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ABSTRACT

Image Understanding is a long-established discipline in computer vision, which

encompasses a body of advanced image processing techniques, that are used to locate

(“where”), characterize and recognize (“what”) objects, regions, and their attributes

in the image. However, the notion of “understanding” (and the goal of artificial

intelligent machines) goes beyond recognition and includes reasoning and thinking

beyond what can be seen (or perceived).

Understanding is often evaluated by asking questions of increasing difficulty. Thus,

expected functionalities of an intelligent Image Understanding system can be ex-

pressed in terms of the functionalities that are required to answer questions about an

image. Answering questions about images require primarily three components: image

understanding, question (natural language) understanding, and reasoning based on

knowledge. Any question, asking beyond what can be directly seen, requires modeling

of commonsense (or background/ontological/factual) knowledge and reasoning.

Knowledge and reasoning have seen scarce use in image understanding applica-

tions. In this thesis, I demonstrate the utilities of incorporating background knowl-

edge and using explicit reasoning in image understanding applications. I first present

a comprehensive survey of the previous work that utilized background knowledge and

reasoning in understanding images. This survey outlines the limited use of common-

sense knowledge in high-level applications. I then present a set of vision and reasoning-

based methods to solve several applications and show that these approaches benefit

in terms of accuracy and interpretability from the explicit use of knowledge and rea-

soning. I propose novel knowledge representations of image, knowledge acquisition

methods, and a new implementation of an efficient probabilistic logical reasoning en-

gine that can utilize publicly available commonsense knowledge to solve applications

such as visual question answering, image puzzles. Additionally, I identify the need
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for new datasets that explicitly require external commonsense knowledge to solve. I

propose the new task of Image Riddles, which requires a combination of vision, and

reasoning based on ontological knowledge; and I collect a sufficiently large dataset

to serve as an ideal testbed for vision and reasoning research. Lastly, I propose end-

to-end deep architectures that can combine vision, knowledge and reasoning modules

together and achieve large performance boosts over state-of-the-art methods.
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Chapter 1

INTRODUCTION

Images and videos are a ubiquitous mode of communication in many industries

such as finance, defense, healthcare, fashion, and social media analytics. Automatic

high-level semantic understanding and reasoning about images in these industries be-

comes increasingly important as the number of available snapshots grows on a daily

basis. Such understanding can help in scenarios such as detecting anomalies or events

of interest in X-rays or fMRI images (healthcare); image forgeries and fraud (finance

and insurance analytics); the demographics from posted images, violence or racial

content in images (social media experience enhancement, social media analytics) etc.

This growing practical need and the recent advances in low-level recognition tech-

niques have given rise to the challenge of moving beyond factual recall and reasoning

beyond (object-level) recognition in images. The related area of research is known

broadly as image understanding.

Vision is the process of discovering from images what is present in the

world, and where it is. - David Marr, 1982

Traditionally, image understanding was defined as the problem of recognizing

“what” and “where” in an image and mainly warranted study of advanced image

processing techniques that detect low-level semantic information from highly variable

(photometric and geometric variations) visual signals. Recently, researchers from the

vision and language community adopted the viewpoint that if a system can develop a

semantic understanding of a visual scene, then such a system should be able to pro-
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duce natural language descriptions of such semantics. This task is popularly known as

caption generation. In this task, the system only concentrates on the salient aspects

of the scene. However, in the context of images (such as in Figure 1.1(a)), human

beings can also recognize all objects and regions of an image, the actions (cut), the

roles that objects play in the actions (human performing the action cut, cutting with

a knife), the background context, and the concepts that can be understood but not

seen (cooking tofu, preparing food). Additionally, human beings can also perform sim-

ple causal, spatial, and event-based reasoning on the recognized concepts. Arguably,

these functionalities can be expected from an intelligent image understanding system.

These expectations indicate assumptions about advanced cognition that are better

reflected in the definition of “understanding” in the Educational Domain.

In the educational domain, student understanding is evaluated by asking increas-

ingly difficult questions, that requires recalling facts, understanding concepts, ana-

lyzing concepts, connecting them to the world knowledge, synthesizing concepts, and

developing beyond such understanding. Bloom’s Taxonomy (BLOOMS 1965) divides

such questions into the following categories: Knowledge, Comprehension, Applica-

tion, Analysis, Synthesis, and Evaluation. Each category focuses on testing increas-

ingly difficult levels of cognitive thinking in students. Some of these categories test

recognition abilities, whereas the more complex ones test higher cognitive abilities

(understanding the context, connecting it to background or commonsense knowledge

and reasoning about it). In the natural language processing community, the task of

question-answering is also well-accepted for testing the understanding of a system.

The broad acceptability of question-answering tasks has led researchers in com-

puter vision to revisit the task in evaluating image understanding systems. Multiple

large datasets (Gao et al. 2015a; Antol et al. 2015b) have been proposed and state-

of-the-art systems (Malinowski et al. 2015; Gao et al. 2015a; Lu et al. 2016b) have

2



(a)

(b)

(c)

Figure 1.1: Examples Where Knowledge Can Aid Correct Inference. (a) An Image
Where an Object is Indistinguishable Even to the Naked Eye. Knowledge Is Needed
to Understand, that Knife Is Not Cutting the Bowl, and Knife Is Cutting Something
inside the Bowl. (b) An Example from Visual Question-Answering Task (Chapter 6)
Which Is Aided by Knowledge. (c) An Example from the Image Puzzle Solving Task
Introduced in Chapter 7.
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achieved promising results. However, current end-to-end learning methods ignore

the need for explicit modeling of knowledge and reasoning (Davis and Marcus 2015).

Delving deeper into the contrast in the reported accuracies and our understanding

of the models, we made two discoveries (in Chapter 6). First, we found that most

questions in the current state-of-the-art datasets (Antol et al. 2015b) cover only a few

semantic question categories. These primarily require recognition of objects, regions,

and attributes; counting; and understanding (a subspace of) natural language. Sec-

ond, we found that the accuracies are high for yes-no questions, while accuracies for

all other factoid questions declined. Because a large percentage (≈ 50% of the test

questions) of the dataset consists of yes-no questions, the overall accuracy remains

near 60 − 68%. Such bias in the data is one of the reasons why the current state-

of-the-art models can avoid modeling commonsense knowledge and reasoning, which

humans often use to understand and answer complex questions.

To achieve human-level performance in domains such as NLP, vision and

robotics- basic knowledge of the commonsense world time, space, physical

interactions, people and so on, will be necessary. - Ernest Davis, 2015

Another important (and often overlooked) aspect of understanding in intelligent

agents is the explainability of the system (or how the agent deduces the answer). In

terms of automatic systems, explainability (a.k.a. interpretability or justifiability) is

also related to the usability of the systems in real-life applications. Put in the words

of the authors in Lei et al. (2016),

Prediction without justification has limited applicability.

In the current era of deep neural networks, the problem of justifiability is becoming

increasingly prevalent. In this thesis, we identify three main problems with respect

to current image understanding systems (and datasets):
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• Lack of Interpretability: After the recent advancements in hardware (GPU,

CUDA) and theory (use of ReLU, unsupervised pre-training, efficient gradient

descent techniques), it became feasible to train deep neural networks in an end-

to-end manner and achieve high accuracy. In computer vision, researchers have

shown success in training large complex networks to recognize objects, generate

captions, and answer questions. However, current end-to-end models are mostly

black boxes to the users. They provide little evidence about the results and do

not leave a way for feedback.

• Lack of Knowledge and Reasoning: A large number of questions (multiple

examples appear throughout this thesis) are answered by human beings by

reasoning upon the commonsense (or background) knowledge acquired from

their environment. Storing and reasoning on such knowledge results in superior

generalization capabilities; i.e, it can help make sense of previously unknown

and unseen situations and often help interact successfully by encountering only

a few example situations. Current end-to-end architectures do not utilize such

knowledge or leave room for such reasoning.

• Lack of Representative Datasets: In current visual question answering

datasets, most of the questions require superior recognition systems. Our re-

sults in question categorization also reflect that there are limited number of

question-categories in the VQA dataset (a state-of-the-art QA dataset by Antol

et al. (2015b)), that require explicit reasoning. In this thesis, we address this

problem by proposing a new dataset that requires a combination of recognition

and reasoning on knowledge to solve.

From the viewpoint of reasoning on knowledge bases, we look toward the proba-

bilistic adaptations of reasoning mechanisms, such as Probabilistic Soft Logic (PSL)
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(Bach et al. 2013) and Markov Logic Network (Richardson and Domingos 2006a).

The paradigm of PSL fits, because its ground atoms have continuous truth values

in the interval [0,1], instead of having binary truth values. This assumption makes

it easier to use neural network detections (and corresponding confidence scores) to

directly model truth values of the ground atoms. For example, if object “cat” is de-

tected with probability 0.85 (i.e. P (cat|Image)), then the truth value of the ground

atom “has(cat,in,image)” can be 0.85. In addition, the syntactic structure of rules

and the characterization of the logical operations have been chosen judiciously so

that the space of interpretations with nonzero density forms a convex polytope. This

makes inference in PSL a convex optimization problem in continuous space, which in

turn allows efficient inference. From the point of view of applications of PSL in image

understanding systems, we identify and (partially) address the following limitations:

• Scalability to Large Knowledge-Bases: Scaling up probabilistic reasoning

to very large knowledge bases, such as ConceptNet, is not straightforward.

• Incorporation of Phrase Similarity: In a traditional factoid question an-

swering setting, both the question and the answer paragraph are converted to

a semantic graph. Traditionally nodes are nouns (or noun phrases), and, the

relations come from a closed set of categories. In case, one wants to use open-

ended phrases as relations, it is not straightforward how to design rules (and

the underlying optimization problem) to cater to the phrase-based similarity

matching of the arguments (or predicates) in the current PSL engine (by Bach

et al. 2013).

In this thesis, we propose methods, tasks, and datasets with the goal of alleviating

the above issues with current image understanding systems. We also implement a

probabilistic reasoning engine that is generic and has proven to be useful in solving
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Figure 1.2: An Architecture for Deep Image Understanding, That Demonstrates the
Ideal Interactions among the Three Essential Components of an Image Understand-
ing System: Vision, Knowledge and Reasoning (The Knowledge Reasoning Module
Is a Part of the Reasoning Module; It Is Shown Separately to Clearly Outline the
Interactions).

real-world noisy vision and language datasets. We make this reasoning engine publicly

available at github.com/adityaSomak/PSLQA. In summary, this thesis makes the

following contributions 1 :

• We summarize previous research in the applications of knowledge and reasoning

in image understanding in a comprehensive survey. Our survey suggests that

the utility of using domain knowledge and reasoning has been noted by different

groups of researchers in the computer vision community. While use of high-level

commonsense knowledge and explicit reasoning mechanism has been scarce,

future works in high-level reasoning can be inspired by the research covered in

this survey.

• We propose a deep image understanding architecture (that combines Vision,

Reasoning and Knowledge). This architecture outputs an interpretable inter-

mediate structure, which then can be used in applications such as caption gener-

1Parts of these contributions are published in Aditya et al. (2018, 2017, 2016b,a, 2015b); Sharma
et al. (2015) (IJCAI, AAAI, CVIU, UAI, ACS).
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ation and visual question answering (published in Aditya et al. 2015a,b, 2016a,

2017; Sharma et al. 2015).

• For question answering and solving puzzles with knowledge bases (such as

word2vec and ConceptNet), we develop a Python- (and Gurobi)-based in-house

PSL engine. This engine uses the Gurobi optimizer in the background for faster

optimization and provides a seamless way to adopt phrase-similarity-based argu-

ment matching in predicates. We apply this reasoning engine to visual question

answering and image riddles (a new task proposed in this thesis).

– For answering questions about natural images, we use the developed PSL-

based question answering module that can successfully answer questions

about images while providing structured predicates as evidence. Our rea-

soning engine utilizes external commonsense knowledge to understand and

reason about structured predicates from an image and the question. It

improves upon state-of-the-art accuracy (published in Aditya et al. 2018).

– We propose the new problem of image riddles, which requires a combina-

tion of vision and reasoning on top of ontological knowledge. We present

a dataset corresponding to this task. Our proposed approach uses vision

and the PSL-based reasoning module that utilizes publicly available knowl-

edge bases. This approach solves these riddles with reasonable accuracy

(published in Aditya et al. 2016b, accepted and in print in UAI 2018).

• Use of external reasoning engines warrants a pipeline-based architecture, and

pipeline-based architectures often suffer from generic problems such as error

accumulation over each stage. To circumvent such problems, we build an end-

to-end neural architecture that combines vision, knowledge, and reasoning mod-

ules together. We use this architecture successfully to solve a visual reasoning
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problem and achieve performance boosts over state-of-the-art results for two

large datasets.

Image understanding in human beings is achieved by utilizing a vast body of com-

monsense and background knowledge. For computational purposes, it is important

to define and focus on the types of knowledge that can help in understanding aspects

of a scene. More precisely, utilizing such knowledge requires considering the following

issues: i) defining the kind of knowledge required, ii) determining where and how to

obtain such knowledge, and, iii) devising the reasoning mechanism to use to reason

with such knowledge. Throughout this thesis, we explain how we address such issues

for different applications.

The algorithmic contributions can be better summarized using the architecture

presented in Figure 1.2. In this figure, we define an architecture for image under-

standing, that can be used for various applications such as caption generation, and

visual question answering. In this architecture (explained in detail in Chapter 5), we

define three necessary modules (vision or recognition, knowledge, and reasoning) for

image understanding and propose the necessary interactions among these modules.

Throughout this thesis, we show variants of implementations of this architecture. We

also discuss the interpretability and accuracy achieved in different applications from

generating captions and solving image puzzles to answering questions about an image.

1.1 Organization of the Thesis

To place our contributions in the context of prior research in reasoning about

images and videos, we first provide a detailed survey about the previous applications

of knowledge and reasoning mechanisms in images and videos in Chapter 2. In

Chapter 3, we summarize the types of novel knowledge representations, reasoning

mechanisms and knowledge acquisition procedures employed in different applications
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in this thesis. Before delving deeper into the applications, in Chapter 4, we elaborate

on the corpora developed and extended as a part of contributions in this thesis. We

summarize the new Image Riddles dataset that we propose as a testbed for vision

and reasoning research. We also summarize extensions of other public corpora that

we created for specific applications. In the rest of the thesis, we go over different

applications ranging from image captioning to visual question answering and image

puzzles, which can benefit from the use of external knowledge and reasoning with

such knowledge.

In Chapter 5, we propose an intermediate interpretable knowledge representa-

tion, called the Scene Description Graph (SDG), that represents all relevant and

necessary information about a natural image. This representation can be used to

generate captions; can facilitate event-based, and spatial reasoning; and with back-

ground knowledge, answer deeper questions. In this chapter, we then propose a

combination of deep learning and commonsense reasoning modules that predict an

SDG from an image. Human evaluations based on the metrics of Thoroughness and

Relevance shows that our generated captions are (qualitatively) comparable to few

of the initial end-to-end neural approaches. We show by numerous examples, where

explicit background knowledge is necessary to answer questions or understand the

scene. We also show that this combination of a modular architecture and an output

intermediate structure enables us to explain how each of the nodes and edges in the

SDG (detected and inferred components) were predicted. Additionally it enables us

to track back the errors to one of the root causes stemming from one of the mod-

ules: Visual Detection, Knowledge Base or Reasoning module. Motivated by the

success of this system, we proposed a more abstract deep image understanding archi-

tecture, called DeepIU, that outlines the necessary interactions between the three

fundamental modules: Vision, Reasoning and Knowledge.
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Next in Chapter 6, we explore the use of knowledge and reasoning to solve ques-

tions in the Visual Question Answering datasets (Antol et al. 2015b), that can be

benefited by the explicit modeling of commonsense and background knowledge. For

visual question answering, our goal is to get textual information from images using

dense captioning methods, parse the question and the captions using a rule-based se-

mantic parser to create semantic graphs. We then use these two knowledge structures

in a reasoning engine to answer the question. To reason with the probabilistic noisy

data with open-ended phrases as relations, we have developed an in-house Proba-

bilistic Soft Logic engine that understands similarities between predicates that are

natural language phrases. We show that our reasoning engine successfully predicts

the answer thus increasing accuracy over the state-of-the-art for “what” and “which”

questions. The reasoning engine is also able to predict structured predicates as ev-

idence alongwith the inferred answer, which helps in interpretability of the overall

system. Additionally, question understanding is fundamental in VQA and this task

also requires categorizing these questions into Semantic Categories. We have adopted

and re-defined a part of the TREC Question Categories to categorize visual ques-

tions. We explain the motivations behind refinement of the question categories, and

the process of the manual annotation. We manually annotated a subset of the data

with high quality, and then train a boosted state-of-the-art neural network question

classifier to automatically label the rest of the questions in the VQA dataset.

Most of the current datasets in vision and language research are targeted towards

systems that are expected to perform high-accuracy object, scene, attribute recogni-

tion. The need of commonsense reasoning is often easily ignored. To promote research

in the area of vision and reasoning, in Chapter 7, we propose the new problem of

Image Riddles, where one needs to find a common word that meaningfully connect

given images. Here one needs to identify the semantic components from the images
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and use their ontological knowledge to find a common word that logically connect

the images. In this chapter, we present another implementation of the DeepIU ar-

chitecture in Chapter 5, where we use a combination of deep learning detection and

PSL-based reasoning to solve the image riddles. Automatic and Human evaluations

show a visible increase in accuracy over the Vision-only baselines. We use PSL to

model the interactions between the detected words (image classes from image classi-

fication module) and the candidate concepts (entire vocabulary in ConceptNet), and

infer most probable target concepts. This is a generic approach that can be used to

logically infer concepts from a larger vocabulary given detections from a closed set.

In Chapter 8, as part of the last application, we present our efforts to propose

an end-to-end neural architecture that combines vision, knowledge and reasoning to

answer questions about synthetic images (in CLEVR). We utilize the recently in-

troduced knowledge distillation architecture and relational reasoning layer to supply

spatial commonsense knowledge to the network. Specifically, a pre-processed mask

over the image is supplied to the teacher network and the student network learns

from the ground-truth data and teacher’s predictions. We show that this simple en-

hancement provides an impressive performance boost for two state-of-the-art datasets,

CLEVR and Sort-of-Clevr.

Lastly in Chapter 9, we summarize the fundamental findings of this thesis and

indicate the possible future directions of research in vision and reasoning.
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Chapter 2

A SURVEY OF KNOWLEDGE AND REASONING IN IMAGES AND VIDEOS

Modeling of knowledge and reasoning in image understanding applications is an

important avenue. Even though the current data-driven end-to-end techniques often

ignore the need for explicit modeling of knowledge and reasoning, there has been

a considerable number of successful applications in the past that demonstrated the

utility of additional knowledge in image understanding applications. In this chapter,

we present a short survey of knowledge and reasoning mechanisms that have been

applied by various groups of researchers to applications ranging from low-level to

high-level image understanding. Also, the survey discusses the relevant applications

that benefit from knowledge and reasoning; efforts to acquire large-scale common-

sense knowledge bases (about image); and lastly the shortcomings of the research

related to high-level image understanding. The lack of explicit reasoning in high-level

applications provides the motivations behind the approaches proposed in the rest of

the thesis.

2.1 Introduction

The utility of background knowledge and reasoning has been well known in many

applications in artificial intelligence, including natural language and image under-

standing applications. From the early years of computer vision research, many re-

searchers realized that prior knowledge could help in different tasks ranging from

low-level to high-level image understanding. For example, the knowledge about the

shape of an object can act as a strong prior in segmentation tasks, or the knowledge

about the most probable action given a subject and the object can aid in action
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recognition tasks. In this recent era of data-driven techniques, most of this knowl-

edge is hoped to be learned from annotated training data. While this is a promising

approach, annotated data can be scarce in certain situations, and many domains have

a vast amount of knowledge curated in form of text (structured or unstructured) that

can be utilized in such cases. Utilization of background knowledge in data-scarce

situations is one of the reasons that necessitate the development of approaches that

can utilize such knowledge (from structured or unstructured text) and reason on that

knowledge. In this survey, we cover the different types of knowledge and reasoning

mechanisms that have been successfully utilized in image understanding applications.

Applications of knowledge and reasoning mechanisms to understand images and

videos can be broadly categorized into two classes: i) reasoning with external (or

additional) knowledge, ii) reasoning without additional knowledge structures. To

reason with additional knowledge, one must investigate what kind of knowledge is

required, where and how to get that knowledge and which reasoning mechanism to

use. For certain vision and language applications, additional knowledge (domain or

commonsense) beyond the understanding of the natural language input (i.e., language

grounding) might not help. For example, in an image involving a cube and a sphere,

we are tasked to answer the question “what is the color of the cube behind the yellow

matte sphere” 1 . For such scenarios, one needs to detect and locate the sphere, and

then the cube. In such cases, one needs only to determine the required reasoning

mechanism. In this survey, we describe the popular explicit reasoning mechanisms

that have been successfully employed and applications of external knowledge at dif-

ferent information abstraction hierarchy in the context of images and videos.

Popular explicit reasoning mechanisms in image understanding can be divided

into categories: i) probabilistic logical formalisms and ii) reasoning layers in deep

1Such examples are abundant in the CLEVR dataset.
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neural network. Up until a few years ago obtaining even object-level information from

natural images was highly noisy, and hence the applications of higher-level reasoning

beyond the understanding of ‘what” and “where” were scarce in computer vision.

Due to the recent success of end-to-end training of deep neural architectures, image

classification and object recognition accuracy became comparable (in some scenarios)

to that of humans (He et al. 2015b), and this opened up the possibility to explore

a range of high-level reasoning applications. In this chapter, we describe the types

of reasoning mechanisms that are slowly gaining popularity in the context of image

understanding.

To understand how knowledge is meaningful in images and by extension videos,

we can look at the different types of knowledge that relate to different levels of the

semantic hierarchy induced by a natural image. Natural images are compositional. A

natural image is composed of objects, and regions. Each object is composed of parts

that could be objects themselves and regions can be composed of semantically mean-

ingful sub-regions. This compositionality induces a natural hierarchy from pixels to

objects (and higher level concepts). We show a diagram representing the information

hierarchy induced by a natural image in Figure 2.1. Different types of knowledge

might be relevant in the context of low-level information (objects and their parts) to

higher-level semantics (abstract concepts, actions). Essentially, in this chapter, we

will study how knowledge and reasoning is applicable to these following levels of se-

mantics: i) low-level patterns (edges, shapes), ii) objects, regions and their attributes,

iii) object-object or object-region interactions, relations and actions; iv) higher-level

commonsense knowledge (about scene, events, activities).

In this chapter we first describe the different form of reasoning mechanisms that

has been used in the community to reason about images; followed by a detailed

description of different kinds of knowledge used by various research groups. We will
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Figure 2.1: In This Diagram, We Show the Information Hierarchy with respect to
the Images and the Knowledge Associated with Each Level of the Information. (The
Image is Inspired from Dr. Bernd Neumann’s Lecture Slides.)

conclude by discussing how the research in high-level understanding and utilization of

commonsense knowledge is lacking. This lack of modeling of knowledge and reasoning

is the fundamental motivation behind our approaches towards image understanding

applications. We use the following sources of knowledge and types of reasoning mech-

anisms in our applications presented in the rest of the thesis,

• In Chapter 5, for image captioning, we first generate a knowledge structure

called the Scene Description Graph (SDG) from a natural image. To generate

such an SDG, we capture the commonsense knowledge about day-to-day activ-

ities by parsing captions from the training data. The knowledge is stored as

a knowledge graph, where the nodes are events (verbs), entities (objects and

regions) and traits (properties of objects and regions). Entities are connected to

event-nodes via a well-defined set of KM-Ontology relations, that define the role

the entity takes in that event. Event-nodes can be connected to each other as
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well. The reasoning mechanism primarily comprises of graph-manipulation al-

gorithms to utilize the knowledge stored in this knowledge graph. For example,

to predict an SDG from an image, we first predict the entities from the image

using classifiers. Then to obtain the most probable event given two entities, we

perform a shortest path search between two entity-nodes to extract connecting

Event nodes in the graph. Then, we select the correct event by using the re-

lations and class information about the entities. In addition to the knowledge

graph, other sources of knowledge such as a Bayes Network involving entities

and scene constituents is also used to rectify noisy objects (predicted by object

classifier) given the set of high-confidence objects.

• In Chapter 6, for VQA task, we use the publicly available knowledge sources

ConceptNet (Havasi et al. 2007) and word2vec (Mikolov et al. 2013). Concept-

Net embodies commonsense and ontological relations between common words

and phrases in English language. On the other hand, word2vec represents the

words as fixed-length vectors in a semantically meaningful vector space, where

the similarity between the vectors represent the graded similarity in semantics

of the two words. As reasoning mechanism, we use the Probabilistic Soft Logic

engine implemented using the theory proposed in Bach et al. (2013). Specif-

ically, we use two sets of structured has-triplets (inspired by RDF triplet) to

represent the information in image and the question respectively. The difference

between the SDG proposed in Chapter 5 and this structure is that, the rela-

tions in these structures are open-ended phrases and come from a vocabulary

of about 20k phrases. To answer a question about an image, we reason with

these structured predicates using the PSL engine. To understand the meaning

of open-ended phrases, we use both ConceptNet and word2vec knowledge.
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• In Chapter 7, for the image puzzle solving task, we again use ConceptNet and

word2vec as our knowledge sources. As reasoning mechanism, we use the PSL

engine. In this application, the task is to find a common meaningful concept

among multiple images. We first use an off-the-shelf image classifier algorithm to

predict concepts (or objects) present in each image. Then we use simple propo-

sitional rules in PSL such as wij : si ← tj, where si is a predicted word from

an off-the-shelf classifier, tj is a target concept from ConceptNet vocabulary.

The weight of the rule wij is computed by considering the (ConceptNet-based)

similarity of the predicted class (si) and the target concept (tj), and the popu-

larity of the predicted class in ConceptNet. Note that, the ConceptNet-based

similarity embodies the strength of all the shortest paths connecting the two

concepts. Using rules of this form, we predict the most probable set of targets

from a larger vocabulary given class-predictions (and their scores) from a off-

the-shelf image classifier. Using a similar rule-base, we then jointly predict the

most probable common targets for all images, which provides the final ranking

of concepts.

• In Chapter 8, in the visual reasoning task, we observe that, often Question-

Answering datasets have additional annotations such as properties, labels and

bounding box information of the objects, and the spatial relations among the

objects. These annotations are available for large datasets such as CLEVR,

Sort-of-Clevr and Visual Genome. We look towards utilizing this source of

knowledge seamlessly in a framework that also considers the non-availability

of such information during inference time. As reasoning mechanism, we again

use the PSL engine. We reason with this additional information (structured

source of knowledge about objects and their spatial relations) and the question
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using the PSL engine, and predict a pre-processed attention mask for training

image-question pairs. For an image-question pair, this attention mask primar-

ily masks out the objects (and regions) not referred to in the question for each

training image. We build a framework using knowledge distillation and rela-

tional reasoning to utilize this knowledge seamlessly. The knowledge distillation

paradigm requires two networks, namely the teacher network and the student

network. During training, the teacher learns from the ground-truth answers

and the additional knowledge, and the student learns from ground-truth data

and teacher’s soft predictions.

2.2 Reasoning Mechanisms

In this section, we summarize the probabilistic logical reasoning mechanisms and

neural-network based reasoning mechanisms that has been recently employed by the

computer vision community to reason about images. For each reasoning mechanism,

we briefly introduce some of the image understanding applications where these mech-

anisms were employed.

2.2.1 Probabilistic Soft Logic and Hinge-Loss Markov Random Field

Probabilistic Soft Logic (PSL) and Hinge-Loss Markov Random Field (HL-MRF)

(Bach et al. (2013, 2015)) is one of relevant reasoning mechanisms used to detect

activities in images and videos, and extensively used in different applications in this

thesis. In this section, we provide a very brief overview of Hinge-Loss Markov Random

Field 2 and describe how HL-MRF is applied by authors in London et al. (2013) to

reason about images or videos.

2As this is the major reasoning mechanism used in this thesis, a more detailed description can
be found in Chapter 4
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An HL-MRF is defined as follows: Let y and x be two vectors of n and n′ random

variables respectively, over the domain D = [0, 1]n+n′ . The feasible set D̃ is a subset

of D, which satisfies a set of inequality constraints over the random variables.

For (y,x) ∈ D̃, and given a vector of nonnegative weights w = (w1, . . . , wm), the

hinge-loss energy function is defined as:

fw(y,x) =
m∑
j=1

wjφj(y,x)

A Hinge-Loss Markov Random Field P is a probability density over D, defined as:

if (y,x) /∈ D̃, then P(y|x) = 0; if (y,x) ∈ D̃, then:

P(y|x) =
1

Z(w)
exp(−fw(y,x)). (2.1)

PSL uses a set of weighted First Order Logical rules of the form ∨i∈I+
j
yi ← ∧i∈I−j yi,

where each yi and its negation is a literal. The set of grounded rules is used to

declare a Markov Random Field, where the confidence scores of the literal is treated a

continuous valued random variable. In PSL specifically, the hinge-loss energy function

fw is defined as:

fw(y) =
∑
Cj∈C

wj max
{

1−
∑
i∈I+

j

V (yi)−
∑
i∈I−j

(1− V (yi)), 0
}
.

MPE inference in HL-MRFs is equivalent to finding a feasible minimizer for the convex

energy function, and in PSL it is equivalent to maximizing the following function:

P(y) ≡ arg max
y∈[0,1]n

exp(−fw(y))

≡ arg min
y∈[0,1]n

∑
Cj∈C

wj max
{

1−
∑
i∈I+

j

V (yi)−
∑
i∈I−j

(1− V (yi)), 0
}
,

(2.2)

To learn the parameters w of an HL-MRF from the training data, maximum

likelihood estimation is used. The partial derivative of the log of Equation 2.1 with

20



respect to the parameter wq is used to find the optimal parameters. The derivative

is given by :

δlogP (y|x)

δwq
= Ew[Φq(y,x)]− Φq(y,x). (2.3)

Often alternatives such as maximum pseudo-likelihood is used for fast learning.

Application: Authors in London et al. (2013) uses PSL to detect collective activ-

ities (i.e. activity of a group of people) such as crossing, queuing, waiting and dancing

in videos. This task is treated as a high-level vision task, whereby detection modules

and classification modules are employed to extract information from the frames of

the videos and such information (class labels and confidence scores of predicates) is

input to the joint PSL model for reasoning. To obtain frame-level and person-level

activity beliefs, human figures are represented using HOG features and Action Con-

text (AC) descriptors (Lan et al. 2010). To create the AC descriptors, HOG features

are used as the feature representation; then a first-level SVM classifier is trained on

these features and the outputs are combined according to Lan et al. (2010). Then a

second-stage SVM is used to obtain activity beliefs using these AC descriptors. Next,

a simple collection of PSL rules is used to declare the ground HL-MRF to perform

global reasoning that captures the authors’ intuition about collective activities (we

only show two rules out of five):

LOCAL(B, a) =⇒ DOING(B, a)(R1)

FRAME(B,F ) ∧ FRAMELABEL(F, a) =⇒ DOING(B, a)(R2)

(2.4)

The intuitions behind the two rules are: Rule R1 corresponds to beliefs about local

predictions using HOG features, and R2 expresses the belief that if many actors in

the current frame are doing a particular action, then perhaps everyone is doing that

action. To implement this, a FrameLabel predicate for each frame is computed by

accumulating and normalizing the Local activity beliefs for all actors in the frame.
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Similarly, there are other rules that captures the intuition about these activities.

Using PSL inference, final confidence scores are obtained for each collective activity.

2.2.2 Markov Logic Network

Markov Logic Network (Richardson and Domingos 2006a) is another popular

framework for probabilistic logic that uses weighted First Order Logical formulas

to encode an undirected grounded probabilistic graphical model (i.e. Markov Net-

work). Unlike PSL, the Markov Logic Network (MLN) is targeted to use the full

expressiveness of First Order Logic and induce uncertainty in reasoning by modeling

it using a graphical model. As in PSL, the rules in MLN are weighted so that the

strict constraints of hard rules (rules satisfied all the time) are eliminated to model

real world more efficiently.

Formally, an MLN L is a set of pairs 〈F,w〉, where F is a first order formula and

w is either a real number or a symbol α denoting hard weight. Together with a finite

set of constants C, a Markov Network ML,C is defined where: i) ML,C contains one

binary node for each grounding of each predicate appearing in L; ii) ML,C contains

one feature for each grounding of each formula Fi in L. The value of feature is 1 if

ground formula is true otherwise 0.

The probability distribution over possible worlds x specified by the ground Markov

Network ML,C is given by:

P (X = x) =
1

Z
exp(

∑
i

wini(x)) =
1

Z

∏
i

φi(xi)
ni(x) (2.5)

where ni(x) is the number of true groundings of the formula Fi in the world x. The

MLN inference is again equivalent to finding the maximum probable world according

to the above probability formulation. Learning of weights is done using Maximum

Likelihood method.
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Figure 2.2: (Image Inspired from Zhu et al. 2014) The Knowledge Base Learnt by
This Work Represents Relations between Objects, Their Attributes and Affordances.

RockIt Engine: One of the primary contributions of this thesis is the imple-

mentation of Probabilistic Soft Logic engine using Gurobi, which is a third-party

popular software that provides fast optimization guarantees. It is hence important

to mention that recently the RockIt engine was made publicly available by authors

in Noessner et al. (2013). This engine uses the Gurobi API to implement inference

in Markov Logic Network. However, the theory of PSL carefully curved out the

important pieces of First-Order-Logic and probability theory so that the Maximum

A-posteriori optimization over the grounded Markov Random Field remains a convex

optimization, which can be solved efficiently in polynomial-time. In contrast, Markov

Logic Network uses the broad First-Order Logic syntax and fails to provide such guar-

antees. Hence, especially for vast datasets that is observed in Image Understanding

applications, it is more feasible to use formalisms such as PSL.

Application: Authors in Zhu et al. (2014) successfully used Markov Logic Net-

work in the context of reasoning about object affordances in images. An example of

affordance is fruit is edible. To collect such knowledge from textual cues and image

sources, the authors used weighted rules in MLN to represent the knowledge base,
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depicted in Figure 2.2. Traditional weight learning methods (such as maximum like-

lihood) are used to learn weights corresponding to the ground rules. This knowledge

base encoded in MLN is used to infer the affordance relationships given the detected

objects (and their confidence scores) in an image.

2.2.3 Qualitative Spatial Reasoning (QSR)

Modeling of spatial knowledge and reasoning using such knowledge in 2D or 3D

space has also given rise to multiple interesting works in both computer vision and

robotics, collectively termed as Qualitative Spatial Reasoning (QSR). Randell et al.

(1992) proposed an interval logic for reasoning about space. In this logic, given a set

of spatial regions (or temporal regions), a primitive relation C(x, y) is defined which

denotes “x connects with y”. This relation is reflexive and symmetric. C(x, y) holds

if topological closures of the regions share a common point. Given this relation, the

following relations are defined: DC(x, y) (x is disconnected with y), PP (x, y) (x is

part of y), x = y (x is identical to y), DR(x, y) (x is discrete from y), PO(x, y) (x

partially overlaps y), P (x, y) (x is a tangential proper part of y) and NTPP (x; y) (x

is a non-tangential proper part of y). Properties and lemmas about these relations

are thoroughly defined in this logic and is targeted to be simpler than previously

proposed theories.

In Cohn and Renz (2008), authors provide an overview of contributions along

the line of Qualitative Spatial Reasoning (QSR). Research in QSR is attempted to

overcome weaknesses in early attempts in representation from the QR community

which attempted to reason about two-dimensional objects using linear quantities, such

as Allen’s interval calculus. Representation of space in QSR needs careful decisions of

the following: i) the kind of spatial entity i.e. an ontology of space, ii) different ways to

describe relations between the entities, that can factor in their topology, sizes, distance
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between them, relative orientation and shape. The authors proposed advancements

over previous languages aimed at robotic navigation in 2D or 3D space. In these

languages, the relations between two objects are modeled spatially. For example in

2D space, regions were proposed as fundamental entities and hence relations between

these regions define how the objects interact spatially. In short the spatial relations are

generally binary, and the list of considered spatial relations are of the following types:

i) mereology (part-of relationships), ii) mereotopology (topological relationships such

as on, above, connected etc.). Each logical language comes with a small finite set of

relations or so called jointly exhaustive and pairwise disjoint (JEPD) relations which

are atomic relations between two spatial objects. For spatial reasoning in current

popular datasets such as CLEVR, the set of basic relations could be Left, Right,

Front, behind.

2.2.4 Description Logic

Proponents of the semantic web have used Description Logic and its fuzzy-set

based extension to reason on image semantics. In short, Description Logics (DL)

(Baader et al. 2003) model relationships between entities in a particular domain of

interest. In DL, three kind of entities are considered, concepts, roles and individual

names. Concepts represents classes (or sets) of individuals, roles represent binary

relations between individuals and individual names represent individuals (instances of

the class) in the domain. According to Dasiopoulou et al. (2009), Fuzzy DLs extend

the model theoretic semantics of classical DLs to fuzzy sets. In this work, Fuzzy

DLs have been used to reason and check consistency on object-level and scene-level

classification systems. The Fuzzy DL-based reasoning check semantic consistency and

refine the recognized object and scene classes based on available domain knowledge.

The reasoning framework’s overview is shown in Figure 2.3. However, from the axioms
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shown in the figure, it should be apparent that such extensive structured domain

knowledge is difficult to obtain for most “in-the-wild” applications. This extensive

and robust knowledge requirement creates a hindrance in large-scale adaptation of this

mechanism and this is why we do not further detail the theory and the applications

of this logical reasoning mechanism.

Figure 2.3: (Image Inspired from Dasiopoulou et al. 2009) The Fuzzy DL-based
Reasoning Framework.

