialization:

(i) For everyse ¢, setc[g := —1.

(i) For everyse .#\¥, if posgs) = 0 then set
c[s] := max else set]s| :=0.

(iii) For eachs € .7\ ¢ anda € posss), setc[s.a]:=0.

(Step 2) Repeat until no changeajs| = maxfor somese .7

(i) For every stats € .#\¥ such thatposss) # 0,
c[g := maxc[s],i) wherei = Mingc posgs) C[S-a].

(ii) For every statesse .7, ac posss), ands € ®(s, a), if ¢[s] = max then
c[s.a) := max

(iii) For every states € . anda € posss),
c[s.a] := max(c[sa],i+1) wherei=mingcqs 4 C[S].

(Step 3) Ifc[g=maxfor somesec .7, then output that there is no strong cyclic
plan; halt.

(Step 4) Output the plam: ¥ — 29 defined on the states € .#\% with
c[s) <maxandri(s)={a| a€ posgs), c[s-a] = MiNpc posgs) C[S D] }.

as DLV [PFE"06] or Smodels [SNS02]. These solvers support the computafi
answer sets (models) of a given program, from which solst{enthis case, strong
cyclic plans) can be extracted.

The encoding is generic, i.e., given byieed programwhich is evaluated over
instanced represented by input facts(l). It makes use of the fact that non-
monotonic logic programs can have multiple models, whiainespond to different
solutions, i.e., different strong cyclic plans.

The following first describes how a system is representedlogi@ program,

148

and then develops the logic programs for both determingstecgeneral, nondeter-
ministic domains. The syntax of DLV is adopted here. Only @nirevisions are

needed to adopt other Answer Set Solvers (e.g. Smodels).

Input RepresentatioR(I)

The inputl can be represented by fa¢i$l) as follows.

e The following facts represent the planning doméin= (., &/, ®) and the
planning problenP = (2,.7 . 9):

— state(s) for eachs e .
— action(a) for eacha € &

— trans(s,a,9, for eachs,s' € .7 anda € &7 such that' € ®(s,a);

¢ the set of states” is represented by using a predicatart by factsstart(s)

for eachse .7;

¢ the set of state¥ is represented by using a predicgtmlsby factsgoal(s)

for eachs e ¥¢;

e finally, the ranges 1.maxand 2..maxare represented using predicates

rangel andrange2, respectively.

ProgramPsc

The progranPsc, executable on the DLV engine, for computing a strong cydhn

is as follows.

%ranges
rangel(N) :- #int(N), N>O.
range2(N) :- #int(N), N>1.
% 0
149

s_bar(S,J1) :- s bar(S,J), J=J1+1.
% 1
s_bar(S,l) :- state(S), not goal(S), rangel(l),
not some_path(S,I).
some_path(S,l) :- rangel(l), trans(S,A)Y),
not s_a_ bar(S,A,l.
% 2
s_a_bar(S,A#maxint) :- trans(S,A)Y), s_bar(Y #maxint)
% 3
s_a bar(S,Al) :- trans(S,A)Y), rangel(l),
not some_a_path(S,Al).
some_a_ path(S,A,l) :- rangel(l), I=I11+1, trans(S,A)Y),
not s_bar(Y,I1).
% 4
s_a_bar(S,A,I1) :- range2(l), I=I1+1, s _a bar(S,A,l.
% 5
- s_bar(S,#maxint), start(S).
% 6
s_bar(S,0) :- state(S), not goal(S).
% single out a plan
pi(S,A) :- not s_a bar(S,A,J), not goal(S), rangel(J),
not neg_max(S,A,J), trans(S,A)Y).
neg_max(S,AJ) :- s_a bar(S,A,J), rangel(Jd), rangel(Jl)

s_a bar(S,AJ1), J < J1, trans(S,A)Y).

Besides the input predicatesfl), the program employs predicatebar(S,!)
and s.a bar(S,A,l) which intuitively correspond t& and SA, respectively. The
predicatesail_body(S,l)andfail_a_body(S,A,l)are used to uniformly represent clauses

in (1) and (3), respectively, with varying body size; theycamt to the negation of
150

s.bar(S,l)and s_.a bar(S,A,l) respectively. The plan is computed in the predicate

Pi(S,A).

Example 29. The logic program encoding (F) of the strong cyclic planning prob-

lem in Example 27 is as follows:

#maxint=3.

state(b). state(c). state(d). state(e).
start(b). goal(e). action(x). action(y).
trans(b,x,c). trans(c,x,b). trans(c,x,e).

trans(b,y,d). trans(c,y,d).

The program BcUF (1) has one answer set. Filtered to the atdaika body(s,a,i)

andpi(s,a) the output is:

{ some_a_path(c,x,1), some_a_path(b,x,2),
some_a_path(c,x,2), some_a_path(b,x,3),

some_a_path(c,x,3), pi(b,x), pi(c,x) }

Hence, the strong cyclic plamgiven byr(b) = {x} and(c) = {x} is obtained.

Preferred Plans

In general, there can be multiple answer sets, each comdsmpto a different
plan. Moreover,t can be non-deterministic; if in Example 29 a further actzon
would lead fromc to e, thenr(c,e) would be in the result computed, and thus
n(c) = {x,z}. By adding further rules iPsc, A deterministic planmye; can be

generated, e.g. by nondeterministically selecting onemétom 71(s):

pi_det(S,A) :- pi(S,A), not drop(S,A).
drop(S,A) vdrop(S,B):- pi(S,A), pi(S,B), A<>B.

For the case where multiple solutions exist, features abglin Answer Set

Solvers can be explored to select preferred plans. For deamging weak con-
151

straints offered by DLV, prioritization between differeattions can be expressed.

For illustration, the weak constraints
” pi_det(c,x). [:1] 7 pi_det(c,2). [:2]

express that as forge, taking actionz in statec is preferred over taking.
Using weak constraints, users can also easily moalgtisfor action execution, pos-
sibly dependent on the state, which add up in execution.igwthy, optimal (i.e.,
most preferred) plans among the candidates can be compatssibly combining

different criteria like deterministic actions and exeontcost.
6.4 Finding Strong Plans

Finding strong plans can be approached in three ways: (i) seaial case of
finite maintainability, when there are no exogenous actifnsurther constraining
strong cyclic planning; or (iii) by a generic SAT encoding.

As for (ii), a Horn SAT encoding and genuine algorithm foosig planning are

as follows:

Horn SAT Encoding StrondP): The clauses (0), (1), (4), (5), (6) fro&Cyclic(P)
and the following clauses:

(7) For every state € . and actiora € <7, for all § € ®(s,a), and for alli,

O<i<maxs ,=5s&

Genuine procedure Strong Plan: Steps 1, 2.(i), 3, and 4 from Strong Cyclic Plan

plus the new Step:

(Step 2) (if) For any states € .7, if S € ®(s,a) for a € posgs) andc[s]| =i

such that 0< i < max then doc[s.a] := maxc[s.a],i+1).

As discussed later, this yields algorithms of the same aaddor strong cyclic

planning.
152

The Horn SAT encoding in Algorithm 6.4 and the correspondjeguine pro-

cedure is more efficient.

[Horn SAT encoding of strong planning] Given a planning peobP= (2, .7 ,9),
where? = (7, .o/ ,®), the Horn instancstrong+(P) contains:

(O) for everyse ¥4: s

(1) for every states € .\¢ and actiona € posss) such that®d(s,a) =

{sl,.--,5m}, m>0:
SiA---Asy=s and SjA---As,=sa

(2 For.s ={s1,...,5}:s1A---Ag = L.

Theorem 3. For a planning problem B- (2, .4 .9),

(i) a strong solution exists iftrong’ (P) is unsatisfiable iffL is derivable from

Strong+(P).

(i) m={(sa) | sac T,s¢ T, %, for some i> 1}, is a (non-deterministic)
strong solution, where =% and T, = {¢| 4A--- Afy = ¢ € Strong (P)
and/y,...,4,e T} fori > 1, are the powersgl,' of the logic programming
immediate consequence operat@r ([See e.g. [DEGVO01]) for the program

P = Strong+(P) (viewing_L as atom).

A strong planrras in the theorem can be constructe®id®| + |.~|) time start-
ing fromP, sinceStrong+(P) is easily constructed and, as well-known, the powers
of Tpr are incrementally computable in linear time using propéad#ructures, cf.

remarks in [DEGVO01].
6.5 Finding Weak Plans
One way to think about finding weak plans is as relaxing stroyaic planning.

A respective Horn SAT encoding and genuine algorithm for K\f@anning are as

follows:
153

Horn SAT Encoding WeakP): The clauses (0), (1), (3), (4), (5), (6) fra&Cyclic(P).

Genuine procedure: It consists of Steps 1, 2.(i), 2.(iii), 3, and 4 of algorithm

Strong Cyclic Plan. (It does not contain the Step 2 (ii).)

Again, this yields algorithms of the same order as for stroygic planning.

More efficient ones emerge from the encoding in Algorithm 6.5

[Horn SAT encoding of weak planning] Given a planning proble=(2,.7,9),
where? = (.7, o/ ,®), the Horn instancWeal?(P) is as follows:

(O) for everyse ¥4: s

(1) for every states € .\¢, actiona € posgs), ands € d(s,a): s = s.a and
s=s

Theorem 4. For a planning problem B- (2, .4 .,9),

(i) a weak solution exists iff for eachss.7, Weaﬁ(P) U {—s} is unsatisfiable if

andonlyifeach & .# istruein NF(WeaI?(P)), the least model dNeaIzr(P).

(i) t={(s,a |sac M*(WeaRL(P))}, is a (non-deterministic) strong solution,

if any strong solution exists.

Note thatWeak (P) is definite Horn, and thus its least modét (Weak (P))
does exist. Furthermore, it is computable in linear timeha s$ize ONER—(P).
Since the latter is easily constructed, finding a weak plan. ®.is thus feasible in
time O(|®| +|.~]), i.e., in linear time.

6.6 Complexity Analysis and Relations with Existing Algorith

This section starts with the complexity analysis of the atgms in this chapter.

154

Complexity

For any planning domaiw = (., 7, ®) and planning probler® = (2, .7 ,9),
denote byl| Z|| = || + || + |®@| and||P|| = [|Z]| + |.#| +|¥| the representation

size of 2 andP, respectively (wher@ is viewed as set of triple&, a, s)).

Proposition 24. Strong Cyclic Planning can be solved, via the Horn SAT engpdin
S-Cycli¢P) and, by a suitable implementation of Algorithm StrongCyikmn, in
time Q|.7|-||P||) and Q|.7|-|®|), respectively.

Proof. (Sketch) As for the first part, the clauses in (0), (1), (2), (8), (5), and (6)
), O(|®]), O([S|-[®]),
O(|S]:|®|), O(].#]), andO(|Y]), respectively. Henc&-Cyclic(P) can be generated

of S-Cyclic(P) can be generated in tim@(|S?), O(|S-|®

in time O(|§(|®|+|9])) = O(|S-||P||). Moreover, it can be solved in linear time
in its size, i.e., in timeéD(|§-||P||). From any modeM obtained,Cy, Im can be
computed in timeO(|M|), and thus alsdy is computable in timeO(|M|). In
summary, some contréy as in Proposition 22 is computable in tir®é|S-||P||).
For the second part, Step 1 8frong Cyclic Plarcan be done in tim©(|S +
|®|). For efficient realization of Step 2, employ auxiliary vddlizs and data struc-
tures: a variabldlin_act(s) := min(c[s_a] | a € posgs)) for eachse .¥, a variable
Min_next(s,a) := min(c[s] | s € ®(s,a)) for eachs€ . anda € posgs), such that
for eachs_a Min_act(s) is accessible in one step and likewise for edch.7 a list
Ly of all Min_next(s,a) such that' € ®(s,a). Furthermore, a séfpd of counters
c[s| andc[s_a] is maintained which are inspected for possible upddte hasO(1)
membership, inclusion and exclusion tests (e.g., it isruegl as a ring-list with an
additional index), and is initialized with all counters @]~ |+ |®|) time). While
Upd is not empty, a countea|s| resp.c[s.a] is removed from it for inspection. For

the former, the update in 2.(i) and a possible follow updat2.{ii) are efficiently

155

possible inO(1) time. For the latter, the update in 2.(iii) is also feasiliedi(1)
time.

Whenever one of the counteris] resp.c[s a| is increased, the elemeBn_next(s’,a)
in Ls resp.Min_act(s) are updated, and the corresponding courtfsfsa) resp.c[s|
are inserted irJpd upon a change. K[s| increased tanax-1 ands € .#, then the
computation branches without this update to Step 3 (angd)haipon emptyJpd,

Step 3 can be skipped.

The number of updatelllin_next(s’,a) resp. inserted[s _a] for one update of
countercls is |{(s,a) | (s,a,5) € d}|; sincec[s| can increase no more thay’ |
times, over alk € . the total number of such updates resp. inserts is bounded by
|-Z|-|®|. The total number of updatddin_act(s) resp. inserted[s] via c[s.a] is
also bounded by¥|-|®|. In total, Step 2 can be executed in ti@¢ S - |P|).

Step 4 can be done, usihgin_act(s), in O(|®|) time.

In total, the time for Steps 1-4 3(|.|-|P|). O

Remark that algorithnstrong Cyclic Plarcan be made more efficient by prun-
ing in a linear time preprocessing all states which are na path between some
statess€ .# ands € ¢4.

Comparing to [CPRTO03], the algorithm for strong cyclic plarmin this chapter
works differently. Basically, their algorithm iterativelyomputes weak plans by
backtracking from the goal states and prunes the planniaglgm until a weak
plan which is also a strong cyclic plan is obtained. The alfor, instead, has no
such intuition and simply aims at establishing the necgdegical conditions, as in
the seminal planning as satisfiability approach [KS92].rAge implementation of
the Cimattiet al. algorithm ha<O(|.7|?|®|) time complexity, while a sophisticated
one ha®(|.7|-|®P|) comparable to ours. Section 6.6 compares these two algwith

in detail.

156

For finding strong plans and weak plans by constrained arakedl strong

cyclic planning, respectively, the following propositibnolds.

Proposition 25. Strong Planning (resp., Weak Planning) can be solved, wa th

encodingStrondP) (resp.,WeakP)) in time Q|7 |- ||P

|), and by a properly im-
plemented algorithm Strong Plan (resp., Weak Plan), in e’ |-|®|).

Proof. (Sketch) The clauses (3.2") iStrondP) can be generated i®(|S-|P|)
time, andWeakP) is a subset o5-Cyclic(P). The proof of the first part is thus
very similar as in Proposition 24. The second part is alsavehsimilarly as the

second part of the Proposition 24. O

Simple implementations of the algorithms for strong and kvpnning in
[CPRTO3] have time complexit®(|S-|®|), while more sophisticated ones have

O(||P]|), i.e., linear time. For the special Horn encodiggongt-(P) andWeakt-(P),

the same time bound is obtained. They are closely relateldetoetspective algo-
rithms in [CPRTO03] and may be viewed as declarative desoriptof the plan con-
struction method. Nicely, an efficientimplementation carfue free by the efficient
algorithms for solving Horn theories.

As for the computational complexity of the planning probsgrthe following

proposition is true?

Proposition 26. Deciding whether a given planning problei#, .#,%) has
1. a strong cyclic solution iB-complete,
2. astrong solution i®-complete, and

3. aweak solution i8ILOG-complete.

1Reference for these results cannot be found, which mighhbwi to the specialists, though.

157

The P-hardness results are an easy consequence of complexitysres k-
maintainability [BEBNO08]. TheNLOG -membership of weak solutions is explained
by the fact that as shown above, this reduces to solving fdr®a .# a Horn SAT
instance (Theorem 4) that is also a 2-SAT instance, whiakasible ilNLOG. The
NLOG -hardness follows from a simple reduction from the candrgcaph teach-
ability problem. Exploiting Theorem 4, also computing sowezak plan is feasible

in nondeterministic logspace.

Characteristics of the Algorithm

Now discuss the difference of this algorithm and the algamniproposed in [CPRTO03]
on finding strong cyclic plans.

The algorithm is based on evolving from the set of goal statebels are as-
signed to states to indicate that there is a path from the &iat state irty. Besides,
states that do not have a path to a stafé are removed as well when their labels are
increased tonaxin the algorithm. On the other hand, the algorithm in [CPRTI83]
proceed by iteratively removing states and actions thaharable to reach a goal
state. The “envelope” of possible solutions is reducederatiian being extended
for computing the greatest fix point.

In the case that a plan can be easily found and the plan inval\anall subset
of states in transition graph, this approach is more efftcigvith the approach in
[CPRTO03], the whole transition system still need to be exgdahoroughly before
a plan can be found.

This chapter first encodes the problems in SAT. One thing keepind that
any heuristics are avoided in the encoding so that the approan be named as
“finding algorithms from specification”. However, in mostses, heuristics are
the basis for the encodings to be solved faster. For exarmptae strong cyclic

planning encoding, if users want to find a maximal or lean plaey need to encode

158

beforehand on choices of actions in a state.
Now consider a few possible modifications to improve thegrenaince of the

algorithm here.

e One limitation of this algorithm is that it is not “guided”.h€& algorithm is
based on a SAT encoding thus no search heuristics are encodleel al-
gorithm. Performance of the approach proposed here hedepgnds on
ordering in exploring states and in changing labels. In temtion step in
Algorithm 6.3, if all neighbors of a state do not change thegirels, it is not
possible that the state will change its label. However,dlgsrithm may still
need to check these states repeatedly. One approach tovenib perfor-
mance of this algorithm is to prefer states or actions whesghtors change

their labels recently when examining labels of states atidrac

Another observation is that the not “guided” algorithm mntigkploit part of
the transition graph that not related to the finial plan. B@maple, if there is
a sub-graph in the transition graph such that nodes in thesajih connect
to each other but none of these states has a path to a statd s algorithm
needs to increase labels of these nodes repeatedly uitilethels reachmax
before they can be excluded from consideration. Howevéhas is no weak
plan from states to a state irn¢, states can be removed from consideration

and the label of stateis set tomaxdirectly.

Also note that in some cases, there is no need to set varizdoi¢o |.7| — 1.

The following proposition illustrates one such case.

Proposition 27. Iff there is a strong cyclic plan such that the length of thegest
path from the initial state to the goal state involves at mogbdes, a strong cyclic
plan can be found by setting maxk — 1 in Algorithm 6.3.

159

Based on Proposition 27, a paramét@an be introduced in the logic program
encoding of the algorithm. This simplifies the algorithm. wéwer, given a plan-
ning problem, the value df is not known. What can be done is to increase the

value ofk incrementally before a solution to the planning problenoisid.
6.7 Applying the Approach to other-CTL* Goals

Consider applying the approach to otleCTL* goals. Consider some variations
of the strong cyclic planning. As encoding the problem ireree Horn SAT in the
most critical step, in this section, only the reverse Horit 8Acoding of each prob-
lem is considered. The rest steps of translating to Horn SAwacting a genuine

algorithm follow the same approach as strong cyclic plagpmnSection 6.3.

Planning for GoalA oD (E<Cp)

The goalApqO(EOp) is considered. It is different from strong cyclic planning
ApolT(Epar©p) in that symbolE states that the path satisfyigp may not be one
path of the agent. This can be done by the Horn SAT specifitatiglgorithm 6.7.

In the SAT encoding, for each stat@nd actiora, propositionss, s, ands_a;
are used, where> 0 is an integer. Intuitivelys will mean that there is a path
from sto a state satisfying< p, following the execution structuré = (Q,T), of
length at most. Similarly, s_a will intuitively mean that there is a path frosito
a state satisfying<p of length at most, following T of the execution structure
K =(Q,T), and witha as its first actions means that there is a path from state
to ¢, of lengthi, not necessarily following of the execution structure.

maxis defined a$¥’| — 1. Itis the upper bound of If there is no path of length
at mostmax there is no path at all.

This planning problem is easier than the strong cyclic plasnn Finding one
such plan is not very interesting since if there is a weak frlam the initial state,

then the plan that takes the actiamo(y’ in the initial state is a valid plan.
160

[Reverse Horn SAT encoding for planning with the gaghD(ECp)]
Suppose given a planning probléte= (2, .7 %) wherey = (.7, o/ ,®). Suppose
max=|.”|—1. P is translated into a reverse Horn SAT encoding as follows:

(0) forallse . andi, 0 < i < max S-1=S;S-1=>S.
(1) for every stats € S \G: § = Vacpos¢s) S-a

(1.2) for every stats € .\¢, and for any stats' € .7, if S € d(s,a) for any
actiona: i = S41

(3') for every statesc .7, actiona € posgs), andforalli, 0<i<max s.a =5 _;
(3")for every states € ., Sp = Smax

(4) for every stats € .7, actiona € posgs), and 1<i <max sa_1=Sg

(5) forse .#: smax

(6)forsc S\ ¥: -5

(7)forsc ¥: 5

Planning for GoalA 5O (EOp)

The encoding of this problem is the same as the encodiAg®fI (EOp). Itis easy
to check that in a domain, a strong cyclic plan also satisgyibalA 5, 0 (E<S p) and

Planning for GoalAT(E o< p)

A policy satisfy this goal if for any state that is reachahieni the initial state,
there is always a path to a state wiglbeing true by following the policy. This goal
differs from the strong cyclic plan in that it takes care d&thtes that are reachable
from the initial states besides the states that are reaglfi@vh the initial states by
following the policy. If states ir are all the states that have propositijptrue,
then the goal can be presentediCTL* asAO(E,q<&p). A plan satisfying this

goal is also a strong cyclic plan.

161

Suppose given a planning problém= (7, .7,9) where 2 =(%, o/ ,®). To
solve the problem, a new planning problem is defined suchRhat 2, 7' ¢)
where2=(.7,«/,®). Letl’ be the set of states that are reachable ftorny
weak plan ofP’ is a plan forAO(Epo<p) in P. This observation is utilized in the
following encoding.