2.2.5 Logic Tensor Network

There are also few recent attempts that lays up the ground foundations for com-

bining logical symbolism and automatic learning capabilities of neural network. One

of the noteworthy attempts is the framework of Logic Tensor Network proposed by

Serafini and Garcez (2016). In this work, real logic is used to represent each concept

as a predicate, for example apple(x) is used to represent apple. The first-order for-

mula ∀x apple(x)∧ red(x)→ sweet(x) represents that all red apples are sweet. Here,

the truth values of each ground predicates are between 0 to 1 and truth values of

conjunctive or disjunctive formulas are computed using combinations functions such

as Lukasiewicz’s T-norm. To combine this idea of fuzzy logic with end-to-end learn-

ing, each concept or predicate is represented by a neural network and objects are
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represented by points in a vector space. The neural network for “apple” takes a point

in the feature space and outputs its confidence about the input being a member of the

“apple” concept. On top of this, the weights in the neural networks are also optimized

to abide by rules such as ∀x apple(x)∧ red(x)→ sweet(x). These symbolic rules are

added as constraints in the final optimization function. However, the usability of

this complicated framework has only been shown in mid-level image understanding

applications such as semantic interpretation of images. It is also not known to scale

well with large number of rules and that again acts in favor of formalisms with fast

inference guarantees such as Probabilistic Soft Logic.

2.2.6 Relational Reasoning Layer

The KR&R reasoning languages such as Answer Set Programming, Prolog of-

ten use 2-ary predicates to describe the current world, such as color(object1, red),

shape(object1, sphere), material(object1,metal) etc; and then declare rules that the

world should satisfy. Using these rules, truth values of unknown predicates are ob-

tained, such as ans(?x) etc. For example, for a query “find metallic spherical objects”,

a rule in Answer Set Programming can be written as follows:

ans(x)← object(x) ∧ shape(x, Sphere) ∧material(x,Metal). (2.6)

As output, we get the truth value of ans(object1) to be true. Almost similar to

this, the authors in Santoro et al. (2017) defined a relational reasoning layer that can

be used as a module in an end-to-end deep neural network and trained traditionally

using traditional Gradient Descent optimization methods. The relational reasoning

module takes as input a set of objects, learns the relationship between each pair of

objects, and infer a joint probability based on these relationships (with or without

the context of a condition such as a question). Mathematically, the layer (without the
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appended condition vector) can be expressed as: RN(O) = fφ

(∑
i,j gθ(oi, oj)

)
, where

O denote the input objects. In this work, the relation between a pair of objects (i.e.

gθ) and the final function over this collection of relationships i.e. fφ are modeled using

multilayer perceptrons (MLP) and are learnt using gradient descent in an end-to-end

manner. This model’s simplicity and its close resemblance to traditional reasoning

mechanisms makes the work attractive to be usable for a wide range of applications

in image understanding.

Application: The authors in Santoro et al. (2017) successfully used this rela-

tional reasoning layer as the sole reasoning module to answer complex compositional

questions asked against images from the CLEVR dataset (Johnson et al. 2016a).

The work achieves over 94% accuracy for CLEVR testing set, by using a simple set of

4-layer Convolutional Network to process the image and a vanilla LSTM to process

the input question. The authors in Kahou et al. (2017) also uses the relational rea-

soning layer to answer questions about figures that involves bar-graphs, pie-graphs,

line-graphs etc. The authors employ an architecture similar to Santoro et al. (2017)

with slight modification in the Convolutional Neural Network and their implementa-

tion achieves the best results compared to other state-of-the-art question-answering

systems.

2.2.7 Knowledge Distillation

Knowledge Distillation, first proposed by Hinton et al. (2015) is a generic frame-

work where there are two networks, namely the teacher and the student network.

There are two traditional settings. In the first setting, the teacher network is a much

deeper (and/or wider) network with more layers. The teacher is trained using ground-

truth supervision where in the last layer softmax is applied with a higher temperature

(ensuring smoothness of values, while keeping the relative order). The student net-
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work, is a smaller network that aims to compress the knowledge learnt by the teacher

network by emulating the teacher’s predictions. In the second and more popular set-

ting followed in natural language processing and computer vision, the teacher network

is a similar-sized network which has access to external knowledge, so that it learns

both from ground-truth supervision and the external knowledge. The student net-

work, in turn, learns from ground-truth data and teacher’s soft prediction vector. The

loss function for the student network is weighted according to an imitation parameter

that signifies how much the student can trust the teacher’s predictions. It has often

been observed that rather than learning sequentially (i.e. student learning from a

pre-trained teacher), it is often beneficial to learn iteratively where the teacher’s loss

component includes a loss comparative to the student’s predictions as well. We show

a generic diagram of knowledge distillation framework in Figure 2.4.

Application: Knowledge distillation has seen many applications in natural lan-

guage processing (Hu et al. 2016a,b). In NLP, some of the different knowledge sources

that has been useful are linguistic knowledge for detecting sentiments, and knowledge

from text corpus. Researchers in computer vision has also employed knowledge dis-

tillation as a technique to integrate external knowledge to solve image understanding

tasks. One significant work along this line is presented by authors in Yu et al. (2017).

In this work, authors use lingusitic knowledge from ConceptNet to predict condi-

tional probabilities (P (pred|subj, obj)) to detect visual relationships from image. We

describe this application in more detail in a later section.

2.3 Knowledge Acquisition Efforts and Knowledge Bases

In this section, we discuss different types of knowledge acquisition efforts by com-

puter vision researchers and we group them according to the different semantic level

of information they belong to, according to Figure 2.1.
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Figure 2.4: A Generalized Diagram of Knowledge Distillation. The Red and Green
Bi-directional Arrows Represent the Loss Components That the Teacher and Student
Network Learn from. The Blue Boxes Denote the Point of Injection of External Prior
Knowledge into the Network.

2.3.1 Low-level Knowledge about Shapes

In the highly noted seminal work of Deng et al. (2009), the authors presented

a visual knowledge graph that organized millions of images in a hierarchy of visual

knowledge, linking the semantic categories of the images using WordNet ontology.

In an extension to this hierarchical visual knowledge graph, the authors in Ge et al.

(2016) presented a system that utilize the semantics of individual parts, subparts,

and their shapes to facilitate their interpretation and manipulation.

They call the system ShapeExplorer, which support interesting high-level opera-

tions using a visual knowledge base. The knowledge-base constructed for this system

is termed as PartNet which captures the inter-relations between the object parts and

their shapes, connecting them hierarchically to form part-Whole relations. PartNet
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Figure 2.5: (Image from Ge et al. 2016) The Hierarchy Imposed by ShapeExplorer’s
Knowledge Base

semantically describes objects in terms of their classes, parts, and visual appearance.

We show the hierarchical organization of PartNet in Figure 2.5. Equipped with this

knowledge-base, ShapeExplorer provides higher-level operations, including (partial)

shape querying, semantic morphing, shape synthesis, and part-based image retrieval

using cliparts.

2.3.2 Knowledge about Objects and Regions

For computers, objects in an image is just a coherent set of connected pixels.

Hence recognizing, locating and identifying these regions with meaningful concepts

is the first step towards high-level image understanding. There have been several

attempts to collect large-scale annotations and knowledge bases about objects, and

regions in images.

A recently proposed popular knowledge graphs is the ImageNet by Deng et al.

(2009). ImageNet is a large-scale image dataset that is organized according to the

WordNet ontology (Miller 1995). In WordNet, each meaningful concept is described

by a set of synonymous words or “synset”. ImageNet aims to provide at least 1000

images to illustrate each synset. Note, as the synsets are hierarchically organized, this
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also induces an ontology of concepts in the images of ImageNet. ImageNet dataset

has been widely used in various recognition tasks and their first work is highly cited.

However, the knowledge in ImageNet is limited to the associated synsets, its cor-

responding images (synset to image mapping), and their pre-determined ontological

relations (hyponymy, hypernymy, meronymy) from WordNet.

In another popular work, the authors of the LabelMe annotation tool and dataset

(Russell et al. 2008) aspired to improve on the traditional object recognition datasets.

In addition to the class-label, authors allowed users to annotate arbitrary shaped ob-

jects in images. The LabelMe dataset contains natural images, object labels along-

with their annotated shapes. The following features are interesting in the context of

this survey: i) the dataset is designed for recognizing objects embedded in a scene.

Other datasets, that target object recognition provide cropped instances of objects.

This feature can also further help encode spatial relations between objects, correla-

tions between objects and shapes; ii) diversity is in-built. Because of the diversity of

the collected dataset (rather than focusing on one category of objects such as faces,

pedestrians or cars), this dataset is more useful to capture knowledge of embedded

objects in natural scenes.

Another popular large-scale project for organizing visual information was started

by authors in Belongie and Perona (2016). The project is popularly known as Visi-

pedia or ”Visual Wikipedia”. In this project, humans and machines collaborate to-

gether to annotate naturally occurring images. The primary intention of this project

is (hierarchical) image classification i.e. classifying objects in images. This large-scale

annotation project has given rise to many useful datasets such as CUBS200 (Welinder

et al. 2010), CUB200-2011 (Wah et al. 2011) and iNaturalist2018. However, these

datasets are mainly targeted for connecting vision and language i.e. captioning and

recognition tasks.
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2.3.3 Knowledge about Relations, Actions

Inter-relations between objects, and objects and actions are termed as third-order

facts in Elhoseiny et al. (2017). Identifying these relations from an image is an im-

portant step towards relational reasoning and scene understanding. The following are

some notable efforts towards collecting large-scale grounded common-sense relations

between meaningful concepts (object, scene and attributes) in an image.

Types Examples

Object-Object

Partonomy Relations

Taxonomy Relations

Similarity Relations

Eye is a part of baby

BMW is kind of a car

Swan looks similar to Goose

Object-Attribute Qualitative (Color, shape, size)
Pizza has round shape

Sunflower is Yellow

Scene-Object Found In (location)
Bus is found in Bus Depot

Monitor is found in Control Room

Scene-Attribute Qualitative (color, aspect)
Sky is blue

Alleys are narrow

Table 2.1: Types of Visual Relationships in NEIL-KB.

The background knowledge related to the objects in natural images is vast and

manual curation can be expensive. To mitigate the need of manual curation, authors

in Chen et al. (2013) presented a fully autonomous system that continuously learns

new visual knowledge by mining images from the World Wide Web. The presented

system and database is popularly known as NEIL (Never-Ending Image Learner).

There are primarily four categories of relationships learnt by NEIL: i) Object-Object,

ii) Object-Attribute, iii) Scene-Object and iv) Scene-Attribute Relationships. Ex-

amples of these relationships are provided in Table 2.1. It should be noted that
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instances of these common-sense relations are also found in knowledge graphs such as

ConceptNet. However, they suffer from incompleteness and often remains inadequate

for real-world applications. In comparison, NEIL-KB is a vast source of knowledge,

as it constantly indexes new internet websites. This knowledge base had an ontology

of 1152 object categories, 1034 scene categories, 87 attributes and discovered more

than 1700 relationships and more than labeled 400K visual instances at the time of

publication of Chen et al. (2013).

Researchers have also focused on extracting specific types of (visual) commonsense

knowledge described by a set of specific relations. One such effort is presented in Tan-

don et al. (2016), where the authors concentrated on extracting part-whole relations

(screen partOf notebook) from Web contents and image tags. These type of rela-

tions are often important in better understanding of user queries for web search and

question answering efforts. The different relations considered are: physicalPartOf,

memberOf, substanceOf. The arguments of all facts are mapped to WordNet synsets

to leverage the WordNet ontology. One of the noteworthy aspect of the work is the ex-

plicit distinction made between visible and invisible physicalPartOf relationships, for

example, nose is visible part of human, whereas kidney is an invisible part of human.

The authors used a pattern-based extraction technique by starting from an initial

set of seeds initialized from high-quality 1200 WordNet relations. These part-whole

relations are then enhanced by using hand-coded rules that exploit knowledge such

as physicalPartOf and substanceOf are transitive relations and eliminate false posi-

tives by using irreflexivity and acyclicity. The knowledge base is further enhanced

to include the aspect of visibility (license plate visible part of car) and cardinality

(unicycle has one wheel, bicycle has two wheels) by considering visual information

embedded in image captions and tags.

34



2.3.4 High-Level Commonsense Knowledge

High-level commonsense knowledge is generally independent of the modality of

communication which implies that it can be applied to understand content in image,

text or speech. Few such generic examples of large-scale commonsense knowledge

about the natural domain are ConceptNet (Havasi et al. 2007), WordNet (Miller

1995), YAGO (Suchanek et al. 2007a) and Cyc (Lenat 1995). However, there has also

been a few attempts to extract specific high-level knowledge relevant to images.

Co-occurrence of objects and regions can often help the AI system disambiguate

the correct object or re-locate an object that was missed. The authors in Xu et al.

(2017) aims to automatically extract commonsense LocatedNear relations to aid im-

age understanding, such as chair and table are typically found next to each other.

The authors propose two methods to extract such relations from text: i) Sentence

Level Relation Classification: Given a sentence S that describes relation between

two entities ei and ej, the task is determine whether the sentence entails a located

near relation between two entities, ii) Relation Extraction: For a corpus of text, each

sentence and entity-pair is passed through the classifier and confidence is assigned.

Finally, all scores of 〈S, ei, ej〉 instances from the corpus are grouped by the object

pairs and aggregated, where each object pair is associated with a final score providing

the final pair top confidence LocatedNear relations.

2.4 Use of Knowledge in Image Applications

In this section, we discuss different types of knowledge categorized according to

different semantic levels of information, induced by a natural image. For each such

level in the hierarchy, we describe interesting applications that utilized relevant back-

ground knowledge beyond annotated data.
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2.4.1 Low-level Knowledge about Edges, Shapes

Knowledge about edges and shapes, and reasoning with that knowledge can help

higher-level tasks such as segmentation and object detection. Similarly, the knowledge

about hierarchical relationships between objects can be used as feedback mechanisms

to improve detection of low-level shapes and objects. Two categories arise among

such works: i) encoding knowledge about low-level semantic structures, ii) feedback

from high-level information to improve low-level recognition.

Encoding and Using Knowledge about Shapes

As observed from the information hierarchy presented in Figure 2.1, background high-

level knowledge is only meaningful beyond (and including) the level of shapes (2d and

3d). Consequently, many researchers have explored using the real-world knowledge

of two-dimensional and three-dimensional shapes to aid in low-level and high-level

image processing. Again, the work can be divided into following categories: i) Aiding

Recognition using knowledge about shapes, ii) Shape Representation, Knowledge and

Reasoning.

Aiding Recognition using Knowledge about Shapes: One of the early works

Figure 2.6: (Image from Rosenhahn et al. 2007) The First and Second Figure Shows
the Segmentation Result without and with Object Knowledge Respectively.
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that use 2D-3D pose estimation idea to integrate knowledge about object shapes into

their segmentation model is Rosenhahn et al. (2007). Their segmentation model is

based on level set formulation. Here, a level set function Φ ∈ Ω→ R splits the image

domain Ω in two regions with Φ(x) < 0 for x ∈ Ω1 and Φ(x) > 0 for x ∈ Ω2. The

zero-level line denotes the boundary between two regions. Two constraints define the

optimization formulation: i) the segmentation should maximize the total a-posteriori

probability given the probability densities p1 and p2 of Ω1 and Ω2; ii) the boundary

between both regions should be minimized. An energy functional representing the

constraints is minimized to obtain the function Φ. Pose estimation means to estimate

a rigid body motion which maps a 3D surface model to an image of a calibrated cam-

era. To jointly couple pose estimation and image segmentation, the above formulation

is extended by adding a regularizer term to the formulation: λ
∫

Ω
(Φ − Φ0(θψ))2dx.

The quadratic error measure in this term has been proposed in the context of 2D

shape priors. The prior Φ0 ∈ Ω → R is assumed to be represented by the signed

distance function. Φ0(x) yields the distance of x to the silhouette of the projected

object surface. Φ0 is constructed as follows: let XS denote the set of points on the

object surface. Projection of the transformed points exp(θψ)XS into the image plane

yields the set xS of all 2D points x on the image plane that correspond to a 3D point

on the surface model

x = P exp(θψ)X, ∀X ∈ XS (2.7)

here P denotes the projection with known camera parameters. The level set function

Φ0 can be constructed from xS by setting Φ0(x) = 1 if x ∈ xS, and Φ0(x) = −1

otherwise. This is how the prior from 3D shape knowledge (and the calibrated camera)

is included to aid in segmentation of 2D images.

Shape Representation, Knowledge and Reasoning: An important aspect

of human understanding of the natural world is compositionality. This notion has in-
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spired different group of researchers to bring in the knowledge of shapes and how they

compose high-level objects or how they are composed of low-level patterns (edges)

into different recognition tasks.

In one of the very early works for shape representation using low-level edge-

patterns, authors in Saund (1992) showed that a representation for visual shape

can be formulated to incorporate knowledge about the geometrical structures com-

mon within specific shape domains. By maintaining shape tokens in a data structure

termed as Scale-Space Blackboard, authors show that information about relative lo-

cations and sizes of shape fragments can be manipulated symbolically. The shape

descriptors stored in this knowledge structure can further be used to detect higher-

level objects. In this work, descriptors defining shapes of fins, snouts and tails are

used to detect the type of fish in a grey-scale image.

Learning from High-Level Information or Feedback

The authors in Hotz et al. (2007) defines higher-level interpretation as interpreta-

tion beyond the level of recognised objects. This is one of the early-works (albeit

implemented in a controlled setting of recognizing buildings), where high-level scene

recognition system is used to feed back information or knowledge to improve the

low-level information extraction system. In order to recognize buildings, the authors

use AdaBoost image processing modules to detect for T-style windows. The infor-

mation from the high-level interpretation module is passed down to the detector to

refine results and find previously undetected objects. The high-level interpretation

module has access to a knowledge base of concepts about possible aggregates and

their parts, including constraints. All concepts are organized in a compositional hi-

erarchy where aggregate concepts are related to their parts and vice versa, down to

the level of symbolic primitives. Example aggregates considered are balcony and
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window-array; and example primitives are railing and door. The overall algo-

rithm is an iterative bottom-up procedure with backtracking. A scene aggregate (e.g.

facade-scene) is selected interactively as a goal of the interpretation process. An

interpretation is deemed complete if instantiations for all objects, i.e. mainly de-

scendants of the aggregate (in the knowledge base), are determined. All aggregates

are created in a bottom-up manner which follow uniquely from given real-world en-

tities. These aggregates trigger the creation of hypotheses for not yet instantiated

parts (other aggregates or primitive objects). For example, if the high-level aggregate

window arrays have been identified which can be enhanced with windows in addition

to already instantiated windows, such new windows are searched at appropriate posi-

tions inferred from the established windows. If constraints for a hypothesized entity

cannot be fulfilled, a conflict occurs and is resolved by backtracking and changing a

previously made decision.

2.4.2 Knowledge about Objects and Regions

There has been a considerable effort in capturing and reasoning about the knowl-

edge about objects and regions. The applications of this knowledge has been mostly

limited to object recognition, and scene recognition.

Different image understanding applications may require different kinds of knowl-

edge. The vastness of the required knowledge for generic application has motivated

researchers to build, use and reason with applications-specific knowledge graphs and

knowledge bases.

One such application is presented by the authors in Zhu et al. (2014). In this ap-

plication, authors present an approach to reason about objects and their affordances,

such as fruits are edible. The authors use a Markov Logic Network to represent the

knowledge base (KB). Utilizing diverse information sources such as information from
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Schema Examples Example Rules with Learnt Weights

hasAffordance(object,.affordance).

isA(object,.category).

hasVisualA4ribute(object,.a.ribute).

hasWeight(object,.weight).

hasSize(object,.size).

locate(object,.loca6on).

torso(object,.torso id).

upperBody(object,.ubody id).

lowerBody(object,.lbody id

hasVisualAttribute(x,.Furry)

=⇒ hasAffordance(x,.Feed).

hasWeight(x,.W4)

=⇒ hasAffordance(x,.SitOn).

hasAffordance(x,.Ride) ∧ locate(x,.Below).

isA(x,.Animal) ∧ locate(x,.Below).

hasAffordance(x,.Push) ∧ torso(x,.T1).

isA(x,.Vehicle) ∧ upperBody(x,.U3)

0.8232 hasVisualAttribute(x, Saddle)

=⇒ hasAffordance(x, SitOn).

0.7467 hasVisualAttribute(x, Pedal)

=⇒ hasAffordance(x, Lift).

-1.0682 hasVisualAttribute(x, Metal)

=⇒ hasAffordance(x, Feed).

-1.0433 hasVisualAttribute(x, Shiny)

=⇒ hasAffordance(x, Feed).

Table 2.2: Schema and Example Rules of the Underlying Markov Logic Network:
The Arguments in the Schema Specify the Category of Variables. W4, T1, U3 Rep-
resent Categorized Object Weights.

images as well as online textual sources such as Amazon or eBay, the KB is trained

and once the KB is trained, inference (zero-shot inference) about affordance can be

performed over the knowledge base. The schema and example of general rules are pro-

vided in Table 2.2. The weights are learnt by maximizing the pseudo-likelihood given

the evidence collected from textual and image sources. A snapshot of the knowledge

base is captured in Figure 2.2.

Frequency or co-occurrence statistics based language models has a long and pop-

ular history of usage by the vision and language community, mainly in caption gener-

ation applications. However, prior generic commonsense knowledge encoded in large

semi-curated knowledge graphs such as ConceptNet can also help language modeling.

The authors in Le et al. (2013) exploit this idea and apply knowledge to two recogni-

tion scenarios: action recognition and object prediction. The authors also carried out

a detailed study of how different language models (window-based model topic model,

distributional memory) are compatible with the knowledge represented in images. For

action recognition, authors detect the human, the object and scenes from static im-

ages, and then predict the most likely verb using the language model. They use object-
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scene, verb-scene and verb-object dependencies learnt from the language models to

predict the final action in the scene. In short, they estimate P (V |O), P (V |S), P (O|S)

and P (O|O) from each language model. For the human action recognition scenario,

a list of 19 objects, 15 scenes and around 5 thousand verbs are usd for comput-

ing P (V |O), P (O|S), P (V |S). Examples of relations extracted from ConceptNet are:

Oil-Located near-Car, Horse-Related to-Zebra. Using these relations, the con-

ditional probabilities are computed using their frequency counts. For example to

predict probability of an object given as scene P (oi|sj) , authors use:

P (oi|sj) =
freq(〈oi, rel, sj〉)∑

om∈O freq(〈om, rel, sj〉)
(2.8)

To jointly predict the action i.e. 〈subject, verb, object〉 triplet the from object,

the scene probability and the conditional probabilities from language model (P (oj|I),

P (sk|I), P (oj|sk)), an energy based model is used (LeCun et al. (2006)) that jointly

reasons on the image (observed variable), object, verb and the scene.

2.4.3 Knowledge about Actions and Activities

Authors in Elhoseiny et al. (2017) defines facts (information) of different complex-

ity with respect to images. They define first order facts as objects (〈boy〉), second

order facts as attributes and actions (〈boy, tall〉, 〈boy, playing〉) and third order facts

as interactions between objects (〈boy, riding, horse〉). In this sub-section, we focus on

knowledge and reasoning employed to reason about relations and actions that connect

two or multiple objects (the third or higher order facts).

Authors in Meditskos et al. (2014) demonstrated the use of an RDF dataset of

primitive observation and traditional Description Logic reasoning to recognize higher-

level activities in limited setting such as tea preparation. Given a set of video clips

in a clinical setting, the authors propose to extract objects O = {o1, o2, ..., on} which
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Figure 2.7: (Image from Meditskos et al. 2014) The Relevant Temporally-dependent
Observations for the High-level Activity “Making and drinking Tea”.

denote low-level observations such as objects, locations postures and are connected to

RDF instances in the available RDF ontology. Given a set of pre-determined domain

descriptors, the authors propose to identify meaningful contexts in O to detect higher-

level activities. For example, context descriptors such as Drinking, TeaCup, Sitting,

Table, TableZone are used to detect the higher-level activity Making and Drinking

Tea. The low-level relevant observations are summarized in Figure 2.7. The authors

have demonstrated their result on 10 daily activities including “Prepare hot tea”,

“Make a phone call”, “Watch TV” etc.

2.4.4 High-level Common-sense Knowledge

After the success of end-to-end object and scene recognition using deep neural net-

works, the computer vision community forayed further into higher-level understanding

tasks such as visual question answering, caption generation. Several researchers em-

ployed higher-level commonsense knowledge to enrich some of these tasks such as

visual question answering, relationship detection, image classification.
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Image Classification (Zero-shot/Few-shot)

Authors in Marino et al. (2016) employed the structured prior knowledge of similar

objects and their relationships to improve end-to-end object classification task. The

advent of deep neural networks has given rise to models that are known to be data-

hungry and suffers from the need of annotations that are costly. Humans often can

leverage a definition of an object written in text and leverage the understanding of

the text to identify objects in an image. The authors introduce Graph Search Neural

Network to utilize a knowledge graph about objects to aid in object detection. This

network uses image features to efficiently annotate the graph, select a relevant subset

of the input graph and predict outputs on nodes representing visual concepts. GSNN

learns a propagation model which reasons about different types of relationships and

concepts to produce outputs on the nodes which are then used for image classification.

The knowledge graph is created from Visual Genome by considering object-object

and object-attribute relationships. Next we briefly introduce Graph-Gated Neural

Network and the change suggested by GSNN.

Graph-Gated Neural Network: Given graph of N nodes, at each time-step

GGNN produces some output for each node o1, o2, ...oN or global output oG. The

propagation model is similar to LSTM. For each node in the graph v, there is cor-

responding hidden state h
(t)
v at every step t. At t = 0, they are initialized with

initial state xv, for example for a graph of object-object interactions, it is initialized

as one bit activation representing whether an object is present in an image. Next,

the structure of the graph is used (encoded in adjacency matrix A) along with the

gated update module to update hidden states. The following equations summarize

the update for each timesteps.
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h(1)
v = [xTv , 0]T

a(t)
v = ATv [h

(t−1)
1 , . . . , h

(t−1)
N ]T + b

ztv = σ(W za(t)
v + U zh(t−1)

v )

rtv = σ(W ra(t)
v + U rh(t−1)

v )

h̃tv = tanh(Wa(t)
v + U(rtv � h(t−1)

v ))

h(t)
v = (1− ztv)� h(t−1)

v + ztv � h̃tv

(2.9)

where htv is the hidden state of node v at timestep t and xv is the initial specific

annotation. After T timesteps, node-level outputs can be computed as:

ov = g(hTv , xv) (2.10)

For GSNN, the authors propose that rather than performing recurrent updates

over entire graph, only a few initial nodes are chosen and nodes are expanded if

they are useful for the final output. For example, initial nodes are chosen based

on the confidence from an object detector (using a threshold). Next, the neighbors

are added to the active set. After each propagation step, for every node in our

current graph, authors predict an importance score using the importance network:

itv = gi(hv, xv). This importance network is also learnt. Based on the score, only top

P scoring non-expanded nodes are selected and added to the active set. The structure

(nodes and edges) of the GSNN can be initialized according to ConceptNet or other

knowledge graphs, thereby directly incorporating external knowledge. As GSNN can

be trained in an end-to-end manner, this approach provides distinct advantages over

sequential architectures. However, training and initializing GSNN becomes harder as

the underlying knowledge graph gets larger.
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High-Level Tasks

Knowledge in Image Retrieval: Authors in de Boer et al. (2015) observed the

Figure 2.8: (Image inspired from de Boer et al. 2015) An Example of Query Expan-
sion Using the Knowledge from ConceptNet for the Query:“Find an Animal that is
Standing in front of the Yellow Car”

semantic gap between high-level natural language query and low-level sensor data

(images), and proposed to bridge the gap using semantic rules and knowledge graph

such as ConceptNet. They proposed a general-purpose semantic search engine that

retrieves images given natural language queries. The input to the system is a query.

User queries are interpreted using a syntactic dependency parser. The dependency

graph is passed to a Semantic Interpretation module, where hand-written rules are

used to transform elements of the graph to semantic scene elements such as objects,

actions, scenes and relations. This graph is then sent to a Semantic Analysis module

that matches the graph nodes against the available image concepts. If exact-match

is not found, query is expanded using ConceptNet to find a match. The query graph

is then used as input to a Retrieval and Ranking module. We provide an example in

Figure 2.8.

Knowledge in Question-Answering: Authors in Wang et al. (2017) observed

that even though the task of visual question answering requires reasoning with exter-
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(a) (b)

Figure 2.9: (a) (Example from Wang et al. 2017) An Example Image, Question and
Supporting Fact from Fact-based VQA Dataset. (b) (Example From Wu et al. 2016c)
An Example Image, Question and Answer with Usable External Knowledge.

nal knowledge, popular datasets do not emphasize on questions that require access

to external knowledge. In this popular work, the authors proposed a new dataset

named Fact-based VQA (or FVQA) where all questions require access to external

(factual or commonsense) knowledge that is absent in the input image and the

question. A popular example from their dataset is presented in Figure 2.9. The

questions are generated using common-sense facts about visual knowledge which is

extracted from ConceptNet, DBPedia, WebChild. In the proposed approach, struc-

tured predicates are predicted using LSTM from the question. For the question

Which animal in the image is able to climb trees, the generated query example is

{?X, ?Y } = Query(”Img1”, ”CapableOf”, ”Object”). Then a set of object detector,

scene detectors and attribute classifiers are used to extract objects, scenes and at-

tributes from the image. This query is fired against the knowledge based stored in the

form RDF triplets, and the answers are matched against the information extracted

from the image.
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Using external knowledge to answer questions about an image has been only re-

cently popular in Computer Vision community. In the work proposed by Wu et al.

(2016c), authors propose to use fixed-length vector representations of external textual

description paragraphs about objects present in the image in an end-to-end fashion.

For example, for an image about a dog, a Multi-label CNN classifier is used to extract

top 5 attributes, which are then used to form a SPARQL query against DBPedia to

extract the definition paragraph about relevant objects. The Doc2vec representation

of this paragraph is then used to initialize the hidden state at the initial time-step of

the LSTM that ultimately processes the question-words in their end-to-end question-

answering architecture. The example of an image, question and relevant external

knowledge is provided in the Figure 2.9(b).

Knowledge Distillation: The knowledge distillation framework has been an

effective tool to integrate external knowledge (rules, additional supervision etc.) in

natural language processing applications. A significant work that uses the knowledge

distillation framework to distill knowledge in image applications is by authors in

Yu et al. (2017). In this work, the authors aim to detect visual relationships i.e.

〈subj, pred, obj〉 between objects from an input image. The authors encode linguistic

knowledge by modeling the conditional probability P (pred|subj, obj) i.e. probability

of a predicate given a subject and the object. This conditional probability is learnt

from parsing Wikipedia data and captions available in training data. The text is

parsed using scene graph parser to extract 〈subj, pred, obj〉 triplets. Using this learnt

conditional probability, a loss term is added for the teacher network that encodes this

knowledge. As this collection is noisy, the teacher’s loss function is manipulated so

that it also learns from the student network.
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Knowledge-Type Knowledge Example Reasoning Targeted Application

Hotz et al. (2007)
partOf, Spatial relations,

Spatial Constraints
window part-of window-array Application-Specific Recognize buildings

Besserer et al. (1993)
Pre-computed feature

of primitive shapes

Histogram capturing angles

of a triangle
Application-Specific Recognize Traffic Signs

Rosenhahn et al. (2007) Object-shape prior Prior included in Optimization
Optimization with

additional prior

Recognize 2D shape

with knowledge from 3D

Ge et al. (2016)

(Knowledge Base)
isA, partOf, hasShape

isPartOf(twoBackLegs, elephant)

isA(mammal, animal)

hasShape(twoBackLegs, 〈image〉)

Graph Search

Graph-based Reasoning

Shape Querying

Shape Synthesis

Image Retrieval

Deng et al. (2009)

(Knowledge Base)

Ontological

Images organized in

a hierarchy.

Ontological relations between

objects in images
- -

Russell et al. (2008)
Scene Segmentation

Shape of Objects
- - -

Zhu et al. (2014)

Object-Object Relations

Objects-Attribute Relations

Object-Affordance Relations

Apples are round.

Apples are edible.

Apples are fruits.

Makrov Logic Network

to store Knowledge Base

Object Affordances in

Natural Images

Le et al. (2013)

Object-Scene, Verb-Scene,

Verb-Object dependencies

from ConceptNet

Oil-Located near-Car

Horse-Related To-Zebra

Probabilistic Reasoning using

Conditional Dependencies

Action Recognition,

Object Prediction

Chen et al. (2013)

(Knowledge Base)

Object-Object, Object-Attribute,

Scene-Object, Scene-Attribute

Eye is a part of baby

Pizza has round shape

Bus is found in Bus Depot

Sky is blue

- -

Tandon et al. (2016)

(Knowledge Acquisition)

physicalPartOf, memberOf,

substanceOf

nose visible part of human

kidney invisible part of human.
- -

Meditskos et al. (2014)
partOf, temporal relations

Compositional Relations

Drinking, Tea-Cup, Sitting

used to detect

Making and Drinking Tea

Application-Specific
Detect Activities in

Clinical Setting

Marino et al. (2016)
Object Similarity

Object-Object relations
-

Graph-Search

Neural Network

Improve Object

classification

Xu et al. (2017) LocatedNear relations
chair and table are typically

found next to each other
- -

de Boer et al. (2015) ConceptNet knowledge -
Use knowledge to

expand semantic query
Semantic Image Retrieval

Wang et al. (2017) FreeBase Factoid Knowledge

Fire hydrant can be used

to fight fires.

〈cat, capableOf, climbingtree〉

Use SPARQL query

against RDF KB.
Fact-based VQA

Wu et al. (2016c)
Factoid Knowledge

from DBPedia
Definition of Cat

Use Doc2Vec embedding

in a Deep Neural Network.
VQA, COCO-QA

Yu et al. (2017)
Captions and Wikipedia data:

〈subj, pred, obj〉 relations
Co-occurrence Probability

Use conditional probability

as external knowledge in

Knowledge Distillation.

Visual Relationship

Detection

Table 2.3: Table Summarizing the Important Related Work Covered in the Survey.

48



2.5 Conclusion

In this chapter, we discussed various types of reasoning mechanisms and external

knowledge used by researchers in computer vision to aid low-level to high-level image

understanding tasks, ranging from segmentation to question-answering. We provide a

summary of the discussed applications, corresponding knowledge types and reasoning

mechanisms in Table 2.3. Even though, the utilities and benefits of external knowl-

edge is often acknowledged by several groups of researchers, the following limitations

in the current literature can be observed: i) the use of explicit logical reasoning

mechanisms (such as ASP, MLN, PSL) in computer vision has been scarce, limiting

the possibility of performing complex reasoning tasks, ii) reasoning on common-sense

knowledge graphs such as ConceptNet has been limited and focused to using some spe-

cific subset of relations for specific applications; iii) for higher-level applications such

as captioning, QA, Retrieval etc., only end-to-end architectures have been prominent

as state-of-the-art mechanisms and they often suffer from the lack of interpretability

and lack of modeling of external knowledge. With the backdrop of this survey, in the

rest of the thesis, we describe the knowledge and reasoning mechanisms adopted by

our approaches and demonstrate how our approaches perform in large-scale public

state-of-the-art datasets.
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Chapter 3

KNOWLEDGE AND REASONING MECHANISM

3.1 Introduction

Many vision and language tasks can benefit from external knowledge. In systems

that exploit external knowledge, the choice of knowledge representation and reason-

ing mechanism is often inter-dependent. In earlier chapters, we have discussed how

Computer Vision researchers have previously attempted to represent the knowledge

in images and reason about it. However, these representations are often proposed

for specific target applications. Intuitively, such efforts are meaningful as holistic

representation of knowledge in image is difficult. There have been some additional

attempts to propose generic representations (Elliott and Keller 2013a; Johnson et al.

2015a). However, the authors in Elliott and Keller (2013a) only represents spatial

relations between objects and Johnson et al. (2015a) proposes a scene graph for image

retrieval. In this chapter, we present our attempts to overcome the above limitations

and describe two application-agnostic (generic) knowledge representations of natu-

ral images that we have successfully used to solve real-world applications with high

accuracy. Even though, future tasks might require task-specific extensions of these

generic representations, our applications (detailed in Chapters 5 and 6) show that

these (intermediate) representations are useful for varying image understanding ap-

plications such as visual question answering and caption generation. Additionally, we

also elaborate an automatic method to acquire common-sense knowledge from image

captions and a popular probabilistic reasoning mechanism adopted for most of our

applications. For efficiency, we implement the reasoning engine from scratch using
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Python and Gurobi APIs. We provide an example of the implementation using a

simple rule-base.

3.2 Knowledge Representation

Representing the knowledge and the choice of the knowledge representation lan-

guage is a challenge fundamental to the discipline of Knowledge Representation and

Reasoning (KR&R). There has been several works that attempted to represent the

knowledge in images, mainly as directed edge-labeled graphs. From KR&R perspec-

tive, such a graph can also be represented as a set of RDF triplets has(u,e,v) for

the edge labeled e between the two nodes u and v. These triplets might have binary

confidence scores or continuous-valued confidence depending on the choice of reason-

ing mechanism. In this chapter, we discuss about two different ways to represent

the knowledge in images, i) Scene Description Graph, ii) Probabilistic Scene Graph

(similar to Johnson et al. (2015a)).

Figure 3.1: Example Image and an Ideal SDG with Spatial Relations.

Scene Description Graph (SDG): In Figure 3.1, we show a possible SDG for

an example image. An SDG is a directed labeled graph 1 among Entities (objects, re-

1 Note that similar structures are also generated by Semantic parsers such as K-parser (kparser.
org).
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gions), Events (actions, linking verbs), Traits (attributes of objects and regions) and

inferred constituents. An SDG represents semantic relations (from KM-Ontology

Clark et al. (2004)) between Entity-Event pairs, spatial relations among Entities (ob-

jects and regions), and ontological relations between Entity-Trait pairs. Intuitively,

an SDG models an image in the following way: an image is a view of a scene, which

consists of a set of events and entities. Entities interact with each other through these

events, claiming specific roles (such as agent, recipient, object). Entities correspond

to a visible region in the image and are spatially related with other entities. Each

entity (a real-world object or region) can have several properties (visible attributes,

conceptual, physical etc.). We provide some examples for Event-Entity relations, their

semantics and examples in Table 3.1. We also provide the list of relevant relations in

Table 3.2 2 . The Event nodes are connected to a dummy node, denoted SCENE,

by an edge labeled “location”. The constituent nodes are coded in a different color,

to show the concepts that can be inferred from the image. The spatial relations are

inspired by Elliott and Keller (2013b). The spatial relations that we consider are: on,

surrounds, beside, opposite, above, below, infront, behind. These SDGs can be used

to generate captions, answer factual questions and also reason beyond what can be

seen in the image.

Relation Name Inverse gloss Example

agent agent-of Entity initiates, performs or causes Event Chico solved the mystery.

destination destination-of Event ends at place Place Fiona attached the cable to the watch.

object object-of Entity is the main passive-participant of Event Betty opened the window.

recipient recipient-of Entity receives object or event Blaise invented the syringe.

origin origin-of Event begins at place Place She’s leaving home.

Table 3.1: A Collection of Important Event-Entity Relations, Their Interpretations
and Examples from the KM-Ontology.

2A complete list of relations with examples and semantics can be obtained from http://www.
cs.utexas.edu/users/mfkb/RKF/tree/
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Event-Event

Relations

Event-Entity

Relations

Entity-Entity

Relations

objective

previous event

next event

caused by

causes

inhibited by

agent

recipient

object

destination/location

destination

destination/time at

location

site/location/time at

beneficiary

raw material

origin

is possessed by

has part

complement

Table 3.2: All Relevant Relations from KM Ontology Used for Scene Description
Graph. Please Refer to the KM-Ontology Documents for Examples and Semantics.

Figure 3.2: Example Image and an Extracted Scene Graph Representation.
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Probabilistic Scene Graph: In Figure 3.2, we show an example of an image and

a corresponding scene graph (represented as set of triplets). In this graph, the nodes

are objects and regions, and edges define the following types of relations between

the objects: spatial relations, actions, and connecting verbs. In our applications, we

consider the set of open-ended relations available from Visual Genome dataset. In

comparison to an SDG, the scene graph represents the knowledge using open-ended

relations and each triplet (or an edge) comes with a continuous confidence score. This

scene graph is inspired by the proposed graph structure in Johnson et al. (2015a).

However, in one significant difference, in this graph each edge carries with it a con-

fidence score (representing P (edge|Image)). This helps us represent the uncertainty

in detecting each of these edges individually. In Chapter 6, we show that even though

this scene graph does not offer all functionalities compared to an SDG representation,

this graph is practically more usable with probabilistic logical reasoning mechanisms.

A comparison between proposed and other knowledge representation of images is

provided in the table 3.3.

3.3 Knowledge Acquisition

There have been numerous significant efforts in collecting and constructing fac-

toid, ontological and commonsense knowledge bases (or knowledge graphs) by various

group of researchers. Some of the popular ones are YAGO (Suchanek et al. 2007b),

YAGO2, NELL (Mitchell et al. 2015), ConceptNet (Havasi et al. 2007), (Cyc Reed

and Lenat 2002), and WordNet (Miller 1995). There are primarily three ways of

constructing knowledge bases: i) automatic extraction from large sources of text or

images, ii) manual curation (labeling by human workers) or extraction of data from

online games, iii) a mixture of the above procedures (semi-curated). In this thesis,

we describe one way to construct a commonsense knowledge base automatically from
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Representation

Language/Type

Individual

Elements
Relations/Predicates Comments

Visual Dependency

Representation

Elliott and Keller (2013b)

Directed Graph Nodes: Objects
Spatial Relations

(closed set)
Spatial Reasoning

Scene Graph

Johnson et al. (2015a)
Directed Graph

Nodes: Objects,

Regions

Spatial, action,

linking verbs

(open-ended)

Spatial Reasoning

Limited Commonsense

Reasoning

Image Parsing Graph

Tu et al. (2005)
Directed Graph

Nodes: Objects,

Regions, Parts

Top-down relations

indicate hierarchy.

Sibling relations indicate

spatial relations

Spatial Reasoning

Limited Commonsense

Reasoning

Scene Description Graph Directed Graph

Nodes: Objects,

Regions, Properties,

Inferred Aspects

Semantic Relations from

KM-Ontology.

Spatial Relations

Enables Causal,

Event-based,

Spatial Reasoning

Probabilistic Scene Graph has-Triplets
Nodes: Objects,

Regions

Spatial, action,

linking verbs

(open-ended)

Spatial Reasoning.

Commonsense

Reasoning.

Reasoning with

Uncertainty

Table 3.3: We Summarize the Primary Aspects of Different Popular Knowledge
Representations Proposed for Natural Images.

image captions, in a bid to capture commonsense knowledge about natural day-to-day

activities.

3.3.1 Knowledge Base Construction

To extract knowledge from the image captions, we use a semantic parser, called

K-parser (Sharma et al. (2015)). Let us denote the set of available captions as Atr

and set of entities as N .

K-Parser: K-parser (kparser.org) is a semantic parser that extracts an Entity-

Event based representation from a sentence, adding additional semantic knowledge.

For a sentence such as “A boy wearing swimming trunks jumps over some sprinkler
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Figure 3.3: An Example Sentence with Stanford Dependency Relations and Trans-
formed K-parser Relations. Only Important Stanford Dependencies and K-parser
Relations Are Shown. K-parser Also Adds Semantic Roles and Superclass Informa-
tion for the Entities (Not Shown in the Figure).

water in a backyard”, the K-parser extracts the Events (actions and linking verbs)

wear, jump, and their participant Entities (concrete nouns) boy and trunks, boy

and water respectively as a set of Entity and Event-nodes connected by meaningful

relations (see Figure 3.3). It also extracts Traits (attributes) swimming, sprinkler

corresponding to the entities. Internally, K-parser uses the Stanford Parser (Chen

and Manning 2014) to get the syntactic dependency graph from a sentence. The K-

parser then uses a rule-based mapping algorithm to map these dependency relations

to the set of KM-Relations (Clark et al. 2004) and some newly created ones (see http:

//bit.ly/1Wd8nGa). Some relevant properties of the final semantic representation

are: i) it is an acyclic graphical representation of English text, ii) it follows a rich

ontology (Clark et al. 2004) to represent semantic relations (Event-Event relations

such as causes, caused by, Event-Entity relations such as agent, and Entity-Entity

relations such as related to); iii) it has two levels of conceptual class information for

words; iv) it accumulates semantic roles of Entities based on PropBank framesets; and

v) it has other features such as Co-reference resolution, Word Sense Disambiguation

and Named Entity Tagging 3 .

Knowledge Base: The knowledge-base is mainly a knowledge-graph (G), which

is a collection of word1-relation-word2 triplets, where word1 and word2 can be

3For more details, please see Sharma et al. (2015).
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Event (actions, linking-verbs present in Atr), Entity (from N ) or a Trait (adjectives,

qualitative-nouns from Atr or WordNet-superclass of a word). The relation comes

from a closed set of semantic relations from KM-Ontology 4 . Some example relations,

semantics and corresponding sentences are listed in Table 3.1. The graph contains the

knowledge of i) all possible Entities (concrete nouns) participating in Events (actions

and linking verbs), ii) the roles the Entities play in these Events, and ii) possible

traits (properties, such as color, semantic role-labels) that the Entities have. Figure

3.4 depicts a snapshot of G.

Figure 3.4: Knowledge Base Creation Using a Semantic Parser.

As shown in Figure 3.4, we use K-parser for knowledge extraction from each sen-

tence of the Image Annotations. We first reconcile the Entities in the K-parser output

graph with corresponding nouns in N , using WordNet similarities. Then, the graphs

are merged based on overlapping Events. Entities connected by agent, recipient,

object, location, origin, and destination relations to an Event, are retained.

Causal connections between Events are also retained. All Traits connected to the

Entities are retained as well. The merged knowledge-graph is stored as G. We store

the unique semantic parses of captions in C to provide contextual knowledge such

as (x-r-y) occurs along-with (y-superclass-z) in some context C ∈ C. For ex-

ample, boy wears swimming trunk where trunk has semantic-role as clothing. We

4agent, recipient, location, origin, object, destination, semantic role,
superclass are some of the important relations in context of this work. Extensive list can
be found in kparser.org.
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formally represent our Knowledge Base as Kb = 〈G, C〉. The merged knowledge-graph

(G) retains the knowledge of i) all possible Entities (concrete nouns) participating

in Events (actions and linking verbs), ii) possible traits (properties, such as color,

semantic role-labels) that the Entities have. We store the unique individual parses in

C to provide background context as some relations such as agent-recipient, semantic

role labels are highly context-dependent.

3.4 Reasoning Engine

There are various logical and probabilistic logical formalisms proposed by re-

searchers from the logic and statistical community, such as ProbLog (De Raedt et al.

2007), Markov Logic Network (Richardson and Domingos 2006b), Answer Set Pro-

gramming (Baral 2003), Prolog (Colmerauer and Roussel 1996), LP-MLN (Lee et al.

2017), ASP-MLN, Probabilistic Soft Logic (Bach et al. 2013). In the applications

covered in this thesis, we need to deal with uncertainty and noisy input data which

mandates the use of probabilistic logical formalisms. From our experiments, we ob-

serve that Probabilistic Soft Logic is one of the most practical theories developed

that result in realistic inference and learning time while losing only some of the ex-

pressiveness of complex logical languages such as ASP. The authors in Bach et al.

(2013, 2015) have generously made the groovy-based PSL software for public use.

However the available groovy-based software did not provide us enough flexibility to

manipulate the underlying optimization formulation and it is not straight-forward to

integrate external knowledge bases. These limitations prompted us to re-implement

this engine from scratch with a focus of applications toward question-answering. We

make it publicly available for further use by the community. In this section, we first

introduce Probabilistic Soft Logic and then describe necessary details to understand

and use the engine we developed.
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3.4.1 Probabilistic Soft Logic (PSL)

A PSL model is defined using a set of weighted if-then rules in first-order logic.

For example, from Bach et al. (2015) we have:

0.3 : votesFor(X,Z)← friend(X,Y ) ∧ votesFor(Y, Z)

0.8 : votesFor(X,Z)← spouse(X,Y ) ∧ votesFor(Y, Z)

In this notation, we use upper case letters to represent variables and lower case

letters for constants. The above rules applies to all X, Y, Z, for which the predicates

have non-zero truth values. The weighted rules encode the knowledge that a person is

more likely to vote for the same person as his/her spouse than the person that his/her

friend votes for. In general, let C = (C1, ..., Cm) be such a collection of weighted

rules where each Cj is a disjunction of literals, where each literal is a variable yi or its

negation ¬yi, where yi ∈ y. Let I+
j (resp. I−j ) be the set of indices of the variables

that are not negated (resp. negated) in Cj. Each Cj can be represented as:

wj : ∨i∈I+
j
yi ← ∧i∈I−j yi, (3.1)

or equivalently, wj : ∨i∈I−j (¬yi)
∨
∨i∈I+

j
yi. A rule Cj is associated with a non-

negative weight wj. PSL relaxes the boolean truth values of each ground atom a

(constant term or predicate with all variables replaced by constants) to the interval

[0, 1], denoted as V (a). To compute soft truth values, Lukasiewicz’s relaxation Klir

and Yuan (1995) of conjunctions (∧), disjunctions (∨) and negations (¬) are used:

V (l1 ∧ l2) = max{0, V (l1) + V (l2)− 1}

V (l1 ∨ l2) = min{1, V (l1) + V (l2)}

V (¬l1) = 1− V (l1).

In PSL, the ground atoms are considered as random variables, and the joint distri-

bution is modeled using Hinge-Loss Markov Random Field (HL-MRF). An HL-MRF
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is defined as follows: Let y and x be two vectors of n and n′ random variables re-

spectively, over the domain D = [0, 1]n+n′ . The feasible set D̃ is a subset of D, which

satisfies a set of inequality constraints over the random variables.

A Hinge-Loss Markov Random Field P is a probability density over D, defined as:

if (y,x) /∈ D̃, then P(y|x) = 0; if (y,x) ∈ D̃, then:

P(y|x) ∝ exp(−fw(y,x)). (3.2)

In PSL, the hinge-loss energy function fw is defined as:

fw(y) =
∑
Cj∈C

wj max
{

1−
∑
i∈I+

j

V (yi)−
∑
i∈I−j

(1− V (yi)), 0
}
.

The maximum-a posteriori (MAP) inference objective of PSL becomes:

P(y) ≡ arg max
y∈[0,1]n

exp(−fw(y))

≡ arg min
y∈[0,1]n

∑
Cj∈C

wj max
{

1−
∑
i∈I+

j

V (yi)

−
∑
i∈I−j

(1− V (yi)), 0
}
,

(3.3)

where the term wj × max
{

1 −
∑

i∈I+
j
V (yi) −

∑
i∈I−j

(1 − V (yi)), 0
}

measures the

“distance to satisfaction” for each rule Cj.

3.4.2 Necessary Details about PSL Engine

In this section, we first provide an example consisting of a simple rule-base (that in-

tegrates knowledge) and describe how such example is implemented using the Gurobi

Optimization API. In our experience, we get better results with our PSL engine es-

pecially for Question-Answering tasks and Image Puzzle tasks compared to the PSL

engine developed by the authors in Bach et al. (2015). However, our PSL engine

is minimalistic and tuned towards specific tasks. We provide the code in github

(https://github.com/adityaSomak/PSLQA).
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An Example Rule-base

Let us assume that for an image, we run an image classifier and get possible

classes and corresponding confidence scores. Given that, we have a vocabulary of a

large number of natural concepts (say from ConceptNet), we want to infer all related

(most probable) target concepts given the observed classes. Consider a simplified

(propositionalised) rule-base where we have a set of candidate target concepts T

(unobserved) and a set of weighted seed concepts (S, observed). We build an inference

model to infer a set of most probable targets (T̂ ). Using PSL, we add the rules of the

form

wtij : si → tj.∀si ∈ S, tj ∈ T (3.4)

For each target tj, we take most similar targets (Tj,max). For each target tj and

each tm ∈ Tj,max, we add two rules:

wtjm : tj → tm.

wtjm : tm → tj.

(3.5)

From the perspective of optimization, the first set of rules add the terms wtij ∗

max{I(si) − I(tj), 0} to the objective. This means that if confidence score of the

target tj is not greater than I(si), then the rule is not satisfied and we penalize

the model by wtij times the difference between the confidence scores. We encode

the commonsense knowledge of words and phrases obtained from different knowledge

sources into the weights of these rules wtij
5 .

To model dependencies among the targets, we observe that if two concepts t1 and

t2 are very similar in meaning, then a system that infer t1 should infer t2 too, given

the same set of observed words. Therefore, The last set of rules force the confidence

5As sources of Commonsense knowledge, one can use ConceptNet, word2vec or other sources
which defines relational or distributional similarity between the common concepts.
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values of tj and tm to be as close to each other as possible. wtjm is defined similar to

as wtij. The PSL model inference objective becomes:

arg min
I(T )∈[0,1]|T |

∑
si∈S

∑
tj∈T

wtij max
{
I(si)− I(tj), 0

}
+

∑
tj∈T

∑
tm∈Tj,max

wtjm

{
max

{
I(tm)− I(tj), 0

}
+

max
{
I(tj)− I(tm), 0

}}
.

(3.6)

To let the targets compete against each other, we add the constraint

∑
j:tj∈TS

I(tj) ≤ θs1 (3.7)

Here θs1 ∈ {1, 2} and I(tj) ∈ [0, 1]. As a result of this model, we get an inferred

reduced set of targets T̂ .

3.4.3 Implementation of PSL Inference

The implementation of PSL using gurobi follows directly from the optimization

problem formulation. Here we describe some basic commands that are used to for-

mulate the objective function and the constraints.

We create a gurobi optimization model using m=Model(modelName). Each of

the seed variables are added using the command m.addVar(lb=I(sj), ub=I(sj),

name=sj), which returns a Gurobi Variable object. We store the references in the

list called seeds. Target variables are added using a similar command with lower

bound θlb and upper bound 1 and stored in the array targets. Constraints like the

one in Equation 3.7 are added using:

m.addConstr(quicksum(targets[j] for j in targets), GRB.LESS EQUAL, θs1).

We create the objecting functions using objective=LinExpr() and sum individ-

ual objectives of each of the rules wtij : sik → tjk in the Equation 3.6. As the

max(., .) function can not be directly added to the objective, we use a familiar op-
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timization trick for “min-max” objectives. In this trick, we represent the value of

max(I(sik)− I(tjk), 0) using vij and minimize the sum of variables i.e.
∑

i,j vij. Ad-

ditionally, we put constraints such that each vij ≥ 0 and vij ≥ I(sik)− I(tjk). As we

minimize the sum, in the minima they resemble the max(I(sik) − I(tjk), 0) values.

We add variables representing each rule using objective+= wij ∗ vij, where wij is

weight of each of the grounded rule, as defined in the previous sub-section. Finally,

the objective function is minimized using the following snippet of code.

m.setObjective(objective)

# The objective is to minimize the costs

m.modelSense = GRB.MINIMIZE

# Update model to integrate new variables

m.update()

m.optimize()

The inferred confidence scores of the targets can be obtained from the solution

of the model and by providing a list of references to the free variables (stored in the

lists seeds and targets) i.e. m.getAttr(‘x’, targets). This overview should give

the readers an insight into how the generic reasoning engine has been implemented.

A Summary of Functionalities

The developed PSL engine in this thesis is targeted towards Question-Answering

applications that intend to integrate knowledge bases such as ConceptNet and Word2Vec.

Even though, this engine is not a concerted effort towards a generalized implementa-

tion of the proposed PSL framework, our engine offers many practical advantages for

targeted applications. Some of these functionalities are summarized in Table 3.4.
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Groovy-based PSL Gurobi-based PSL

Language Groovy, Java Purely Pythonic

Inference (Optimization) ADMM Off-the-shelf, uses Gurobi

Knowledge Integration Slow, Not Straight-Forward Easy, Tuned towards integration

Phrasal Similarity
Available, Slow in using

Large Knowldge Graphs
Available and fast.

Optimization Manipulation
Difficult, Documentation

unavailable
Straight-forward

Learning
Maximum Likelihood

Maximum Pseudo-likelihood
Maximum Likelihood

Extended PSL Syntax

(such as Aggregation)
Available in PSL 2.0 Un-available

Intended Application General Question-Answering

Table 3.4: In this Table, We Provide an Overall Summary of Comparisons of Facil-
ities That Are Provided by Our PSL Engine, Compared to the Original PSL Engine
Implemented in Bach et al. (2015, 2013).

3.5 Conclusion

For applications that integrate knowledge, there are several important problems

that need to be addressed. Some of the important ones are knowledge representation,

knowledge acquisition methodology, and the reasoning mechanism. In this chapter,

we introduce the novel knowledge representation that we propose for natural images.

We demonstrate their applications in captioning and answering questions about im-

ages in Chapters 5 and 6. We elaborate a new automatic method to acquire and

store common-sense knowledge from image captions using a semantic parser. We

have successfully used the acquired knowledge in our effort for image captioning that

is detailed in Chapter 5. Lastly, we introduce a popular probabilistic reasoning en-

gine that we successfully use in (most of) our applications. As we implement this
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reasoning engine from scratch for efficiency, we provide a simplified example of the

implementation using a short rule-base.
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Chapter 4

CORPUSES DEVELOPED AND EXTENDED

In current literature, there has been a plethora of large datasets that capture

different aspects of vision and language. A few recent surveys (Ferraro et al. 2015;

Gella and Keller 2017) provide a detailed overview of datasets proposed for vision

and language research, which can be mainly categorized into the following tasks:

image captioning, video captioning, visual question answering, visual reasoning, vi-

sual relationship detection, scene graph generation, situation recognition, and action

recognition. Even though the Computer Vision community has forayed into datasets

that capture some aspects of higher-level complicated reasoning (such as CLEVR,

Sort-of-Clevr), there exists only a few datasets that targets systems that can uti-

lize background knowledge. F-VQA and KB-VQA are one of the most important

mentionworthy datasets in this regard. These datasets concentrate on questions that

require consultation of an external factoid knowledge base such as Freebase to answer

alongwith understanding the image under consideration. To the best of our knowl-

edge, there hardly exist any dataset of images that explicitly require reasoning with

commonsense knowledge or ontological knowledge base to solve. In a bid to mitigate

this shortcoming, we propose the Image Riddle task, and a corresponding dataset.

The task of image riddles require reasoning with ontological knowledge to infer a

common concept that connects a set of four images. This dataset consists of images

and ground-truth answers scraped from an internet puzzle website. We extensively

perform independent large-scale human evaluations to check the correctness, and the

difficulty of this dataset. We perform tests to quantify the intelligence required to

solve these puzzles. We believe that this dataset constitute an ideal testbed for vision
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and reasoning (with additional knowledge) research. In this chapter, we briefly intro-

duce the details about this dataset alongwith quantitative evaluations and qualitative

examples. In addition to the above dataset, we also extend a few publicly available

corpora for specific application needs. As these can be beneficial to the community,

we make them publicly available in the respective project pages and describe the

extensions briefly in this chapter.

4.1 Image Riddles

In the task of image riddles, for each puzzles four images are provided and the

task is to find the “word that connects these images” i.e. the common concept that

is invoked by all the images. Often the common concept is not something that even

a human can observe in the first glance; but after some thought about the images,

he/she can come up with it. Hence the word “riddle” in the phrase “image riddles”.

An example of such a puzzle is provided in Figure 4.1. The images individually

connect to multiple concepts such as: outdoors, nature, trees, road, forest, rainfall,

waterfall, statue, rope, mosque etc. On further thought, the common concept that

emerges for this example is “fall”. Here, the first image represents the fall season

(concept). There is a “waterfall” (region) in the second image. In the third image,

it shows “rainfall” (concept) and the fourth image depicts that a statue is “fall”ing

(action/event). The word “fall” is invoked by all the images as it shows logical

connections to objects, regions, actions or concepts specific to each image.

We have collected a set of 3333 riddles from the Internet (puzzle websites). Each

riddle has 4 images and a groundtruth answer associated with it. To make it more

challenging to computer systems, we include both photographic and non-photographic

images in the dataset. We provide a few example riddles in Figure 4.2.

To verify the groundtruth answers, we define the metrics: i) “correctness” - how

correct and appropriate the answers are, and ii) “difficulty” - how difficult are the
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Figure 4.1: An Image Riddle Example. Question: “What Word Connects these
Images?” .

riddles. We use the services of Amazon’s Mechanical Turk (AMT) website (Paolacci

et al. 2010) to conduct a human evaluation for dataset validation. We ask the turkers

to rate the correctness from 1-6. The ratings are defined as follows: 1: Completely

gibberish, incorrect, 2: relates to one image, 3 and 4: connects two and three images

respectively, 5: connects all 4 images, but could be a better answer, 6: connects

all images and an appropriate answer.. The “difficulty” is rated from 1-7. These

gradings are adopted from VQA AMT instructions Antol et al. (2015b). 1: A toddler

can solve it (ages:3-4), 2: A younger child can solve it (ages:5-8), 3: A older child can

solve it (ages:9-12), 4: A teenager can solve it (ages:13-17), 5: An adult can solve it

(ages:18+), 6: Only a Linguist (one who has above-average knowledge about English

words and the language in general) can solve it, 7: No-one can solve it. We provide

the Turkers with examples to calibrate our evaluation. According to the Turkers, the

mean correctness rating is 4.4 (with Standard Deviation 1.5).

The “difficulty” ratings show the following distribution: toddler (0.27%), younger

child (8.96%), older child (30.3%), teenager (36.7%), adult (19%), linguist (3.6%),

no-one (0.64%). In short, the average age to answer the riddles is closer to 13-

17yrs. Also, few of these (4.2%) riddles seem to be incredibly hard. Interestingly, the

average age perceived reported for the recently proposed VQA dataset by Antol et al.

(2015b) is 8.92 yrs. Although, this experiment measures “the turkers’ perception of
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Figure 4.2: Few Examples of Collected Image Riddles. The Complete Dataset is
Available in https://bit.ly/22f9Ala.
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the required age”, one can conclude with statistical significance that the riddles are

comparably harder.

Human Baseline: In an independent AMT study, we ask the turkers to answer

each riddle without any hint towards the answer. We ask them to input maximum

5 words (comma-separated) that can connect all four of the images. In cases, where

the riddles are difficult we instruct them to find words that connect at least three

images. These answers constitute our human baseline. For the entire dataset, we

calculate the word2vec based and WordNet-based accuracy of human answers. For

each riddle, we calculate the maximum similarity between the ground-truth with the

5 answers, and report the average of such maximum similarities in percentage form:

S = 1
n

n∑
i=1

max
1≤l≤5

sim(GTi, Tl). To calculate phrase similarities, i) we use n similarity

method of the gensim.models.word2vec package; or, ii) average of WordNet-based

word pair similarities that is calculated as a product of length (of the shortest path

between sysnsets of the words), and depth (the depth of the subsumer in the hierar-

chical semantic net) Li et al. (2006). The word2vec and the WordNet-based accuracy

of the human answers are 74.6% and 68.9% respectively. An interesting phenomenon

is that, around 500 puzzles were solved with above 90% accuracy and another 500 puz-

zles were left blank by the turkers. This signifies that this dataset contains both easy

(amounting to object recognition) and very difficult examples (requiring reasoning on

ontological knowledge).

4.2 Extensions

4.2.1 Extending Flickr8k Dataset

Flickr-8k was one of the first large scale image captioning datasets proposed in

Rashtchian et al. (2010). In this dataset, images are collected from the social image-
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sharing website Flickr and each image is annotated with five ground-truth captions

that are collected using the services of Amazon Mechanical Turk. There are 6000

images reserved for training and 1000 each for development and testing.

Images from the wild cannot always be categorized into a limited number of Scene

categories. However, scene constituents describing properties or actions of objects,

attributes of scenes occur frequently across images and can be utilized to describe the

image. As the accuracy of state-of-the-art image classification has improved, neural

network based classifiers can be trained to detect top scene constituents from an

image. They can provide additional information that can be utilized in downstream

applications such as captioning or question-answering.

In this work, we further augment the Flickr-8K image dataset with human an-

notation of constituents using Amazon Mechanical Turks. We specifically ask the

human labeler to annotate not only objects, but what objects are doing or properties

of objects. We provide the following instruction to the turkers:

Annotate general constituents of the scenes like : people walking, people

wearing shorts, water, large waterbody, british architecture etc etc.

- type a comma separated list. If they are confused they can see the

provided list of sub-concepts and check if applicable.

- please list at least 5 general constituents.

- you can see the provided list of constituents for examples, http: //

legacydirs. umiacs. umd. edu/ ~ yzyang/ subconcepts_ sorted. txt .

Some of the example constituents are: alley, apparels on display, arches, artifi-

cial container, artificial doors, artificial flooring, artificial path, bench, big buildings,

big doors, big glass view, big size recording instruments, big windows, boat, books

displayed, booth, booths , brush, bucket of paint, buildings, cabinet, ...
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Figure 4.3: Few Examples of Collected Phrase (or Constituent) Annotations for
Flickr-8k Images. Annotators Were Allowed to Use Free-form Open-ended Phrases
to Describe Activities, Important Properties of Objects.
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We allow the labelers to use free-form text for describing constituents to reduce

annotation effort. To obtain a standardized set of constituents from the annotations,

we perform stop-words removal, parts-of-speech processing to retain nouns, adjectives

and verbs. We replace the nouns with their superclasses such as man, boy, father by

person, and then, we rank the resulting phrases according to their frequencies. Some

of the top phrases are grass, dog run, dog play, kid play, person wear short etc. We

show some images and corresponding examples in Figure 4.3.

4.2.2 Extension: Phrases and Manual Annotations of Visual Genome Relations

Caption Noun-Pair Relation

cars are parked on the side of the road [’cars’, ’side’] parked on the

cars are parked on the side of the road [’cars’, ’road’] parked on side

there are two men conversing in the photo [’men’, ’photo’] in the

the men are on the sidewalk [’men’, ’sidewalk’] on the

the trees do not have leaves [’trees’, ’leaves’] do not have

a man in a gray hoodie [’man’, ’hoodie’] wearing

the man is in a red shirt [’man’, ’red’] dressed in

the man is in a red shirt [’man’, ’shirt’] dressed in

Table 4.1: Caption, Noun-pair and Ground-truth Open-ended Relation between the
Pair of Words in the Sentence.

Semantic Parsing of natural language sentences is a hard problem, especially when

the target relations come from a closed small set, and the parser needs to disambiguate

largely varied style of sentences and predict correct relations between word-pairs. The

parser’s task can often be simplified by taking a large number of open-ended relations

as target relations. We employ this idea in one of the applications covered in this
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thesis and we use the open-ended relations from Visual Genome dataset. As there

are often many repeating and noisy relations, we first manually clean the dataset

resulting in 20k relations (from the original 23k relations). To test the validity of

the proposed parser, we manually annotate 5500 word-pairs in nearly 4000 different

captions in Visual Genome dataset with target visual genome relations. Each of

these relation annotations are carried out by graduate students of Computer Science,

who are trained in natural language processing. Hence, it is safe to say that these

annotations are of sufficiently high quality. Some examples are provided in the table

4.1. Even though the number of examples are limited, these annotations can be

used as high-quality seed training examples for learning semi-supervised parsers or

testing parsers that are trained to predict visual genome relations. We make these

annotations publicly available in https://visionandreasoning.wordpress.com/.

4.3 Conclusion

In computer vision, there exists a plethora of datasets that test the capability

of systems that attempt to understand images and natural language together. But,

only a few datasets require explicit consultation of external knowledge sources and

there is hardly any known dataset in vision and language that require common-sense

knowledge. In this chapter, we introduce a task and a corresponding dataset that

requires external (ontological) knowledge to solve. We carry out extensive human

evaluations to test the correctness and evaluate the difficulty of the dataset. In

Chapter 7, we present our motivation and approach to solve this task. Alongwith

the new dataset, we also summarize the extensions of different public state-of-the-art

datasets that we carried out in order to solve specific applications.
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Chapter 5

APPLICATION 1: IMAGE CAPTIONING

A fundamental task in image understanding using text is caption generation. In this

chapter, we present an intermediate knowledge structure that can be used for cap-

tioning to obtain increased interpretability. We call this knowledge structure Scene

Description Graph (SDG), as it is a directed labeled graph, representing objects, ac-

tions, regions, as well as their attributes, along with inferred concepts and semantic

(from KM-Ontology Clark et al. (2004)), ontological (i.e. superclass, hasProperty),

and spatial relations. Thereby a general architecture is proposed in which a system

can represent both the content and underlying concepts of an image using an SDG.

The architecture is implemented using generic visual recognition techniques and com-

monsense reasoning to extract graphs from images. The utility of the generated SDGs

is demonstrated in the applications of image captioning, image retrieval, and through

examples in visual question answering. The experiments in this work show that the

extracted graphs capture syntactic and semantic content of images with reasonable

accuracy. Our human evaluation experiments also show that the quality of generated

captions are comparable to some of the existing neural approaches.

5.1 Introduction and Motivation

Image Understanding is fundamental to Computer Vision. Earlier approaches

centered on asking “what” and “where” questions about the scene in view. In this

methodology, scenes are recognized by detecting the objects within the scene (Lowe

1999; Dalal and Triggs 2005; Krizhevsky et al. 2013), objects are recognized by detect-

ing their parts or attributes (Felzenszwalb et al. 2008; Lampert et al. 2009; Farhadi
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et al. 2009; Yu and Aloimonos 2010; Teo et al. 2015, 2013; Yu et al. 2011) and ac-

tivities are recognized by detecting the motions, objects and contexts involved in the

activities (Laptev 2005; Messing et al. 2009; Wang et al. 2011; Gupta and Davis 2007;

Ogale et al. 2006; Yang et al. 2014).

Since then, researchers have explored multiple ways of understanding an image

through the modality of natural language. According to Wiriyathammabhum et al.

(2016), the primary reason for using natural language to ground images is that it adds

interpretability and creates a way for human-machine interaction. The first major

challenge proposed in this area, is the problem of caption generation from images.

Researchers adopted the viewpoint that if a system is able to develop a semantic un-

derstanding of a visual scene, then such a system should be able to produce natural

language descriptions of such semantics. Recent developments (Mao et al. 2014b;

Kiros et al. 2014; Donahue et al. 2014a; Karpathy and Li 2014; Vinyals et al. 2014;

Chen and Zitnick 2014; You et al. 2016) in Computer Vision have shown that deep

neural nets can be trained to generate a caption for an arbitrary scene with decent

success. However, caption generation systems only describe the salient aspects of

the image. An intelligent Image Understanding system should recognize all aspects

present in the image and where the objects are Marr (1982) and should be able to

reason with the recognized aspects. Based on such notions and taking advantage of

recent powerful recognition capabilities using Neural Networks, researchers in Com-

puter Vision have re-visited a more general and difficult image understanding task,

namely Visual Question Answering (Antol et al. 2015b; Malinowski et al. 2015; Gao

et al. 2015b; Ma et al. 2016).

Despite the success of end-to-end learning models (Antol et al. 2015b; Malinowski

et al. 2015; Gao et al. 2015b; Ma et al. 2016) in these tasks, a few problems remain.

In the visual question answering problem, questions such as: Is it going to rain?
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Figure 5.1: Four Example Questions (and Corresponding Images) That Require
Commonsense Knowledge, from Antol et al. (2015b).

(a) (b)

Figure 5.2: (a) First Example Image and (b) Second Example Image with Corre-
sponding Ideal SDG Encoding Semantic, Ontological, and Spatial Relations.

(prospective), Did it rain? (retrospective), Is the knife cutting the bowl? (in the

context of Figure 5.2a), Does the man have 20-20 vision? (commonsense), all require

explicit modeling of commonsense reasoning and knowledge. Some examples of ques-

tions requiring commonsense knowledge from the VQA dataset (Antol et al. 2015b)

are provided in Figure 5.1. In the context of the image in Figure 5.2b, questions can

range from those that require basic knowledge about the game of basketball (Do the

players in red and white belong to the same team? ) to questions requiring deeper

knowledge such as originating from an intuition of Physics (Will the player on the

right be able to block the player holding the ball? or In which direction should the

player holding the ball move? ). Without explicit modeling of commonsense knowl-

edge, these questions are difficult to answer. Again, the existing models consider a

constrained set of answers, which limits their application to real-world scenarios.
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Current state-of-the-art image captioning systems have a few drawbacks such as:

1) a brute-force image to caption mapping does not allow symbol level reasoning

beyond simple inferences from annotated data; 2) they are language dependent, due

to the lack of concept level modeling; and 3) most importantly, when the system

produces wrong results, it is almost impossible to trace back the error and analyze

the cause.

To alleviate these problems, we seek inspiration from nature. Human perception

is active, selective and exploratory (Aloimonos et al. 1988; Bajcsy and Campos 1992).

We interpret visual input by using our knowledge of activities, events and objects.

When we analyze a visual scene, visual processes continuously interact with our high-

level knowledge, some of which is represented in the form of language. In some sense,

perception and language are engaged in an interaction, as they exchange information

that leads to semantics and understanding. Thus, our problem requires at least two

modules for its solution: (a) a vision module and (b) a reasoning module that interact

with each other. In this paper we propose to model the architecture that can support

such an interaction; and we propose a corresponding knowledge structure that can

represent the information and the semantics extracted from images.

We present an implementation that integrates deep learning based vision and

state-of-the-art concept modeling from common-sense knowledge 1 obtained from

text. We use a deep learning-based perception system to obtain the objects, scenes

and constituents with probabilistic weights from an input image. To predict how

the objects interact in the scene, we build a common-sense knowledge base 2 from

1Commonsense reasoning and commonsense knowledge can be of many types (Davis and Marcus
(2015)). Commonsense knowledge can belong to different levels of abstraction (Havasi et al. (2007);
Lenat (1995)). In this paper, we focus on reasoning based on knowledge about natural scenes.

2Domain-specific commonsense and background knowledge can be extracted from text or accessed
from curated or semi-curated sources such as WordNet, ConceptNet. Here we extract the needed
knowledge from image captions.
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image annotations along with a Bayesian Network of commonly occurring objects and

inferred scene constituents (the concepts that can not be seen, but can be understood

from the scene). These two pre-computed resources help us infer the following: 1) the

correct set of correlated objects based on the objects detected with high-confidence;

2) the most probable actions that these objects participate in; 3) the role that the

objects play in these actions. Based on the actions, the detected objects and the

inferred constituents, we output a Scene Description Graph (SDG) that represents

the semantics of the scene.

In Figure 5.2, we show a possible SDG for an example image. SDG is a directed

labeled graph 3 among Entities (objects, regions), Events (actions, linking verbs),

Traits (attributes of objects and regions) and inferred constituents. An SDG rep-

resents semantic relations (from KM-Ontology Clark et al. (2004)) between Entity-

Event pairs, spatial relations among Entities (objects and regions), and ontological

relations between Entity-Trait pairs. The Event nodes are connected to a dummy

node, denoted SCENE, by an edge labeled location. The constituent nodes are coded

in a different color, to show the concepts that can be inferred from the image. The

spatial relations are inspired by Elliott and Keller (2013b). These SDGs can be used

to generate captions, answer factual questions and also reason beyond what can be

seen in the image.

The fundamental contributions of this work are: 1) proposing an intermediate

structure that captures the semantics of an image, 2) proposing an Image Under-

standing architecture that combines vision and reasoning modules to generate such

structures, 3) an implementation of the architecture by combining a Deep Learning

based Visual module with probabilistic reasoning on a Commonsense Knowledge Base,

3 Note that similar structures are also generated by Semantic parsers such as K-parser (kparser.
org).
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4) enhancing the Flickr8k dataset with the observable scene constituents (actions and

properties involving objects), and 5) comparative human evaluations dataset for our

approach, two popular neural approaches (Karpathy and Li 2014; Vinyals et al. 2017)

and ground truth captions for three existing Captioning Datasets (Flickr8k, Flickr30k

and MS-COCO) 4 , which can be used to propose better automatic caption evalution

metrics (this dataset is used in Anderson et al. (2016) to propose SPICE).

5.2 Related Works

Our work is influenced by various thrusts of work focusing on extracting mean-

ingful information from images and videos. As suggested by Karpathy and Li (2014),

such works can be categorized into 1) dense image annotations, 2) generating textual

descriptions, 3) grounding natural language in images, and 4) neural networks in vi-

sual and language domains. In another survey (Bernardi et al. 2016) of automatic

caption generation systems, the authors differentiate three categories: i) direct gen-

eration models, ii) retrieval models from visual space, and iii) retrieval models from

multimodal space.

Caption Generation: With respect to caption generation tasks, we share our

roots with the works on generating textual descriptions i.e., direct generation models.

These include the works in (Hodosh et al. 2013, Farhadi et al. 2010,Ordonez et al.