In the SAT encoding, for each staand actiors, define propositions, s, and
s a;, wherei > 0 is an integer. Intuitivelyg will mean that there is a path froeto
¢, following the execution structut€ = (Q, T), of length at most. Similarly, s_g;
will intuitively mean that there is a path frosto ¢ of length at most, following
T of the execution structurié = (Q, T), and witha as its first actions means that
there is a path from statto E &, of lengthi, not necessarily following of the
execution structure.

An upper boundnaxfor i is defined, depending on the number of statesin

if there is no path of length at mostax there is no path at all.

Planning for GoalAC (Epgi&p)

Remove Item (5”) from Algorithm 6.7.
6.8 Planning with a PrefeCTL* Goal

This section finds plans for the planning problagyZ ((Apol O P<tApel O (Epoi©p)) <
Epor®Op) in Prefr-CTL*. This goal states that in any state of the plan starting from
the initial state, a strong plan is always preferred to angfroyclic plan, which is

in turn preferred to a weak plan. Thus it is possible that genais starting with

a weak plan, but switch to a strong cyclic plan if it happengdbto a state with

a strong cyclic plan. The agent may further switch to a stnolag if he is lucky
enough to get to a state with a strong plan exists. This gatsthat in any state
of the agent, the agent checks all policies available to mdhanoose the best one.

This is different from the goalA poiOp <t ApolD(Epoi & p)) <t Epei< p that finds the
162

[Reverse Horn SAT encoding for planning of the gAal(Epo O p)]
Suppose given a planning probleb=(2,.7,9) where 9= (.7, o/ ,®). Let
max=|.”|—1. Pis translated into a SAT encodir&Cyclic(P) as follows:

(O)forallse . andi,0<i<max §_1=§
(1) for every stats € .\, and for alli, 0 <i < max s = Vacposgs) S-&

(3) for every states € ., actiona € posgs), and for alli, 0 <i < max sa =
Vsecosa) S-1

(4) for every states € .7, actiona € posgs), and 1< i <max sa_1 = S g
(5) forse .7 Smax

(5)forse ., s ed(sa) si1=5

(5") for s€ ., Smax= Smax

(6) forse .S\ ¥9: -5

(7 forse¥: 5

(8) forse .7, so = Smax

strong planning from the initial state first, if there is noosig plan from the initial
state, finds alternative plans such as strong cyclic plamsak plans.

Weak, strong, and strong cyclic planning problems are fiksstigated in [CPRTO3].
Later, in [BEZO05], a different approach was taken by follogvithe method first
proposed in [BEBNO8] that first encode each problem in revers@ HLater, an
algorithm was extracted by simulating the approach of sglthe reverse Horn.
Strong, weak, and strong cyclic planning problems all casdieed inO(S- P),
whereSis the number of states in the transition graph, Bnslthe total number of
states, actions, and transitions in the transition graph.

One way of solving the problem given above is to find stronggkyand strong
cyclic plans from all states in the transition graph, anchtimerge the plans found.
With this approach, the Prgi-CTL* goal above can be solved @S- P). Now

show that based on the properties of these planning probkebetter solution can
163

be found. Note that the algorithm proposed is not a reversa ldncoding that

solves this Pref=-CTL* goal. The algorithm is composed of a few steps:

Input: A planning domain? = (¥, </, ®), and a planning problenf =
(D,9,9).

Output: A plan 11 to Prefs--CTL* goal ApoiT((Apoi®p < ApalTD(Epai©p)) <
Epol© p) if such plan exists. Otherwise, output that no such plartexis

1. Step 1: (Strong plan extension): For state .\ ¢ and actiona in the
transition system, ifp(s,a) C ¢, add statesto ¢, and add the paifs,a) to
the planrt, which is a set of pairs of states and actions.

2. Step 2: (Strong cyclic plan extension): For sete s \ ¢ with actiona such
that®(s,a) N¥ # 0. Run Algorithm 6.3 to find a strong cyclic plan frostio
¢ if there is one. Suppose the output of the algorithm’iand 7’ is defined
on a set of sateS. Let¥ =¥ U{s|sc S}, andr= U {(s,7(s))|s€ S}.

Repeat the process until no states can be add&d to
3. Step 3: (Weak plan extension): For state.” \ ¢ and actiora in the transi-

tion system, ifd(s,a) N¥ # 0, add statsto ¢/, and add the paifs, a) to the
plan 7z, which is a set of pairs of states and actions.

4. Step 4: (Output) IfY C ¢4, return the policyrt. Otherwise, output that no
such plan exists.

In the worst case, time complexity of the algorithmQgs’ - P). But it is faster
than the approach of finding strong, weak, and strong cyddingpfrom all states
in the transition graph, and merging the plans found. Therdlgn can be imple-

mented more efficiently as follows:

1. In Each step of the algorithm in expanding the current,@daw state-action

pairs are added to the plan after each step.

2. In the process of growing the plan, an index is maintainezh ghat only

actions leads to states #hare considered in the checking process.

3. Alternate Step 1 and Step 2, as after extenéihop Step 2, there may be

more states that have strong plans to the cuggent
164

A Program Simulating the Algorithm

Weak, strong, and strong cyclic planning problems are esddal dlv [PFE 06]

logic program [GL88]. A Python program as described in Aitjon 6.8 is given.

It invokes DLV for solving planning problems with differemtitial states and goal

states?

In particular, the logic program encoding of strong cycliarpis the same as in

Section 6.3. Logic program encoding of strong plan is agest

% ranges

rangel(N) :- #int(N), N>O.

range2(N) :- #int(N), N>1.

% 0

s_bar(S,I1) :- s_bar(s,), I=11+1, rangel(l).

% 1

s_bar(S, 1) :- state(S), not goal(S), rangel(l), not some_p

some_path(S,l) :- rangel(l), trans(S,A,Y), all_a path(S

all_a_path(S,A,l) :- not s_a_bar(S,Al), not self_loop(S
trans(S,A)Y), rangel(l).

self_loop(S,A) :- trans(S,A,S).

% 7

s_a bar(S,A/11) :- s _bar(Y,l), 11=I+1, rangel(l), trans(

% 4

s_a bar(S,A11) :- range2(l), I=I1+1, s_a bar(S,A)l).

% 5

- s_bar(S, #maxint), start(S).

% 6

s_bar(S,0) :- state(S), not goal(S).

ath(S,1).

SAY).

2The Python program and logic program encodings of strongkywand strong cyclic planning

are available at: http://www.public.asu.ediZhao6/find-best-plan.rar

165

% single out the plan

pi(S,A) :- all_a_path(S,AJ), not goal(S), rangel(J),
not neg | M(S,A,J), trans(S,A,Y).

neg_| M(S,A,J) - s_a bar(S,AJ), rangel(J), rangel(Jl) :
s_a bar(S,AJ1), J < J1, trans(S,A)Y).

One thing to note is that in the logic program encoding of theng planning,
rules corresponding to Item (1) are different from the cgpnding rules in strong
cyclic planning and weak planning. Apparently, a strongim@annot have actions
that leads a self-loop. An actiamin states with s € ®(s,a) need to be removed
from any strong plan.

Running the program on the transition graph in Figure 3.1llustiated in Ex-

ample 30.

Example 30. Consider the transition domaity in Figure 3.1. Initially, in the
planning problem P= (2, .#,9), . = {s1}, ¥ = {s1} and the policyrr = 0.

In Step 1 of the algorithm, state and g are checked as they are states which
have actions lead to states #i. s, is the only state that has a strong plan%bo
Thus¥ now is{sy,&4} and = {(s,a2) }.

In Step 2, check stateg and and g as they are states which have actions lead
to states ing. s is the only state that has a strong cyclic plan to currghtThus
¢ now is{s, 3,9} andm= {(s,a2), (S3,83) }-

In Step 3, the only state to be checkjisBhere is a weak plan from $0%. Thus
after adding s to ¢ and (s,a1) to the policy, it is known tha¥/ = {s1,$, 3,4}
andr= {(s1,a1), (S2,a2),(S3,a3) }

As.” C ¢, itis known that the plamis a plan satisfies the godl,g D ((Ape & p<
ApolT(Epai®p)) <Epar©p) in the transition domain in Figure 3.1.

Also note that the policy return in the algorithm is a “poweligy” where
166

multiple actions might be defined for the same state.
6.9 Related Work

This work belongs to the reasoning about action communitge @ajor part of
the work is to define languages for expressing goals of agemisn-deterministic
domains and then study the relations of goals and policiesmmplicated domains
for semi-automatic agents. With the goals expressed, it imt@resting topic to
explore the approach of finding plans for some special teatgmals by following

a “representation, translation, and simulation” approach

A few work in planning community relate to what this chaptedbing. One
direction is to have temporal domain knowledge in planniagna/BK98, NNO1,
SBTMO02]. HTN planning [NCLMA99] also loosely related to this d involves
temporal logic in defining strategies. Recently PDDL extensvith temporal as-
pects and other work also related to what this chapter isgdoin

Another direction related to this work is to have an represen of the prob-
lem firstly, and then translating the encoding to a similabpem with known tech-
nigques. Early work in this direction are planning via saaisiiity encoding [KS92]
or logic programming encoding with answer set semanticsOQ[3L The symbolic
representation such as BDD of the planning problem is alsta@ito this work. In
recent years, there have been some work on planning in nenntiaistic domains
for particular temporal formulas [DLPT02, CPRT03, JVBO04].

The central motivations in the first direction mentioned\abs to use known
planning techniques for temporal domain. Some of them kagathe temporal goal
S0 as to use traditional planning techniques. Some of thentaisporal logics as
heuristics to guild the search. In this work, in stead of figdplanning heuristics,
the focus is on how the goals are precisely defined when theaithoisibecoming

more and more complicated.

167

The central motivations in the second direction mentiorsaa is to use sym-
bol representation to reduce search space or use existiggajgurpose symbolic
solver. Different from them, in stead of finding general agmh that is good for
any planning problem, we focus on a subset of planning preblthat can be solved

in polynomial time when the input is the state space.
6.10 Discussion

This section discusses a few issued related to the apprddridimg plans form-
CTL* goals. As planning with goals ir-CTL* is EXPTIME-hard, no plans can be
found for anyrr-CTL* with this approach. However, there are still some planning

problems that can be found in polynomial time by applyingdahproach.

Applying the Approach to Other Planning Problems

As goal specification languages becoming more and more £siges more proper-
ties of the domain and the agent can be captured in the goafispgon language.
Thus planning with goals expressed in these language are difficult. On the
other hand, as goal specification languages becoming marenare expressive,
some goals expressed in the language might become easierasomore restric-
tions are enforced on the goal.

One motivation of the work is that there is a need of pointingaset of desired
states. By analyzing the relations of these desired statiig| istates, and other
states, a SAT program and, further, an Horn program is spdcifirhe general
idea of making use of the approach is that different labetsbmadefined for each
state and then consider the relations of labels among detdtdes. For example,
in strong cyclic planning an@-maintain problem, there are only two labels: True
and False. The indexes in algorithms in this chapter arewsed in defining the
right ordering of propagating the labels. Initially, onlyetset of goals states are

labeled as True. These labels are propagated hence thenslat different labels
168

are encoded as reverse Horn rules.
Due to the property that there is a need of pointing out a skétalf state in the
SAT encoding, it is not easy, if possible, to use the appréacR-CTL* goals due

to the lack of dealing with quantifying over policies in thgpaoach.

Reasoning and Planning as Goal Specification Revision

In general, a goal is to define what the plan is regardlesseofrénsition system.
While a plan is generated by given a specific transition system

By considering a policy as a strategy taken for the agent, dlaé gpecification
is to have some requirement on properties of such a strustiaey domain. As
the goal specification languages becoming more and mordispgiven a domain
and a goal specification, it might be easier to find out a pdhat satisfies such
a goal. In the other word, the difference of goal specificaiad the planning is
minimized and they only differ in the availability of the dam configuration and
the availability of the action formula. For example, in théreme case, if the goal
specification defines the action to take in any possibletsiios, then given the do-
main and the possible actions in the domain, the plan cantiieatist deduced by a
table lookup. Apparently, users do not want to give such apaeific specification
but only want to give a general direction in the goal spedifica One problem is
that to what extend users think a goal specification expregsiough and general

enough?
6.11 Summary

This chapter shows that the methodology in [BEBNO8] can be teséevelop poly-
nomial time planning algorithms for various kinds of prahkein a non-deterministic
domain, viz. for weak, strong, and strong cyclic planningaa8 modifications to
the algorithm obtained for strong cyclic planning, whosmptexity is comparable

to a sophisticated implementation of the Cimattal. algorithm, yield polynomial
169

algorithms for strong and weak planning. Furthermore, &mgenuine Horn en-
codings give efficient (linear time) implementations of Cithat al’s strong and
weak plan construction method at an abstract level. Thismeatwith a complexity
analysis of the problems which is provided in this chaptéisThapter also shows
how strong cyclic planning can be declaratively done in nmmotonic logic pro-
gramming, using an Answer Set Solver. By exploiting featwfesuch solvers, a
(most) preferred among multiple candidate plans, depgnaincriteria like deter-
ministic actions, action preference, or action cost mighsimgled out.

Finally, the approach in this chapter can be considered athanillustration
of automatically generating algorithms from specificasioithe propositional en-
coding ofk-maintainability, and weak, strong, and strong cyclic piag can be
thought of as a specification of these problems. Thus thétsdsre and the results
in [BEBNOS] illustrate the realization of a long standing ga#lmany software
engineers and algorithm designers who were interestecipritblem of automat-

ically obtaining algorithms or programs from specificaion

170

Chapter 7

CONCLUSION

Over the previous chapters, a few temporal logics for reprsg goals of an agent
are proposed. Logics are defined in giving directions to esgemon-deterministic
domains. As the domain or the intension users have for thatagay change
after the initial goal was given to the agent, languages aypgsed to handle non-
monotonic aspects of goal specification. Besides, as an aggnhave different
preference relations among its sub-goals at differenestaq its plan, a language
capable of dealing with dynamic preferences is defined. rithgralgorithms for a
few goals represented in these logics are also given inqusghapters.

This chapter summarizes contributions of this dissemaamd points out some

future directions.
7.1 Summary

A systematic design of an autonomous agent has three maactasgi) domain
description: actions that an agent can do, their impactgy@ment, and etc.;
(if) control execution of an agent; and (iii) directives fan agent. Focus of this
dissertation is on the goal specification aspect in automsnagent design, and its
relation with other aspects.

In defining a goal specification language, the following dgioes need to be
answered: What is a goal? What is a goal specification languades2her a goal
is represented in a language? Whether the set of goals eggrigsene language
Is a superset of the goals expressed in the other languageth&¥/bee set of goals
expressed in a language depends on the ability (or the psiliggture) of the agent?
These questions are formally answered in this questionadéwork for checking

goals expressed in a language and for comparing goal s@idfidanguages is

171

proposed.

In a non-deterministic domain, many interesting goals oabe expressed us-
ing existing temporal logics such as LTL and CTIA formal proof of this is given
in the dissertation. A policy in a non-deterministic dombgads to a set of paths
thus users need to distinguish the paths in a policy fromath$ of the domain.
This is captured in the proposed languag€TL*. In order to compare policies
that are available to an agent so that the agent can choosw#idit ones, language
P-CTL" is proposed to capture the intuition of quantifying overigek. Besides,
policies of an agent play an important role in defining go&icsiication languages.
There are also paths in the domain that is not in any poliche@figent. Goal spec-
ification languages with different policy structures argoadlefined to address this
iIssue.

One interesting aspect of this work is that it illustrates thiference between
program specification and goal specification. Temporakckgre developed in the
context of program specification, where the program statésrare deterministic
and there are no goals of the kind “trying one’s best”. (Theneo specifications
for a program to try its best to do something.) In cognitivbatics, actions have
non-deterministic effects and sometimes one keeps tryiridjane succeeds, and
similar attempts to try one’s best. The proposed langua@d P- allows the spec-
ification of such goals. P-CTLhas the ability of letting the agent to compare and
analyze policies and “adjust” its expectations accordgingl

Also, the policy structure of an agent plays an importareg an what goals can
be expressed in the language, and what goals can be achigvbd Agent. This
work is the first one pointing out the impact of policies ons$le¢of goals expressed
in the language. A policy structures can be defined as a mgpg@m states to
actions, and as a mapping from histories to actions. Dfffigoelicy structures can

be defined for different agents. For example, for agents satising actions, or
172

agents who can reason about knowledge of other agentsy miicctures can be

defined by taking the sensing actions and other abilitieb®figent into account.

Itis a challenge problem to define languages for differeehégand compare these
languages.

The second part of the dissertation is about defining goatscdn change non-
monotonically. In many domains, users need to specify gbalsmight be further
revised or partially retracted due to incomplete informatusers have about the
domain. Thus non-monotonic temporal logics are neededéoifypgoals which
can then be revised in an elaboration tolerant manner. Twenmanotonic exten-
sions of LTL are proposed. Labels are used to denote suls-g6ab-goals can be
defeated when there are exceptions. This work borrows #eeadlcompletion and
exception from logic programming. It borrows the idea of €ate non-monotonic
logic from Reiter. Their applications in modeling revisiare illustrated. The way
of progressing an ER-LTL program is also discussed. This poiant as agents
receiving new requirements might have already executede smtions to satisfy
earlier goals. Thus, the agents need to progress the peexeguirements and the
new requirements based on their earlier states. A progrararsglating an ER-LTL
program to LTL is given.

In defining non-monotonic goal specification languages, adhallenge to han-
dle temporal operators in a formula. It is common to defineramonotonic logic
as a set of rules, and semantics are based on models entaitedhie rules. Sim-
ilarly, in defining N-LTL and ER-LTL, a goal is considered to heset of rules.
Instead of computing models for the program, labels are tesednnect rules into
one temporal formula. These labels are also used to denoépions. These labels
enable users in representing many interesting changes toittal goals.

The third direction considered in this dissertation is trefgrences in goal spec-

ification. A goal specification language with preferencgg@posed. The language
173

is based omr-CTL*. A binary connectived is introduced to compare state formu-
las. Comparing to other goal specification languages witfepgaces, the new
language Pref+-CTL* is the only one for non-deterministic domains. Besides, by
treating the< operator the same way as other temporal operators, landgtrafie
m-CTL* has some interesting properties such as allowing nestdédrenees and
dynamic preferences. For example, different preferene¢éioas among sub-goals
can be defined in one formula. More importantly, the prefeesirelations might
change as the agent proceeds in satisfying other sub-goals.

This dissertation also examines some planning problemiseiptoposed goal
specification languages. This dissertation follows the@ggh proposed in [BEBNO8]
that solves planning problems by encoding the problem invarse Horn SAT,
translating the reverse Horn to Horn SAT, and then extrgaigorithms by simu-
lating the steps of finding models of the Horn SAT. New aldoris algorithms for
strong, weak, and strong cyclic plan are found. Logic progeamcodings of these
planning problems are also proposed. By writing a progranatifhg DLV solvers
on these different logic programs, plans can be found forioteepretation of the
goal of “trying one’s best”.

The work on goal specification has great impact in autonoragast design, es-
pecially for designing agents in a non-deterministic donaaia open world where

states or goals of the agent may be changed dynamically.
7.2 Future Directions

It is important to represent and reason about goals of arntalgeorder to design an
autonomous agent, goals and policies of the agent need twbporated with the
domain of the agent. There are some directions in goal spatdn deserve more

investigation. They are listed in the following:

¢ In Chapter 4, it is mentioned that the definition of the politysture affects
174

the set of goals expressed in a language. The impact of p&tliagtures on
goal specification languages is investigated. It is intarggo consider goal
specification languages with other definitions of the poBtycture. It is
also interesting to define a language that can incorporaliphewdefinitions

of the policy structure.

There are a lot of well known non-monotonic logics defined domains
other than temporal logics. In [PSBZ10], authors attemptedpply de-
fault logic on defining a non-monotonic temporal logic. Whegthther non-
monotonic logics can be directly used in defining non-moniatéemporal
logics is still unclear. On the other hand, the mechanism-liTN and ER-

LTL can also be applied to other logics such as proposititogit. Com-

paring the resulted logic with well known non-monotonicitsyis a work
needs further investigations. These studies will reveakenmusights on non-

monotonic temporal logics, and on non-monotonicity in gahe

There are also work on goal specification with a differemgraon system.
Recently there are work in planning in an open world [TB8]. Non-
monotonic properties of goal specifications in such a donsean interesting

topic.

In defining preferences of a goal specification languags,unclear how to
define a goal specification language that can deal with paisg-preferences
where distances between trajectories and the partiafazticn of a temporal

formula are considered.

Also, in logic Prefs-CTL* that deals with dynamic preferences, binary con-

nective< is defined for comparing statesf; <isf, states that policies satis-

175

fying sf; are preferred to policies only satisfyisg, etc. Other semantics of

the binary connectiver are interesting to look at.

e Finally, in Chapter 6, a few goals that can be solved in polyiabtime are
studied. Which other subsets of goals can be solved in poliaidime is a

direction of big impact.

176

[AH93]

[AHKO02]

[All84]

[BBGO6]

[BBGI7]

[BCGR99]

[BDHO9]

BIBLIOGRAPHY
Rajeev Alur and Thomas A. Henzinger. Real time logicanplexity

and expressiveneskform. and Comput.104(1):35-77, 1993.

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman
Alternating-time temporal logicJournal of the ACM49:672—713,
2002.

James F. Allen. Towards a general theory of actiod eime. Artifi-

cial Intelligence 23:123-154, 1984.

Fahiem Bacchus, Craig Boutilier, and Adam J. Grove. Reingrd

behaviors. IPAAAI 96 pages 1160-1167, 1996.