2011, Socher et al. 2014) which retrieve and rank sentences from training sets given

an image. Other works (Elliott and Keller 2013b, Kulkarni et al. 2011, Kuznetsova

et al. 2012, Yang et al. 2011, Yao et al. 2010) have generated descriptions by stitching

together annotations or applying templates on detected image contents. Following

the initial keyword-based approaches, most approaches now use neural network ar-

4Comparison with both the neural approaches are done on MS-COCO dataset. For the rest,
comparison is done only with Karpathy and Li (2014).
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chitectures. The first work was presented by Karpathy and Li (2014), which used

a combination of a convolutional neural network (for images) and a bi-directional

recurrent neural network (for sentences). Subsequent works (Kiros et al. 2014; Lin

et al. 2015; Mao et al. 2014a; Lebret et al. 2015) adopted different neural network

architectures to directly generate captions (a sentence) by training on large datasets

of 〈image, caption〉 pairs.

Our aim in this work is to construct an intermediate interpretable structure, that

represents both, necessary and relevant information about the image. We can use

this interpretable structure to not only generate captions but also to reason about

the images beyond their direct appearances.

Scene Graph: A small number of works in computer vision and robot perception

aims at producing a semantic structure from scenes that captures information about

the objects and regions. We propose here a scene description graph in which entities

(nouns) and events (verbs) are connected by well-defined relations. The purpose is

to perform downstream spatial and event-based reasoning using reasoning engines.

The relations in scene graphs in (Schuster et al. 2015) are open-ended phrases and

the Spatial Graphs in (Elliott and Keller 2013b) only represent the spatial relations

between objects and regions. Reasoning directly on such structures is infeasible.

Applying Commonsense in Vision: There are a few works with promising

efforts to acquire and apply common-sense aspects to the analysis of scenes. Zitnick

and Parikh (2013) uses abstraction to discover semantically similar images, Divvala

et al. (2014) proposes to learn all variations pertaining to all concepts, and Santofimia

et al. (2012) uses common-sense to learn actions.

Question Answering: Our work is also related to the recent research in the

field of visual question answering. Researchers have spent a significant amount

of effort on both creating datasets and proposing new models (Antol et al. 2015b;
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Malinowski et al. 2015; Gao et al. 2015a; Ma et al. 2015a). Interestingly, both Antol

et al. (2015b) and Gao et al. (2015a) have adapted MS-COCO (Lin et al. 2014) images

to create an open domain dataset with human generated questions and answers.

Malinowski et al. (2015) and Gao et al. (2015a) use recurrent networks to encode

the sentence and output the answer. There are multiple existing models which use

a combinations of attention mechanisms in a combined convolutional and recurrent

neural network architecture. However, in addition to the modeling of understanding

image and natural language, the task of VQA also requires modeling of commonsense

knowledge and reasoning. This is lacking in existing architectures. In this work,

we conduct case studies to show the promising potential of the SDG for answering

questions using reasoning with additional knowledge.

5.3 An Image Understanding Architecture

An image is a vast and complex source of information. To understand an im-

age, one needs to recognize the different components (objects, actions, scenes) and

infer higher-level events, activities, background context. To detect and infer such

information, we need a combination of vision and reasoning modules and background

knowledge.

In Figure 5.3, we present our architecture that explicitly models the desired inter-

actions between vision and reasoning modules. The core of the architecture comprises

of the following modules: i) Visual Detection, ii) Knowledge Base and iii) Logical Rea-

soning. The complete system also should provide interfaces to: i) Sentence Generation

and ii) Question-Answering modules.

Visual Detection: The visual detection module should be able to obtain the

following basic quantities: i) (Objects and Regions) it should be able to detect objects

and regions such as man, basketball, wooden floor etc.; ii) (Scenes) it should also be
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Figure 5.3: An Architecture for Deep Image Understanding. (The Knowledge Rea-
soning Module Is a Part of the Reasoning Module; It is Shown Separately to Clearly
Outline the Interactions).

equipped to detect scene classes such as indoors, stadium; iii) (Relations) it should

detect the relations (including spatial ones) between two objects, or an object and the

scene for example, man holding basketball, man standing on floor ; iv) (Properties)

it should detect different attributes of objects and regions such as size, height and

color of objects, color and shape of region. Such detections algorithmically are solved

using different image processing techniques such as segmentation, shape-color-contour

detection etc. Smarter techniques are being developed to detect relative sizes of

objects. (Bagherinezhad et al. 2016); v) (Attention) In the active vision setting

(Aloimonos et al. 1988), the visual detection module is also expected to interact

with the reasoning module and hence, the former should have a proper interface for

controlling “which detector to fire over which region of the image”.

Ideally, the detection module should consist of a large set of object and scene

detection classifiers, relationship detection classifiers, and attribute (color, shape,

size) detection and image segmentation modules.

Knowledge Base: Different forms of background knowledge are necessary to

reason about the quantities detected and recognized by the Vision module. In this
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architecture, we need commonsense knowledge 5 to answer questions pertaining to:

i) the probable actions that the detected objects are participating in; ii) the past

and future actions that could be causally connected to such actions; iii) ontological

information about the detected scenes; iv) and lastly, a holistic background (ontolog-

ical, spatial, commonsense, etc.) knowledge pertaining to every object of the scene

in view.

Reasoning System: A logical reasoning system can represent the logical knowl-

edge using a set of rules and should be able to perform deductive, inductive and abduc-

tive reasoning considering both probabilistic and hard beliefs. Traditional formalisms

like Answer Set Programming are powerful representation languages; although the

usage of hard rules and facts limits the possibility of real-world applications. Proba-

bilistic reasoning is necessary to deal with the uncertainty and incompleteness of the

knowledge and the visual detections. Hence, we can use a probabilistic adaptation

of such logical systems in which rules and facts are not constrained to be binary and

which supports the agent’s incomplete knowledge about the world. Further imple-

mentations of this architecture might adopt languages such as Probabilistic Soft Logic

(Bach et al. 2013), and Markov Logic Networks (Richardson and Domingos 2006a).

Active Vision: In Table 5.1, we show some of the vision-reasoning-vision loop

examples to answer questions of different levels of difficulty.

In many current end-to-end implementations (captioning and VQA), the visual

detection module is modeled using a pre-trained convolutional neural network, and

the knowledge of words is encoded using word embeddings. Understanding and rea-

soning of the language construct is modeled using a sequential network, which is

5The type of commonsense needed here can be compared with Semantic Knowledge according
to definitions in Psychology. By definition, semantic Knowledge is “general knowledge about the
world, including concepts, facts and beliefs (e.g., that a lemon is normally yellow and sour or that
Paris is in France)” (Yee et al. 2013).

84



Knowledge

Questions Loop

List the objects in the image. Vision - detect : objects

Comprehension

What will the man do next?

Vision - detect : objects, events

Reason - infer : higher-level concept (e.g.: A kind of Food preparation)

Reason - output : probable next-event of cutting

Analysis

How will you cut tofu?

Vision - detect : objects (hands, tofu, knife, bowl), events (holding bowl,

holding knife, cutting)

Reason - suggest : detect hand-positions

Vision - detect : hand-position

Reason - Represent knowledge of the activity cutting tofu in terms

of the object’s relative locations and constituent actions.

Reason - describe: the activity cutting tofu.

Application

Why is the man holding the bowl with his other hand?

Vision - detect : objects (hands, tofu, knife, bowl), events (holding bowl,

holding knife, cutting)

Reason - lookup: background knowledge.

search causes of holding a bowl (or holding an object) or

search effects of not holding bowl.

Synthesis

Propose an alternative method to cut a tofu.

Vision - detect : objects (hands, tofu, knife, bowl), events (holding bowl,

holding knife, cutting)

Reason - lookup background knowledge.

search other methods of cutting tofu, or

search for “cutting vegetables” (generalization).

Table 5.1: A Few Examples of the Loop of Vision and Reasoning to Answer Different
Categories of Questions. A Few Black-Box Methods Have Been Used to Describe the
Action Taken by Each Module: i) Detect (Fire Object, Action Detectors), ii) Suggest
(Guiding Visual Module to Fire a Detector), iii) Lookup and Search (Query the
Knowledge Base), iv) Infer (Infer Causally Related Previous, Next Events; Higher-
level Concepts), v) Describe (Natural Language Generation).

a variant of recurrent neural networks. The interaction between these modules is

often modeled using attention mechanisms. These models are then tuned in a com-

bined fashion for specific applications. However, current systems: i) do not explicitly

model commonsense knowledge, which is reflected in the performance with respect

to questions requiring commonsense; ii) do not model the knowledge needed to rec-

tify detections in case of partially or fully occluded objects (Figure 5.2(a)), which

affects both VQA and captioning tasks; and iii) do not provide a way to identify the
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main cause in case of wrong answers. In this work, we provide an implementation of

a modular architecture, that facilitates explainability and produces with reasonable

accuracy an intermediate semantic structure of the scene.

5.4 Predicting Intermediate Scene Description Graphs

In this work, we develop an implementation of the above architecture to predict

Scene Description Graphs from static images. To map an image to an SDG, we first

robustly define the meaningful regions of images that capture relevant semantics.

Let us assume that the fundamental semantic components of an image (denoted as

F) are the objects 6 and their observable attributes (location, shape, size, color,

contour etc.), regions and their observable attributes, and actions. To avoid further

complexity, we consider only those images, in which at least one fundamental semantic

component (f ∈ F) can be detected (by an ideal detector). In a scene, we group these

components further to form observable (that can be seen) and inferable components

(that can be understood).

Observed Scene Constituents (OSC) are descriptions of objects, actions or

regions (described in phrases or words) that can be directly grounded in the image

7 . In a phrase, individual words can identify an object, group of objects, their

observable attributes, regions or actions. For example: person wearing shorts, person

skateboarding, tall person, people playing etc. are all observed scene constituents.

Inferred Scene Constituents (ISC) are concepts (activities, context, higher-level

6Objects can consist of visible, partly visible or occluded objects. If the object person is detected,
occluded objects like organs in a body, can inferred to be present using commonsense Knowledge
Bases such as ConceptNet.

7To determine if a word or a phrase is a scene constituent or not, it will be helpful to ask ourselves
the question: “can we mark a region or set of regions in the image that represents the meaning of
this word or phrase completely?”. If we can and the word or phrase is not an object, action or
region; then the word or phrase is a scene constituent. Here, we can assume that the bounding box
for an action will be the union of the bounding boxes of its participant objects.
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events) that cannot be directly grounded in the image, but can be inferred. For

example, open space and bright day are ISCs.

Based on the above definitions, a Scene then represents one (or more) actions,

involving (one or more) objects; and spatial relationships among objects and regions.

The action(s) together make up a natural event which can be described by sentence(s),

such as: a person is lying on a bench, in a park ; a person is being evicted.

We can also interpret the above definitions as mapping meaningful components

of images to meaningful components of text 8 . The fundamental components (F)

can be roughly mapped to words with the following parts-of-speech (POS) tags: con-

crete nouns (object and scene classes), a subset of verbs (actions), adjectives (object

attributes), adverbs (action attributes) and prepositions (relations) (Wiriyathammab-

hum et al. 2016). We can describe the observed and the inferred scene consituents

using phrases. We can then describe a natural image (representing a combination of

some the above components) using sentence (s).

5.4.1 Visual Detection

We use deep object recognition, deep scene (category) recognition and deep ob-

served scene constituent recognition as the components of the visual detection module

(to primarily detect the semantic components).

Object Recognition: For deep object recognition, we use the trained bottom-up

region proposals and convolutional neural networks (CNN) object detection method

from Girshick et al. (2014a). It considers 200 common object classes (denoted as N ).

and it is trained on the ILSVRC dataset.

8Karpathy and Li (2014)’s work (and other Neural approaches) essentially uses the neural net-
works to learn a similar mapping between any region of an image to meaningful chunks of text. But
this method does not utilize the richness of the structure of text and images, and the mapping is
also independent of commonsense knowledge (which should prevent an intelligent system to learn
wrong mappings in adverserial situations).
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Scene Recognition: For deep scene (category) recognition, we use the trained

CNN scene classification method from Zhou et al. (2014). The classification model is

trained on 205 scene categories (denoted as S).

Constituent Recognition: For deep observed scene constituent (OSC) recogni-

tion, we augment the Flickr 8K image dataset with human annotations of constituents

using Amazon Mechanical Turks. We specifically ask the annotators to annotate not

only objects, but also what the objects are doing and about the properties of objects

9 . We allow the labelers to use free-form text for describing constituents to reduce

the annotation effort. We obtain a standardized set of constituents by performing

stop-words removal, parts-of-speech processing to retain nouns, adjectives and verbs.

We use the top 1000 most frequent phrases (denoted as C). Some of the top phrases

are dog run, dog play, kid play, person wear shorts etc. We post-process the an-

notations for each training image in a similar manner, and consider the phrases as

labels if they are among the 1000 top constituents. For each image, we then use the

pre-trained CNN model from Krizhevsky et al. (2013) to extract a 4096 dimensional

feature vector (using Donahue et al. 2014b). We then trained a multi-label SVM to

recognize constituents using these deep features.

The output from the detection system consists of object (Pr(n|x)), scene (Pr(s|x))

and constituent (Pr(c|x)) detection scores for the top 5 objects, top 5 scene categories,

and top 10 constituents; for each image x ∈ I.

5.4.2 Constructing SDGs from Detections

We first pre-process the annotations from the training images to capture the re-

quired commonsense knowledge in the “Knowledge Extraction and Storage” phase.

Then we use a rule-based reasoning algorithm to infer a knowledge structure.

9We make this dataset publicly available at http://bit.ly/1MMN1wZ.
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Pre-processing Phase

Inferred scene constituents often have correlations with scene categories (such as audi-

ence in stadium). In this phase, we collect a mapping (SM) between scene categories

and ISCs; and learn a prior belief (P (isc|scene)) for each ISC in a scene. For example,

for the scene class airport terminal, we add {waiting room, big glass view, travelers}

as the list of probable ISCs; and learn the priors 0.7, 0.7 and 0.9 respectively for ISCs.

We use scene category detection tuples, ([ci, P r(ci|x)]5i=1) for training images

(x ∈ I), which we denote as ST . For detections, we use the deep Scene (category)

Recognition module to detect the top 5 scene categories from each training image.

We denote the human annotations for all training images as Atr.

Knowledge Extraction and Storage

To capture the commonsense and probabilistic knowledge about the domain, we cre-

ated a Knowledge Base Kb and a Bayesian Network Bn using the pre-processed

data (〈SM ,ST ,Atr〉). To extract knowledge from the annotations, we extensively use

a semantic parser, called K-parser (Sharma et al. 2015).

Knowledge Base: As described in Chapter 3.2 10 , the knowledge-base is mainly

a knowledge-graph (G), which is a collection of word1-relation-word2 triplets,

where word1 and word2 can be Event (actions, linking-verbs present in Atr), Entity

(from N ) or a Trait (adjectives, qualitative-nouns from Atr or WordNet-superclass

of a word). The relation comes from a closed set of semantic relations from KM-

Ontology 11 . The graph contains the knowledge of i) all possible Entities (concrete

nouns) participating in Events (actions and linking verbs), and ii) possible traits

10For details of the knowledge base construction and K-Parser, please check Chapter 3.2.

11agent, recipient, location, origin, object, destination, semantic role,
superclass are some of the important relations in context of this work. Extensive list can
be found in kparser.org.
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(properties, such as color, semantic role-labels) that the Entities have. Figure 5.4

depicts a snapshot of G.

Figure 5.4: Knowledge Base Creation Using a Semantic Parser.

As shown in Figure 5.4, we use K-parser for knowledge extraction from each sen-

tence of the Image Annotations. We first reconcile the Entities in the K-parser output

graph with corresponding nouns in N , using WordNet similarities. Then, the graphs

are merged based on overlapping Events. Entities connected by agent, recipient,

object, location, origin, and destination relations to an Event, are retained.

Causal connections between Events are also retained. All Traits connected to the

Entities are retained as well. The merged knowledge-graph is stored as G. We store

the unique semantic parses of captions in C to provide contextual knowledge such as

(x-r-y) occurs along-with (y-superclass-z) in some context C ∈ C. We formally

represent our Knowledge Base as Kb = 〈G, C〉.

The Bayesian Network (Bn): Objects and scene constituents often co-occur in

a scene. Authors in Kollar and Roy (2009) use such co-occurrence to classify scenes.

In this work, we capture the knowledge of naturally co-occurring objects (N ), their

siblings from WordNet (NS) and ISCs (CIs), by learning a Bayesian Network that

represents the dependencies among them. We create the training data D which is a

collection of tuples T (where T = [ti]
N
i=1 and N = |N | + |NS| + |CIs|). Each term ti

is binary and is set to 1 if the ith object (or ISC) occurs in the tuple. We use the

Tabu Search algorithm to learn the structure and then we populate the Conditional
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Probability Tables using the R-bnlearn package (Scutari 2010). To create D, we

process the annotations for each training image (Atr) to automatically detect Entities

and ISCs. We parse the sentences using K-parser and extract Entities. We match

these Entities with objects in (N ∪ NS) based on base-forms and synonyms of the

words. Some of the ISCs are detected using rule-based techniques, for e.g., we detect

the edges edge(wear, agent, person) and edge(wear, recipient, shorts) in

the K-parser semantic graph for ISC “people wearing shorts”. To detect ISCs seldom

mentioned in annotations, we detect the top scene class for a training image and we

look-up all ISCs of the scene category using the mapping SM .

Inference through Knowledge and Reasoning

Figure 5.5: Summary of Notations Used in the Paper. The Second Column Shows
the Terminology Popularly Used in Computer Vision and the Third Column Shows
the Terms Introduced in This Work (Some of Which Are Adopted from Sharma et al.
2015).

Prior to neural approaches to image captioning, researchers from the vision and

language community used keyword-based image annotations to predict the subjects,

objects and scenes from images, and they predicted correlated verbs or prepositions

using learned language models (Yang et al. 2011). Inspired by these approaches, we

use the commonsense knowledge 〈Kb,Bn,SM〉 and the detections 〈Pr(n|x), Pr(s|x),
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Pr(c|x)〉 for an image (x ∈ I) to construct the different components of the SDG (a

labeled graph) in the following way. We use Entities to denote objects, and Events

to denote actions (and linking verbs). All the notations and terms used in this paper

are summarized in Figure 5.5.

I. Additional Entities and Events (from OSCs): We extract Entities (nouns)

and Events (verbs) from the top 10 constituents (based on Pr(c|x)) and add to the

set of detections. For example, from the constituent person wearing sweatshirt we get

an Event wear with two Entities person and sweatshirt.

II. Inferred Scene Constituents: We look-up the ISCs for the top 5 detected

scenes (based on Pr(s|x)) from SM , and call that collection Ĉ. Initially, Cinf = φ,

and Ox = {n|Pr(n|x) > αh}. We calculate

Cmax = arg max
c∈Ĉ

P (s|Cinf ,Ox), (5.1)

and add Cmax to Cinf . We iterate while the entropy E keeps decreasing (or while

number-of-iterations is less than T 12 ). The entropy is calculated as:

E =
∑
c∈Ĉ

{−P (c|Cinf ,Ox) ∗ logP (c|Cinf ,Ox)}. (5.2)

The conditional probabilities are calculated using Bn.

III. Noisy Objects: Next, we rectify the low-scoring Entities based on Ox and

Cinf . For each low-scoring Entity, we get all its siblings, i.e., we get all the children

of its hypernyms from WordNet. For example, if bathing cap is assigned a low score,

the assigned superclass is cap and its children are baseball cap, ski cap etc. We

calculate the following omax = arg maxo∈siblings P (o|Cinf ,Ox), and then add omax to

the high-scoring Entities list (Ox).
12The hyper-parameters (T, αh) are set based on performance on validation data. In our experi-

ments, we have used the values 5, 0.5 respectively.
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IV. Inferring Events: Given the Entities (Ox), we first find connecting Events

between each pair of Entities. To logically find a co-occurring Event for a pair

of Entities (e1, e2 ∈ Ox), we consider the Event-nodes on the shortest path from

one Entity to another in the graph G. For example, consider the Entities person

and swimming trunks (corresponds to the vertex trunk in Kb). We get Events such as

sniff, climb, wear etc., i.e., some corresponding to tree-trunk and others to swimming-

trunks. We denote the set of connected Entities by Oev and set of Events by Ev.

For filtering spurious Events, we use the semantics in K-parser edge labels and

the superclass (type) of the Entities from Kb. We retain Events only if they are con-

nected to the Entities using compatible edge-pairs in G. Compatible edge-pairs are:

(agent-recipient), (agent-location), (agent-object). For example, (agent,

recipient) is a compatible pair and only an animate Entity can be an agent. Thus,

the Event wear is retained with respect to Entities person and trunk. To filter Events

such as climb, we use the superclasses of the Entities and the set of Scenes C. We

retain only those Events that are connected to Entities from the same pair of classes

as e1, e2, in at least one scene in C.

V. Inferring Scenes: Given the filtered Events and Entities (Oev), we consider

a Scene in C as candidate if all edges from a detected valid Event, are present in

it. Next, we weight each candidate Scene (Ccand) using the remaining Entities in

(Ox \ Oev) and ISCs (Cinf ); i.e., increase a counter if an Entity or ISC occurs in the

graph (Ccand). We also calculate a joint confidence-score for each scene based on the

Pr(n|x), Pr(s|x), Pr(c|x) values of the object, scene category and constituents (OSC)

present in the Scene. Based on the counters and the joint confidence-score, we rank

the Scenes.

VI. SDG Construction: If we do not find a suitable Scene in C (i.e. confi-

dence score of the top scene is less than a threshold), we construct an SDG using
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the following rules: i) add edge(scene, component, s) for all ISC s in Cinf ; ii)

add edge(event, location, scene) for the top detected Events; iii) add all com-

patible edges related to the Events in Ev such as edge(wear,agent,person) and

edge(wear,recipient,trunk); and iv) for all Entities oim in (Ox \ Oev): if it is

an animate Entity, add edge(oim, location, scene); Otherwise, find the shortest

path from oim to the top detected Event in the Kb and add the edges on the path to

the SDG.

5.5 Experiments and Results

The above approach presents two hypotheses that require empirical evaluation:

i) SDGs carry detailed information about images (thoroughness); ii) SDGs carry

relevant semantic information about the salient aspects of the image (relevance).

Collecting groundtruth Scene Description Graphs are difficult, time-consuming, and

expensive. Lastly, guaranteeing the reliability of the crowdsourcing of such complex

annotations is also difficult. Instead, here we first generate captions from these SDGs

and use two end-to-end tasks (Image Retrieval and Caption Generation) to support

the hypotheses presented in this paper. We use the image retrieval task that directly

use the generated SDGs from images and semantic parses from text (used as query).

This task tests the discriminative (image-specific) information encoded by the gener-

ated SDGs. Caption generation is a task of generating relevant descriptive sentence(s)

from an image; relevance and thoroughness being the two distinct criteria, with which

the quality of captions can be judged. Hence, we use this task to test the relevance

and thorughness of the generated SDGs.

We adopted two experiments to evaluate the generated SDGs: i) qualitative eval-

uation of generated sentences and ii) image-sentence alignment evaluation. We com-

pare our results with Karpathy and Li (2014) as it was one of the recent (and among

94



the first) neural approaches that produced best results over all the previous works.

We also compare our results with another more recent neural captioning method

by Vinyals et al. (2017) (appeared in IEEE TPAMI 2016) which reported improved

quality of captions in comparison to Karpathy and Li (2014). This method uses the

latest Inception-V3 architecture to process images and an Long-Short Term Memory

(LSTM) model to generate captions. We first describe the testbed and the procedure

for generating captions from the competing methods.

Testbed: In this paper, we use three image data sets, popularly referred to

as Flickr 8k, Flickr 30k and MS-COCO datasets (Hodosh et al. 2013). These three

datasets have 8092, 31783 and more than 160K images respectively. Every image from

these datasets is annotated with 5 sentences describing the image. For all datasets,

we used the train-test splits from Karpathy and Li (2014) and the 4000 testing images

(1000 each from Flickr 8k and Flickr 30k and 2000 from MS-COCO validation set)

serve as the testing bed for our experiments.

Generating Captions: For our system, we generate sentences from SDGs us-

ing SimpleNLG (Gatt and Reiter 2009). For example, for the edges edge(wear,

agent, person) and edge(wear, recipient, shorts), we will generate “a person

is wearing shorts”. Based on the edge-labels (labels from KM-ontology) we populate

the verb, subject, object, prepositions and adjectives (including quantitative 13 ) of

sentences using simple rules. The other rules used are: i) edge( ,location,A) is

mapped to “in the A”, ii) edge( ,origin,B) is mapped to “from the B”; and iii) all

edges of the form edge(scene,component,B) is converted to a sentence based on the

template “the scene contains B and ...”. For BRNN Karpathy and Li (2014), we use

the implementation provided by the authors to train and generate sentences from an

13For high-scoring detections, we consider the spatial information from the bounding-boxes. For
N such detections of an object obj, we generate sentences like N obj’s are in the scene.
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image. To generate captions using Vinyals et al. (2017), we use the code provided by

the authors 14 . We initialize the network with the provided pre-trained Inception-V3

checkpoint, and train the model for 2-million steps.

Amazon Mechanical Turk (AMT) Evaluation of Generated Sentences:

Since image description generation is innately a creative process, a metric is created by

asking humans to evaluate these sentences. The evaluation metrics: Relevance and

Thoroughness, are therefore, proposed as empirical measures. Relevance measures

how much the description conveys the image content and Thoroughness quantifies how

much of the image content is conveyed by the description. We engaged the services of

AMT to judge the generated descriptions based on a discrete scale ranging from 1–5

(low relevance/thoroughness to high relevance/thoroughness) 15 . The average of the

scores and their deviation are summarized in Table 5.2. For comparison, we asked

the AMTs to also judge one gold-standard description and the output from Karpathy

and Li (2014).

Experiment Karpathy and Li (2014) BRNN Our Method Gold Standard

R ± D(8k) 2.08± 1.35 2.82 ± 1.56 4.69± 0.78

T ± D(8k) 2.24± 1.33 2.62 ± 1.42 4.32± 0.99

R ± D(30k) 1.93± 1.32 2.43 ± 1.42 4.78± 0.61

T ± D(30k) 2.17± 1.34 2.49 ± 1.42 4.52± 0.93

R±D(COCO) 2.69 ± 1.49 2.14± 1.29 4.71± 0.67

T±D(COCO) 2.55 ± 1.41 2.06± 1.24 4.37± 0.92

Table 5.2: Sentence Generation Relevance (R) and Thoroughness (T) Human Eval-
uation Results with Gold Standard and Karpathy and Li (2014) on Flickr 8k, 30k
Test Images and COCO Validation Images. D: Standard Deviation.

14https://github.com/tensorflow/models/tree/master/im2txt

15We provide the following instructions to the Turkers. Relevance: the description has no relevance
(1)/ only weak relevance (2)/ some relevance (3)/ relates closely (4)/ relates perfectly (5) to the
image. Thoroughness: the description covers nothing (1)/ covers minor aspects (2)/ covers some
aspects (3)/ covers many aspects (4)/ covers almost every aspect (5) of the image.

The human evaluations dataset is available in http://bit.ly/1MMN1wZ.
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A Supplementary AMT study: It is often considered a good practice to

perform multiple independent AMT studies. In Table 5.3, we provide the results of

an independent AMT evaluation (using similar instructions as above). For this study

we compare the sentences generated by our method, a ground-truth sentence, the

output from Karpathy and Li (2014) and Vinyals et al. (2017). As previously stated,

we use the 2000 MS-COCO validation images to report the results.

Experiment
Vinyals et al. (2017)

ShowAndTell

Karpathy and Li (2014)

BRNN
Our Method Gold Standard

R±D(COCO) 3.59 ± 1.36 3.2 ± 1.3 3.11± 1.39 3.9± 1.16

T±D(COCO) 3.16 ± 1.46 3 ± 1.46 2.64± 1.39 3.9± 1.37

Table 5.3: Sentence Generation Relevance (R) and Thoroughness (T) Human Eval-
uation Results with Gold Standard, Karpathy and Li (2014) and Vinyals et al. (2017)
on COCO Validation Images. D: Standard Deviation.

The work in Vinyals et al. (2017) is one of the latest proposed methods using a

state-of-the-art variant of CNN-RNN architecture for image captioning. This supple-

mentary study shows that our method performs reasonably well, even though it is not

tuned for a specific dataset. We also show some qualitative examples on MS-COCO

by the three competing systems in Fig. 5.6.

Automatic Caption Evaluation Results: In this section, we supplement our

experiments with evaluation results using BLEU (Papineni et al. 2002) and Meteor

(Denkowski and Lavie 2014) scores. The BLEU scores are calculated using the original

PERL script 16 provided for statistical machine translation tasks. The Meteor scores

are calculated using the instructions provided by the authors in Denkowski and Lavie

(2014) 17 . We provide detailed insights about the Tables in the Analysis section.

16BLEU Evaluation Perl Script.

17Meteor 1.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: We Provide Some Comparative Captions Generated by Our System (In
Yellow Box), by BRNN Karpathy and Li (2014) (Top Blue Box), by ShowAndTell
Vinyals et al. (2017) (In Pink Box). The Ground-truth Captions Are Given in Lower
Green Boxes. Interesting Human Annotations (Partially or Fully Incorrect) Are
Marked Using Question or Cross Mark.
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Flickr-8k Flickr-30k COCO-2014

Experiment B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 M

Vinyals et al. (2017) ShowAndTell 63 41 27 66.3 42.3 27.7 18.3 66.6 46.1 32.9 24.6

Karpathy and Li (2014) BRNN 57.5 38.3 24.5 16.0 57.3 36.9 24.0 15.7 62.5 45.0 32.1 23.0 19.5

Our Method 30.0 12.6 9.5 5.0 25.9 12.5 10.0 4.0 22.3 13.4 11.0 5.0 10.0

Table 5.4: Sentence Generation BLEU, Meteor Scores in Comparison with Exist-
ing Neural Architectures (Karpathy and Li 2014 and Vinyals et al. 2017) on Flickr-8k
(Test), Flickr30k (Test) and MS-COCO Validation Images. B-n Denotes BLEU Scores
That Uses Upto N-grams. Meteor Scores Are Only Reported for MS-COCO As Fol-
lowed by Other Works. The Scores for Neural Captioning Systems Are As Reported
in Karpathy and Li (2014).

Image-Sentence Alignment Evaluation: We evaluate the image-sentence

alignment quality using ranking experiments. We withhold the testing images and

use the generated sentences as queries. We process the textual query and construct

Gq = (Vq, Eq) using K-parser. For each image, we take the generated SDG Gx =

(Vi, Ei) and calculate similarity between the SDG and the query using the formula:

Sim(Gq,Gx) =
( ∑
vq∈Vq

max
vi∈Vi

sim(vq, vi)
)
/|Vq|

sim(vq, vi) = 0.5 ∗
(
wnsim(label(vq), label(vi))

+ Jaccard(neighbors(vq), neighbors(vi))
)
.

Vertex-similarity is calculated based on word-meaning similarity and neighbor

similarity. Here wnsim(., .) is Lin Similarity (Lin 1998) between two words and

Jaccard(., .) is the standard Jaccard coefficient similarity. Based on the above mea-

sure, we provide the image retrieval results compared with results from Karpathy

and Li (2014) in Table 5.5. Additionally, we provide the results of the Show-and-Tell

method (Vinyals et al. 2017) for Flickr8k and Flickr30k, as provided by the authors.

Interestingly, our results for image search is better compared to this recent work for

Flickr30k dataset.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: The SDGs in (b), (d), (f) and (h) Corresponds to Images (a), (c), (e)
and (g) Respectively. More Examples are at http://bit.ly/1NJycKO.
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Flickr8k

Model R@1 R@5 R@10 Med r

Karpathy and Li (2014) BRNN 11.8 32.1 44.7 12.4

Vinyals et al. (2017) ShowAndTell 19 64 5.0

Our Method-SDG 18.1 39.0 50.0 10.5

Flickr30k

Karpathy and Li (2014) BRNN 15.2 37.7 50.5 9.2

Vinyals et al. (2017) ShowAndTell 17 57 7.0

Our Method-SDG 26.5 48.7 59.4 6.0

MS-COCO

Karpathy and Li (2014) BRNN (1k) 20.9 52.8 69.2 4.0

Our Method-SDG (1k) 19.3 35.5 49.0 11.0

Our Method-SDG (2k) 15.4 32.5 42.2 17.0

Table 5.5: Image-Search Results: We Report the Recall@K (for K = 1, 5 and 10)
and Med r (Median Rank) Metric for Flickr8k, 30k and COCO Datasets. For COCO,
We Experimented on First 1000 (1k) and Random 2000 (2k) Validation Images.

5.5.1 Analysis

In this Section, we analyze several aspects of the conducted experiments, and

the results, and present more insights on the added aspect of external commonsense

knowledge and interpretability.

Comparable Systems: There are other works in image retrieval (Ma et al.

2015b) and caption generation (Devlin et al. 2015) that achieve better results than

shown in Table 1 and 2. However, the motivation behind our work was to propose a

meaningful representation that provides a seamless interface between image and text

and, a framework that uses a combination of vision and reasoning to construct such

structures. We believe that from a motivational standpoint, our work is not directly

comparable with such systems. Authors in Schuster et al. (2015) propose a semantic

scene graph generation from images. However, to apply symbol-level reasoning on

semantic structures, it is important that the relations come from a well-defined closed

set of meaningful labels, whereas the relations used in Schuster et al. (2015) are open-
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ended text. To that end, other related works (Lan et al. 2012; Elliott and Keller

2013b) have proposed a bounded set of spatial relations between detected objects

and regions (grounded in the image) to represent a scene. However, we compare our

results with two popular recent neural captioning approaches Karpathy and Li (2014)

and Vinyals et al. (2017).

Human AMT and Automatic Caption Evaluation Results: In Tables 5.2

and 5.3, we present the human evaluation results of the generated captions from our

system and two competing systems. We have conducted these studies using Amazon

Mechanical Turker as it is a well-accepted crowdsourcing platform in the community,

and studies (Paolacci et al. 2010) show that this platform is less noisy, error-prone

and biased than other methods. However, the means for all the systems are higher

in Table 5.3 compared to Table 5.2. This is expected as, human evaluations are

inherently subjective, which can cause exact values from different studies to differ.

We note that the two independent studies are consistent in the relative ranking (with

Karpathy and Li (2014) ranking above ours). In Table 5.4, we present the automatic

evaluation results using BLEU and Meteor scores. According to the results, our

method fares worse in comparison to the other systems. Looking closely, for the image

in Figure 5.6(a), our generated sentence is scored 11.5, 0.0, 0.0, 0.0 using BLEU-1 to

4 metric; while a less informative sentence from the Neural architecture (BRNN)

is scored 40.0, 0.0, 0.0, 0.0. In an even worse comparison, for the image in 5.6(d),

both generated sentences are correct in meaning. Yet, the sentence from BRNN is

rated 90.0, 83.7, 80.7, 78.3, while the caption from our system is rated 20.0, 0.0.0.0, 0.0.

Additionally for Figure 5.6(d), there is no evidence that the person in the image is a

man or a woman. In that sense, the BLEU metric overestimates the correctness

of the caption from BRNN. In summary, the larger scores are expected as the

neural captioning systems learn the language construct and the image to language
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mapping from training captions. As the train, test and validation data come from the

same distribution, the vocabulary and the language construct for the test images tend

to be similar. In comparison, in our system the sentences are generated using few fixed

templates and the vocabulary is not restricted to the words in the training captions,

and more importantly the sentences are not directly optimized to be syntactically

similar to the training captions. For example, in many cases we use a collection

of short sentences to convey similar information; and many sentences begin with

the scene contains. As the automatic metrics solely rely on the vocabulary and

language construct of the ground-truth captions, these metrics heavily penalize these

template-based sentences. This noisiness is well-known in the community 18 and more

automatic caption evaluation metrics are proposed. However, the task of captioning

an image is a subjective task. Clearly, lower scores from automatic metrics that

directly compare with ground-truth captions do not reflect that the performing system

is worse, as the generated caption can match some other caption written by a different

Turker than the Turkers who annotated the image. This is why we perform human

evaluations of thoroughness and relevance of the captions. It allows us to test how

correctly and thoroughly the generated captions describe an image. As also discussed

in a recent survey by Bernardi et al. (2016), human evaluation measures like the one

adopted in our methodology, have many advantages, and prior to Neural approaches

the majority of captioning systems adopted such measures (cf. Table 3 of Bernardi

et al. 2016).

Impact of Knowledge Base and Bayes Net: The Knowledge-Base and the

Bayes Net encode important background knowledge which enrich the SDGs and rec-

tify noisy information from visual detection modules. The C (in Kb) and Bayes Net

18The work in Kilickaya et al. (2017) shows the different automatic image captioning metrics
have very little correlation with human judgment. Notably, this work uses our Composite dataset
(captions from SDG, Karpathy and Li 2014 and AMT scores) to show the above result.
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encodes contextual knowledge, i.e. which type of entities and events, or entities and

ISCs co-occur in common contexts. In Figure 5.6, the information in sentences “the

scene contains ...” are obtained from the Bayes Net. Additionally, the Knowl-

edge base encodes events or actions that occur in context of entities, for example all

verbs in Figure 5.6 is inferred by the Knowledge Base based on the detected entities.

Interpretability: One of the major disadvantages of many end-to-end learn-

ing approaches (especially, the current neural network based approaches) is the lack

of model interpretability or explicit explanations. This is one of the fundamental

motivations behind our proposed intermediate knowledge structure and our archi-

tecture. Referring to Figure 5.7g, the initial top object and scene detections are:

{person, backpack, artichoke, hat with a wide brim}; {wheat field, cemetery, foun-

tain, corn field} etc. The constituent detections are: {person sitting on stone, person

wearing red shoes, person wearing gloves}. An SDG combined with our architecture

can facilitate explainability in the following ways: i) why the SDG in 5.7g contains

person and backpack? They are detected by object classifiers with high probability;

ii) why the SDG in 5.7g contains erected stone? Because scene categories such as

cemetery co-occurs with erected stone (knowledge from SM); iii) why the SDG in

5.7g has verb carry, wear? Because it co-occurs with the entities (person, backpack)

(knowledge from Kb). In short, explanations for the components in the SDG in 5.7g

can be tracked back to one of the knowledge sources in (〈Kb,Bn,SM〉) or the visual

detection Module.

5.5.2 Question-Answering (QA) Case Studies

Using SDGs to answer a question requires development of sophisticated proba-

bilistic logical mechanism (or neural reasoning mechanisms) that can sift through the

noise in the generated SDG, understand the natural language question and give an
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answer. Such mechanisms require further research and development. Instead, in this

section, we motivate the use of SDGs by providing a few examples of a question-

answering system (with a simple reasoning module) that can be built based on the

generated Scene Description Graphs.