F. Bacchus, C. Boutilier, and A. Grove. Structured solutnethods
for non-markovian decision processes.AAAI 97 pages 112-117,

1997.

S. Bistarelli, P. Codognet, Y. Georget, and F. Rossi. liajpand
partial local consistency for soft constraint programmihgSecond
International Workshop on Practical Aspects of Declarativan-

guagespages 230-248, 1999.

Craig Boutilier, Thomas Dean, and Steve Hanks. Denisieoretic
planning: Structural assumptions and computational ésyedoural

of Artificial Intelligence Resear¢ii1:1-94, 1999.

177

[BEBNOS]

[BEH95a]

[BEH95b]

[BEZ05]

[BGOO]

[Bilog]

[bis]

Chitta Baral, Thomas Eiter, Marcusa@e¢land, and Mutsumi Naka-
mura. Maintenance goals of agents in a dynamic environnfent:
mulation and policy construction. lArtificial Intelligence volume

172, pages 1429-1469, 2008.

A. Bouajjani, R. Echahed, and P. Habermehl. On thdigation
problem of nonregular properties for non-regular procssesSym-

posium on logics in computer sciengages 123-133, 1995.

Ahmed Bouajjani, Rachid Echahed, and Peter Habernvehifying
infinite state processes with sequential and parallel caitipn. In
POPL '95: Proceedings of the 22nd ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languag#&895.

Chitta Baral, Thomas Eiter, and Jicheng Zhao. Using 8Ad logic
programming to design polynomial-time algorithms for plarg in

non-deterministic domains. BWAAI-05 pages 578-583, 2005.

B. Bonet and H. Geffner. Planning with incomplete infation as

heuristic search in belief space. MPS 2000 pages 52-61, 2000.

David Billington. Defeasible deduction with arbitmapropositions.
In Poster Proceedings of the 11th Australian Joint Conferente o

Artificial Intelligence pages 3—-14, 1998.

www.gnu.org/software/bison.

178

[BK9S]

[BKSDY5]

[BKTO1]

[BZ04]

[BZ06]

[BZ07]

[BZ08]

[CE81]

Fahiem Bacchus and Froduald Kabanza. Planning for ¢eatly

extended goalsAnnals of Math and Al22:5-27, 1998.

M. Barbeau, F. Kabanza, and R. St-Denis. Synthesiglag con-

trollers using real-time goals. IACAI, pages 791-800, 1995.

Chitta Baral, Vladik Kreinovich, and Raul Trejo. Comptitaal
complexity of planning with temporal goals. IACAI-01, pages
509-514, 2001.

Chitta Baral and Jicheng Zhao. Goal specification in gmes of
non-deterministic actions. IRroceedings of ECAI'O4pages 273—

277, 2004.

Chitta Baral and Jicheng Zhao. Goal specification, non-
deterministic, and quantifying over policies. AAAI-06 pages 231—
237, 2006.

Chitta Baral and Jicheng Zhao. Non-monotonic tempagids for
goal specification. INJCAI-07, pages 236-242, 2007.

Chitta Baral and Jicheng Zhao. Non-monotonic tempamgids that

facilitate elaboration tolerant revision of goals.AAAI-08 2008.

E. Clarke and E. Emerson. Design and synthesis of sgnation
skeletons using branching-time tempral logicWorkshop on Logic
of programs. Lecture Notes in Computer Scienvodume 131, pages
52-71, 1981.

179

[CM88] K. Chandy and J. Misra.Parallel program design: a foundation
Addison Wesley, 1988.

[CPRTO03] A. Cimatti, M. Pistore, M. Roveri, and P. Travrso. Weakong,
and strong cyclic planning via symbolic model checkimgtificial

Intelligence 147(1-2):35-84, 2003.

[DCDS01] Pallab Dasgupta, P. P. Chakrabarti, Jatindra KunekaPand Sri-
ram Sankaranarayanan. Min-max computation tree logrtificial

Intelligence 127(1):137-162, 2001.

[DEGVO01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, andd¢ei
Voronkov. Complexity and expressive power of logic progranmgn

ACM Comput. Sury33(3):374—425, 2001.

[DG84] W. Dowling and H. Gallier. Linear time algorithms ftesting the
satisfiability of propositional horn formulaelournal of Logic Pro-

gramming 1:267—-284, 1984.

[dLPdBO08] Silvio do Lago Pereira and Leliane de Barros. Usiagtl to specify
complex planning goals. In Wilfrid Hodges and Ruy de Queiga,
itors, Logic, Language, Information and Computatimolume 5110
of Lecture Notes in Computer Sciengeages 260-271. Springer
Berlin / Heidelberg, 2008.

[DLPTO2] U. Dal Lago, M. Pistore, and P. Traverso. Planninthw language
for extended goals. IAAAI'02, pages 447-454, 2002.

180

[EC82]

[EL85]

[Eme90]

[EMSS92]

[ES84]

[ES89]

[ET99]

E. A. Emerson and E. Clarke. Using branching time temdogic
to synthesize synchronization skeletor&cience of Computer pro-

gramming 2:241-266, 1982.

E.A. Emerson and C.-L. Lei. Temporal model checkingemgener-
alized fairness constraints. Rroc. 18th Hawaii International Con-

ference on System Sciencpages 277—288, 1985.

E. Allen Emerson. Temporal and modal logic. In J. karuwen,
editor,Handbook of Theoretical Computer Scieneglume B, pages

997-1072, 1990.

E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srisiaa. Quantita-

tive temporal reasonindReal-Time System(4):331-352, 1992.

E. A. Emerson and Prasad Sistla. Deciding brancivng logic. In
ACM STOCpages 14-24, 1984.

E. Allen Emerson and Jai Srinivasan. Branching timepiaral logic.
In J.W. de Bakker, W. P. de Roever, and G. Roezenberg, ediiors,
ear Time, Branching Time and Partial Order in Logics and Misde

for Concurrencypages 123-172. Springer-Verlag, Berlin, 1989.

E. Allen Emerson and Richard J. Trefler. Parametricntjtative
temporal reasoning.Logic in Computer Scienggages 336—343,

1999.

181

[FGOO]

[FHI1]

[FN71]

[GL8S]

[GL91]

[GL98a]

[GL98D]

[GLO5]

P. Ferraris and E. Giunchiglia. Planning as satigfiglin nondeter-

ministic domains. IPAAAI-0Q pages 748-753, 2000.

Yasushi Fujiwara and Shinichi Honiden. A honmonatademporal

logic and its kripke semantics. Inf. Process.14(1):16—-22, 1991.

Richard Fikes and Nils Nilsson. STRIPS: A new approacihe
application of theorem proving to problem solvirgritificial Intel-

ligence 2(3-4):189-208, 1971.

Michael Gelfond and Vladimir Lifschitz. The stableoahel semantics

for logic programming. IrProc. ICLP, pages 1070-1080, 1988.

M. Gelfond and V. Lifschitz. Classical negation in logprograms
and disjunctive databaseklew Generation Computing:365—-385,

1991.

Michael Gelfond and Vladimir Lifschitz. Action lguages.Elec-

tronic Transactions on Artificial Intelligen¢@(3-4):193-210, 1998.

Michael Gelfond and Vladimir Lifschitz. Action Ilguages.Elec-

tronic Transactions on A3, 1998.

Alfonso Gerevini and Derek Long. Plan constraintd @neferences
in pddI3 - the language of the fifth international planningnpeti-

tion. Technical report, University of Brescia, 2005.

182

[GV99]

[HF85]

[HNSY92]

[JLO3]

[JVB04]

[KS86]

G. De Giacomo and M. Vardi. Automata-theoretic agmioto plan-

ning for temporally extended goals. BECP, pages 226—-238, 1999.

Joseph Y. Halpern and Ronald Fagin. A formal model akiedge,
action, and communication in distributed systems: prelany re-
port. In4th ACM symp on principles of distributed computipgges
224-236, 1985.

Thomas A. Henzinger, Xavier Nicollin, Joseph 8if& and Sergio
Yovine. Symbolic model checking for real-time systenisforma-

tion and Computation111:394-406, 1992.

Jan Johannsen and Martin Lange. CTL+ is complete fabtioex-
ponential time. InProc. 30th Int. Coll. on Automata, Logics and

Programming volume 2719 of LNCS, pages 767-775, 2003.

Rune M. Jensen, Manuela M. Veloso, and Randal E. Bryaatlt F
tolerant planning: Toward probabilistic uncertainty misda sym-
bolic non-deterministic planning. In Shlomo Zilbersteidana
Koehler, and Sven Koenig, editorBroceedings 14th International
Conference on Automated Planning and Scheduling (ICAPS 2004)
Whistler, British Columbia, Canada, June 3-7, 20p4dges 335-344,
2004.

Robert Kowalski and Marek Sergot. A logic based calsuf events.

New Generation Computing:67-95, 1986.

183

[KS92] H. Kautz and B. Selman. Planning as satisfiability. EGAI-92
pages 359-363, 1992.

[LMOO06] Francois Laroussinie, Nicolas Markey, and GhasSaeiby. Expres-
siveness and complexity of ATL. Research Report LSV-06-08; La
oratoire Sgcification et \érification, ENS Cachan, France, February

2006. 20 pages.

[LPVO1] V. Lifschitz, D. Pearce, and A. Valverde. Stronglgugvalent logic

programs ACM Transactions on Computational LogR001.

[McC5h9] John McCarthy. Programs with common sensePioc. Tedding-
ton Conf. on the Mechanization of Thought Procespages 75-91,
1959.

[McC98] John McCarthy. Elaboration tolerance. G@®©®MMON SENSE 98,
Symposium On Logical Formalizations Of Commonsense Re®goni

January 1998.

[McD82a] Drew McDermott. Non-monotonic logic II: Nonmomotic modal

theories.Journal of the ACM29:33-57, 1982.

[McD82b] Drew McDermott. A temporal logic for reasoning ath@rocesses

and plansCognitive Scienges:101-155, 1982.

[McDO00] D. McDermott. The 1998 ai planning systems compatitArtificial
Intelligence Magazing?21(2):35-56, 2000.

184

[MH69]

[Mo085]

[MP92]

[MW84]

John McCarthy and Patrick Hayes. Some philosophicablems
from the standpoint of artificial intelligenceMachine Intelligence

4:463-502, 1969.

Robert C. Moore. Semantical considerations on noratamc logic.

Artif. Intell., 25(1):75-94, 1985.

Z. Manna and A. PnueliThe temporal logic of reactive and concur-

rent systems: specificatio®pringer Verlag, 1992.

Z. Manna and P. Wolper. Synthesis of communicatingpsses from
temporal logic specification ACM Transactions on Programming

Languages and Systentg1):68—93, Jan 1984.

[NCLMA99] D. S. Nau, Y. Cao, A. Lotem, and H. Mwoz-Avila. SHOP: Simple

[NNO1]

[NS00]

[Nut87]

hierarchical ordered planner. IACAI-99, page 9687973, 1999.

Keijo Neljanko and llkka Niemé. Bounded LTL model checking
with stable models. IhPNMR pages 200-212, 2001.