Figure 5.8: Two Example Images from Flickr 8k. The State-of-the-art Detections
for Both the Images Are Quite Noisy. Still, the Current Framework Is Able to Detect
Plausible Structured Graphs Which Can Be Queried Upon.

For the image in Figure 5.8a, the Scene Description Graph is represented as a

set of has-tuples. Relying on the advantage of using meaningful relations from KM-

ontology, we can use these as inputs to an Answer Set Program (Gelfond and Lifschitz

1988). If we pose the question that “Is someone drinking from the fountain?” in ASP

(as shown in the figure), we can execute the program in Clingo-3 and we get the

answer as yes fountain(person1).

For the second image in Figure 5.8b, we pose the question “is someone playing

tennis”. In this case, we need additional background knowledge such as “if someone is
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holding or swinging a tennis racket, then the game might be tennis” to detect the game

of tennis. Again, the question is posed in ASP, using the generated SDG, we obtain

the boolean value of tennis detector as True. Though the above question is written in

ASP without any probabilistic weight, one can rewrite the rules in Probabilistic Soft

Logic (Kimmig et al. 2012b) assigning a weight to the rule for “tennis detector”. One

can then use the semantic similarity between “racket” and “tennis” from knowledge

sources such as ConceptNet, word2vec to design the weights of the rules (as in Aditya

et al. 2016b).

5.6 Conclusion

In this chapter, we introduce a new semantic representation for scene analysis

called the Scene Description Graph (SDG), and an architecture that combines deep

visual detection and reasoning modules to infer such structures. The SDG is a rep-

resentation of the scene, which integrates direct visual knowledge (objects and their

locations in the scene) and additional knowledge obtained using background common

sense knowledge. In addition, the SDG has a structure similar to semantic repre-

sentations of sentences, thus facilitating the interaction between vision and natural

language. Having built a common-sense knowledge base related to the domain, we

proposed a method of obtaining SDGs from noisy labels using our reasoning module.

Recovering the SDG of a scene not only allows the automatic creation of sentences

describing the scene, but when used together with background knowledge, it also has

potential usages in reasoning and question-answering about the scene.

We present an implementation of the proposed architecture and demonstrate the

effectiveness of the generated SDGs using image captioning and image retrieval tasks.

Our experiments based on the metrics of thoroughness and relevance, show that the

information content in the generated sentences is quiet thorough and relevant; and
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the generated sentences are as informative as those from existing neural approaches.

We show how automatic metrics such as BLEU, METEOR over-estimates the quality

of the captions generated from Neural approaches and hence, they can not be consid-

ered solely to judge captioning systems. We also discuss how SDGs can be used to

answer questions. Furthermore, we show how the proposed framework can be used to

explain the results and analyze the sources of the errors (visual detection, knowledge

base or reasoning). Lastly, our approach and the experiments with the proposed in-

termediate structure motivates us to pursue further. In the next chapter, we describe

our approach to visual question answering where we develop a reasoning module and

a corresponding suitable knowledge structure for an image to answer questions about

the image.
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Chapter 6

APPLICATION 2: VISUAL QUESTION ANSWERING

6.1 Visual Question Answering

Many vision and language tasks require commonsense reasoning beyond data-

driven image and natural language processing. In Chapter 5, we discussed our ap-

proach to the popular application of image captioning. Here we adopt another repre-

sentative image understanding task called visual question answering (VQA), where a

system is expected to answer a question in natural language about an image. Current

state-of-the-art systems attempted to solve the task using deep neural architectures

and achieved promising performance. However, the resulting systems are generally

opaque and they struggle in understanding questions for which extra knowledge is

required. In this chapter, we present an explicit reasoning layer on top of a set of

penultimate neural network based systems. The reasoning layer enables reasoning

and answering questions where additional knowledge is required, and at the same

time provides an interpretable interface to the end users. The reasoning layer adopts

a Probabilistic Soft Logic (PSL) based engine to reason over a basket of inputs: visual

relations, the semantic parse of the question, and background ontological knowledge

from word2vec and ConceptNet. Experimental analysis of the answers and the key

evidential predicates generated on the VQA dataset validate our approach.

The kind of knowledge required to answer a question depends on the semantic

category of the question. In the latter part of this chapter, we present a curated

list of semantic categories that are sufficient to classify questions posed against an

image. To classify questions in the state-of-the-art VQA dataset, we first annotate
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a set of questions with semantic categories. We use graduate students of Computer

Science (trained in natural language processing) as annotators to ensure high quality.

We then propose a semi-supervised learning approach to annotate the rest of the

questions in VQA with sufficiently high accuracy. These semantic categories pave

the way for using other kinds of knowledge to answer the different types of questions

posed against an image.

6.2 Introduction

Authors in Antol et al. (2015a) recently proposed the task of visual question

answering (VQA) which requires a system to generate natural language answers to

free-form, open-ended, natural language questions about an image. This is one of

the vision and language tasks that is considered as a compelling “AI-complete” task

as it requires multi-modal knowledge beyond a single sub-domain. Needless to say,

this task is extremely challenging since it falls on the junction of three domains

in Artificial Intelligence: image understanding, natural language understanding, and

commonsense reasoning. With the rapid development in deep neural architectures for

image understanding, end-to-end networks trained from pixel level signals together

with word embeddings of the posed questions to the target answer, have achieved

promising performance (Malinowski et al. 2015; Gao et al. 2015a; Lu et al. 2016b).

Though the resulting answers are impressive, the capabilities of these systems are still

far from being satisfactory. We believe the primary reason is that many of these sys-

tems overlook the critical roles of natural language understanding and commonsense

reasoning, and thus fail to answer correctly when additional knowledge is required.

To complement the current successful end-to-end systems, we developed two ma-

jor add-on components: 1) a semantic parsing module for questions and captions, and

2) an augmented reasoning engine based on PSL (Bach et al. 2015). The rationale be-
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Figure 6.1: An Overview of the Architecture of Our Proposed Approach. In This
Example, the Reasoning Engine Figures Out That “Barn” Is a More Likely Answer,
Based On the Evidences: i) Question Asks for a Building and Barn Is a Building
(ontological), ii) Barn Is More Likely than Church as It Relates Closely (Distribu-
tional) to Other Concepts in the Image such as, Horses and Fence Detected from
Dense Captions. Such Ontological and Distributional Knowledge is Obtained from
ConceptNet and Word2vec. They Are Encoded as Similarity Metrics for Seamless
Integration with PSL.

hind adding these two components are mainly threefold. Firstly, the semantic parser

for question understanding helps the system to represent the information suitably for

the reasoning engine; and the semantic parser for dense captions generated from the

images (Johnson et al. 2016b) adds on a structured source of semantics. Secondly,

questions such as “Is the airplane about to take off?, Is it going to rain?” (prospec-

tive) and “What is common between the animal in the image and an elephant?”

(ontological) require various kinds of background and commonsense knowledge to an-

swer. To reason with such knowledge together with the probabilistic nature of image

understanding outputs, we develop an augmented PSL based reasoning engine. Most

importantly, with the question understanding component and the reasoning engine,

we are able to track the intermediate outputs (see Figure 6.1) for interpreting the

system itself. These intermediate outputs along with the generated evidential predi-

cates show a promising pathway to conduct insightful performance analytics, which

is incredibly difficult with existing end-to-end technologies. Thus, the presented aug-

mentations can help the community to gain insight behind the answers, and take a

step towards explainable AI (Ribeiro et al. 2016; Lombrozo 2012).
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While an explicit reasoning layer is novel, there are other works that studied

the reasoning aspect of VQA. Very recently, researchers have started exploring the

role of language understanding and multiple-step compositional reasoning for VQA

(Johnson et al. 2016a). Instead of working on unconstrained images from original

VQA corpus (Antol et al. 2015a), the researchers switched to collecting a new corpus

under a constrained setting. While the questions are designed to track aspects of

multi-step reasoning, the constrained setting reduces the noise introduced by the

image understanding pipelines, and simplifies the challenge that a reasoning module

might face in an unconstrained environment. Instead, our reasoning system aims to

deal with the vast amount of recognition noises introduced by image understanding

systems, and targets solving the VQA task over unconstrained (natural) images. The

presented reasoning layer is a generic engine that can be adapted to solve other image

understanding tasks that require explicit reasoning. We make the details about the

engine publicly available for further research 1 .

Here we highlight our contributions: i) we present a novel reasoning component

that successfully infers answers from various (noisy) knowledge sources for (primarily

what and which) questions posed on unconstrained images; ii) the reasoning compo-

nent is an augmentation of the PSL engine to reason using phrasal similarities, which

by its nature can be used for other language and vision tasks; iii) we annotate a sub-

set of Visual Genome (Krishna et al. 2016) captions with word-pairs and open-ended

relations, which can be used as the seed data for semi-supervised semantic parsing of

captions.

1See Chapter 3 for the implementation overview and download information.
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6.3 Related Work

Our work is influenced by four thrusts of work: i) predicting structures from im-

ages (scene graph/visual relationship), ii) predicting structures from natural language

(semantic parsing), iii) QA on structured knowledge bases; and the target application

area of visual question answering.

Visual Relationship Detection or Scene Graphs: Recently, several ap-

proaches have been proposed to obtain structured information from static images.

Elliott and Keller (2013a) used objects and spatial relations between them to rep-

resent the spatial information in images, as a graph. Johnson et al. (2015b) uses

open-ended phrases (primarily semantic, actions, linking verbs and spatial relations)

as relations between all the objects and regions (nouns) to represent the scene infor-

mation as a scene graph. Lu et al. (2016a) predicts visual relationships from images

to represent a set of spatial and semantic relations between objects, and regions.

To answer questions about an image, we need both the semantic and spatial rela-

tions between objects, regions, and their attributes (such as, 〈person, wearing, shirt〉,

〈person, standing near, pool〉, and 〈 shirt, color, red〉). Defining a closed set of mean-

ingful relations to encode the required knowledge from perception (or language) falls

under the purview of semantic parsing and is an unsolved problem. Current state-of-

the-art systems use a large set of open-ended phrases as relations, and learn relation-

ship triplets in an end-to-end manner.

Semantic Parsing: Researchers in NLP have pursued various approaches to for-

mally represent the meaning of a sentence. They can be categorized based on the (a)

breadth of the application, such as general-purpose semantic parsers and application

specific parsers (for QA against structured Knowledge bases); and (b) the target rep-

resentation, such as logical languages (λ-calculus Rojas (2015), first order logic), and
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structured semantic graphs. Our processing of questions and captions is more closely

related to the general-purpose parsers that represent a sentence using a logical lan-

guage or labeled graphs, also represented as a set of triplets 〈node1, relation, node2〉.

In the first range of systems, the Boxer parser (Bos 2008), translates English sentences

into first order logic. Despite its many advantages, this parser fails to represent the

event-event and event-entity relations in the text. Among the second category, there

are many parsers which proposes to convert English sentences into the AMR rep-

resentation (Banarescu et al. 2013). However, the available parsers are somewhat

erroneous. Other semantic parsers such as K-parser (Sharma et al. 2015), represent

sentences using meaningful well-defined set of relations. But they are also error-prone.

QA on Structured Knowledge Bases: Our reasoning approach is motivated

by the graph-matching approach, often followed in question-answering systems on

structured databases (Berant et al. 2013; Fader et al. 2014). In this methodology,

a question-graph is created, that has a node with a missing-label (?x). Candidate

queries are generated based on the predicted semantic graph of the question. Using

these queries (database queries for Freebase QA), candidate entities (for ?x) are re-

trieved. From structured Knowledge-bases (such as Freebase), or, unstructured text,

candidate semantic graphs for the corresponding candidate entities are obtained. Us-

ing a ranking metric, the correct semantic graph and the answer-node is then chosen.

In Mollá (2006), authors learn graph-based QA rules to solve factoid question answer-

ing. But, the proposed approach depends on finding maximum common sub-graph,

which is highly sensitive to noisy prediction and dependent on robust closed set of

nodes and edge-labels. Until recently, such top-down approaches have been difficult

to attempt for QA in images. However, recent advancements of object, attributes and

relationship detections has opened up the possibility of efficiently detecting structures

from images and applying reasoning on these structures.
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In the field of Visual Question Answering, very recently, researchers have

spent a significant amount of effort on creating datasets and proposing models of

visual question answering (Antol et al. 2015a; Malinowski et al. 2015; Gao et al.

2015a; Ma et al. 2015a; Aditya et al. 2016a). Both Antol et al. (2015a) and Gao

et al. (2015a) adapted MS-COCO (Lin et al. 2014) images and created an open

domain dataset with human generated questions and answers. To answer questions

about images both Malinowski et al. (2015) and Gao et al. (2015a) use recurrent

networks to encode the sentence and output the answer. Specifically, Malinowski

et al. (2015) applies a single network to handle both encoding and decoding, while

Gao et al. (2015a) divides the task into an encoder network and a decoder one. More

recently, the work from Ren et al. (2015) formulates the task straightforwardly as a

classification problem and focuses on the questions that can be answered with one

word.

A recent survey article by Wu et al. (2016b) on VQA dissects the different methods

into the following categories: i) Joint Embedding methods, ii) Attention Mechanisms,

iii) Compositional Models, and iv) Models using External Knowledge Bases. Joint

embedding approaches were first used in image captioning methods where the text

and images are jointly embedded in the same vector space. For VQA, primarily a

convolutional neural network for images and a recurrent neural network for text is

used to embed into the same space and this combined representation is used to learn

the mapping between the answers and the question-and-images space. Approaches

such as Malinowski et al. (2015); Gao et al. (2015a) fall under this category. Au-

thors in (Zhu et al. 2015; Lu et al. 2016b; Andreas et al. 2015) use different types

of attention mechanisms (word-guided, question-guided attention map etc) to solve

VQA. Compositional Models take a different route and try to build reusable smaller

modules that can be put together to solve VQA. Some of the works along this line
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are Neural Module Networks (Andreas et al. 2015), and Dynamic Memory Networks

(Kumar et al. 2015). Lately, there have been attempts of creating QA datasets that

solely comprises of questions that require additional background knowledge along

with information from images (Wang et al. 2015).

In this work, to answer a question about an image, we add a probabilistic reasoning

mechanism on top of the knowledge (represented as semantic graphs) extracted from

the image and the question. To extract such graphs, we use semantic parsing on

generated dense captions from the image, and the natural language question. To

minimize the error in parsing, we use a large set of open-ended phrases as relations,

and simple heuristic rules to predict such relations. To resolve the semantics of

these open-ended arguments, we use knowledge about words (and phrases) in the

probabilistic reasoning engine. In the following section, we introduce the knowledge

sources and the reasoning mechanism used.

6.4 Knowledge and Reasoning Mechanism

In this Section, we briefly introduce the additional knowledge sources used for

reasoning on the semantic graphs from question and the image; and the reasoning

mechanism used to reason about the knowledge. As we use open-ended phrases as

relations and nodes, we need knowledge about phrasal similarities. We obtain such

knowledge from the learnt word-vectors using word2vec.

Word2vec uses distributional semantics to capture word meanings and produces

fixed-length word embeddings (vectors). These pre-trained word-vectors have been

successfully used in numerous NLP applications and the induced vector-space is

known to capture the graded similarities between words with reasonable accuracy

(Mikolov et al. 2013). In this work, we use the 3 Million word-vectors trained on

Google-News corpus (Mikolov et al. 2013).
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To reason with such knowledge we explored various reasoning formalisms and

found Probabilistic Soft Logic (PSL) (Bach et al. 2015) to be the most suitable, as it

can not only handle relational structure, inconsistencies and uncertainty, thus allowing

one to express rich probabilistic graphical models (such as Hinge-loss Markov random

fields), but it also seems to scale up better than its alternatives such as Markov Logic

Networks (Richardson and Domingos 2006b).

6.5 Our Approach

Inspired by the textual Question-Answering systems (Berant et al. 2013; Mollá

2006), we adopt the following approach: i) we first detect and extract relations be-

tween objects, regions and attributes (represented using has img(w1, rel, w2) 2 ) from

images, constituting Gimg; ii) we then extract relation between nouns, the Wh-word

and adjectives (represented using has q(w1, rel, w2)) from the question (constituting

Gq), where the relations in both come from a large set of open-ended relations; and

iii) we reason over the structures using an augmented reasoning engine that we de-

veloped. Here, we use PSL, as it is well-equipped to reason with soft-truth values of

predicates and it scales well (Bach et al. 2015).

6.5.1 Extracting Relationships from Images

We represent the factual information content in images using relationship triplets

3 . To answer factual questions such as “what color shirt is the man wearing”, “what

type of car is parked near the man”, we need relations such as color, wearing, parked

2In case of images, w1 and w2 belong to the set of objects, regions and attributes seen in the
image. In case of questions, w1 and w2 belong to the set of nouns and adjectives. For both, rel
belongs to set of open-ended semantic, spatial relations, obtained from the Visual Genome dataset.

3Triplets are often used to represent knowledge, such as RDF-triplets (in semantic web), triplets
in Ontological knowledge bases has the form 〈subject, predicate, object〉Wang et al. (2017). Triplets
in Lu et al. (2016a) use 〈object1, predicate, object2〉 to represent visual information in images.
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near, and type of. In summary, to represent the factual information content in images

as triplets, we need semantic relations, spatial relations, and action and linking verbs

between objects, regions and attributes (i.e. nouns and adjectives).

To generate relationships from an image, we use the pre-trained dense captioning

system by Johnson et al. (2016b) to generate dense captions (sentences) from an im-

age, and heuristic rule-based semantic parsing module to obtain relationship triplets.

For semantic parsing, we detect nouns and noun phrases using a syntactic parser (we

use Stanford Dependency parsing by De Marneffe et al. (2006)). For target relations,

we use a filtered subset 4 of open-ended relations from the Visual Genome dataset

(Krishna et al. 2016). To detect the relations between two objects or, object and an

attribute (nouns, adjectives), we extract the connecting phrase from the sentence and

the connecting nodes in the shortest dependency path from the dependency graph

5 . We use word-vector based phrase similarity (aggregate word-vectors and apply

cosine similarity) to detect the most similar phrase as a relation. To verify this heuris-

tic approach, we manually annotated 4500 samples using the region-specific captions

provided in the Visual Genome dataset. The heuristic rule-base approach achieves a

64% exact-match accuracy over 20102 possible relations. We provide some example

annotations and predicted relations in Table 6.1.

6.5.2 Question Parsing

For parsing questions, we again use the Stanford Dependency parser to extract

the nodes (nouns, adjectives and the Wh question word). For each pair of nodes, we

4We removed noisy relations with spelling mistakes, repetitions, and noun-phrase relations.

5The shortest path hypothesis Xu et al. (2016) has been used to detect relations between two
nominals in a sentence in textual QA. Primarily, the nodes in the path and the connecting phrase
construct semantic and syntactic feature for the supervised classification. However, as we do not
have a large annotated training data and the set of target relations is quite large (20000), we resort
to heuristic phrase similarity measures. These measures work better than a semi-supervised iterative
approach.
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Sentence Words Annotated Predicted

cars are parked on

the side of the road

[’cars’, ’side’] parked on the parked on

[’cars’, ’road’] parked on side on its side in

there are two men

conversing in the photo
[’men’, ’photo’] in conversing in

the men are on

the sidewalk
[’men’, ’sidewalk’] on on

the trees do not

have leaves
[’trees’, ’leaves’] do not have do not have

there is a big clock

on the pole
[’clock’, ’pole’] on on

a man dressed in

a red shirt and black pants.

[’man’, ’shirt’] dressed in dressed in

[’man’, ’pants’] dressed in dressed in

Table 6.1: Example Captions, Groundtruth Annotations and Predicted Relations
between Words.

again extract the linking phrase and the shortest dependency path; and, use phrase-

similarity measures to predict the relation. The phrase-similarity is computed as

above. After this phase, we construct the input predicates for our rule-based PSL

engine.

6.5.3 Logical Reasoning Engine

Finally based on the set of triplets, we use a probabilistic logical reasoning module.

Given an image I and a question Q, we rank the candidate answers Z by estimating

the conditional probability of the answer, i.e. P (Z|I,Q). In PSL, to formulate

such a conditional probability function, we use the (non-negative) truth values of the
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{Predicates} {Semantics} {Truth Value}

word(Z) Prior of Answer Z 1.0 or VQA prior

has q(X,R, Y ) Triplet from the Question From Relation Prediction

has img(X1, R1, Y 1) Triplet from Captions
From Relation Prediction

and Dense Captioning

has img ans(Z,

X1, R1, Y 1)

Potential involving the answer Z

with respect to image triplet
Inferred using PSL

candidate(Z) Candidate Answer Z Inferred using PSL

ans(Z) Final Answer Z Inferred using PSL

Table 6.2: List of Predicates Involved and the Sources of the Soft Truth Values.

candidate answers and pose an upper bound on the sum of the values over all answers.

Such a constraint can be formulated based on the PSL optimization formulation.

PSL: Adding the Summation Constraint: As described earlier, for a database

C consisting of the rules Cj, the underlying optimization formulation for the inference

problem is given in Equation 3.3. In this formulation, y is the collection of observed

and unobserved (x) variables. A summation constraint over the unobserved variables

(
∑

x∈x V (x) ≤ S) forces the optimizer to find a solution, where the most probable

variables are assigned higher truth values:∑
y∈y

V (y) ≤ S. (6.1)

Input: The triplets from the image and question constitute has img() and has q()

tuples. For has img(), the confidence score is computed using the confidence of the

dense caption and the confidence of the predicted relation. For has q(), only the

similarity of the predicted relation is considered. We also input the set of answers

as word() tuples. The truth values of these predicates define the prior confidence of

these answers. It can come from weak to strong sources (frequency, existing neural
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network-based VQA system etc.). The list of inputs, their semantics and sources of

truth values is summarized in Table 6.2.

Formulation: Ideally, the sub-graphs related to the answer-candidates can be

compared directly to the semantic graph of the question and the corresponding miss-

ing information (?x) can then be found. However, due to noisy detections and the

inherent complexities (such as paraphrasing) in natural language, such a strong match

is not feasible. We relax this constraint by using the concept of “soft-firing” 6 and

incorporating knowledge of phrase-similarity in the reasoning engine.

As the answers (Z) are not guaranteed to be present in the captions, we calcu-

late the relatedness of each image-triplet (〈X,R1, Y 1〉) to the answer, modeling the

potential φ(Z, 〈X,R1, Y 1〉). Together, with all the image-triplets, they model the

potential involving Z and Gimg. For ease of reading, we use ≈p notation to denote

the phrase similarity function.

w1 : has img ans(Z,X,R1, Y 1)←word(Z) ∧ has img(X,R1, Y 1)

∧ Z ≈p X ∧ Z ≈p Y 1.

We then add rules to predict the candidate answers (candidate(.)) by using fuzzy

matches with image triplets and the question triplets; they model the potential in-

volving Z,Gimg and Gq collectively.

w2 : candidate(Z)←word(Z).

w3 : candidate(Z)←word(Z) ∧ has q(Y,R,X) ∧ has img ans(Z,X1, R1, Y 1)

∧R ≈p R1 ∧ Y ≈p Y 1 ∧X ≈p X1.

6If a ∧ b ∧ c =⇒ d with some weight, then with some weight a =⇒ d.
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Lastly, we match the question-triplet with missing node-labels:

w4 : ans(Z)←has q(X,R, ?x) ∧ has img(Z,R,X) ∧ candidate(Z).

w5 : ans(Z)←has q(X,R, ?x) ∧ has img(Z1, R,X) ∧ candidate(Z)

∧ Z ≈p Z1.

w6 : ans(Z)←has q(X,R, ?x) ∧ has img(Z1, R1, X1) ∧ candidate(Z)

∧ Z ≈p Z1 ∧R ≈p R1 ∧X ≈p X1.

We use a summation constraint over ans(Z) to force the optimizer to increase the

truth value of the answers which satisfies the most rules. Our system learns the rules’

weights using the Maximum Likelihood method (Bach et al. 2015).

6.6 Experiments

To validate that the presented reasoning component is able to improve existing

image understanding systems and do better robust question answering with respect

to unconstrained images, we adopt the standard VQA dataset to serve as the test bed

for our systems. In the following sections, we start from describing the benchmark

dataset, followed by two experiments we conducted on the dataset. We then discuss

the experimental results and state why they validate our claims.

6.6.1 Benchmark Dataset

MSCOCO-VQA by Antol et al. (2015a) is the largest VQA dataset that contains

both multiple choices and open-ended questions about arbitrary images collected from

the Internet. This dataset contains 369, 861 questions and 3, 698, 610 ground truth an-

swers based on 123, 287 MSCOCO images. These questions and answers are sentence-

based and open-ended. The training and testing split follows MSCOCO-VQA official

split. Specifically, we use 82, 783 images for training and 40, 504 validation images for
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testing. We use the validation set of VQA dataset to report question category-wise

performances.

Figure 6.2: Positive and Negative Results Generated by Our Reasoning Engine. For
Evidence, We Provide Predicates that are Key Evidences to the Predicted Answer.
*Interestingly in the Last Example, All 10 Ground-truth Answers Are Different. Com-
plete End-to-end Examples Can Be Found in visionandreasoning.wordpress.com.

6.6.2 Experiment I: End-to-end Accuracy

In this experiment, we test the end-to-end accuracy of the presented PSL-based

reasoning system. We use several variations as follows:

• PSLD(ense)VQ: Uses captions from Dense Captioning by Johnson et al.

(2016b) and prior probabilities from a trained VQA system by Lu et al. (2016b)

as truth values of answer Z (word(Z)).

• PSLD(ense)VQ+CN: We enhance PSLDenseVQ with the following. In ad-

dition to word2vec embeddings, we use the embeddings from ConceptNet 5.5

(Havasi et al. 2007) to compute phrase similarities (≈p), using the aggregate
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Categories CoAttn PSLDVQ PSLDVQ+CN

Speci-

fic

what animal is (516) 65 66.22 66.36

what brand (526) 38.14 37.51 37.55

what is the man (1493) 54.82 55.01 54.66

what is the name (433) 8.57 8.2 7.74

what is the person (500) 54.84 54.98 54.2

what is the woman (497) 45.84 46.52 45.41

what number is (375) 4.05 4.51 4.67

what room is (472) 88.07 87.86 88.28

what sport is (665) 89.1 89.1 89.04

what time (1006) 22.55 22.24 22.54

Sum-

mary

Other 57.49 57.59 57.37

Number 2.51 2.58 2.7

Total 48.49 48.58 48.42

Color

Related

what color (791) 48.14 47.51 47.07

what color are the (1806) 56.2 55.07 54.38

what color is (711) 61.01 58.33 57.37

what color is the (8193) 62.44 61.39 60.37

what is the color of the (467) 70.92 67.39 64.03

Gener-

al

what (9123) 39.49 39.12 38.97

what are (857) 51.65 52.71 52.71

what are the (1859) 40.92 40.52 40.49

what does the (1133) 21.87 21.51 21.49

what is (3605) 32.88 33.08 32.65

what is in the (981) 41.54 40.8 40.49

what is on the (1213) 36.94 35.72 35.8

what is the (6455) 41.68 41.22 41.4

what is this (928) 57.18 56.4 56.25

what kind of (3301) 49.85 49.81 49.84

what type of (2259) 48.68 48.53 48.77

where are the (788) 31 29.94 29.06

where is the (2263) 28.4 28.09 27.69

which (1421) 40.91 41.2 40.73

who is (640) 27.16 24.11 21.91

why (930) 16.78 16.54 16.08

why is the (347) 16.65 16.53 16.74

Table 6.3: Comparative Results on the VQA Validation Questions. We Report
Results on the Non-Yes/No and Non-Counting Question Types. Highest Accuracies
Achieved by Our System is Presented in Bold. We Report the Summary Results of
the Set of “Specific” Question Categories.
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word vectors and cosine similarity. Final similarity is the average of the two

similarities from word2vec and ConceptNet.

• CoAttn: We use the output from the hierarchical co-attention system trained

by Lu et al. 2016, as the baseline system to compare. We use the open-

sourced systems and trained models publicly available from https://github.

com/jiasenlu/HieCoAttenVQA.

We use the evaluation script by Antol et al. (2015a) to evaluate accuracy on the

validation data. The comparative results for each question category is presented in

Table 6.3.

Choice of question Categories: Different question categories often require

different form of background knowledge and reasoning mechanism. For example,

“Yes/No” questions are equivalent to entailment problems (verify a statement based

on information from image and background knowledge), and “Counting” questions

are mainly recognition questions (requiring limited reasoning only to understand the

question). In this work, we use semantic-graph matching based reasoning process that

is often targeted to find the missing information (the label ?x) in the semantic graph.

Essentially, with this reasoning engine, we target what and which questions, to vali-

date how additional structured information from captions and background knowledge

can improve VQA performance. In Table 6.3, we report and further group all the

non-Yes/No and non-Counting questions into general, specific and color questions.

We observe from Table 6.3 that the majority of the performance boost is with respect

to the questions targeting specific types of answers. When dealing with other general

or color related questions, adding the explicit reasoning layer helps in limited number

of questions. Color questions are recognition-intensive questions. In cases where the

correct color is not detected, reasoning can not improve performance. For general
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questions, the rule-base requires further exploration. For why questions, often there

could be multiple answers, prone to large linguistic variations. Hence the evaluation

metric requires further exploration.

6.6.3 Experiment II: Explicit Reasoning

In this experiment, we discuss the examples where explicit reasoning helps predict

the correct answer even when detections from the end-to-end VQA system are noisy.

We provide these examples in Figure 6.2. As shown, the improvement comes from

the additional information from captions, and usage of background knowledge. We

provide key evidence predicates that helps the reasoning engine to predict the correct

answer. However, the quantitative evaluation of such evidences is still an open prob-

lem. Nevetheless, one primary advantage of our system is its ability to generate the

influential key evidences that lead to the final answer, and being able to list them as

(structured) predicates 7 . The examples in Figure 6.2 includes key evidence predi-

cates and knowledge predicates used. We will make our final answers together with

ranked key evidence predicates publicly available for further research.

6.6.4 Experiment III: An Adversarial Example

Apart from understanding the natural language question, commonsense knowl-

edge can help rectify final outcomes in essentially two situations: i) in case of noisy

detections (a weak perception module) and ii) in case of incomplete information (such

as occlusions). In Figure 6.1a, we show a motivating example of partial occlusion,

where the data-driven neural network-based VQA system predicts the answer church,

and the PSL-based reasoning engine chooses a more logical answer barn based on

7We can simply obtain the predicates in the body of the grounded rules that were satisfied (i.e.
distance to satisfaction is zero) by the inferred predicates.
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cues (such as horses in the foreground) from other knowledge sources (dense cap-

tions). A question remains, whether the reasoning engine itself injects a bias from

commonsense, i.e. whether it will predict barn, even if there is actually a church in

the background and while the commonsense knowledge still dictates that the building

around the horses could be a barn. To answer this question, we further validate our

system with an adversarial example (see Figure 6.3). As expected, our PSL engine

still predicts the correct answer, and improves the probabilities of more probable an-

swers (barn, tower). In addition, it also provides the evidential predicates to support

the answer.

Figure 6.3: An Adversarial Example as Opposed to the Motivating Example at
Figure 6.1a. The Supporting Predicate Is Highlighted in Yellow.

6.7 Conclusion and Future Work

In this work, we present an integrated system that adopts an explicit reasoning

layer over the end-to-end neural architectures. Experimental results on the visual

question answering testing bed validates that the presented system is better suited

for answering “what” and “which” questions where additional structured information

and background knowledge are needed. We also show that with the explicit reasoning

layer, our system can generate both final answers to the visual questions as well as the

top ranked key evidences supporting these answers. They can serve as explanations
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and validate that the add-on reasoning layer improves system’s overall interpretability.

Overall our system achieves a performance boost over several VQA categories at the

same time with an improved explainability. Future work includes adopting different

learning mechanisms to learn the weights of the rules, and the structured information

from the image. As future work, we plan to extend Inductive Logic Programming

algorithms (such as XHAIL Ray et al. (2003)) to learn rules for probabilistic logical

languages, and scale them for large number of predicates.
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6.8 Visual Question Categorization

The task of visual question answering requires a system to answer questions posed

in natural language about an image. In this task, scene understanding is needed to

extract relevant information from image; natural language understanding helps to

understand the question and to decipher what information is asked; and commonsense

reasoning and background knowledge is often needed to understand both the natural

language and the background context of a scene. Questions such as “is there a bird in

the image?”, and “how many birds are in the image?” involves superior recognition

capabilities and understanding of natural language text. However, questions such

as “Is the airplane about to take off?”, “Is it going to rain” (prospective), “What

is common between the animal in the image and an elephant?” (knowledge), “Is

the knife cutting the bowl?” (commonsense); requires various kinds of background

and commonsense knowledge to answer. Knowledge can also help simplifying the

questions, for example, “How many birds are there in the image”, “Is there one bird

in the image?” and “Are there two birds in the image?”, all points to detecting and

counting the number of birds. To determine the type of background or commonsense

knowledge required to answer a question, we need to first understand and categorize

the questions based on their semantics and answer-types. In this section, we define a

set of semantic question categories and outline a method that categorizes the questions

with more than 80% accuracy.

6.8.1 Introduction

Question classification plays a crucial role in the task of question-answering. It

determines what a question is asking for. Therefore, i) the categories can narrow the

search of a question-answering system; ii) it can provide a sanity check of an intelligent
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QA system (for example, “does the answer-type match the predicted answer-type”);

and iii) reporting the performance of the QA system based on these categories could

explicitly reveal the weak and strong aspects, adding on an interpretable layer to

an end-to-end question-answering system. In this work, our goal is to automatically

augment the publicly available visual question answering datasets with semantic ques-

tion category annotations. We argue that it is the unexplored stepping stone towards

visual question answering.

The TREC Question Categories by Li and Roth (2006) have been well-accepted

in the Natural Language Processing (NLP) community and especially in the textual

question answering domain. These categories consist of 6 coarse and 50 finer cate-

gories of factoid questions, This publicly available popular ontology has motivated

the development of a large body of question-classification methods. However, ques-

tion classification has attracted limited attention in the visual question answering

(VQA) domain. The primate reason is due to the lack of a well-defined ontology for

visual questions. With the aim to re-use the advantage of question classification to

advance current VQA systems, we first choose carefully and re-define a subset (18)

of the TREC categories for semantic visual question categorization. We provide the

complete list of categories along with the re-defined categories, their meanings and

examples in Table 6.4. Additionally, from our observation, a few of visual questions

are ambiguous in itself and require the image context to determine the answer type.

Thus, we further include an UNSURE category for this kind of questions.

Unlike the textual QA corpus, visual question answering datasets are vast in na-

ture. Manually annotating each question with a semantic category from these large

datasets are time consuming and costly. Moreover, guaranteeing the reliability of the

crowd-sourced annotations is also challenging (Nowak and Rüger 2010). Inspired by

the current state-of-the-art automatic question classification methods’ performance
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(close to 95%), we look towards automatic labeling of the VQA questions using such

a model. However, our initial attempt, which directly applies the trained model from

TREC training data to classify visual questions, lead to an un-balanced category

assignment. To improve the performance of the model and thus the visual question

category annotations, first we adopt an “over-sampling” strategy to balance the train-

ing data by including a part of the un-annotated VQA data. Then, we put forward

a bootstrapping strategy to refine our trained model, and ultimately label the rest of

the VQA questions with a semantic category label and a confidence score.

Here we highlight the contributions of this work: i) we carefully adopt and re-

define a subset of TREC question categories as the ontology to categorize visual

questions; ii) using the proposed ontology, we provide high-quality manual annota-

tions of a large subset of the questions in VQA; iii) we boost the performance of a

state-of-the-art question classifier using oversampling and bootstrapping; iv) using

this boosted model, we augment the questions in the VQA dataset with semantic

question categories, with confidence scores of 85% with five coarse categories and

80% with eighteen finer categories.

6.8.2 Related Works

Our work is primarily influenced by two thrusts of work: i) defining semantic ques-

tion categories and ii) automatic question classification; and the target application

area of visual question answering.

Semantic Question Categories: The categories in Li and Roth (2006) con-

stitute one of the popular ontologies, that are used for classifying questions based

on its answer-type. In this work, authors define six broad categories to classify fac-

toid questions: Abbreviation, Entity, Human, Description, Location, Nu-

meric. These categories are then sub-divided to define 50 finer categories. There are
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several works that also define categories that conceptually classify questions (Lehn-

ert 1977). In this work, the categories are defined to cover an even broader range of

questions: causal antecedent, goal orientation, enablement, causal consequent, verifi-

cation, disjunctive, and so on. In educational domain, Bloom’s taxonomy (BLOOMS

1965) classifies questions based on the levels of cognition and understanding required

to answer a question. The categories are: Knowledge, Comprehension, Application,

Analysis, Synthesis, and Evaluation; each focusing on testing increasingly difficult

levels of cognitive thinking in students. However, our goal is to classify questions

based on the answer-type and to focus on the subset of semantic categories that is

sufficient to classify visual questions in the VQA dataset. This is why we select a

subset of the semantic categories proposed by Li and Roth (2006) and re-define them

to best suit our needs in this work.

Automatic Question Classification: Question classification falls into the broad

category of sentence classification. Natural language processing researchers previously

used a combinations of carefully chosen syntactic and semantic features to classify

sentences or questions (Huang et al. 2008). After the recent advancements in neu-

ral networks, the primary thrust concentrated on using convolutional neural network

(CNN) to perform end-to-end classification. CNN (first adapted for text by Collobert

et al. 2011; Kim 2014) continues to give impressive accuracy in end-to-end question

classification. There are several works (Tayyar Madabushi and Lee 2016) which use

had-crafted rules to perform high-accuracy question classification. However, these

methods are difficult to generalize to different domains such as visual questions. Our

experiments suggest, the generalization error in recently proposed neural network

models (trained solely on TREC questions) is quite high. This motivated us to

annotate a large number of visual questions and separately train a visual question

classification model.
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In the field of visual question answering, very recently researchers spent a

significant amount of efforts on both creating datasets and proposing new models

(Antol et al. 2015b; Malinowski et al. 2015; Gao et al. 2015a; Ma et al. 2015a).