Rajdeep Niyogi and Sudeshna Sarkar. Logical spetditaf goals.
In Proc. of 3rd international conference on Information Teclugy,

pages 77-82, 2000.

Donald Nute. Defeasible reasoning. Pmoceedings of the 20th
Hawaii International Conference on System Sciermages 470 —

477,1987.

185

[Ped87]

[Ped89]

[PFEF06]

[PNu77]

[PR89]

[PSBZ10]

[PTO1]

E. P. D. Pednault. Formulating multiagent, dynawoeld problems
in the classical planning framework. Reasoning about Actions and

Plans: Proceedings of the 1986 Workshppges 47-82, 1987.

Edwin P. D. Pednault. Adl: exploring the middle grdwetween
strips and the situation calculus. Rroceedings of the first inter-
national conference on Principles of knowledge represériaand
reasoning pages 324-332, San Francisco, CA, USA, 1989. Morgan

Kaufmann Publishers Inc.

Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, GeorgtlGot Si-
mona Perri, and Francesco Scarcello. The dlv system for know
edge representation and reasoning nicola ledk@M transactions

on Computational Logic (TOCLY(3):1-57, 2006.

A. Pnueli. The temporal logic of programs. 118th IEEE Symp. on
Foundation of Computer Sciengeages 46-57, 1977.

A. Pnueli and R. Rosner. On the synthsis of a reactive teodn

ACM POPL, pages 179-190, 19809.

Enrico Pontelli, Tran Cao Son, Chitta Baral, and Jigh&mo. Goal
default theory with priorities as a nhon-monotonic goal sfpeation

language. IlonMon’3Q 2010.

M. Pistore and P. Traverso. Planning as model chgdkinextended
goals in non-deterministic domains. IBCAI'01, pages 479-486,

2001.
186

[Rei87]

[Rei91]

[Rei01]

[Sae87]

[SBTMO2]

[SC79]

[SC85]

R. Reiter.Readings in nonmonotonic reasonjrtpapter A logic for
default reasoning, pages 68—-93. Morgan Kaufmann Pubsidher,

San Francisco, CA, USA, 1987.

Ray Reiter. The frame problem in the situation calculsimple
solution (sometimes) and a completeness result for goaksempn.
In Vladimir Lifschitz, editor,Artificial intelligence and mathematical
theory of computation: papers in honour of John McCarthgiges

359-380. Academic Press Professional, 1991.

Ray ReiterKnowledge in action : logical foundations for specifying

and implementing dynamical systerM T Press, 2001.

M. Saeki. Non-monotonic temporal logic and its egaplon to
formal specifications (in japaneese)lransactions of IPS Japan

28(6):547-557, 1987.

Tran Cao Son, Chitta Baral, Nam Tran, and Sheila Meifirai
Domain-dependent knowledge in answer set planning. CS 08, N

Mexico State University, 2002.

L. J. Stockmeyer and A. K. Chandra. Provably difficuthdinatorial
games.SIAM Journal on Computing(2):151-174, 1979.

A. P. Sistla and E. M. Clarke. The complexity of propiosial linear
temporal logicsJournal of the ACM32(3):733-749, 1985.

187

[Sch87]

[Scho3]

[Sho87]

[SNS02]

[SPO6]

[SSDO0]

[TBS*10]

[TGS+06]

M. Schoppers. Universal plans for reactive robotanpredictable

environments. INJCAI 87, pages 1039-1046, 1987.

Ph. Schnoebelen. The complexity of temporal logydeh checking.
Advances in Modal Logj@:393-436, 2003.

Y. Shoham. Reasoning about changeMIT Press, Boston, MA.,

1987.

Patrik Simons, llkka Niem&| and Timo Soininen. Extending and
implementing the stable model semanticévtificial Intelligence

138(1-2):181-234, 2002.

Tran Cao Son and Enrico Pontelli. Planning with pesfees using

logic programming TPLP, 6:559-608, 2006.

Rajdeep Niyogi Sudeshna Sarkar, P.P. Chakrabarti Panidas-
gupta. Specification of planning goals in branching timedadg
stochastic systems. Froceedings of the International Conference,

KBCS2000pages 422-433, 2000.

Kartik Talamadupula, J. Benton, Paul Schermerhorn, &uaub
Kambhampati, and Matthias Scheutz. Integrating a closedidwo

planner with an open world robot: A case studyAAAl 2010.

S. Thiebaux, C. Gretton, J. Slaney, D. Price, and F. Kahanz
Decision-theoretic planning with non-markovian rewardsurnal
of Al Research, pages 17-74, 2008:17—-74, 2006.

188

[Thigs]

[VAHIWO5]

[WDO5]

Michael Thielscher. Introduction to the fluent aallgs. Electronic

Transactions on Artificial Intelligen¢&(3-4):179-192, 1998.

Wiebe van der Hoek, Wojciech Jamroga, and MichaebMtidge.
A logic for strategic reasoning. IBAMAS-05pages 157-164, 2005.

Michael Wooldridge and Paul E. Dunne. The complexityagent
design problems: Determinism and history dependeAoe.. Math.

Artif, Intell., 45(3-4):343-371, 2005.

189

Appendix A

DEFINITION ON DEPTH OF A FORMULA

190

The depth of a formula used in proofs is defined here.

Definition 51. Let sf, sf and s$ be state formulas, pf, pfand p% be path
formulas in CTLE. Let the depth of a CTLformula g be dept(y).

The depth of a state formula is given as follows:

The depth of an atomic proposition is 1;

depth{—sf) = 1+ depthsf);

deptisfiAsfy) =deptisf) +depthsh)+ 1,

depth(sfi vsf,) =depthsf) +deptist) +1;

deptHEpf) =1+ deptipf);
e depthApf) =1+depthpf);
The depth of a path formula is given as follows:

e ifthe path formula pf is defined in terms of a state formulalsén depthpf) =
deptHsf);

depti—pf) =depthpf)+1;

dept{Opf) =depth(pf) +1;

depti<Opf) =depthpf)+1;

deptiOpf) =depthpf)+1;

dept{pfiA pf) =depti{pf) +depthpf) +1;

deptHpfiVv pfy) =depthpfy) + deptipfy) + 1;

depti{pfiUpf,) = depti{pf,) +deptipf) +1; O

191

Definition 52. Let sf, sf and s$ be state formulas, pf, pfand p% be path
formulas inr-CTL". Let the depth of a formula g be de pgi.

The depth of state formulas and path formulas are the saméaisdefined
for CTL® formulas in Definition 51. Besides that, depth of formulaswito new

operatorsApq andEpq are as follows:
o depthEpoipf) =depthpf)+1;
o depth{Apopf) =deptipf)+1. O

Definition 53. Let sf, sf and s$ be state formulas, pf, pfand p% be path
formulas in P-CTE. Let the depth of a formula f be de).

Depth of state formulas of new operators are given as follows:
e deptH& Zsf) =depthsf)+1;
o depther #sf) =depthsf) + 1.

Depth of state and path formulas with other operators are thmes as that
defined in Definition 52. Depth of,RCTL" and ri;-CTL* formulas are the same as
that in P-CTL and r-CTL". O

192

Appendix B

YET ANOTHER APPROACH OF DEFINING THE EXPRESSIVENESS OF A
GOAL-SPECIFICATION LANGUAGE

193

There are other ways of defining expressiveness of a goalfispéion language.
This section elaborate on one of such alternatives. Eadtspgeaification language
defines a set of formulas, each formula maps a transitiorhgragd an initial state
to sets of trajectories. Two goal specification languageg diféer in that one has
more formulas defined, or each formula is mapped to a diffeseinof trajectories
for each initial state and transition graph. We now preseragproach for defining
expressiveness of goal specification languages.

Some notations are defined first. LUebe a goal specification language. Let
g be a formula inL, ® be a transition function ansh be a state in it~ be the
entailment relation in languade We usePselg, %, P, =) to denote the seftr:
(s0,®, M) =L g} as the set of policies satisfyirgin L. By Gse{(1,5, P, =), we
denote the seftg: (so, P, 1) =1 g} as the set of goal formulas satisfied by policy
inL. LetG, be all formulas in languade LetR (s, ®) be all policies in language
L in @ starting fromsp.

A goal g, which is a mapping from pairs of transition graph and ihsiate to
sets of trajectories, isot expressiblén a goal specification languagdeif there are

1, Dy, 5, § such that

1. For any policyrg that is valid in®1 starting from% and valid in®, starting

from s, we have thatg is mapped by the same set of formulag$, ®;)

and(s3, ®2).

2. However, a policyrn is mapped by the goa in @, and% but 7 is not
mapped by the goain ®, ands’.

The reason is that d can be expressed in langudgasg, according to Item 1,
we know @ maps(sh, ®1) and (s, ;) to the same set of policies. Thus a policy

is mapped by the gog in ®; ands} iff it is mapped by the goayj in ®, and 2.

194

This and Item 2 are contradict each other, thus the gaannot be expressed in
languagd..

With this definition, we are able to compare languages tHgtae the same
definition of policies. However, we are not able to compare languages that rely
on irrelevant definitions of policy. We will discuss the caanisons of languages

with different, but related notions of policies in Sectior2B.
B.1 Notation on Comparing Languages

With the proof that some goals cannot be expressed in a geaifg@ation language,
we can define the expressiveness of a goal specificationdgeglt can be used to
compare two different languages based on sets of goals caxpbbessed in them.
Besides, to compare two languages that are similar, we magidamwhether one
language is a “superset” of the other. When one language hgsgunstructs than
the other, we can define a notion of equivalence between tlyssorsidering only

the common subset of goal formulas and policies in them. Rthymwe have the

following definition for comparing languages that are sanih both goal formulas

and policy structures.

Definition 54 (=equalsyntaequalPolicy)- Consider two languagesjland Lp. L1 =equaisyntaequalPolicy

Lo if
1. G,CG;
2. VO, ¥so, R, (S0, ®) C A (S0, P);
3. Vg € G, VO, Vsp, Psetg, so, @ =1,) N AL, (S0, P) = Psel(g, 0, P, =1,);
4. vre R, VO, Vs, Gselr, s, D, |=1,) NG, = Gse(TT,59, P, =L,). O

Intuitively, L1 =equalsyntarqualPolicyl2 if for any formulag; in Ly, there is a for-

mulag; in L1 such that the set of policies satisfyiggin L; is the same as the set of
195

policies satisfyingy, in Lo. The subscript “syntax,policy” iftequalsyntarequalPolicy
indicates that the two languages share a comparable symdax@mparable notion

of policy.
Proposition 28. In Definition 54, Items (1-3) and Items (1-2, 4) are equivalen

Proof. We first prove Item (4) given items (1) - (3).