Interestingly both Antol et al. (2015b) and Gao et al. (2015a) adapted MS-COCO

Lin et al. (2014) images and created an open domain dataset with human generated

questions and answers. The creation of these visual question answering testbeds

cost more than 20 person year of effort using Amazon Turk platform, and some

questions are very challenging which actually require logical reasoning in order to

answer correctly. Due to the vast amount of questions that exist in the VQA dataset,

a direct manual annotation of question categories is costly. In this work, we aim to

utilize the bootstrapping technique to automatically categorize the VQA questions

into semantically meaningful categories. These categories are inspired from the TREC

categories.

6.8.3 Visual Question Categories and the Annotation Procedure

Authors in Li and Roth (2006) defined a two-layered taxonomy to classify TREC

questions, consisting of 6 coarse and 50 finer categories. We initially attempted to

re-use the categories directly to classify visual questions. This initial attempt at

categorizing VQA questions using TREC semantic categories led us to the following

observations: i) the questions in VQA are not evenly distributed based on the 50

identified fine categories in Li and Roth (2006); ii) very few questions in the VQA

dataset involve Named Entities (specific individual, location, or Organization) and the

answer-type belonging to country, city, mountain, currency categories rarely occur;

iii) many other question categories (such as vehicles, letter) are also under-represented

in the dataset. However, it is worth noting that the questions about Named Entities

can still be posed against an image, but the current state-of-the-art VQA dataset
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does not contain such questions. These observations should be taken into account for

proposing future datasets for question-answering in images.

Categories TREC DEfinitions Modified Definitions Examples

Description (DESC) definition of sth.

Consisting usually of

verbs, adjectives and

adverbs

Is the dog reading?

Location (LOC) locations
Location or direction

in a picture

What type of body of water

are the elephants getting out of?

Entity (ENTY)∗ entities any inanimate object Is there soap on the sink?

Event events Actions, Linking verbs What are the dogs celebrating?

Human (HUM) human beings

Question having an

answer as a human

related term

Which ballplayer does this

ornament look like?

Period the lasting time of sth.
Number representing

time period
How old is this man?

Manner manner of an action
Method or process

to do something

What is the means of

propulsion for the train?

Group (gr)
a group or

organization of persons
Group of people Are there spectators?

Table 6.4: Definitions of Modified Question Categories for Visual Question Classifi-
cation. The Complete List of Categories is: Numeric, Entity, Description, Location,
Human, Count, Color, Event, Food, Vehicle, Plants, Animal, Period, Sport, Reason,
Manner, Group, Product. ∗Entity: For the 5-class Classification, the Category Entity
Denotes All Objects and for the 18 Class, We Use Entity to Denote Inanimate Ob-
jects as We Use the Categories “Animals” and “Plant” Explicitly to Denote Animate
Objects.

Based on the observations, we carefully choose a total of 18 categories including

all six coarse and twelve fine-level categories from the 50 TREC fine-level categories.

The categories are: Numeric, Entity, Description, Location, Human, Count, Color,

Event, Food, Vehicle, Plants, Animal, Period, Sport, Reason, Manner, Group, Prod-

uct. To achieve a semantically meaningful categorization, we update some definitions

with respect to visual data (images). To justify our selection, we provide detailed def-
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initions and examples of the changes in Table 6.4. The motivation behind re-defining

of the categories is primarily the absence of questions regarding Named Entities in the

image based questions. Hence, we re-defined the categories Entity, Event, Definition,

Location, and Human to denote objects, verbs (actions and linking verbs), description,

location in image and human related-term (man, boy, girl etc.) respectively.

Initially, we also considered the following categories: City, Size, Creative, Body

and Term. Due to the scarcity of samples (questions) under these specific categories,

we merged these categories with the above 18 categories: City is merged with Loca-

tion, Size is merged with Numeric, and the rest are merged with Entity.

The Show-stealers: Some Interesting Cases

During our annotations, there are several questions that we found interesting and

representative, to show why visual question categorization is a challenging task itself.

We broadly categorize them into “Commonsense Reasoning”, “Image Context” and

“Simple”. We discuss some of them in this Section.

1. Commonsense Reasoning: There are several visual questions that required

various kinds of background knowledge to answer properly. Some of them are:

(Causal) Are the Umbrellas present because it is raining, (Commonsense Knowl-

edge) Is it sanitary to use scissors to cut pizza?, Does this person appear to need

a cane due to old age?, (Background Knowledge) Is the food truck open for busi-

ness?, Do many people come out here in the summer?, Are some of these food

items likely to require their eaters use a napkin afterwards. It is interesting that

questions requiring commonsense reasoning are really hard to categorize.

2. Image Context: As discussed previously, a few of the questions require the

information in the image together to disambiguate the answer-type (question
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category). Some of the examples are: What this people are watching?, What are

the people looking at?, What is to the left of the people?, What are these people

participating in?, What are these people playing?. These examples lead us to

believe that one has to understand the image to fully understand a question.

3. Seemingly Simple Questions: There is one more interesting category of

questions where we observe that the questions are quiet simple and often boils

down to simple object recognition. Many of these seemingly simple questions are

often posed against “difficult” example images, as shown in Figure 6.4(a) and

(b). In the first image, a “car” is partially occluded and the question asks to find

the “car” in the image. In the second image, a woman is visible in the television

set and the question asks to find the “girl” in this image. Such interesting pairs

(a) (b)

Figure 6.4: Interesting Examples: (a) Is there a Car in the Image? (b) Is there a
Girl in the Image?

of “Simple Question-Complex Image” can present us with interesting avenues

that can give us insights into the psychology of the annotators.

In this work, we identify three components which determine the complexity in un-

derstanding (and hence categorizing) a question with respect to an image : i) Question

Understanding, ii) Image Understanding, iii) Commonsense Reasoning. In Figure 6.5,
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Figure 6.5: Complexity of the Questions Depending on the Three Identified Axes:
i) Question Understanding, ii) Image Understanding, iii) Commonsense Reasoning.

we plot some of the interesting questions based on its perceived complexity. In this

work, we primarily try to categorize questions where we do not require knowledge or

information from images to understand the answer-type. The grey-cloud suggests the

area where image context is necessary to categorize. The red-cloud suggests the area

where question categorization (understanding and answering) is extremely difficult.

Annotation Procedure

To ensure high quality of the visual question categorization annotations, we asked

three graduate students of natural language processing, who has been trained to be

familiar with semantic question categories, annotate all of 10160 questions (subset

of the VQA questions) based on the defined categories in the previous sub-section.

We then resolve any annotation conflict through a second round of deliberation and

through majority voting. We make the newly compiled visual question categorization

data publicly available for further research.
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6.8.4 Approach

Recurrent neural networks (Medsker and Jain 1999) and convolutional neural net-

works (LeCun and Bengio 1998) have shown huge leaps of performance improvements

in modeling natural language, over previous approaches. Even though recurrent neu-

ral networks (and its variants) represent the natural sequential representation of the

text well, convolutional neural networks (first adapted for text by Collobert et al.

2011; Kim 2014) has shown impressive performance in sentence classification and

question classification tasks. Current state-of-the-art performance was shown by au-

thors in Ma et al. (2015c), who proposed a dependency-based Convolution to better

capture the long-range dependencies in text.

In our specific problem setting, we have a set of annotated questions (Q+L) and a

larger set of unannotated questions (Q−L), and we want to classify the questions into

a set of categories (L). In a bid to take advantage of this large un-annotated data, we

modify the original Dependency-based CNN algorithm to incorporate semi-supervised

learning. We first present a brief introduction of the original Dependency-based Con-

volutional Neural Network (DCNN) algorithm and then present our wrapper algo-

rithm which uses this learning algorithm iteratively.

Dependency-Based Convolutional Neural Network

As mentioned in Ma et al. (2015c), for a sentence such as: Despite the film’s

shortcomings, the stories are quiet moving, it is difficult to capture dependencies

between “What” and “participating” for sequential convolutional neural networks

which defines convolutions on n-gram based windows. However, based on syntactic

dependencies (shown in Figure 6.6), DCNN can capture the tree-based bigram “What-

participating”.
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Figure 6.6: The Dependency Relations from Stanford Dependency Parser on an
Example Question.

In Kim (2014), the one-dimensional convolution operates the convolution kernel

in sequential order on the concatenations of words (xi through xi+j); where xi ∈ Rd,

is the d-dimensional vector representation for the ith word. In Equation 6.2, we show

the concatenation mathematically, where ⊕ is the concatenation operator, x̃i,j is the

concatenation of the words from xi through xi+j.

x̃i,j = xi ⊕ xi+1 ⊕ . . .⊕ xi+j (6.2)

The authors in Ma et al. (2015c), adopts the above setting and defines the concate-

nation based on the dependency tree for a given modifier xi

x̃i,j = xi ⊕ xp(i) ⊕ . . .⊕ xpk−1(i) (6.3)

where function pk(i) returns the i-th word’s k-th ancestor index, which is recursively

defined as: if k > 0, pk(i) = p(pk−1(i)), else pk(i) = 0. For a given tree-based

concatenated word sequence xi,k, the convolution operation applies a filter w ∈ Rk×d

to xi,k with a bias term b described in following equation:

ci = f(w · xi,k + b) (6.4)

where f is a non-linear activation function (like ReLU). This filter w is applied to

each word in a sentence, generating the feature map c ∈ Rl:

c = [c1, c2, . . . , cl] (6.5)

DCNN then pools the maximum activation from the feature maps to detect the

strongest activation over the whole tree. Different filters are considered by varying
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number of words (the height), width being the vector-dimension (d). Each filter repre-

sents one feature after the max-pooling steps. These features together is passed to the

fully-connected final softmax layer for sentence classification. Similar to the ancestor

paths, they also use siblings to capture linguistic phenomenon such as conjunction (for

example “What” and “people” are siblings with respect to participating). The final

set of features is then a combination of ancestors, siblings and sequential activations

(100 such filters used in the experiment).

Meta-Algorithm for Semi-Supervised Learning

In this work, we follow the concept of self-learning (Chapelle et al. 2009). We

simply use a wrapper algorithm, in which we increase the labeled training data with

automatically labeled data by the hypothesis (model) learned in the previous itera-

tion. Then we adopt this larger training set to learn a new hypothesis (model) from

scratch. We iterate this procedure a number of times (determined by the performance

on the development set). Here, we outline the proposed meta-algorithm in Algorithm

1.

6.8.5 Experiments and Results

In this section, we provide the results of the validation experiments on the newly

introduced visual question categorization dataset, followed by an empirical evalua-

tion of the proposed approach against DCNN baselines. Our experiments validate

the following hypotheses. First, our novel categorization on visual questions are more

semantically meaningful than VQA innate categorizations. Second, TREC semantic

categories can not be directly transferable to visual questions. And Lastly, our pro-

posed approach annotates the question from VQA with considerable accuracy and

the experiments show that the meta algorithm is promising.
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Algorithm 1: Meta-Algorithm for Semi-Supervised Learning

1: function semiSupervisedDCNN

2: H0(x)← DCNN(Q+L)

3: for i=1 to M do do

4: 〈L, Pr(L|Q−L)〉 ← test(Hi−1, Q−L)

5: Q+L,i ← Q+L ∪ {(q, l)|q ∈ Q−L, l = Hi−1(q), P r(l|q) > θ}

6: Q−L ← Q−L \Q+L,i

7: Hi(x)← DCNN(Q+L,i)

8: end for

9: Return HM

10: end function

Categorization Validation and Analysis

Here we empirically show the newly proposed visual question categorization is

more semantically meaningful than VQA original categories. The original VQA cat-

egories are determined solely on the headwords of the questions. As the above dis-

tribution in Figure 6.7 shows, the categories in VQA do not have an one-to-one

correspondence with semantic categories. This originates from the ubiquitous nature

of paraphrasing in natural language; in simple words, same sentence or same ques-

tion can be posed in many different ways. For example: How many dogs are in the

picture?, What is the number of dogs in the picture? ; all asks the same information

in different ways. Question classification can be thought of a part of the question

understanding in a question-answering system. From that point of view, the question

category can also determine the specific requirement from the image understanding

module: object detection, region detection, shape, color detection, counting, spatial

reasoning etc. Several yes/no questions can be posed which require detection of the
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Figure 6.7: We Show a Comparative Distribution of Our Semantic Visual Question
Categories and the VQA Original Categories in This Figure. We Avoid Providing
the Sub-categories to Preserve Readability. However, It Can Be Observed that Many
VQA Categories Has a One-to-many Correspondence with the Semantic Question
Categories.

dogs and counting by the answering system: Are there three dogs in the image, Are

there only three dogs in the image?, Are there two dogs in the image?. Due to such

syntactic variations, it is important to capture the semantics of the question. Similar

to the authors in Kafle and Kanan (2016), we believe that answer-type (Question

Category) prediction can help visual question answering. It is worth noting that,

the authors in Kafle and Kanan (2016) mentions the possible categories in the VQA

dataset to be “unlimited” and herein, lies the importance of our attempt of

categorizing the vast VQA dataset.

First Trail with TREC Training Data

As a sanity check and a first trail, we directly apply models trained from TREC

training data (re-labeled with our visual question categories). Table. 6.5 reports the
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model performance we get. It shows that directly applying TREC categories on VQA

data is not meaningful. Though the model performs very well on TREC testing

questions, it fails to generalize onto VQA questions.

Experiments Classes Accuracy

TREC(Train) + TREC(Test) 5 95.51

TREC(Train) + TREC(Test) 18 88.36

TREC(Train) + VQA(Test) 5 65.83

TREC(Train) + VQA(Test) 18 42.70

Table 6.5: First Trail with TREC Training Data

VQA Questions Category Annotation

Here we empirically show that our proposed algorithm is able to annotate visual

questions with decent accuracies based on the our new categorization. Also, we

show that the meta-algorithm for semi-supervised learning indeed improves the model

performance through bootstrapping. Table. 6.6 shows that, the subsequent iterations

improve the test accuracy steadily with a reasonable margin. To further discuss the

effectiveness of the approach, we show the confusion matrices in the after the first

and sixth iteration in Figure 6.8.

We also summarize the accuracies achieved after each iteration (of the meta-

algorithm) for the 5 and 18-class classification experiments in Table 6.6. It is worth

to note that there is a visible increase in true-positives (the diagonal cells) for classes

over the first few iterations. Our experiments also suggest that there is room for

improvement of the currently adopted meta-algorithm.
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(a) (b)

Figure 6.8: Normalized Confusion Matrices for 18 Classes after (a) First Iteration
(77.1% Overall Accuracy) and (b) Sixth Iteration (80.0% Overall Accuracy).

Experiments #C I1 I2 I3 I4 I5 I6

TREC + VQA 5 86.7 86.9 87.0 86.8 86.9 86.4

TREC + VQA 18 82.3 81.9 82.6 82.6 82.3 82.5

VQA 5 85.8 86.3 86.0 86.5 85.7 87.5

VQA 18 77.1 77.6 77.3 78.1 79.1 80.0

I indicates iterations.

TREC + VQA: training on TREC and VQA combined.

VQA indicates training on VQA annotated data only.

Table 6.6: Meta Algorithm Categorization Performance
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(a)

(b)

Figure 6.9: System Accuracy for Each Question Category (Syntactic Head-word
based and Semantic) are Shown.

6.8.6 Discussion and Conclusion

Semantic visual question categorization is the hidden stepstone towards question-

answering about an image. In this work, we first propose a novel semantic cate-

gorization of visual questions inspired from TREC question categories. We justify

the meaningfulness of these categories over original VQA categories (based on head-

words). Then, due to the vast size of VQA questions, we put forward a bootstrapping

based semi-supervised algorithm to automatically annotate VQA questions into these

semantic categories. The experimental results validate the categorization and the pro-
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posed algorithm. Furthermore, we provide a subset of annotated VQA questions (over

10k samples) as seed training data and make it publicly available.

To model background knowledge and impose interpretability in the problem of

visual question answering, in this chapter, we developed a pipeline of visual detection

(dense captions), semantic parsing (knowledge structure) and reasoning (probabilistic

soft logic module). In such a pipeline, the predicted question categories can be used

in the following ways: i) it may provide insight into the semantic categories where

commonsense reasoning is needed the most, ii) it can be used in the reasoning module

to impose a sanity check in the system, so that it does not predict an answer which

is from a different semantic category.

A persistent motivation of building systems is improvement of the end-to-end

accuracy. The primary scope of improvement in our VQA pipeline comes from using

relevant background knowledge and reasoning on that knowledge. However, questions

from different categories require different types of background knowledge. Our first

objective was to know which categories the current VQA system performs poorly

and where our system can help. We first experimented using a state-of-the-art VQA

system and the VQA dataset to test the the current category-wise performance. We

show the distribution in Figure 6.9. In this distribution, a clear pattern is observed:

the system performs very well for yes-no questions, however the performance is poor

for other open-ended factual information based questions. Intuitively, we believe, this

is due to limited understanding of the question (i.e. natural language) in the context

of the image. Our observations from these experiment provided useful insights into

building the above visual question answering solution presented earlier in this chapter.
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Chapter 7

APPLICATION 3: IMAGE RIDDLES

7.1 Introduction

The uncertainty associated with human perception is often reduced by one’s exten-

sive prior experience and knowledge. Current datasets and systems do not emphasize

the necessity and benefit of using such knowledge. This lack of emphasis is also ob-

served in Chapters 5 and 6 where we discuss our approaches to image captioning

and visual question answering using publicly available datasets. Even though use

of knowledge and reasoning helps in increased interpretability, improvement in raw

accuracy on the overall dataset is often low. In Chapter 4, we introduced the task of

solving a genre of image-puzzles (“image riddles”) that require both capabilities in-

volving visual detection (including object, activity recognition) and, knowledge-based

or commonsense reasoning. Each puzzle involves a set of images and the question

“what word connects these images?”. We compile a dataset of over 3k riddles where

each riddle consists of 4 images and a groundtruth answer. The annotations are

validated using crowd-sourced evaluation. We also define an automatic evaluation

metric to track future progress. Our task bears similarity with the commonly known

IQ tasks such as analogy solving, sequence filling that are often used to test intel-

ligence. In this chapter, we develop a probabilistic reasoning-based approach that

utilizes commonsense knowledge about words and phrases to answer these riddles

with a reasonable accuracy. Our approach achieves some promising results for these

riddles and provides a strong baseline for future attempts.
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7.2 Image Riddles: A Suitable Testbed for Vision and Reasoning Research

Figure 7.1: An Image Riddle Example. Question: What Word Connects These
Images?.

In this chapter, we propose a new task of “image riddles” which requires deeper

and conceptual understanding of images. In this task, a set of images are provided and

one needs to find a concept (described in words) that is invoked by all the images in

that set. Often the common concept is not something that even a human can observe

in her first glance but can come up with after some thought about the images. Hence

the word “riddle” in the phrase “image riddles”. Figure 7.1 shows an example of an

image riddle. The images individually connect to multiple concepts such as: outdoors,

nature, trees, road, forest, rainfall, waterfall, statue, rope, mosque etc. On further

thought, the common concept that emerges for this example is “fall”. Here, the first

image represents the fall season (concept). There is a “waterfall” (region) in the

second image. In the third image, it shows “rainfall” (concept) and the fourth image

depicts that a statue is “fall”ing (action/event). The word “fall” is invoked by all the

images as it shows logical connections to objects, regions, actions or concepts specific

to each image.

In addition, the answer also connects the most significant 1 aspects of the im-

ages. Other possible answers like “nature” or “outdoors” do not demonstrate such

1Formally, an aspect is as significant as the specificity of the information it contains.
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properties. They are too general. In essence, image riddles is a challenging task that

not only tests our ability to detect visual items in a set of images, but also tests our

knowledge and our ability to think and reason.

Based on the above analysis, we argue that a system should have the following

capabilities to answer image riddles appropriately: i) the ability to detect and locate

the objects, regions, and their properties; ii) the ability to recognize actions ; iii)

the ability to infer concepts from the detected words; and iv) the ability to rank a

concept (described in words) based on its relative appropriateness; in other words,

the ability to reason with and process background or commonsense knowledge about

the semantic similarity and relations between words and phrases. These capabilities,

in fact, are also desired of any automated system that aims to understand a scene and

answer questions about it. For example, in the VQA dataset (Antol et al. 2015b),

“Does this man have children?”, “Is this a vegetarian Pizza?” are some such examples,

where one needs explicit commonsense knowledge.

These riddles can be thought of as a visual counterpart to IQ test question types

such as sequence filling (x1, x2, x3, ?) and analogy solving (x1 : y1 :: x2 : ?) 2 where

one needs to find commonalities between items. This task is different from traditional

VQA, as in VQA the queries provide some clues regarding what to look for in the

image in question. Most riddles in this task require both superior detection and

reasoning capabilities, whereas a large percentage (of questions) of the traditional

VQA dataset tests system’s detection capabilities. This task differs from both VQA

and captioning in that this task requires analysis of multiple images. While video

analysis may require analysis of multiple images, this task of “image riddles” focuses

on analysis of seemingly different images.

2Examples are: word analogy tasks (male : female :: king : ?); numeric sequence filling tasks:
(1, 2, 3, 5, ?).
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Hence, this task of answering image riddles is simple to explain; shares similarities

with well-known and pre-defined types of IQ questions and it requires a combination

of vision and reasoning capabilities. In this chapter, we introduce a novel benchmark

for Image Riddles and put forward a promising approach to tackle it.

In our approach, we first use the state-of-the-art image classification techniques

(Sood 2015, He et al. 2015a) to get the top identified class-labels from each image.

Given these detections, we use ontological and commonsense relations of these words

to infer a set of most probable concepts. We adopt ConceptNet 5 (Liu and Singh

2004) as the source of commonsense and background knowledge that encodes the

relations between words and short phrases through a structured graph. Note, the

possible range of candidates are the entire vocabulary of ConceptNet 5 (roughly

0.2 million), which is fundamentally different from supervised end-to-end models.

For representation and reasoning with this huge probabilistic knowledge one needs

a powerful reasoning engine. Here, we adopt the Probabilistic Soft Logic (PSL)

(Kimmig et al. 2012a; Bach et al. 2013) framework. Given the inferred concepts of

each image, we adopt a second stage inference to output the final answer.

Our contributions are threefold: i) we introduce the 3K Image Riddles Dataset;

ii) we present a probabilistic reasoning approach to solve the riddles with reasonable

accuracy; iii) our reasoning module inputs detected words (a closed set of class-labels)

and logically infers all relevant concepts (belonging to a much larger vocabulary),

using background knowledge about words.

7.3 Related Work

The problem of Image Riddles has some similarities to the genre of topic modeling

(Blei 2012) and Zero-shot Learning (Larochelle et al. 2008). However, this dataset

imposes a few unique challenges: i) the possible set of target labels is the entire natural
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language vocabulary; ii) each image, when grouped with different set of images can

map to a different label; iii) almost all the target labels in the dataset are unique (3k

examples with 3k class-labels). These challenges make it hard to simply adopt topic

model-based or Zero-shot learning-based approaches.

Our work is also related to the field of Visual Question Answering. Very

recently, researchers spent a significant amount of efforts on both creating datasets

and proposing new models (Antol et al. 2015b; Malinowski et al. 2015; Gao et al.

2015a; Ma et al. 2015a). Interestingly both Antol et al. (2015b) and Gao et al. (2015a)

adapted MS-COCO (Lin et al. 2014) images and created an open domain datasets

with human generated questions and answers. Both Malinowski et al. (2015) and Gao

et al. (2015a) use recurrent networks to encode the sentence and output the answer.

Even though some questions from Antol et al. (2015b) and Gao et al. (2015a) are

very challenging which actually require logical reasoning in order to answer correctly,

popular approaches still aim to learn the direct signal-to-signal mapping from image

and question to its answer, given a large enough annotated data. The necessity of

common-sense reasoning is often neglected. Here we introduce the new image riddle

problem which is 1) a well-defined cognitively challenging task that requires both

vision and reasoning capability, 2) it is not straightforward to model the problem as

direct signal-to-signal mapping, due to the data sparsity and 3) system’s performance

could still be bench-marked automatically for comparison. All these qualities make

our image riddle dataset a good testbed for vision and reasoning research.

7.4 Knowledge and Reasoning Mechanism

In this Section, we briefly introduce the kind of knowledge that is useful for solv-

ing image riddles and the kind of reasoning needed. The primary types of knowledge

needed are the distributional and relational similarities between words and concepts.
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We obtain them from analyzing the ConceptNet knowledge base and using Word2Vec.

Both the knowledge sources are considered because ConceptNet embodies common-

sense knowledge and Word2vec encodes word-meanings.

ConceptNet (Speer and Havasi 2012), is a multilingual Knowledge Graph, that

encodes commonsense knowledge about the world and is built primarily to assist

systems that attempts to understand natural language text. The knowledge in Con-

ceptNet is semi-curated. The nodes (called concepts) in the graph are words or

short phrases written in natural language. The nodes are connected by edges which

are labeled with meaningful relations. For example: (reptile, IsA, animal),

(reptile, HasProperty, cold blood) are some edges. Each edge has an asso-

ciated confidence score. Also, compared to other knowledge-bases such as WordNet,

YAGO, NELL (Suchanek et al. 2007a; Mitchell et al. 2015), ConceptNet has a more

extensive coverage of English language words and phrases. These properties make

this Knowledge Graph a perfect source for the required probabilistic commonsense

knowledge. We use different methods on ConceptNet, elaborated in the next section,

to define similarity between different types of words and concepts.

Word2vec uses the theory of distributional semantics to capture word meanings

and produce word embeddings (vectors). The pre-trained word-embeddings have

been successfully used in numerous Natural Language Processing applications and

the induced vector-space is known to capture the graded similarities between words

with reasonable accuracy (Mikolov et al. 2013). Throughout the paper, for word2vec-

based similarities, we use the 3 Million word-vectors trained on Google-News corpus

(Mikolov et al. 2013).

The similarity between words wi and wj with a similarity score wij is expressed

as propositional formulas of the form: wi ⇒ wj : wij. (The exact formulas, and when

they are bidirectional and when they are not are elaborated in the next section.)
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To reason with such knowledge we explored various reasoning formalisms and found

Probabilistic Soft Logic (PSL) (Kimmig et al. 2012a; Bach et al. 2013) to be the

most suitable, as it can not only handle relational structure, inconsistencies and

uncertainty, thus allowing one to express rich probabilistic graphical models (such

as Hinge-loss Markov random fields), but it also seems to scale up better than its

alternatives such as Markov Logic Networks (Richardson and Domingos 2006a). In

this work, we also use different weights for different groundings of the same rule.

Even though some work has been done along this line for MLNs (Mittal et al. 2015),

implementing those ideas in MLNs to define weights using word2vec and ConceptNet

is not straightforward. Learning grounding-specific weights are also difficult as that

will require augmentation of MLN syntax and learning.

7.4.1 Probabilistic Soft Logic (PSL)

Probabilistic soft logic (PSL) differs from most other probabilistic formalisms in

that its ground atoms have continuous truth values in the interval [0,1], instead of

having binary truth values. The syntactic structure of rules and the characterization

of the logical operations have been chosen judiciously so that the space of interpre-

tations with nonzero density forms a convex polytope. This makes inference in PSL

a convex optimization problem in continuous space, which in turn allows efficient

inference. An overview of the PSL framework and implemented engine is provided in

Chapter 3.

7.5 Approach

Given a set of images ({I1, I2, I3, I4}), our objective is to determine a set of

ranked words (T ) based on how well they semantically connect the images. In this

work, we present an approach that uses the previously introduced Probabilistic Rea-
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soning framework on top of a probabilistic Knowledge Base (ConceptNet). It also

uses additional semantic knowledge from Word2vec. Using these knowledge sources,

we predict the answers to the riddles. Although our approach consists of multiple

resources and stages, it can be easily modularized, pipelined and reproduced. It is

also worth to mention that the PSL engine is a general tool. It could be used for

further research along the conjunction of vision, language and reasoning.

7.5.1 Outline of Our Framework

Algorithm 2: Solving Image Riddles
1: procedure UnRiddler(I = {I1, I2, I3, I4},Kcnet)
2: for Ik ∈ I do

3: P̃ (Sk|Ik) = getClassLabelsNeuralNetwork(Ik).
4: for s ∈ Sk do

5: Ts,Wm(s,Ts) = retrieveTargets(s,Kcnet);
6: Wm(s, tj) = sim(s, tj)∀tj ∈ Ts.

7: end for

8: Tk = rankTopTargets(P̃ (Sk|Ik),TSk
,Wm);

9: I(T̂k) = inferConfidenceStageI(Tk, P̃ (Sk|Ik)).
10: end for

11: I(T ) = inferConfidenceStageII([T̂k]4k=1, [P̃ (Sk|Ik)]4k=1).

12: end procedure

As outlined in algorithm 1, for each image Ik (here, k ∈ {1, ..., 4}), we follow three

steps to infer related words and phrases: i) Image Classification: we get top class la-

bels and the confidence from Image Classifier (Sk, P̃ (Sk|Ik)), ii) Rank and Retrieve:

using these labels and confidence scores, we rank and retrieve top related words (Tk)

from ConceptNet (Kcnet), iii) Probabilistic Reasoning and Inference (Stage I): using

the labels (Sk) and the top related words (Tk), we design an inference model to logi-

cally infer final set of words (T̂k) for each image. Lastly, we use another probabilistic
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reasoning model (Stage II) on the combined set of inferred words (targets) from all

images in a riddle. This model assigns the final confidence scores on the combined

set of targets (T ). We depict the pipeline with an example in Figure 7.2.

Figure 7.2: An Overview of the Framework Followed for Each Image; Demon-
strated Using an Example Image of an Aardvark (Resembles Animals such as Tapir,
Ant-eater). As Shown, the Uncertainty in Detecting Concepts Is Reduced after Con-
sidering Additional Knowledge. We Run a Similar Pipeline for Each Image and then
Infer Final Results Using a Final Probabilistic Inference Stage (Stage II).

7.5.2 Image Classification

Neural Networks trained on ample source of images and numerous image classes

has been very effective in classifying images. Studies have found that convolutional

neural networks (CNN) can produce near human level image classification accuracy

(Krizhevsky et al. 2012), and related work has been used in various visual recognition

tasks such as scene labeling (Farabet et al. 2013) and object recognition (Girshick

et al. 2014b). To exploit these advances, we use the state-of-the-art class detections

provided by the Clarifai API (Sood 2015) and the deep residual network Architecture

by He et al. (2015a) (using the trained ResNet-200 model). For each image (Ik) we

use top 20 detections (Sk) (seeds). Figure 7.2 provides an example. Each detection

is accompanied with the classifier’s confidence score (P̃ (Sk|Ik)).
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7.5.3 Retrieve and Rank Related Words

Our goal is to logically infer words or phrases that represent (higher or lower-level)

concepts that can best explain the co-existence of the detected seeds in a scene. For

examples, for “hand” and “care”, implied words could be “massage”, “ill”, “ache”

etc. For “transportation” and “sit”, implied words/phrases could be “sit in bus”,

“sit in plane” etc. The reader might be inclined to infer other concepts. However, to

“infer” is to derive “logical” conclusions. Hence, we prefer the concepts which shares

strong explainable connections (i.e. relational similarity) with the seeds.

A logical choice would be traversing a knowledge-graph like ConceptNet and find

the common reachable nodes from these seeds. As this is computationally infeasible,

we use the association-space matrix representation of ConceptNet, where the words

are represented as vectors. The similarity between two words approximately embodies

the strength of the connection over all paths connecting the two words in the graph.

We get the top similar words for each seed, approximating the reachable nodes.

Retrieve Related Words For a Seed

We observe that, for objects, the ConceptNet-similarity gives a poor result (See Table

7.1). So, we define a metric called visual similarity. Let us call the similar words

as targets. In this metric, we represent the seed and the target as vectors. To define

the dimensions, for each seed, we use the relations HasA, HasProperty, PartOf and

MemberOf. We query ConceptNet to get the related words (W1,W2,W3...) under

such relations for the seed-word and its superclasses (words connected using IsA).

Each of these relation-word pairs (i.e. HasA-W1, HasA-W2, PartOf-W3,...) becomes

a separate dimension. The values for the seed-vector are the weights assigned to the

assertions. For each target, we query ConceptNet and populate the target-vector using
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the edge-weights for the dimensions defined by the seed-vector. To get the top words

using visual similarity, we use the cosine similarity of the seed-vector and the target-

vector to re-rank the top 10000 retrieved similar target-words. For abstract seeds, we

do not get any such relations and thus use the ConceptNet similarity directly.

ConceptNet Visual Similarity Word2vec

man, merby, misandrous,

philandry, male human,

dirty pig, mantyhose,

date woman,guyliner,manslut

priest, uncle, guy,

geezer, bloke, pope,

bouncer, ecologist,

cupid, fella

women, men, males,

mens, boys, man, female,

teenagers,girls,ladies

Table 7.1: Top 10 Similar Words for “Men”. The Ranked List Based on Visual-
similarity Ranks Boy, Chap, Husband, Godfather, Male person, and Male in the
Ranks 16 to 22. See Appendix for More.

Table 7.1 shows the top similar words using ConceptNet, word2vec and visual-

similarity for the word “men”.

Formulation: For each seed (s), we get the top words (Ts) from ConceptNet

using the visual similarity metric and the similarity vector Wm(s,Ts). Together for an

image, these constitute TSk
and the matrixWm, whereWm(si, tj) = simvis(si, tj)∀si ∈

Sk, tj ∈ TSk
.

A large percentage of the error from image classifiers are due to visually similar

objects or objects from the same category (Hoiem et al. 2012). In such cases, we use

this visual similarity metric to predict the possible visually similar objects and then

use an inference model to infer the actual object.

Rank Targets

We use the classifier confidence scores P̃ (Sk|Ik) as an approximate vector representa-

tion for an image, in which the seeds are the dimensions. The columns of Wm provides
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vector representations for the target words (t ∈ TSk
) in the space. We calculate cosine

similarities for each target with such a image-vector and then re-rank the targets. We

denote the top θ#t targets as Tk (see Table. 7.3).

7.5.4 Probabilistic Reasoning and Inference

PSL Inference Stage I

Given a set of candidate targets Tk and a set of weighted seeds 〈Sk, P̃ (Sk|Ik)〉, we

build an inference model to infer a set of most probable targets (T̂k). We model the

joint distribution using PSL as this formalism adopts Markov Random Field which

obeys the properties of Gibbs Distribution. In addition, a PSL model is declared

using rules. Given the final answer, the set of satisfied rules show the logical connec-

tions between the detected words and the final answer. The PSL model can be best

explained as an Undirected Graphical Model involving seeds (observed) and targets

(unobserved). We define the seed-target and target-target potentials using PSL rules.

We connect each seed to each target and the potential depends on their similarity

and the target’s popularity bias. We connect each target to θt-t (1 or 2) maximally

similar targets. The potential depends on their similarity.

Formulation: Using PSL, we add two sets of rules: i) to define seed-target

potentials, we add rules of the form wtij : sik → tjk for each word sik ∈ Sk and target

tjk ∈ Tk; ii) to define target-target potentials, for each target tjk, we take the most

similar θt-t targets (Tmaxj ). For each target tjk and each tmk ∈ Tmaxj , we add two rules

wtjm : tjk → tmk and wtjm : tmk → tjk. Next, we describe the choices in detail.

i) From the perspective of optimization, the rule wtij : sik → tjk adds the term

wtij ∗max{I(sik)− I(tjk), 0} to the objective. This means that if confidence score of

the target tjk is not greater than I(sik) (i.e. P̃ (Sk|Ik)), then the rule is not satisfied
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and we penalize the model by wtij times the difference between the confidence scores.

We add the above rule for seeds and targets for which the combined similarity (wtij)

exceeds certain threshold θsim,psl1.

We encode the commonsense knowledge of words and phrases obtained from dif-

ferent knowledge sources into the weights of these rules wtij. It is also important that

the inference model is not biased towards more popular targets (i.e. abstract words

or words too commonly used/detected in corpus). We compute eigenvector centrality

score (C(.)) for each word in the context of ConceptNet (a network of words and

phrases). Higher C(.) indicates higher connectivity of a word in the graph. This

yields a higher similarity score to many words and might give an unfair bias to this

target in the inference model. Hence, the higher the C(.), the word provides less

specific information for an image. Hence, the weight becomes

wtij = θα1 ∗ simcn(sik, tjk) + θα2 ∗ simw2v(sik, tjk) + 1/C(tjk), (7.1)

where simcn(., .) is the normalized ConceptNet-based similarity. simw2v(., .) is the

normalized word2vec similarity of two words and C(.) is the eigenvector-centrality

score of the argument in the ConceptNet matrix.

ii) To model dependencies among the targets, we observe that if two concepts t1

and t2 are very similar in meaning, then a system that infer t1 should infer t2 too,

given the same set of observed words. Therefore, the two rules wtjm : tjk → tmk and

wtjm : tmk → tjk are designed to force the confidence values of tjk and tmk to be as

close to each other as possible. wtjm is the same as Equation 7.1 without the penalty

for popularity.
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Using Equation 3.3, the PSL inference objective becomes:

arg min
I(Tk)∈[0,1]|Tk|

∑
sik∈Sk

∑
tjk∈Tk

wtij max
{
I(sik)− I(tjk), 0

}
+

∑
tjk∈Tk

∑
tmk∈Tmax

j

wtjm

{
max

{
I(tmk)− I(tjk), 0

}
+

max
{
I(tjk)− I(tmk), 0

}}
.

To let the targets compete against each other, we add one more constraint on the

sum of the confidence scores of the targets i.e.
∑

j:tjk∈Tk
I(tjk) ≤ θsum1. Here θsum1 ∈

{1, 2} and I(tjk) ∈ [0, 1]. The above optimizer provides us P(Tk|Sk) and thus the top

set of targets [T̂k]4k=1.

PSL Inference Stage II

To learn the most probable common targets jointly, we consider the targets and the

seeds from all images together. Assume that the seeds and the targets are nodes in

a knowledge-graph. Then, the most appropriate target-nodes should observe similar

properties as an appropriate answer to the riddle: i) a target-node should be connected

to the high-weight seeds in an image i.e. should relate to the important aspects of

the image; and ii) a target-node should be connected to seeds from all images.

Formulation: Here, we use the rules wtij : sik → tjk for each word sik ∈ Sk

and target tjk ∈ T̂k for all k ∈ {1, 2.., 4}. To let the set of targets compete against

each other, we add the constraint
∑4

k=1

∑
j:tjk∈T̂k

I(tjk) ≤ θsum2. Here θsum2 = 1 and

I(tjk) ∈ [0, 1]. The second inference stage provides us P([T̂k]4k=1|S1, S2, S3, S4) and

thus the top targets that constitutes the final answers.

To minimize the penalty for each rule, the optimal solution maximizes the confi-

dence score of tjk. To minimize the overall penalty, it should maximize the confidence

scores of these targets which satisfy most of the rules. As the summation of confidence

scores is bounded, only a few top inferred targets should have non-zero confidence.
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7.6 Experiments and Results

In this section, we provide the results of the validation experiments of the newly

introduced Image Riddle dataset, followed by empirical evaluation of the proposed

approach against vision-only baselines.

7.6.1 Dataset Validation and Analysis

We have collected a set of 3333 riddles from the Internet (puzzle websites). Each

riddle has 4 images and a groundtruth answer associated with it. To make it more

challenging to computer systems, we include both photographic and non-photographic

images in the dataset.

To verify the groundtruth answers, we define the metrics: i) “correctness” - how

correct and appropriate the answers are, and ii) “difficulty” - how difficult are the rid-

dles. We conduct an Amazon Mechanical Turker (AMT)-based evaluation for dataset

validation. We ask them to rate the correctness from 1-6 3 . The “difficulty” is rated

from 1-7 4 . We provide the Turkers with examples to calibrate our evaluation.

According to the Turkers, the mean correctness rating is 4.4 (with Standard Devia-

tion 1.5). The “difficulty” ratings show the following distribution: toddler (0.27%),

younger child (8.96%), older child (30.3%), teenager (36.7%), adult (19%), linguist

(3.6%), no-one (0.64%). In short, the average age to answer the riddles is closer to

13-17yrs. Also, few of these (4.2%) riddles seem to be incredibly hard. Interestingly,

the average age perceived reported for the recently proposed VQA dataset Antol et al.

31: Completely gibberish, incorrect, 2: relates to one image, 3 and 4: connects two and three
images respectively, 5: connects all 4 images, but could be a better answer, 6: connects all images
and an appropriate answer.

4These gradings are adopted from VQA AMT instructions Antol et al. (2015b). 1: A toddler can
solve it (ages:3-4), 2: A younger child can solve it (ages:5-8), 3: A older child can solve it (ages:9-12),
4: A teenager can solve it (ages:13-17), 5: An adult can solve it (ages:18+), 6: Only a Linguist (one
who has above-average knowledge about English words and the language in general) can solve it, 7:
No-one can solve it.
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(2015b) is 8.92 yrs. Although, this experiment measures “the turkers’ perception of

the required age”, one can conclude with statistical significance that the riddles are

comparably harder.

7.6.2 System Evaluation

The presented approach suggests the following hypotheses that requires empirical

tests: I) the proposed approach (and their variants) attain reasonable accuracy in

solving the riddles; II) the individual stages of the framework improves the final

inference accuracy of the answers. In addition, we also experiment to observe the

effect of using commercial classification methods like Clarifai against a published

state-of-the-art image classification method.

Systems

We propose several variations of the proposed approach and compare them with sim-

ple vision-only baselines. We introduce an additional Bias-Correction stage after the

Image Classification, which aims to re-weight the detected seeds using additional in-

formation from other images. The variations then are created to test the effects of

varying the Bias-Correction stage and the effects of the individual stages of the frame-

work on the final accuracy (hypothesis II). We also vary the initial image classification

methods (Clarifai, Deep Residual Network).

Bias-Correction: We experimented with two variations: i) greedy bias-correction

and ii) no bias-correction. We follow the intuition that the re-weighting of the

seeds of one image can be influenced by the others 5 . To this end, we develop

the “GreedyUnRiddler” (GUR) approach. In this approach, we consider all of the

5A person would often skim through all the images at one go and will try to come up with the
aspects that needs more attention.
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images together to dictate the new weight of each seed. Take image Ik for exam-

ple. To re-weight seeds in Sk, we calculate the weights using the following equation:

W̃ (sk) =
∑

j∈1,..4 simcosine(Vsk,j ,Vj)

4.0
. Vj is vector of the weights assigned P̃ (Sj|Ij) i.e. con-

fidence scores of each seed in the image. Each element of Vsk,j[i] is the ConceptNet-

similarity score between the seed sk and si,j i.e. the ith seed of the jth image. The

re-weighted seeds (Sk, W̃ (Sk)) of an image are then passed through the rest of the

pipeline to infer the final answers.

In the original pipeline (“UnRiddler”,in short UR), we just normalize the weights

of the seeds and pass on to the next stage. We experiment with another variation

(called BiasedUnRiddler or BUR), the results of which are included in appendix, as

GUR achieves the best results.

Effect of Stages: We observe the accuracy after each stage in the pipeline (VB:

Up to Bias Correction, RR: Up to Rank and Retrieve stage, All: The entire Pipeline).

For VB, we use the normalized weighted seeds, get the weighted centroid vector over

the word2vec embeddings of the seeds for each image. Then we obtain the mean

vector over these centroids. The top similar words from the word2vec vocabulary

to this mean vector, constitutes the final answers. For RR, we get the mean vector

over the top predicted targets for all images. Again, the most similar words from the

word2vec vocabulary constitutes the answers.

Baseline (VQA+VB+UR): For the sake of completion, we experiment with

a pre-trained Visual Question Answering system (from Lu et al. (2016b)). For each

image, we take top 20 answers for the question “What is the image about”, and, then

we follow the above procedure (VB+UR) to calculate the mean. We get the closest

word using the mean vector, from the Word2vec vocabulary. We observe that, the

detected words are primarily top frequent answers and do not contain any specific

information. Therefore, subsequent stages hardly improve the results.
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Baseline (Clarifai+VB+UR and ResNet+VB+UR): We create a strong

baseline by directly going from seeds to target using word2vec-based similarities.

We use the class-labels and the confidence scores predicted using the state-of-the-art

classifiers. For each image, we then calculate the weighted centroid of the word2vec

embeddings of these labels and the mean of these centroids for the 4 images. For the

automatic evaluation we use top K (10) similar words and for the human evaluation,

we use the most similar word to this vector, from the word2vec vocabulary. The

Baseline performances are listed in Table 7.2.

Human Baseline: In an independent AMT study, we ask the turkers to answer

each riddle without any hint towards the answer. We ask them to input maximum

5 words (comma-separated) that can connect all four of the images. In cases, where

the riddles are difficult we instruct them to find words that connect at least three

images. These answers constitute our human baseline.

Experiment I: Automatic Evaluation

We evaluate the performance of the proposed approach on the Image Riddles dataset

using both automatic and Amazon Mechanical Turker (AMT)-based evaluations. An

answer to a riddle may have several semantically similar answers. Hence, as evaluation

metrics, we use both word2vec and WordNet-based similarity measures. For each

riddle, we calculate the maximum similarity between the groundtruth with the top

10 detections, and report the average of such maximum similarities in percentage

form:

S =
1

n

n∑
i=1

max
1≤l≤10

sim(GTi, Tl) (7.2)

To calculate phrase similarities, i) we use n similarity method in the word2vec

package of the gensim API; or, ii) average of WordNet-based word pair similarities

that is calculated as a product of length (of the shortest path between sysnsets of
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the words), and depth (the depth of the subsumer in the hierarchical semantic net)

Li et al. (2006) 6 .

3.3k 2.8k

W2V WN W2V WN

Human - - 74.6 68.9 74.56 67.8

VQA VB
UR † 59.6 15.7 59.7 15.6

GUR 62.59 17.7 62.5 17.7

VB
UR † 65 26.2 65.3 26.4

GUR 65.3 26.2 65.36 26.2

Clarifai
RR

UR 65.9 34.9 65.7 34.8

GUR 65.9 36.6 65.73 36.4

All
UR 68.5 40.3 68.57 40.4*

GUR 68.8* 40.3 68.7 40.4*

VB
UR † 68.3 35 68 33.5

GUR 66.8 33.1 66.4 32.6

Resnet
RR

UR 66.7 38.5 66.7 38.2

GUR 66.3 38.1 66.2 37.6

All
UR 68.53 39.9 68.2 40.2

GUR 68.2 39.5 68.2 39.6

Table 7.2: Accuracy (in Percentage) on the Image Riddle Dataset. Pipeline Variants
(VB, RR and All) Are Combined with Bias-Correction Stage Variants (GUR, UR). We
Show both Word2vec and WordNet-based (WN) Accuracies. (*- Best, † - Baselines).

To select the parameters in the parameter vector θ, We employed a random search

on the parameter-space over first 500 riddles over 500 combinations. The final set

of parameters used and their values are tabulated in Table 7.3. The accuracies after

different stages of the pipeline (VB, RR and All) combined with variations of the

6The groundtruth is a single word. Code: bit.ly/2gqmnwEe.
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θ#t Number of Targets 2500

θα1 ConceptNet-similarity Weight 1

θα2 word2vec-similarity weight 4

θt-t Number of maximum similar Targets 1

θsim,psl1 Seed-target similarity Threshold 0.8

θsum1 Sum of confidence scores in Stage I 2

Table 7.3: A List of Parameters θ Used in the Approach

initial Bias-Correction stage (GUR and UR), are listed in Table 7.2 7 . We provide

our experimental results on this 3333 riddles and 2833 riddles (barring 500 riddles as

validation set for the parameter search).

Experiment II: Human Evaluation

We conduct an AMT-based comparative evaluation of the results of the proposed

approach (GUR+All using Clarifai) and two vision-only baselines. We define two

metrics: i) “correctness” and ii) “intelligence”. Turkers are presented with a scenario:

We have three separate robots that attempted to answer this riddle. You have to rate

the answer based on the correctness and the degree of intelligence (explainability)

shown through the answer.. The correctness is defined as before. In addition, turkers

are asked to rate intelligence in a scale of 1-4 8 . We plot the the percentage of

total riddles per each value of correctness and intelligence in Figure 7.3. In these

histograms plots, we expect a increase in the rightmost buckets for the more “correct”

and “intelligent” systems.

7For ablation study results on varying top K, check appendix.

81: Not intelligent, 2: Moderately Intelligent, 3: Intelligent, 4: Very Intelligent.
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.Figure 7.3: AMT Results of The GUR+All (our), Clarifai (baseline 1) and Residu-
alNet (baseline 2) Approaches. Correctness Means Are: 2.6±1.4, 2.4±1.45, 2.3±1.4.
For Intelligence: 2.2± 0.87, 2± 0.87, 1.8± 0.8

Analysis

Experiment I shows that the GUR variant (Clarifai+GUR+All in Table 7.2)

achieves the best results in terms of word2vec-based accuracy. The WordNet-based

metric gives clear evidence of improvement by the stages of our pipeline (a sharp 14%

increase over Clarifai and 6% increase over ResNet baselines). Improvement from the

final reasoning stage is also evident from the result. The increase in accuracy after rea-

soning shows how knowledge helped in decreasing overall uncertainty in perception.

Similar trend is reflected in the AMT-based evaluations (Figure 7.3). Our system

has increased the percentage of puzzles for the rightmost bins i.e. produces more

“correct” and “intelligent” answers for more number of puzzles. The word2vec-based

accuracy puts the performance of ResNet baseline close to that of the GUR variant.

However, as evident from the WordNet-based metric and the AMT evaluation of the
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Figure 7.4: Positive and Negative (in red) Results of the “GUR” Approach (GUR+
All Variant) on Some of the Riddles. The Groud-truth Labels, Closest Label among
Top 10 from GUR and the Clarifai Baseline Are Provided for All Images. For More
Results, Check the ImageRiddle website (here).

correctness (Figure 7.3), the GUR variant clearly predicts more meaningful answers

than the ResNet baseline. Experiment II also includes what the turkers think about

the intelligence of the systems that tried to solve the puzzles. This also puts the GUR

variant at the top. The above two experiments empirically show that our approach

achieves a reasonable accuracy in solving the riddles (Hypothesis I). In table 7.2,

we observe how the accuracy varies after each stage of the pipeline (hypothesis II).

The table shows a jump in the (WN) accuracy after the RR stage, which leads us to

believe the primary improvement of our approach is attributed to the Probabilistic
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Reasoning model. We also provide our detailed results for the “GUR” approach using

a few riddles in Figure 7.4.

Difficulty of Riddles: From our AMT study (Human baseline), we observe

that the riddles are quite difficult for (untrained) human mechanical turkers. There

are around 500 riddles which were labeled as “blank”, another 500 riddles were labeled

as “not found”. Lastly, 457 riddles (391 with wordnet similarity higher than 0.9 and

66 higher than 0.8) were predicted perfectly, which leads us to believe that these

easy riddles mostly show visual similarities (object-level) whereas others mostly show

conceptual similarity.

Running Time: Our implementation of PSL solves each riddle in nearly 20s

in an Intel core i7 2.0 GHz processor, with 4 parallel threads. Solving each riddle

boils down to solving 5 optimization problems (1 for each image and 1 joint). This

eventually means our engine takes nearly 4 sec. to solve an inference problem with

approximately 20× 2500 i.e. 50k rules.

Reason to use a Probabilistic Logic: We have already stated our reasons for

choosing PSL over other available Probabilistic Logics. However, the simplicity of the

used rules can leave the reader wondering about the reason for choosing a complex

probabilistic logic in the first place. Each riddle requires an answer which is “logically”

connected to each image. To show that a predicted answer is connected logically,

we need ontological knowledge graphs such as ConceptNet which shows connections

between the answer and words detected from the images. To integrate ConceptNet’s

knowledge seamlessly into the reasoning mechanism, we use a probabilistic logic such

as PSL.
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7.7 Conclusion and Future Work

In this chapter, we present a new class of image puzzles, called “image riddles”.

We have collected over 3k such riddles from the internet, where each riddle has 4

images and an accompanying groundtruth answer. Crowd-sourced evaluation of the

dataset demonstrates the validity of the annotations and the nature of the difficulty

of the riddles. We then present a probabilistic reasoning based approach to solve

this new class of image puzzles, called image riddles. We empirically show that our

approach improves on vision-only baselines and provides a stronger baseline for future

attempts.

The task of image riddles is equivalent to conventional IQ test questions such

as analogy solving, sequence filling; which are often used to test human intelligence.

This task of image riddles is also in line with the current trend of VQA datasets which

require visual recognition and reasoning capabilities. However, it focuses equally on

both vision and reasoning capabilities. In addition to the task, the proposed approach

introduces a novel inference model to infer related words (from a large vocabulary)

given class labels (from a smaller set), using semantic knowledge of words. This

method is general in terms of its applications. Systems such as Wu et al. (2016a),

which use a collection of high-level concepts to boost VQA performance; can benefit

from this approach.
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Chapter 8

APPLICATION 4: VISUAL REASONING

8.1 Introduction

Recently, novel tasks and large diagnostic datasets have been proposed to test AI

systems’ capability of reasoning and answering questions about images. Spatial com-

monsense knowledge often helps human beings to solve these tasks. However, current

state-of-the-art methods do not leave room for integrating such external knowledge.

In the previous three applications, we presented pipeline-based systems where the

reasoning is handled by explicit reasoning mechanisms. As sequential architectures

suffer from generic problems such as error accumulation over stages, an alternative is

to adopt machine learning systems that can be trained in an end-to-end manner.

In this chapter, we show how to integrate additional knowledge in deep neural

architectures to aid in visual reasoning. We propose an enhanced teacher-student

framework, that combines recent advances in knowledge distillation, relational rea-

soning and probabilistic logical languages to incorporate spatial knowledge. Specifi-

cally, for a question posed against an image, we adopt a probabilistic logical language

to encode the spatial knowledge. The spatial understanding about the question in

the form of a mask is then directly provided to the teacher network. The student net-

work learns from the ground-truth answers and the teacher network’s output through

knowledge distillation. We also demonstrate the impact of predicting such a mask

in the network. Empirically, we show that both methods of internal and external

prediction of mask improve the end-to-end performance over state-of-the-art baseline

networks on publicly available benchmark datasets (Sort-of-Clevr and CLEVR).
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8.2 Background and Motivation

Vision and language tasks such as Visual Question Answering are interesting to

the AI community at large since they require multi-modal knowledge beyond a single

sub-domain. Recently, the VQA 1.0 dataset was proposed as a representative dataset

for the task of Visual Question Answering (Antol et al. 2015a). This task of visual

question answering (Antol et al. 2015a) aims to combine efforts from three broad sub-

fields of artificial intelligence namely image understanding, language understanding

and reasoning. Despite its popularity, most of its questions focus on object recognition

in images and natural language understanding. Question-Image pairs where a system

may require compositional reasoning or reasoning with external knowledge, seem to

be largely absent. To explicitly assess the reasoning capability, several specialized

datasets have been proposed, that emphasize specifically on questions requiring com-

plex multiple-step reasoning (CLEVR Johnson et al. 2016a) or questions that require

reasoning using external knowledge (F-VQA Wang et al. 2017).

In this work, we concentrate on questions which require multiple-step (relational)

reasoning, and we explore how a recently proposed state-of-the-art relational reason-

ing based architecture (Santoro et al. 2017) can be improved further with the aid of

additional spatial knowledge. This is an important avenue, as humans often use a

large amount of external knowledge to solve tasks that they have acquired through

years of experience. Current state-of-the-art neural architectures do not explicitly

model such external knowledge and reason with them to solve visual reasoning tasks.

Several researchers have pointed out the necessity of explicit modeling of such knowl-

edge 1 . This necessitates revisiting the three fundamental issues i.e. what kind of

1The authors in Lake et al. (2016) quoted a reviewer’s comment: “Human learners - unlike
DQN and many other deep Learning systems - approach new problems armed with extensive prior
experience.”. The authors also ask “How do we bring to bear rich prior knowledge to learn new
tasks and solve new problems?”. In “A Path to AI”, Dr. Yann Lecun recognizes the absence of
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(a) (b)

Figure 8.1: (a) An Image and a Set of Questions from the CLEVR Dataset. Ques-
tions Often Require Multiple-step Reasoning, For Example in the Second Question,
One Needs to Identify the Big Sphere, Then Recognize the Reference to the Brown
Metal Cube, which Then Refers to the Root Object, That Is, the Brown Cylinder.
(b) An Example of Spatial Commonsense Knowledge Needed to Solve a CLEVR-type
Question.

knowledge is required, where and how to acquire them, and what kind of reasoning

mechanism to adopt for such knowledge.

To understand the kind of external knowledge required, we investigate the CLEVR

dataset proposed in Johnson et al. (2016a). This dataset explicitly asks questions that

require relational and multi-step reasoning. An example is provided in Fig. 8.1(a). In

this dataset, the authors create synthetic images consisting of a set of objects that are

placed randomly within the image. Each object is created randomly by varying its

shape, color, size and texture. For each image, 10 complex questions are generated.

Each question inquires about an object or a set of objects in the image. To understand

which object(s) the question is referring to, one needs to decipher the clues that are

provided about the property of the object or the spatial relationships with other

objects. This can be a multiple-step process, that is: first recognize object A, that

common-sense to be an obstacle to AI.
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refers to object B, which refers to C and so on. There have been multiple architectures

proposed to answer such complex questions. Authors in Hu et al. (2017) attempt to

learn a structured program from the natural language question. This program acts as

a structured query over the objects and relationship information provided as a scene

graph and can retrieve the desired answer. More interestingly, the authors in Santoro

et al. (2017) model relational reasoning explicitly in the neural network architecture

and propose a generic relational reasoning module to answer questions. This is one

of the first known attempt to formulate a differentiable function to embody a generic

relational reasoning module that is traditionally formulated using logical reasoning

languages. The failure cases depicted by this work, often points to the lack of complex

commonsense knowledge such as, the front of cube should consist of front of all visible

side of cubes. These examples point that spatial commonsense knowledge might

help answer questions such as in Fig. 8.1(b). Even though procuring such knowledge

explicitly is difficult, we observe that parsing the questions and additional scene graph

information can help “disambiguate” the area of the image on which a phrase of a

question focuses on.

To integrate such additional knowledge and to reason using such knowledge, we

take inspiration from techniques from the field of Knowledge Representation and

Reasoning (KR&R). The KR&R community has evolved from First Order Logic to

non-monotonic reasoning languages such as Prolog (Kowalski 1988) and Answer Set

Programming (Baral 2003). As these languages did not explicitly model uncertainty,

researchers proposed many theories and corresponding reasoning engines for formu-

lations that combine logic and probability. The most popular of these formalisms

include Markov Logic Networks (Richardson and Domingos 2006b), Probabilistic

Soft Logic (Kimmig et al. 2012b), and ProbLog (De Raedt et al. 2007). In prac-

tice, these languages and their available implementations are often susceptible to the
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(a) (b)

Figure 8.2: (a) The Teacher-Student Distillation Architecture. As the Base of Both
Teacher and Student, We Use the Architecture Proposed by the Authors in Santoro
et al. (2017). For the Experiment with Pre-processed Mask Generation, We Pass
a Masked Image through the Convolutional Network and for the Network-predicted
Mask, We Use the Image and Question to Predict an Attention Mask over the Regions.
(b) We Show the Internal Process of Mask Creation in the External Mask Setting.

high amount of noises in real-world datasets and hence, their direct applications have

been somewhat limited. One can assume, that to provide robust, interpretable and

accurate solutions, one needs to leverage both the robustness and interpretability

of declarative logical reasoning languages and the high-level representation learning

capability of deep learning. In this chapter, we attempt to show that the theory of

knowledge distillation (Hinton et al. 2015) and relational reasoning together provide

an avenue for an indirect integration of these reasoning languages with deep learning

architectures. Knowledge can be noisy, imperfect and often costly at test time. The

distillation paradigm helps in this regard as the student network can choose to learn

from the ground-truth data (putting less weight on teacher’s predictions) and the

student network does not need any knowledge in the test time.

To this end, we propose a student-teacher based network architecture, where the

teacher has privileged information such as an attentive image mask based on the

question. In an abstract sense, we propose that any spatial knowledge in image

question answering setting can be expressed as a (attention) mask over the image.
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We provide two methods for calculating the mask: i) in case, where the object and

relationships are provided for an image, one can calculate a mask using probabilistic

reasoning, and ii) if such data is not available, such a mask can be calculated inside

the network using attention. We experiment on the CLEVR and the Sort-of-Clevr

dataset, and empirically show that both these methods outperform a state-of-the-

art relational reasoning architecture. We observe that the teacher model (using the

spatial knowledge inferred by Probabilistic Soft Logic inference) achieves a sharp

12.7% jump in test accuracy over the baseline architecture. We also provide ablation

studies of the reasoning mechanism on (questions and scene information from) the

CLEVR dataset.

8.3 Related Work

Our proposed approach is influenced by the following thrusts of work: proba-

bilistic logical reasoning, spatial reasoning, reasoning in neural networks, knowledge

distillation; and the target application area of Visual Question Answering.

Recently, researchers from the Knowledge Representation and Reasoning (KR&R)

community, and the probabilistic reasoning community have come up with several

robust probabilistic reasoning languages which are deemed more suitable to reason

with noisy real-world data, and incomplete or noisy background knowledge. Some

of the popular ones among these reasoning languages are Markov Logic Network

(Richardson and Domingos 2006b), Probabilistic Soft Logic (Kimmig et al. 2012b),

and ProbLog (De Raedt et al. 2007). Even though these new theories are significant

large steps towards modeling uncertainty (beyond previous languages engines such as

Answer Set Programming (Baral 2003)); the benefit of using these reasoning engines

has not been successfully shown on large real-world datasets. This is one of the reasons

that recent advances in deep learning, especially the works of modeling knowledge
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distillation (Hinton et al. 2015; Vapnik and Izmailov 2015) and relational reasoning

have received significant interest from the community.

Modeling of spatial knowledge and reasoning using such knowledge in 2D or 3D

space has also given rise to multiple exciting works in both Computer Vision and

Robotics, collectively termed as Qualitative Spatial Reasoning (QSR). Randell et al.

(1992) proposed an interval logic for reasoning about space. Cohn and Renz (2008)

proposed advancements over previous languages aimed at robotic navigation in 2D

or 3D space. In these languages, the relations between two objects are modeled spa-

tially. For example, in 1D, one aims to model relations exhaustively between lines

and points. In such scenarios, the set of basic relations are often similar to tempo-

ral interval calculus. In 2D space, regions were proposed as fundamental entities,

and hence relations between these regions define how the objects interact spatially.

Our work is also influenced by this series of research (such as Region Connection

Calculus etc.), in the sense of what “privileged information” we expect along-with

the image and the question. For the CLEVR dataset, the relations left, right,

front, behind can be used as a closed set of spatial relations among the objects

and that often suffices to answer most questions. For real images, a scene graph that

encodes spatial relationships among objects and regions, such as proposed in Elliott

and Keller (2013a) would be useful to integrate our methods.

Popular probabilistic reasoning mechanisms from the statistical community often

define distribution with respect to Probabilistic Graphical Models. There have been

a few attempts to model such graphical models in conjunction with deep learning

architectures (Zheng et al. 2015). However, multi-step relational reasoning and rea-

soning with external domain or commonsense knowledge 2 require the robust struc-

2An example of multi-step reasoning: if event A happens, then B will happen. The event B
causes action C only if event D does not happen. For reasoning with knowledge: consider for an
image with a giraffe, we need to answer “Is the species of the animal in the image and an elephant
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tured modeling of the world as adopted by KR&R languages. In its popular form,

these reasoning languages often use predicates to describe the current world, such

as color(hair, red), shape(object1, sphere), material(object1,metal) etc; and then

declare rules that the world should satisfy. Using these rules, truth values of un-

known predicates are obtained, such as ans(?x,O) etc. Similarly, the work in Santoro

et al. (2017), defines the relational reasoning module as RN(O) = fφ

(∑
i,j gθ(oi, oj)

)
,

where O denote all objects. In this work, the relation between a pair of objects (i.e.

gθ) and the final function over this collection of relationships i.e., fφ are defined as

multilayer perceptrons (MLP) and are learned using gradient descent in an end-to-end

manner. This model’s simplicity and its close resemblance to traditional reasoning

mechanisms motivate us to pursue further and integrate external knowledge.

Several methods have been proposed to distill knowledge from a larger model to a

smaller model or from a model with access to privileged information to a model with-

out such information. Hinton et al. (2015) first proposed a framework where a large

cumbersome model is trained separately, and a smaller student network learns from

both groundtruth labels and the large network. Independently, Vapnik and Izmailov

(2015) proposed an architecture where the larger (or the teacher) model has access

to privileged information and the student model does not. These models together

motivated many natural language processing researchers to formulate textual classifi-

cation tasks as a teacher-student model, where the teacher has privileged information,

such as a set of rules; and the student learns from the teacher and the ground-truth

data. The imitation parameter controls how much the student trusts the teacher’s

decision. In Hu et al. (2016b), an iterative knowledge distillation is proposed where

the teacher and the student learn iteratively and the convolutional network’s param-

eters are shared between the models. In Hu et al. (2016a), the authors propose to

same?”
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solve sentiment classification, by encoding explicit logical rules and integrating the

grounded rules with the teacher network. These applications of the teacher-student

network only exhibited success with classification problems with a very small number

of classes (less than three).

In this chapter, we show a knowledge distillation integration with privileged infor-

mation which is applied to a 28-class classification, and we observe that it improves by

a large margin on the baseline. In Yu et al. (2017), the authors use encoded linguistic

knowledge in the form of P (pred|obj, subj) to perform Visual Relationship Detec-

tion. In our approach, we apply knowledge distillation in a visual question answering

setting, that require both visual reasoning and question understanding.

In the absence of the scene information or in cases where such information is

expensive to obtain, an attention mask over the image can be predicted inside the

network based upon the posed question. Attention mechanism has been successfully

applied in image captioning (Xu et al. 2015; Mun et al. 2017), machine translation

(Bahdanau et al. 2014; Vaswani et al. 2017) and visual question answering (Yang

et al. 2016). In Yang et al. (2016), a stacked attention network was used to predict a

mask over the image. They use the question vector separately to query specific image

features to create the first level of attention. In contrast, we combine the question

vector with the whole image features to predict a coarse attention mask.

8.4 Probabilistic Reasoning Mechanism

To reason about the spatial relations among the objects in a scene and textual

mentions of those objects in the question, we choose Probabilistic Soft Logic (PSL)

as our reasoning engine. Using PSL provides us three advantages: i) (Robust Joint

Modeling) from the statistical side, PSL models the joint distribution of the random

variables using a Hinge-Loss Markov Random Field, ii) (interpretability) we can use
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clear readable declarative rules that (directly) relates to defining the clique potentials,

and iii) (Convex Optimization) the optimization function of PSL is designed in a

way so that the underlying function remains convex, and that provides an added

advantage of faster inference. We use PSL, as it has been successfully used in Vision

and Language applications (London et al. 2013; Aditya et al. 2018) in the past and

it is also known to scale up better than its counterparts (Richardson and Domingos

2006b).

8.5 Knowledge Distillation Framework

While PSL provides a probabilistic knowledge representation, a mechanism is

needed to utilize them under the deep neural networks based systems. Our work

is inspired by two primary variations of knowledge distillation. First, Hinton et al.

(2015) proposed to distill the “dark knowledge” hidden in the soft values (softmax

output from the last fully-connected layer) from a larger to a smaller network. Sec-

ond, Vapnik and Izmailov (2015) proposed an architecture where the larger (or the

teacher) model has access to privileged information and the student model does not

In the proposed approach, we use both the concepts resulting in two different archi-

tectures i) (External Mask) teacher with provided ground-truth mask, ii) (In-Network

Mask) teacher predicts the mask with additional computation. Here, we provide the

general formulations for both methods. We postpone the details of the ground-truth

mask creation using Natural Language Processing and additional scene information

to Sec. 8.6.

8.5.1 General Architecture

The general architecture for the teacher-student network is provided in Fig. 8.2(a).

Let us denote the teacher network as qφ and the student network as pθ. In both
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scenarios, the student network uses the relational reasoning network (Santoro et al.

2017) to predict the answer. The teacher network uses an LSTM to process the

question, and a convolutional neural network to process the image. Features from

the convolutional network and the final output from the LSTM is used as input to

the relational reasoning module to predict an answer. Additionally, in the teacher

network, we predict a mask. For the External Mask setting, the mask is predicted

by a reasoning engine and applied as an input to the network, where it is directly

multiplied with the input image. In the second approach, the mask is predicted using

the image and text features and applied over the output from the convolution. The

teacher network qφ is trained using softmax cross-entropy loss against the ground

truth answers for each question. The student network is trained using knowledge

distillation with the following objective:

θ = arg min
θ∈Θ

N∑
n=1

(1− π)`1(yn, σθ(xn)) + π`2(sn, σθ(xn)), (8.1)

where xn is the image-question pair, and yn is the answer that is available during

the training phase; the σθ(.) is the usual softmax function; sn is the soft prediction

vector of qφ on xn and `i denotes the loss functions selected according to specific

experiments (usually `1 is cross-entropy and `2 is euclidean norm). π is often called

the imitation parameter and determines how much the student trusts the teacher’s

predictions.

8.5.2 External Mask Prediction

This experimental setting is motivated by the widely available scene graph infor-

mation in large datasets starting from Sort-of-Clevr and CLEVR to Visual Genome.

We use the following information about the objects and their relationships in the

image: i) the list of attribute, value pairs for each object, ii) the spatial relationships
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between objects, and iii) each object’s relative location in the image. We view the

problem as a special case of the bipartite matching problem, where there is one set

of textual mentions (M) of the actual objects and a second set of actual objects

(O). Using probabilistic reasoning we find a matching between object-mention pairs

based on how the attribute-value pairs match between the objects and the corre-

sponding mentions, and when mention-pairs are consistently related (such as larger

than, left to, next to) as their matched object-pairs. Using the scene graph data,

and by parsing the natural language question, we estimate the value of the follow-

ing predicates: attro(O,A, V ), attrm(M,A, V ) and consistent(A,O,O1,M,M1). The

predicate attrm(M,A, V ) denotes the confidence that the value of the attribute A of

the textual mention M is V . The predicate attro(O,A, V ) is similar and denotes a

similar confidence for the object O. The predicate consistent(R,O,O1,M,M1) indi-

cates the confidence that the textual mentions M and M1 are consistent based on a

relationship R (spatial or attribute based), if M is identified with the object O and

M1 is identified with the object O1
3 . Using only these two predicate values, we use

the following two rules to estimate which objects relate to which textual mentions.

w1 : candidate(M,O)← object(O) ∧mention(M) ∧ attro(O,P, V ) ∧ attrm(M,P, V ).

w2 : candidate(M,O)← object(O) ∧mention(M) ∧ candidate(M,O)

∧ candidate(M1, O1) ∧ consistent(A,O,O1,M,M1).

We use the grounded rules (variables replaced by constants) to define the clique poten-

tials and use Equation 3.3 to find the confidence scores of grounded candidate(M,O)

predicates. Using this mention to object mapping, we find the objects that the ques-

tion refers to. For each object, we use the center location, and create a heatmap that

decays with distance from the center. We use a union of these heatmaps and use it

3The details of how we estimate these predicates are explained in the Experiment section
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as the mask. This results into a set of spherical masks over the objects mentioned in

the question, as shown in Fig. 8.2(b).

8.5.3 In-Network Mask Prediction

The previous method requires privileged information such as scene graph data

about the image, which includes the spatial relations between objects. Such infor-

mation is often expensive to obtain. Hence, in one of our experiments, we attempt

to emulate the mask creation inside the network. We formulate the problem as an

attention mask generation over image regions using the image (xI ∈ R64×64×3) and

the question (xq ∈ Rw×d). The calculation can be summarized by the following

equations:

rI = conv∗(xI).

qemb = LSTM(xq).

v = tanh(WIrI +Wqqemb + b).

α =
exp(v)

x∗y∑
r=1

exp(vr)

,

(8.2)

where rI is x × y regions with oc output channels, qemb ∈ Rh is the final hidden

state output from LSTM (hidden state size is h); WI(∈ Rxyoc×xy) and Wq(∈ Rxy×h)

are the weights and b is the corresponding bias. Finally, the attention α over regions

is obtained by exponentiating the weights and then normalizing them. The attention

α is then reshaped and element-wise multiplied with the region features extracted

from the image. This is considered as a mask over the image regions conditioned on

the question vector and the image features.
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8.6 Experiments and Results

We propose two architectures, one where the teacher has privileged information

and the other where the teacher performs additional calculation using additional in-

network modules. We perform experiments to validate whether the direct addition of

information (External Mask), or additional modules (Model with attention) improves

the teacher’s performance over the baseline. We also perform similar experiments

where we wish to distill this learnt knowledge to a simpler student model. Addition-

ally, we conduct ablation studies on the probabilistic logical mechanism using which

we predict a ground-truth mask from the question and the scene information.

8.6.1 Setup

As our testbed, we use the “Sort-of-Clevr” and the CLEVR dataset from Santoro

et al. (2017). As the original Sort-of-Clevr dataset is not publicly available, we create

the synthetic dataset as described by the authors 4 . We use similar specification,

i.e., there are 6 objects per image, where each object is either a circle or a rectangle,

and we use 6 colors to identify each different object. Unlike the original dataset, we

generate natural language questions along with their one-hot vector representation.

In our experiments we primarily use the natural-language question. We only use the

one-hot vector to replicate results of the baseline Relational Network (RN) 5 . For

our experiments, we use 9800 images for training, 200 images each for validation and

4We make the code and data available in supplementary material.

5We were unable to replicate the baseline results of Santoro et al. (2017) on CLEVR dataset.
This is why use another baseline (Stacked Attention Network) and show how our method improves
on that baseline. The primary reason being the original network was trained by authors on 10
parallel GPUs on 640 batch size. This was not feasible to replicate in lab setting. Based on our
experiments, the best accuracy obtained by the baseline reasoning network is 68% with a batch-size
of 640 on a single-GPU worker, after running for 600 epochs over the dataset. We also adopted the
implementation from Microsoft researchers (https://github.com/vmichals/FigureQA-baseline)
and the best validation accuracy obtained after 1.5M epochs was 62%.
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testing. There are 10 question-answer pairs for each image. For Sort-of-Clevr, we use

four convolutional layers with 32, 64, 128 and 256 kernels, ReLU non-linearities, and

batch normalization; the questions were passed through an LSTM where the word

embeddings are initialized with 50-dimensional Glove embeddings 6 (Pennington

et al. 2014). The LSTM output and the convolutional features are passed through

the RN network 7 . The baseline model was optimized with a cross-entropy loss

function using the Adam optimizer with a learning rate of 1e−4 and mini-batches

of size 64. For CLEVR, we use the Stacked Attention Network (Yang et al. 2016)

with the similar convolutional network and LSTM as above. We get similar results

with VGG-16 as the convolutional network. Instead of the RN layer, we pass the two

outputs through two levels of stacked attention, followed by a fully-connected layer.

On top of this basic architecture, we define the student and teacher networks. The

student network uses the same architecture as the baseline. We propose two variations

of the teacher network, and we empirically show how these proposed changes improve

upon the performance of the baseline network.

8.6.2 External Mask Prediction

We first describe how we obtain the predicate confidence scores for both datasets.

We use the image and the question from Fig. 8.2(b) as the running example. The

confidence scores for attro(O, P, V ) (for different values of O,P and V ) was di-

rectly obtained by leveraging the synthetic data generation process, which is similar

to CLEVR dataset generation. For example attro(o1, size, small) = 1.0, attro(o1,

material,matte) = 1.0 for the leftmost brown cylinder for the image I. To obtain

6We also experimented with 32-dimensional random embeddings. However, the 50-dimensional
Glove embeddings gave us better results. We use the embeddings from Glove Website.

7A four-layer MLP consisting of 2000 units per layer with ReLU non-linearities is used for gθ;
and a four-layer MLP consisting of 2000, 1000, 500, and 100 units with ReLU non-linearities used
for fφ.
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confidence scores for attrm(M,P, V ), we parse the natural language question using the

Stanford syntactic dependency parser (De Marneffe et al. 2006) to obtain all nouns.