For any® andsy, for any policyrre R , (s, @), if a goal formulaG € Gsel(11, S, @, =,
), according to the definitions, we knawe Pse{(G, sp, ®, |=,). From Item (3), we
know VG € GL,, V@, Vs, Pse(G, s, ®,=1,) NP, (So, P) = Pse(G, s, P, |=L,)-
Thus, me Pse(G, s, P, =L,). This is the same &5 € Gse{(, 5, P, |=,). Since
G € Gse(m, 5, P, |=1,), we knowG € G,. ThusG € Gse{(, 5, P, |=,) N GL,.
This implies thaGse(1,5, P, =,) NG, 2 Gse(1, S, P, |=1,)-

On the other hand, for an and sy, for any policy T € R, (S, ®), if G €
Gse(1,59, P, |=,) NGy, then according to the definitions, we have Pse(G, s, @, =,
). According to Definition 54, sinca € Pse{(G, s, @, =1,) "R, (S0, P), we know
e Pse(G, s, P, =L,). Thisis equivalent t& € Gsel(11,5y, P, |=(,). ThusGse(11,5, P, =1,
)NG, C Gse(1,%, P, =L,).

By combining the results above, we hawsel(11, S, D, |=,) NG, = Gse(1T, S, D, |=1,
). Thus Item (4) is true if Item (1) - (3) are true.

Similarly, if Item (1), (2), and (4) are true, Iltem (3) is true O

Note that when we define; =equaisyntaequalpolicyl2, We require that these two
languages have similar policy structures and goal formutésvever, in general,
two languages may differ in policy structures and goal fdasu For example, in
comparingr-CTL* and 1i;-CTL*, even though for any policy im-CTL*, we can
construct another policy in,-CTL* that corresponds to the same set of trajectories,
these two policies are quite different: A policy inCTL* is a mapping from states

to actions while a policy img;-CTL* is a mapping from state sequences to actions.
196

We now define a more general notion for comparing two langsi&itgg may differ

in policy structures or goal formulas.

Definition 55 (=equalpoiicy- Given two languagesiland Ly, L1 =equalpolicyL2 if
there is a one-to-one mappiggfrom G_, to G, such that for all® and g, and for

all gc GL21 Pse(gvs()a CDa):Lz) — Pse((p(g)vs()a CD,):Ll) N H_z(SO> CD) O

Definition 56 (=equaisynta)- Given two languagesiland Ly, L1 =equaisyntad-2 if
there is a one-to-one mappingfrom R, (sp,) to R , (S, P) for any transition sys-
tem® and state gsuch that for all policyrr, Gset 11, s, @, |=1,) = Gse((1), S0, P, =1,

)NGL,. O

The subscript “equalPolicy” in=equalpolicy indicates that the two languages
share a comparable notion of policies. The subscript “&yrabX” in =equalsyntax
indicates that the two languages share a comparable syotaxulas defined in
these two languages are the same. It is easy to check=thak syntaequalPolicy
> equalSyntax @Nd=equalpaiicyare all partial orders.

Before we compare specific languages, now consider theaesip between

the various notions.

Proposition 29. Let Ly, L, be two goal specification languages. iftequaisyntaequalPolicy

Lo, then Ly =equalpolicyl2 and Ly =equaisyntal-2-
Proof. 1. If L1 ZequalSyntarqualPolicyL2, then
a) GL2 - GL]_;

b) Vg e GL,, VP, Vg, Psel(g, S, P, =1,) N R, (S0, P) = Pselg, s, P, =1,
)i

197

Let ¢ be a one-to-one mapping fro@) , to G, such thatp(g) = g. We have
\V/g S GLZ! VGJ, szi Pse(ga S0, q)a |:L2) — Pse((p(g)a 0, (D, |:L1) N H_z(s()a CD)

ThusLi =equalPolicyl2-

2. 1fLy ~ equal SyntaequalPolicyl-2, then

a) VO, A, (®) C A, (®);

b) Ve R, VP, V59, Gse(11,59, P, |=,) NG, = Gse(TT, S, P, =L,).

Let ¢ be a one-to-one mapping frof, (S, P) to B, (s, P) for any P andsp
such thatp(m) = rrfor any policyrt. Thus, for allsy, andrt, Gse{(T, S, @, =1,

) = Gse(y(m),%, P, =1,) NGL,. As aresultl 1 >equaisyntal-2.
O

Similarly, we can also define the comparison of languagembpalifferent sets
of formulas or policies by defining a mapping from policiesane language to
policies in the other language, or a mapping from goals inlanguage to goals in
the other language. We are not going to elaborate on them.

B.2 Compare Different Goal Specification Languages

We defined when one language is more general than the otlygrdga, it is related

to the the notion of a goal is not expressive in a language.

Proposition 30. If language ly =equalsyntat-2, and for all® and state s, B (s, @) =

A, (s, ®), then any goal that can be expressed jchn be expressed imL

Proof. Iflanguagé.; >equalsyntat-2, and for alld and state, B, (s,®) = R, (s, ®),

then we have the following conditions:
1. For all® and states, B , (s, ®) = R, (s, P);

2. V® and states, Vire B, (s, P), Vg, Gsel(11,50, P, |=1,) = Gse(T, S, P, =1,

) N GL2'
198

If there is a goap that cannot be expressedlin, there areb;, @, 5, 3 such

that
1. Existsmg € R, (s}, ®1) NAL, (S5, P2) such that
Gse(m, sj, D1, =1,) = Gsel(m, S5, P2, F=1,);

2. Goalgis satisfied by the policyn w.r.t. (5, ®1, =1,) but not w.r.t.(s3, @, =1,
).

We now prove that such a goglcannot be expressed in:

1. Since for alkb and states, R, (s, @) = P, (s, ®), we knowrg € R, (S5, P1) N
H—z(%7¢2)-

Gse(m, s, ®1,=1,) = Gse(m, sy, P1,=1,) NG,
= Gse(nlv%vq)27):L1)mGL2

= Gselrm, S5, o, =1,);
2. For all® and states, B ,(s,®) = R ,(s,®). Thus, goal is satisfied by the
policy 18 W.r.t. (s}, ®1, =1,) but not w.r.t.(, @2, =L,).
Thusg cannot be expressed in. O
Similarly, we have the following relation on two languages:

Proposition 31. If language 4 =equalpoiicyL2, and G ; = G, then any goal that

can be expressed irplcan be expressed in L

Now we know there are two related approaches of comparinigsgeaification

languages:

1. find a goal that is not expressible in one language whilgpsessible in the

other, or
199

2. compare the policy-goal relations in two languages.

Compare Different Languages

We now utilize these notions in comparing proposed langslagegoal specifica-
tion language is considered as a mapping from pairs of tiangystem and initial
state to sets of trajectories.

We now use the definitions we have to compare the languaded bBbove to
formally prove the relations of the languages. We first compeirs of languages
that have the same set of policies while the syntax of oneulageg in each pair is
a superset of the other. We then compare pairs of languagéesdkie the same

syntax.

Comparerr-CTL" with P-CTL*

Given a transition graph and an initial state, languag€sTL* and P-CTL have
the same set of policies. On the other hand, language P-Ga& more goal for-
mulas than-CTL*. But each formula inr-CTL*, there is a formula in P-CTL
that maps to the same set of policies. That is, if we resangliage P-CTLon a
subset of goal formulas, the resulted mapping from formidamlicies is identical
to T-CTL".

This means that more goals can be represented in P~C3rd for any goal
that can be represented iInCTL*, the same goal can be represented as the same

formula in P-CTL.
Lemma 4. Consider languageg-CTL* and P-CTL.

(i) For any transition functior®, state g, a policyras a mapping from states to
actions, and state formulé in -CTL*, (So, ®, 1T) = ¢ in languagerr-CTL*
iff (S0, P, M) = ¢ in language P-CTL;

200

(i) For any transition function®, state g, policy 1T as a mapping from states
to actions, path formulay in m-CTL* and patho in ®, (5, P, 1T,0) = ¢ in
languager-CTL* iff (sp,®, 11, 0) = ¢ in language P-CTL

Proof. The proof is based on the induction on depth of formulas.

Base caselt is easy to see that for any state formula or path formuldegfth
1, the conditions (i) and (ii) hold.

Induction Assume that it is true for formulas of depth less tmarand show
that it is true for formulas of depth

Consider state formulas of depthlt can be of the following forms: (sgfi Asf
(b)sfivsh (c) st (d)Epf (e)Apf (f) Epaipf (9) Apoip f, wheresf,sf, andpf
have depth less than

Consider (d)Epf. By definition, (s, ®,) = E pf in m-CTL* iff there ex-
ists a patho in ® starting froms; such that(sp,®, 7, 0) = pf in r-CTL*. By
definition, (o, ®,) = E pf in P-CTL" iff there is a patho in ® starting from
s satisfying(sp,®,m,0) = pf in P-CTL". According to induction hypothesis,
we know (Sp, ®, 1T,0) |= pf in m-CTL* iff (sp,®,m,0) = pf in P-CTL" since
depti{pf) < n. Hence,(so, P, m,0) = Epf in m-CTL* iff (s9,P,1,0) |= Epf
in P-CTL".

The proofs for formulas of other forms are similar.

Consider path formulas of depth It can be of the following forms: (apfi A
pfz(b) pfivpfa(c)—pfi(d)pfiUph(e) Opfi(f) Opfi(g) Opfi, where depth
of pf; andpf, are less tham. The proof of each of these cases is similar to the

proof of state formulas. O]
PTODOSItIOI’] 32. P-CTL* >equa|$ynta)equa|P0|icyr[‘CTL*.

Proof. It is easy to know thaG,_c11+ C Gp_cT1+ and for all®, Py_c71+ (D) C

Po_cT+(P). We now need to prove that for any gagt G;_c11+, for any® ands,
201

Pse(g, s, ®, =p-cT1:) NPr-cTLs = Pselg, s, @, =r-cT1+). SincePrcr1+(P) =
Po_cT1+(P), this is equivalent t&sel g, S, P, Ep_cT1x) = Psel0,%, P, EncT1r
). That is, for allg € G_cT1+, for all transition function®, for all states,
(0, D, 1) Err_cTix 9iff (So, P, M) Ep_cT1+ 9- This is the result of Lemma 4. Thus
P-CTL" =equalsyntaxequalPolicy T-CTL".

Further, asGn ctr € Gp_cTLr, We know P-CTL #equalsyntarequalPolicy T

CTL*, thUS P-CTE >equa|$ynta)equa|Po|icyT[‘CTL*. D

According to Proposition 30, since P-CTkequalsyntaequalPolicy T-CTL*, we
know that all goals expressed inCTL* can be expressed in P-CTland there is

a goal in P-CTL that cannot be expressednrCTL*.

Comparer,-CTL" with B;-CTL*

The relation betweem-CTL* and P-CTL* holds for i;-CTL* and P;-CTL* as
well. This means that more goals can be represent®g-@TL*, and for any goal
that can be representedig-CTL*, the same goal can be represented as the same

formula inP;-CTL*.
Lemma 5. Consider languages;-CTL* and R-CTL".

(i) For any transition function®, state g, policy 1T that maps from state se-
guences to actions, and state formglan 1;-CTL*, (So, P, 1) = ¢ in 7,-

CTL* iff (o, ®,) = ¢ in Py-CTLY;

(i) For any transition function®, state g, policy 1T that maps from states se-
guences to actions, path formulain 1;-CTL* and patho in ®, (s, ®, 11, 0) |=
¢ in -CTL" iff (5o, P, 11,0) = ¢ in P;-CTL".

Proof. The proof is based on the induction on depth of formulas.
Base caselt is easy to see that (i) and (ii) are true for any state fdenau path

formula of depth 1.
202

Induction Assume that it is true for formulas of depth less tmarand show
that it is true for formulas of depth

Consider state formulas of depthlit can be of the following forms: (sfi Asf,
(b)sfivsh (c) =sfy (d) Epf (e)Apf (f) Epaipf (9) Apaipf, wheresty, s, andpf
have depth less than

Consider (d)E pf. By definition, (so,®,) =n,_cT1+ E pf iff there exists
a patho in @ starting froms; such that(sy,®,1,0) =n,_cT1+ pf. By defi-
nition, (so, P,) =p,_cTL+ E pf iff there exists a patlo in @ starting froms;
such that(sy, @, 1, 0) |=p,_cT1+ pf. According to the induction hypothesis, we
know (sp, ®, 11, 0) =, —cT1x P iff (S0, P, 11,0) =p,_cT1+ Pf Sincedepth(pf) <
n. Hence (s, ®, 1, 0) =n,—cT1x EpTiff (So, P, 1T,0) |=p,—cTL- EpPT.

The proofs for formulas of other forms are similar.

Consider path formulas of depth It can be of the following forms: (apfi A
pfz (b) pfiv pfz (c) —pfi(d) pfa U pfz (e) Opfi (f) Opfi(9) Opfi, wherepf,
and pf, have depth less tham The proof of each of these cases is similar to the

proof for state formulas. O
Similar to the relations im-CTL*, we have the following result.
PrOpOSItIOH 33 PO'-CTL* >‘equa|Synta_)equa|Po|icyTEj‘CTL*.

Proof. It is easy to know thaB,, _ct» C Gp,_cT1+ and for all®, Py _c71(P) C

P, —cT1:(®). We now need to prove that for any gagik Gp,_cTi+, for any

® and s, Pse(g,%, P, =p,—cT1*) N PrcT1x = Pse(g,%, P, =rcT1+). Since

PrcTL: (P) =Po_cT+(P), this is equivalent t®sel g, S, P, =p_cTL+) = Pse(G, s, P, =r—cTL*
). That is, for allg € Gy_cTL+, for all transition function®, for all statesy,

(S0, P, 1) Er—c11 9iff (S0, P, 1) =p_cT1+ 9- This is the result of Lemma 5. Thus

Po-CTL* =equalsyntaequalPolicy Tlo-CTL".

203

SinceGr, _ct1r € Gp,—cTLr, We KNowPs-CTL* #equalsyntaequalPolicyTo-C TL™,

thusP,-CTL* equalSyntasequalPolicy To-CTL". [

According to Proposition 31, we know all goals expressibleg-CTL* are
expressible irP;-CTL*. We now show there is a goal P»-CTL* but not in 7i;-
CTL*.

Lemma 6. Considerd;, @, in Figure 3.4, andt= {(s1,a2), (S1, %2, a2), (S1, %2, S2,a2), - - - }.
(i) For any state formulap in 1;-CTL", (s1,®P1, 1) |= ¢ iff (S, P2, 1T) = .
(i) For any path formulayp in 1;-CTL" and any patto in @4 (or ®2) (s1,P1, 71, 0) =
Yiff (s1,Pp, M,0) = Y.

Proof. The proof is based on the induction on the depth of formulas.

Base caselt is easy to see that (i) and (ii) are true for formulas oftheh

Induction Assume that (i) and (ii) are true for formulas of depth Ildsantn,
and show that (i) and (ii) are true for formulas of depth

Consider state formulas of depthlt can be of the following forms: (&fi Asf,
(b)sfivst(c)-sf(d)Epf (e)Apf (f) Epapf (9) Apaipf, wheresfy, s, andpf
have depth less than

Consider (dEpf. By definition, (s, ®1, 1) = E pf iff there exists a patlo in
@, starting froms; such that(s;, @1, 1, 0) = pf. Itis observed that is a path
starting from g in @1 iff o is a path starting fromsin ®,. Since depth opf is less
thann, by induction hypothesigs;, ®1, 1, 0) |= pf iff (s1, P2, 11, 0) = pf. Hence,
(s1,®P1,1M,0) = Epfiff (s1,P2,11,0) = Epf.

The proofs for formulas of other forms are similar.

Consider path formulas of depth It can be of the following forms: (apfi A
pfz2(b) pfavpfa(c)—pfi(d) pfiU pfa(e)Opfi(f) Opfi(g9) Opfi, where depth
of pf; andpf, are less tham. The proof of each of these cases is similar to the

proof for state formulas. H
204

Proposition 34. There exists a goal in2CTL" which cannot be expressedg-

CTL".

Proof. Consider the following godb:
“All along your trajectory
if from any state p can be achieved for sure
thenthe policy being executed must achieve p,
elsethe policy must make p reachable from any state in the trajgct
It can be expressed Ry-CTL* asA o0 ((E P ApoiCp = ApolOP) A (—E PApaOp=
ApalTd(Epoi©p))). Assume thaG can be expressed im,-CTL* and let¢g be its
encoding inr-CTL".
Consider®; and®, as described in Lemma 6, and
= {(s1,a2), (S1,51,82), (S1,%2,82), (S1, 51,51, 82), (S1, 51, %2, @2), (S1, %2, %2, 82) -+ }-
The policymis a policy for goalG and initial states; with respect tab, as neither
from s; nor fromsp, p can be achieved for sure (by any policy), ammanakesp
reachable from any state in the trajectory.
Thus, (s, ®2, M) = dc. 1)
But rtis not a policy for goals and initial states; with respect tab; as froms;,
pis guaranteed achievable by another potigy= { (s1,a1), (S1,S,82), (S1,S2, S, 82), - - - }-
With the policyr, we cannot guarantee the achievemenp.of
Thus, (s1, P1, 7) b de. 2)
Lemma 6 contradicts with (1) and (2). Hence, the assumptiahG can be

expressed im-CTL* is wrong.G cannot be expressed mCTL*. H

Compare Languages having the Same Syntax

We now compare languages that have the same syntax but feledt definition
of the policy structure.

Given a transition graph and an initial state, goal formalesned inr-CTL*
205

and 1;-CTL* are the same. For each policy mCTL*, there is a policy ing-
CTL* that maps to the same set of goal formulas. That is, if weicestre set of
policies in1,-CTL*, it can be isomorphic to the one téCTL*. We will also prove

that it is not the case for P-CTlandP;-CTL*.
Proposition 35. 1m;-CTL" ~equalsyntad-CTL".

Proof. To prove that;-CTL* =equaisyntadT=CTL", we need a one-to-one mapping
Y from Py _cT1+(P) t0 Pr_cT1:(P) for any ® such that for alls, and T, we
have Gse(,%, P, =rcT1x) = Gse(Y(m), s, P, =n,—cT1x) N Gr_cT+. Since
Gr—cT1» = Grn—cTL+, We need to prove th&se(1, s, P, =r_cT1+) = Gse(Y(n), %, P, =m,—cTL>
). That s, for each policyi in m—CTL*, there is one policy? in 1; — CT L* such
that (so, P, M) ErcTi- g iff (0, P, 7) Er,—cT1+ 9, and two differentts map to
two differentrr’s. We define the mapping such that for a policyr € -CTL* that
is a mapping from states to actions, we construct a policlyitha mapping from
state sequences to actions such that these two policiessspornd to the same set of
trajectories from the initial state. They are satisfied lgydgame set of goal formulas
in these two languages.
To prove thatr-CTL* Zequalsyntaxo-CTL*, we need to find a policyt €
Pr,—cTL+, a transition functior, and a statey, such that there is no’ € Pr_ct-
whereGse(11, s, P, =7, 1) = Gsel 1T, S0, P, =11) NGry —c11r = Gse(1T, 50, P, ErcTLr
).
In the transition function denoted by Figure 3.5, the poligyn 1,-CTL* such
that {T&(s1) = a1;7B(S1,S2) = @; TB(S1,%2,S1) = as;--- } satisfies the goayz =
ApolC(pA <©Qq) thusgs € Gse(e, So, P, |=r,—cTL+). By enumerating all policies’
in -CTL*, we know that there is no policy in -CTL* suchgs € Gse{(17, 5, D, =r_cT1
). ThusT-CTL* #equalsyntadlo-CTL*. O

From the proof, we know that a goaho < (pA ©q) in -CTL* cannot be ex-
206

pressed im-CTL*. From Proposition 30, we know all goals that can be represent

in -CTL* can be represented my-CTL*.

Proof. To prove thatP;-CTL* Zequaisyntad-CTL", we need to find a policyr €
Po_cT1+, a transition functionb, and a statep, such that there is nt’ € P, _cT1-
whereGse{ 11,5, D, =p_cT1) = Gse(1, %, P, =p,—cT1*) N Gp_CTL*-

Let the policyr be {r(s;) = nop}, the transition function be that correspond-
ing to Figure 3.5, the initial statey = s;. It is easy to know that the goagh =
ApolT (=8 ZApaC (P A <Q)) is in Gsel(TT, S, P, =p_cTL:). We now prove that
no policy ' € Ps,_cT1+ satisfies this goal. According to the definition of lan-
guagePs-CTL*. (s, P, 1) =p,—cTL: 01 if =& P ApaO(pA Q) is true in all states
reachable from the initial states by following the policyowkver, the initial state
S is one state in the policy. There is a policy Bg-CTL* that does not satisfy
=& PApoC(PA Q). Such a policy iste such that{re(s1) = a1, B(s1,S) =
ap; TB(S1,2,51) = as;--- }. Thus there is no policy satisfigg in P,-CTL*. Pg-
CTL* ZequalsyntaP-CTL".

To prove that P-CTL ZequaisyntaxPo-CTL*, we need to find a policyt €
Pb,—cTL+, @ transition functior, and a statey, such that there is no’ € Po_c1-
whereGse(11, s, P, =p, —c11x) = Gse(1,5, P, =p_cT1:) NGp, —cT1x = Gse(17,5, P, =p_cTL*
).

The policys in P;-CTL* such thaf 1i(s1) = ag; TB(S1, S2) = a2; TB(S1,S2,S1) =
ag; - - - } satisfies the goas = ApoC(pA Q) thusgs € Gsel(Tp, S, @, =p,—cTLr)-
We now prove that there is no poliey in P-CTL* suchgs € Gse{(1,5, P, =p_cT1+
). This can be proved by enumerating all policisin P-CTL*. Thus P-CTL

fequalSyntaPa'CTL*- OJ

The above result is mildly surprising. From the proof, weéévat the goal
207

ApolTO (& P ApoiC(pA<Q)) in P-CTL* cannot be expressed Ry-CTL*. Simi-

larly, the goalA 0 (pA <q) in Po-CTL* cannot be expressed in P-CTL

208