For all the nouns, we extract the qualifying adjectives and each qualifying adjective

is assigned to an attribute (shape, size, color, material) using a similarity measure

(average similarity based on Word2vec and WordNet 8 ). For the example question,

we obtain attrm(?x0, shape, cylinder) = 1.0, attrm(?x1, color, brown) = 1.0. Then,

for each textual mention M , we maintain a list of objects, where an object is only fil-

tered out if the object and mention have a conflicting property-value pair. To obtain

the consistent(R,O,O1,M,M1) values, we perform the following steps: 1) for each

mention-pair (M , M1), we choose a corresponding candidate object-pair (O, O1), 2)

for the mention-pair we extract the shortest-path from the syntactic dependency tree

and match with the type of attribute (size, shape, left, right, beside) using the highest

word-similarity measure, 3) if the attribute is a property (such as shape, size, color),

then the mentioned relation is found (same, as large as, larger than, greater than)

and the property values of objects O and O1 are used to check their consistency. If

they are consistent we use 1.0 or else we use 0.0 as the score; and 4) if the attribute is

spatial (such as left to, right to, beside, next) then we check the spatial relationship

and use the confidence of 1.0 if the object-pair O,O1 is consistent, otherwise we use

0.0; for example consistent(left, o3, o6, ?x1, ?x2) = 1.0 in the example image. Using

the above predicate values, we use the PSL engine to infer the candidate objects and

calculate the ground-truth mask. To validate, we annotate the CLEVR validation

set with the ground-truth objects, using the ground-truth structured program. We

observe that our PSL-based method can achieve a 75% recall and 70% precision in

predicting the ground-truth objects for a question.

8WordNet-based word pair similarities is calculated as a product of length (of the shortest path
between sysnsets of the words), and depth (the depth of the subsumer in the hierarchical semantic
net) Li et al. 2006.
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Example: In Fig. 8.3, we provide more details of the calculated PSL predicates

for the example question and image in Fig. 8.2(b). We use this top collection of

objects and their relative locations to create spherical masks over the relevant objects

in the images (as shown in Fig. 8.2(b)).

Figure 8.3: We Elaborate on the Calculated PSL Predicates for the Example Image
and Question in Figure 8.2(b). The Underlying Optimization Benefits from the Neg-
ative Examples (the Consistent Predicate with 0.0, Marked in Red). Hence, these
Predicates Are Also Included in the Program.

In this experiment, the ground-truth mask is element-wise multiplied to the im-

age and then the image is passed through the convolutional network. We experiment

with both sequential and iterative knowledge distillation. In the sequential setting,

we first train the teacher network for 100 epochs with random embedding size of 32,

batch size as 64, learning rate 0.0001. In the previous attempts to use distillation

in natural language processing (Hu et al. 2016a; Kim and Rush 2016), the optimal

value of π has been reported as min(0.9, 1 − 0.9t) or 0.9t. Intuitively, either at the

early or at the latter stages, the student almost completely trusts the teacher. How-

ever, our experiments show different results. For the student network, we employ a

hyperparamter search on the value of imitation parameter π and use two settings,

where π is fixed throughout the training and in the second setting, π is varied using

min(π, 1−πt). We vary the loss `2 among cross entropy and euclidean norm. The re-

sults of the hyperparameter optimization experiment is depicted in Fig. 8.4(a). From

this experiment, it can be observed that varying π over epochs gives better results

than using a fixed π value for training the student. We observe a sharp increase in
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accuracy using the π value 0.575. This result is more consistent with the parameter

value chosen by the authors in Yu et al. (2017). We also experiment by varying the

word embedding (50-dimensional glove embedding and 32-dimensional word embed-

ding) and learning rate. For sequential knowledge distillation, we get the best results

with glove embedding and learning rate as 1e−4. However, we get huge improvements

by using iterative knowledge distillation, where in each alternate epoch the student

learns from the teacher and the groundtruth data; and the teacher learns from its

original loss function and the student’s soft prediction (similar to Eqn. 8.1). Both

weighted loss functions use the imitation parameter 0.9 (which remains fixed during

training). We show the gradual learning of the teacher and the student till 700 epochs

in Fig. 8.4(b). We also show the comparative validation accuracy over first 200 epochs

for the Teacher in the setting with External Mask prediction and the RN baseline in

Fig. 8.5a. We observe that the External Mask-augmented Teacher network converges

faster than the baseline.

(a) (b)

Figure 8.4: (a) External Mask Prediction: Test Accuracy for Different Hyper-
paramter Combination to Obtain the Best Imitation Parameter (π) for Student for
Sequential Knowledge Distillation. (b) External Mask Prediction: We Plot Valida-
tion Accuracy after Each Epoch for Iterative Knowledge Distillation on Sort-of-Clevr
Dataset.
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(a) (b)

Figure 8.5: (a) The Comparative Validation Accuracy over Iterations for the Base-
line and the Teacher Network in the External Mask Setting. (b) Model with Attention
Mask: Test Accuracy for the Student Network for Different Hyperparamter Combi-
nation to Obtain the Best Imitation Parameter (π). We Get the Best Validation
Accuracy Using the π as 0.9, `2 as Cross-Entropy Loss and Varying π over Epochs.

Baseline Reported
External Mask In-Network Mask Performance Boost

Teacher Student Teacher Student Over Baseline (∆)

Sort-of-Clevr 82% (Santoro et al. (2017)) 94% (1-hot questionsSantoro et al. (2017)) 95.7% 88.2% 87.5% 82.8% 13.7%

CLEVR 53% (Yang et al. (2016)) 61% (Yang et al. (2016)) 58% 55% - - 5%

Table 8.1: Test Set Accuracies of Different Architectures for the Sort-of-Clevr (with
Natural Language Questions) and CLEVR Dataset. For CLEVR, We Used the
Stacked Attention Network (SAN) Yang et al. 2016 as Baseline and Conducted the
External-Mask Setting Experiment Only as It Already Calculates In-network Atten-
tion. Our implementation of SAN Achieves 53% Accuracy on CLEVR. Accuracy
Reported by Santoro et al. (2017) on SAN is 61%. The Reported Best Accuracy for
Sort-of-Clevr and CLEVR Are 94% (One-hot Questions Santoro et al. (2017)) and
97.8% (Perez et al. 2017).

8.6.3 Larger Model with Attention

In this framework, we investigate whether the mask can be learnt inside the net-

work with attention mechanism. We train the teacher network for 200 epochs with

glove vectors of size 50, batch size as 64, learning rate as 0.0001. We have employed

a hyperparamter search over learning rate, embedding type, and learning rate de-

cay, and found that the above configuration produces best results. For the student

network, we employed a similar hyperparamter search on the value of imitation pa-

rameter π and use two settings, where π is fixed throughout the training and in the

second setting, π is varied using min(π, 1 − πt). We also vary the learning rate and
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the type of embedding (random with size 32 or glove vectors of size 50). The effect

of the hyperparameter search is plotted in Fig. 8.4(b). We have experimented with

iterative knowledge distillation and the best accuracy obtained for the teacher and

the student networks are similar to that of sequential setting. The best test accuracies

of the student network, the teacher with larger model and the baselines are provided

in Table 8.1.

8.6.4 Analysis

The reported baseline accuracy on Sort-of-Clevr by Santoro et al. 2017 is 94% for

both relational and non-relational questions. However, we use LSTM to embed the

natural language question. Our implementation of the baseline achieves an overall test

accuracy of 89% with one-hot question representation and 82% with LSTM embedding

of the question. Addition of the pre-processed mask provides an increase in test

accuracy to 95.7%. This is expected as the mask on the image simplifies the task

by eliminating irrelevant regions of the image with respect to the question. One

may argue that adding such additional information to a model may lead to an unfair

comparison. However, in this work, our main aim is to integrate additional knowledge

with a neural network architecture and demonstrate the benefits that such knowledge

can provide. In contrast, the teacher model with attention mask achieves 87.5%. We

experiment with the knowledge distillation paradigm to distill knowledge to a student

in hope of better generalization. For Sort-of-Clevr, we see an accuracy of 88.2%

achieved by the student network (in external mask setting), whereas for CLEVR the

distillation effort barely increases the accuracy over the baseline method. Lastly, we

show some qualitative examples on the Sort-of-Clevr dataset (Fig. 8.6).

Choice of Baselines: This work deviates from the related research in neural

networks, where a new architecture is proposed to solve a previously proposed task
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more efficiently than previously proposed architectures. The main goal of this work is

to propose architectural changes in previous state-of-the-art neural network systems

to integrate external knowledge. Hence, the ideal question to ask is “if we incorpo-

rate additional knowledge in a previous system, does the performance of this system

improve?”. In this work, we compare with the relational reasoning network. This is

the reason, we use the (exact configuration) of the relational reasoning network as

our teacher network and incorporate spatial knowledge as an additional input. Com-

paring with other arbitrary systems do not make sense as they do not have access to

the same information as the teacher network.

Our Performance on CLEVR: As discussed in the previous paragraph, for

each dataset, we test whether the additional knowledge improve the base architecture

(the teacher network) and whether the student network improves after learning from

the teacher network. As after extensive experiments, we were not able to replicate

the relational reasoning architecture’s results for CLEVR, we use the base network

as Stacked Attention Network. Our experiments suggests that the teacher network

improves upon the addition of external knowledge by 5%. This demonstrates that

this framework of integration of knowledge works for both datasets (CLEVR and

Sort-of-Clevr).

8.7 Conclusion

There has been a significant increase in attempts to integrate background knowl-

edge (linguistic knowledge Yu et al. 2017 or commonsense rules Hu et al. 2016a)

with state-of-the-art neural architectures in computer vision and natural language

processing applications. In this chapter, we attempt to integrate spatial knowledge

with a neural network architecture to aid visual reasoning. The spatial knowledge is

obtained by reasoning on the natural language question and additional scene infor-
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Figure 8.6: Some Example Images, Questions and Answers from the Synthetically
Generated Sort-of-Clevr Dataset. Red-colored Answers Are Some Failure Cases.

mation using the PSL inference mechanism. We show that such information can be

encoded using a mask over the image, and such integration shows a significant jump

in the accuracy over the baseline network. Independently, we also encode such spatial

knowledge using an attention module over question and image features. We show this

additional in-network computation also benefits the network to learn a more accurate

model.

In this chapter, we digressed from the sequential systems used in the rest of

the thesis, where an explicit reasoning module was used to process outputs from

recognition modules and reason on it using external knowledge. Here we attempt

for a much more coupled integration of deep learning and reasoning modules so that

the low-level information processing modules can benefit from the back-propagated

errors from the reasoning module. This novel combination of knowledge distillation,

relational reasoning and pre-processed knowledge using probabilistic logical formalism

seems to be an additional promising direction to integrate knowledge and reasoning

in image understanding applications. Despite the promising results, this architecture

also suffers from the lack of interpretability and the differentiable reasoning layer does
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not offer the similar semantics and functionalities as reasoning engines. This in turn

validates our use of external reasoning engines in the rest of the thesis.
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Chapter 9

CONCLUSIONS

The fields of computer vision and artificial intelligence have experienced massive

development in recent years owing to deep learning and its related advancements.

As the recognition capability of computers has matured, it has enabled researchers

to attempt a variety of challenging problems such as higher-level reasoning on scene

information. Such problems require modeling of background and common knowledge,

and reasoning to achieve higher-level understanding of scenes beyond the “what” and

“where” in images. Prior to the work presented in this thesis, the use of knowledge

and explicit reasoning mechanisms had seen comparatively more success in natural

language processing and some targeted applications such as object and action recog-

nition in computer vision. In fact, a recent thesis on connecting vision and language

by Karpathy (2016) concludes by pointing out a necessary condition to achieve holis-

tic scene understanding: the information about the world must be made available to

the computer ; thus indicating the need for computers being equipped with world

knowledge and the lack of such efforts in image understanding. Motivated by this

limitation, we make the following contributions in this thesis.

In Chapter 2, we provide a broad overview of applications of knowledge and rea-

soning mechanisms in images and videos by conducting a survey of the previous

related work. The survey indicated that even though external knowledge has proven

useful in many low-level to high-level image understanding tasks, the usefulness of

complex commonsense or background knowledge had not been demonstrated prior

to this thesis. In Chapter 3, we summarized the proposed representations for im-

ages and the adopted reasoning mechanism. In Chapter 4, we detailed the dataset
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introduced in this thesis and discuss useful extensions of a few state-of-the-art public

corpora. This dataset and extensions are targeted to aid the community to further

their research in vision and reasoning.

To demonstrate the usefulness of knowledge, we presented some first attempts to

combine deep learning-based vision modules with state-of-the-art reasoning engines

that can reason on the visual detections using (automatically acquired or publicly

available) knowledge bases. We overcame various challenges across various applica-

tions.

In the first application (Chapter 5), for caption generation, we first presented a

way to construct a knowledge base from image captions and a reasoning module that

reasons upon such a knowledge base and the detections from visual systems. Second,

we presented a general architecture that depicts the interactions between the vision,

knowledge, and reasoning modules necessary for understanding images. Third, to

solve the knowledge representation challenge, we defined an intermediate knowledge

structure called the scene description graph (SDG) that captures the salient and

thorough aspects of an image. We also demonstrated that the SDGs generated by

our system can be used to generate captions with high accuracy and facilitate event-

based, spatial reasoning and question answering about images.

In the second application for visual question answering (Chapter 6), we first

developed a generic probabilistic reasoning engine that can infer the answer from

structured representations of the question and the image as input. This reasoning

engine utilizes publicly available commonsense knowledge bases to infer the answer

while modeling uncertainty in the recognition and parsing modules. Second, we ad-

dressed the knowledge representation challenge by defining a probabilistic version of

a previously-proposed scene graph that is more suitable to be used with probabilistic

logical reasoning languages.
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In the third application (Chapter 7), we first adopted a new class of puzzles called

image riddles. The task of image riddles require a combination of superior detection

capabilities and reasoning on ontological knowledge about words. Second, we collected

a dataset corresponding to this task that can serve as a more suitable testbed for vision

and reasoning research. Third, we presented a reasoning module that can utilize

publicly available knowledge sources (such as ConceptNet and word2vec) and reason

upon the visual detections from an image. Both automatic and extensive manual

evaluations indicated the efficacy of this approach.

In the last application of visual reasoning (Chapter 8), we presented an end-to-end

deep neural network architecture that can reason internally with pre-processed spatial

commonsense knowledge. In this application, we use the structured representations

of the question and the meta-data about the image, and infer a spatial mask over the

image with the help of a reasoning engine. This spatial mask is then provided to a

deep neural architecture as an additional feature. The neural network uses a novel

combination of knowledge distillation and relational reasoning to reason internally

about a question and an image and then predict the final answer. We demonstrated

that the performance jump in accuracy is significant using two state-of-the-art pub-

licly available datasets.

Based on our approaches in the applications presented in this thesis, we reach the

following two conclusions. First, the experimental results demonstrated that external

knowledge can be integrated into state-of-the-art systems and utilized successfully to

solve high-level image understanding applications more accurately with increased in-

terpretability. Second, our new implementation of the Probabilistic Soft Logic engine

1 is suitable to be used with large public datasets (such as VQA, CLEVR). Publicly

available reasoning mechanisms often becomes slower with an increased number of

1The PSL engine is available in https://github.com/adityaSomak/PSLQA.
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predicates in a rule (causing an exponential increase in the number of grounded pred-

icates). Even though, we did not solve the problem in a strict theoretical sense, we

presented a probabilistic reasoning engine that utilizes the fast inference guarantees of

the PSL formalism, and the inbuilt optimization technique of the Gurobi software to

provide a practical experience while inferring on large state-of-the-art datasets such

as VQA, CLEVR, etc.

In summary, external knowledge often helps in image understanding. We presented

methods that integrate external knowledge on top of neural network based recogni-

tion modules, and achieved state-of-the-art results on public datasets. Our proposed

approaches depend on advancements in deep learning-based recognition, probabilistic

reasoning and knowledge graphs. Following limitations suggest directions for further

improvement.

• Limitations of Probabilistic Soft Logic: The theory and assumptions in PSL

provides a real-time inference experience, however the same assumptions give

rise to the following limitations.

– Trade-off between Expressiveness and Real-Time Experience: Probabilis-

tic Soft Logic (unlike MLN) adopts only a subset of First-Order Logic

rules and is hence much less expressive than its competing engines. Few

limitations are: i) the body of the rule is restricted to be a conjunctive

expression and the head is restricted to be a disjunction; ii) the choice of

Lukasiewicz’ T-norm is also not supported theoretically, i.e. a min-max

function (i.e. min for ∧ and max for ∨) can be a valid choice as well. While

this and the other choices help formulate the inference problem as a con-

vex optimization problem, these choices come with the cost of sacrificing

expressive-ness.
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– Answering More Complex (How and Why) Questions: This dissertation

uses the Probabilistic Soft Logic reasoning engine successfully to answer

questions (primarily “what” and “which”) by reasoning on external knowl-

edge. However, there are severe limitations to answer “how” and “why”

questions using this mechanism, as they require explicit causal knowledge

and reasoning on that knowledge. As a future step, one can investigate how

to extend the PSL engine to reason about “how” and “why” questions. It

is also important to find the relevant causal knowledge for answering such

questions about images.

– Answering Questions involving Mathematical Reasoning: Again the state-

of-the-art reasoning mechanisms (from ASP to PSL) often falls short on

mathematical (arithmetic and algebraic) reasoning. Reasoning engines

should be augmented and their theories should be extended to enable an-

swering visual questions involving mathematical reasoning.

• Limitations of ConceptNet: In many applications throughout this thesis, we

use ConceptNet as a publicly available source of commonsense knowledge about

words and phrases. The choice is due to the semi-curated nature of the dataset

which combines the advantages of a larger vocabulary due to automatic curation

and lower noise due to manual annotations of the parts of the knowledge graph.

However, it still has the following limitations:

– Incompleteness of Knowledge: ConceptNet is often incomplete and noisy.

The knowledge graph is known to contain many common missing links

such as the link between belief and prayer. These examples are mentioned

in works such as Berger-Wolf et al. (2013). Many important Part-Whole

relations are largely absent as mentioned in Tandon et al. (2016). Con-
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ceptNet also do not contain size information of objects as mentioned in

Bagherinezhad et al. (2016). Common knowledge about actions and ob-

jects are also absent, such as humans can walk, pray, climb; sharks do not

climb. Such absence prompted us to extract the knowledge from captions

for the image captioning application. Hence as an initial step, large-scale

annotation efforts should be carried out to complete ConceptNet’s knowl-

edge based on application-specific needs. For example, for solving visual

question answering we can concentrate on the words (concepts) in the vo-

cabulary of the VQA dataset and aim to fill all missing relations for these

concepts in ConceptNet.

– Reasoning with Relations: Each type of relation in ConceptNet also has

“not” counter-part (for example NotIsA). Handling such relations require

a separate set of rules in a reasoning engine and adds more complexity.

These problems alongwith the problem of reasoning with vast number of

relations motivated us to consider vector-space embeddings of the concepts

and use the similarities between the concepts instead. Future work should

consider the challenges of proposing a generic rule-base that can efficiently

reason with the relations directly.

• Limitations of Common-sense Knowledge: A fundamental limitation of common-

sense knowledge is the fact that humans often do not explicitly write down

common-sense knowledge as it is considered commonly known. A few examples

are provided in the Figure 9.1. For the left-most image-question pair, a system

needs to detect the “baby”, and needs the following knowledge to answer the

question: the baby is human and only humans can be computer scientist. For

the middle image, it is commonly known that if the door is not locked it is
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highly probable that the door will open when somebody pulls it. Lastly for the

right-most image, the example needs knowledge that boy is heavier than the

wooden chair and if a person is able to lift an object then he will be able to lift

an object lighter than that object. All these examples require different types

of inferences based on a “common” understanding of physical properties of the

objects, and understanding of common concepts and their causalities (such as

pull and open). In these cases, situation-based knowledge extraction or Knowl-

edge Hunting can be a feasible alternative. An example of knowledge hunting

technique in the context of Winograd Schema Challenge (WSC) is described

in Sharma et al. 2015. However, as noted by the authors, this technique was

only able to solve a subset of the WSC due to the absence of other required

types of knowledge. Hence, future research should be concentrated on capturing

such required knowledge in a static (prior knowledge acquisition) or dynamic

(knowledge hunting) manner.

Figure 9.1: A Few Example Situations where Commonsense Knowledge Is Required
and Such Knowledge Is Not Readily Available in current Public Knowledge Bases.

Research along the above directions will help improve the essential individual

components, i.e., knowledge graph, reasoning mechanism and visual perception. Be-

yond these areas, there are two other directions indicated for further exploration.
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First, the mechanisms presented here are mostly pipeline-based (except the final ap-

plication), in which perception and reasoning are handled sequentially by different

modules. As more advances in machine learning and deep learning are proposed,

complex reasoning mechanisms can be integrated with the perception layers, so that

errors from the reasoning module can be back-propagated to the perception layers.

In fact, the last applications shows promise in this direction. However, this end-to-

end solution still suffers from lack of interpretability and most importantly, lack of

expressiveness (compared to explicit reasoning engines). Second, a more concerted

effort is required for proposing tasks and datasets that require external commonsense

knowledge to solve and include external, complete commonsense knowledge graphs.

The image riddles dataset provides a starting point along this direction, which is tar-

geted to utilize publicly available ontological knowledge graphs such as ConceptNet

and WordNet. However, there are many types of commonsense knowledge, and each

type can potentially give rise to different datasets.

In conclusion to the presented methods and applications in this thesis, we believe

that even in the era of entirely data-driven end-to-end techniques, explicit modeling

of knowledge and reasoning is essential in image understanding applications, and

achieving artificial general intelligence.

9.1 Summary

• In Chapter 1, we begin with the motivation of utilizing external knowledge and

explicit reasoning; we identify challenges and problems in current work, and

summarize our contributions. We conclude with the organization of the thesis.

• In Chapter 2, we conduct a short survey of the related research in the applica-

tions of knowledge and reasoning in image understanding. We identify short-
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comings in this research that provide further motivations for the approaches

adopted in the rest of the thesis.

• In Chapter 3, we summarize the proposed knowledge representations for images

(SDG and probabilistic scene graph), a novel knowledge acquisition method,

the adopted reasoning mechanism and an example of our implementation of

this generic engine.

• In Chapter 4, we introduce a new dataset corresponding to a novel task called

Image Riddles. We extensively evaluate the correctness and the difficulty of the

dataset. We also discuss some application-specific extensions to public datasets

such as Flickr8k, Visual Genome.

• In Chapter 5, we discuss our approach to image captioning by predicting an

intermediate SDG by reasoning upon visual detections and the knowledge base

created by the novel knowledge acquisition method (proposed in Chapter 3).

• In Chapter 6, we discuss our approach to visual question answering by using a

combination of vision, knowledge (from ConceptNet, word2vec) and reasoning

through the implemented PSL engine. We provide structured evidence along-

with the answer.

• In Chapter 7, we discuss the motivations behind proposing the new task called

Image Riddles, and propose our reasoning based approach as a strong first

baseline for the community.

• In Chapter 8, we deviate from the pipeline-based approaches and propose an

end-to-end neural architecture to solve the task of visual reasoning. Significant

jumps in end-to-end accuracy are observed for two public datasets.
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• In Chapter 9, we concluded the contributions of the thesis, and discuss the

possible future directions for research in vision and reasoning using external

knowledge.
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A.1 Additional Ablation Varying Top Detections

2.8k (WN)
K=1 K=5

VQA VB UR † 5.0 7.8
GUR 6.4 10.6

VB
UR † 7.4 16.7
GUR 7.2 16.6

Clarifai
RR

UR 11.2 22.4
GUR 12.2 23.3

All
UR 13.18 28.9
GUR 13.2 29.9*

VB
UR † 13.1 23.5
GUR 14.8 23.2

Resnet
RR

UR 12.8 26.8
GUR 14.9 26.2

All
UR 16.1 28.2
GUR 16.5* 28.9

Table A.1: Additional Ablation by Varying Top K: Accuracy (in Percentage) on the
Image Riddle Dataset. Pipeline Variants (VB, RR and All) Are Combined with Bias-
Correction Stage Variants (GUR, UR). We Show Only Wordnet-based Accuracies by
Varying the Top Detections Chosen. (*- Best, † - Baselines).

In this experiment, we vary the number (K) of top detections that we choose to cal-
culate the similarity. We show our results for the 2.8K riddles (barring the 500 riddles
kept for validation set). As the results show, the GUR variant (Clarifai+All+GUR
and ResNet+All+GUR) achieves the best results. The WordNet based accuracy
shows clear improvements (13% increase for Clarifai and 5% increase over ResNet
baseline, for top 5). This experiment also suggests, ResNet top K performance is
really impressive for K=1.

A.2 BiasedUnRiddler Variation (BUR)

In Figure A.1: dinosaur, animal and reptile all provide evidence that the image
has an animal. The word dinosaur provides some specific information. The other
words do not add any additional information. Some high-confidence detections such
as monstrous, monster provide erroneous abstract information. Hence, our next
objective is to re-weight the seeds so that: i) the more specific seed-words should have
higher weight than the ones which provide similar but more general information; ii)
the seeds that are too frequently used or detected in corpus, should be given lower
weights.

Specificity and Popularity: We compute eigenvector centrality score (ECS) for
each word in the context of ConceptNet. Higher ECS indicates higher connectivity of
a word in the graph. This yields a higher similarity score to many words and might
give an unfair bias to this seed (and words implied by this seed) in the inference
model. Hence, the higher the ECS, the word provides less specific information for
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Figure A.1: Clarifai Detections and Results from Different Stages for the Aardvark
Image (for “BUR” Variant).

an image. Additionally, we use the concreteness rating (CR) from Brysbaert et al.
(2014). In this paper, the top 39955 frequent English words are rated from the scale
of 1 (very abstract) to 5 (very concrete). For example, the mean ratings for monster,
animal and dinosaur are 3.72, 4.61 and 4.87 respectively.

Problem Formulation: We formulate the problem as a resource flow problem
on a graph. The directed graph G is constructed in the following way: we order
the seeds based on decreasing centrality scores (CS). We compute CS as: CS =
(ECS + (−CR))/2, where we normalize ECS and −CR to the scale of 0 to 1. For
each seed u, we check the immediate next node v and add an edge (u, v) if the
(ConceptNet-based) similarity between u and v is greater than θsim,ss. If in this
iteration, a node v is not added in G, we get the most recent predecessor u for which
the similarity exceed θsim,ss and add (u, v).

If a word u is more abstract than v and if they are quite similar in terms of
conceptual similarity, then word v provides similar but more specific information
than word u. Each node has a resource P̃ (u|Ik), the confidence assigned by the
Neural Network. If there is an edge from the node, some of this resource should be
sent along this edge until for all edges (u, v) ∈ G, wv becomes greater than wu. We
formulate the problem as a Linear Optimization problem:

minimize
w=(w1,...w|Sk|)

∑
(u,v)∈G

max{wu − wv, 0}

subject to
∑
s∈Sk

ws =
∑
sk∈Sk

P̃ (sk|Ik)

wu = P̃ (u|Ik), u /∈ G
wu ≥ 0.5P̃ (u|Ik),∀u ∈ G

To limit the resource a node u can send, we limit the final minimum value by
0.5 P̃ (u|Ik). The solution provides us with the necessary weights for the set of seeds
Sk in Ik. We normalize these weights and get W̃ (Sk). These weights are then passed
to the next stage.
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Image1 Image2 Image3 Image4
monster food fun rock
jurassic small retro nobody

monstrous vector clip travel
primitive dinosaur halloween water

lizard wildlife set sea
paleontology cartoon border aquatic
vertebrate nature messy outdoors
dinosaur evolution ink sand
creature reptile design beach
wildlife outline ornate bird
nature cute decoration wildlife

evolution sketch ornament biology
reptile painting vector zoology
wild silhouette contour carnivora

horizontal horizontal cartoon nature
illustration art cute horizontal

animal illustration silhouette animal
side view graphic art side view

panoramic animal illustration panoramic
mammal panoramic graphic mammal

Table A.2: Top 20 Detections from Clarifai API. Completely Noisy Detections are
Colored Red. Note That the Third Image Presents No Evidence That an Animal Is
Present.

A.3 Intermediate Results for the “Aardvark” Riddle

Figure A.2: The Four Different Images for the “Aardvark” Riddle.

From the four figures in Figure A.2, we get the top 20 Clarifai detections as given
in the Table A.2.

Based on the GUR approach (GUR+All in paper), our PSL Stage I outputs
probable concepts (words or phrases) depending on the initial set of detected class-
labels (seeds). They are provided in Table A.3. Note that, these are the top targets
detected from almost 0.2 million possible candidates. Observe the following:

i) the highlighted detected animals have a few visual features in common, such as
four short legs, a visible tail, short height etc.
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Image1 Image2 Image3 Image4
dolphin graph toughness decorative bison

rhinoceros cartography graph toughness american bison
komodo dragon color paint graph marsupial
african elephant graph artwork gibbon

lizard spectrograph spectrograph monotreme
gorilla revue kesho mawashi moose

crocodile linear functional tapestry mole
indian elephant simulacrum map wildebeest

wildebeest pen and ink arabesque echidna
elephant luck of draw sgraffito turtle
echidna cartoon linear functional mule deer
chimaera camera lucida hamiltonian graph mongoose

chimpanzee explode view emblazon tamarin
liger micrographics pretty as picture chimpanzee

gecko hamiltonian graph art deco wolverine
rabbit crowd art dazzle camouflage prairie dog
iguana depiction ecce homo western gorilla

hippopotamus echocardiogram pointillist anteater
mountain goat scenography pyrography okapi

loch ness monster linear perspective echocardiogram skunk

Table A.3: Top 20 Detections per Each Image from PSL Stage I (GUR).

ii) the detections from the third image does not at all lead us to an animal and
the PSL Stage I still thinks that its a cartoon of sort.

iii) the detections from second gets affected because of its close relation to the
detections from third image and it infers that the image just depicts cartoon.

In the final PSL Stage II however, the model figures out that there is an animal
that is common to all these images. This is mainly because seeds from the three images
confidently predict that some animal is present in the images. That is why most of
the top detections correspond to animals and animals having certain characteristics
in common.

The top detections from PSL Stage II (GUR) are: monotreme, gecko, hippopota-
mus, pyrography, anteater, lizard, mule deer, chimaera, liger, iguana, komodo dragon,
echidna, turtle, art deco, sgraffito, gorilla, loch ness monster, prairie dog.

BUR: For BUR, PSL Stage I outputs probable concepts (words or phrases) de-
pending on the current set of seeds. They are provided in the Table A.4. Observe
that the individual detections are better compared to GUR. The output from the
PSL Stage I for BUR, is completely independent of the other images. In essence, for
each image, we are predicting all relevant concepts from a large vocabulary given a
few detections from a small set of class-labels.

Final output from PSL Stage II (for BUR) is comparable to that of the GUR ap-
proach. The top detections are: hadrosaur, sea otter, diagrammatic, panda, iguana,
pyrography, mule deer, placental mammal, liger, panda bear, art deco, squirrel monkey,
giraffe, echidna, otter, anteater, pygmy marmoset, hippopotamus.
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Image1 Image2 Image3 Image4
panda like paint hamiltonian graph giraffe

dolphin projective geometry graph toughness waterbuck
african forest elephant diagram lacquer sandy beach

placental mammal line of sight figuration moose
otter venn diagram war paint wildebeest
gorilla hippocratic face graph skunk

wildebeest real number line spectrograph anteater
chimaera sight draft map echidna

african savannah elephant x axis arabesque bobcat
florida panther simulacrum fall off analysis mule deer

liger cartoon art collection bison
rabbit diagrammatic statue pygmy marmoset

aardvark camera lucida delineate mongoose
iguana explode view jack o lantern sea otter

hippopotamus crowd art gussie up squirrel monkey
hadrosaur lottery ecce homo wolverine

mountain goat depiction pointillist okapi
panda bear conecept design art deco cane rat
velociraptor infinity symbol pyrography whale

whale scenography scenography american bison

Table A.4: Top 20 Detections per Each Image from PSL Stage I (BUR).

Here, the set of output mainly contains the concepts (words or phrases) that
either represents “animals with some similar visual characteristics to aardvark” or it
pertains to “cartoon or art”.

A.4 Detailed Accuracy Histograms for Different Variants

In this section, we plot the accuracy histograms for the entire dataset for all the
variants (using Clarifai API) of our approach (listed in Table 2 of the paper). We also
add the accuracy histograms for variants using BUR approach. The plots are shown
in the Figure A.3. From the plots, the shift towards greater accuracy (increased
height in rightmost bins) is evident as we go along the stages of our pipeline.

A.5 Visual Similarity: Additional Results

Additional results for Visual Similarity are provided in Tables A.5, A.6 and A.7.

ConceptNet Visual Similarity word2vec

man, merby, misandrous,
philandry, male human,
dirty pig, mantyhose,

date woman,guyliner,manslut

priest, uncle, guy,
geezer, bloke, pope,
bouncer, ecologist,

cupid, fella

women, men, males,
mens, boys, man, female,

teenagers,girls,ladies

Table A.5: Similar Words for “Men”
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Figure A.3: The Word2vec-based Accuracy Histograms of the BUR, GUR and UR
Approaches (Combined with the VB, RR and All Stage Variants).

ConceptNet Visual Similarity word2vec

saurischian, ornithischian,
protobird, elephant bird,

sauropsid, cassowary,
ibis, nightingale, ceratosaurian,

auk, vulture

lambeosaurid, lambeosaur,
bird, allosauroid, therapod, stegosaur,

triceratops, tyrannosaurus rex,
deinonychosaur,dromaeosaur,

brontosaurus

dinosaurs, dino, T. rex,
Tyrannosaurus Rex, T rex,

fossil, triceratops, dinosaur species,
tyrannosaurus,dinos,
Tyrannosaurus rex

Table A.6: Similar Words for “Dinosaur”

A.6 VQA Baseline Results

For the images in Figure A.2, we show the top 20 answers in Table A.8, generated
from a state-of-the-art Visual Question Answering system (Lu et al. (2016b)), for the
questions “what is the image about?”. As mentioned in the paper, it can be observed
that the answers hardly contain any image-specific information. We believe, this is
primarily due to the concept of attention used in the end-to-end learning systems.
The words in the questions do not carry any specific information about a region,
object or an attribute, for the “image understanding” system to find and hence the
system is not able to generate meaningful answers. This shows i) how the problem
of “image riddle” differs from traditional Visual Question Answering and ii) the need
for systems which recognizes meaning without specific “attention” based on words.
Our method, put forward in the paper, provides an example of one such system which

ConceptNet Visual Similarity word2vec

snake, marmoset, lemur, sloth
marmot, weasel, ferret, beaver,
iguana, gecko, monkey, sauria,

gazelle

skink, chameleon, iguana,
gecko, this picture, some reptile,
komodo dragon, virginia, shark,

garter snake, rattlesnake, corn snake,
python

lizards, reptile, toad, snake
frog, creature, critter,

komodo dragon, snakes, iguana

Table A.7: Similar Words for “lizard”
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aardvark 1 aardvark 2

resting, dog, cow, snowboarding, kitchen,
black, military, elephant, racing, i don’t know,
horse, polo, sitting, grazing, running, standing,
eating, brown, playing, walking

skis, school, playing game, kite flying, jet,
bedroom, working, playing wii, scissors,
navy, guitar, polo, snowboarding, plane,
apple, orange, baseball, skateboarding,
cutting, skiing

aardvark 3 aardvark 4
jumping, playing wii, working, kite flying,
parasailing, cutting, traffic light, skateboard,
flying, motorcycle, frisbee, navy, halloween,
baseball, orange, snowboard, traffic, skateboarding,
skiing, snowboarding

playing, nintendo, giraffe, milk, tv, tennis,
rock, horse, lion, goat, brushing teeth,
baseball, wii, bathroom, surfing,
gray, elephant, sheep, standing, frisbee

Table A.8: Answers from a Visual Question Answering System for the Four Images
in Figure A.2.

utilizes background (ontological) knowledge to solve this puzzle (in other words, to
answer this question).

A.7 More Positive and Negative Results

We provide positive and Negative results in Figures A.4 and A.5 of the ”GUR+All”
variant of the pipeline. We obtain better results with Clarifai detections rather than
Residual Network detections. Based on our observations, one of the key property
of the ResidualNetwork confidence score distribution is that there are few detections
(1-3) which are given the strongest confidence scores and the other detections have
very negligible confidence scores. These top detections are often quite noisy.

For example, for the first image in the aardvark riddle (Figure A.2), the Residual-
Network detections are: triceratops, wallaby, armadillo, hog, fox squirrel, wild boar,
kit fox, grey fox, Indian elephant, red fox, mongoose, Egyptian cat, wombat, tusker,
mink, Arctic fox, toy terrier, dugong, lion. Only the first detection has 0.84 score and
the rest of the scores are very negligible. For the second, third and fourth images,
the top detections are respectively:

1. pick (0.236), ocarina (0.114), maraca (0.091), chain saw (0.06), whistle (0.03),
can opener (0.03), triceratops (0.02), muzzle, spatula, loupe, hatchet, letter
opener, thresher, rock beauty, electric ray, tick, gong, Windsor tie, cleaver,
electric guitar

2. jersey (0.137), fire screen (0.129), sweatshirt (0.037), pick (0.035), comic
book (0.030), book jacket (0.029), plate rack, throne, wall clock, face powder,
binder, hair slide,velvet,puck, redbone.

3. hog (0.48), wallaby (0.19), wild boar (0.10), Mexican hairless (0.045), gazelle
(0.023), wombat (0.017), dhole (0.016), hyena (0.015), armadillo (0.009), ibex,
hartebeest, water buffalo, bighorn, kit fox, mongoose, hare, wood rabbit,
warthog, mink, polecat.

These predictions show that for the first and fourth image, there are some animals
detected with some distant visual similarities. The second and third image has al-
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most no animal mentions. This also shows some very confident detections (such as
triceratops for the first image) is quite noisy.

In many cases, due to these high-confidence noisy detections, the PSL-based infer-
ence system gets biased towards them. Compared to that, Clarifiai detections provide
quite a few (abstract but) correct detections about different aspects of the image (for
example, for 2nd Image, predicts labels related to “cartoon/art” and “animal” both).
This seems to be one of the reasons, for which the current framework provide better
results for Clarifai Detections. Using Residual Network, the final output from the
GUR system for the “aardvark” riddle is: antelope, prairie dog, volcano rabbit, mar-
supial lion, peccary, raccoon, pouch mammal, rabbit, otter, monotreme, jackrabbit,
hippopotamus, moose, tapir, echidna, gorilla.
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Figure A.4: More Positive Results from the “GUR” Approach. The Groudtruth
Labels, Closest Label among Top 10 from GUR and the Clarifai Baseline Are Provided
for All Images. For More Results, Check http://bit.ly/1Rj4tFc.
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Figure A.5: More Negative Results from the “GUR” Approach. The Groudtruth
Labels, Closest Label among Top 10 from GUR and the Clarifai Baseline Are Provided
for All Images. For More Results, Check http://bit.ly/1Rj4tFc.
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