
Knowledge Representation, Reasoning and Learning for

Non-Extractive Reading Comprehension

by

Arindam Mitra

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved September 2019 by the
Graduate Supervisory Committee:

Chitta Baral, Chair
Joohyung Lee
Yezhou Yang

Murthy Devarakonda

ARIZONA STATE UNIVERSITY

December 2019

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

27540185

27540185

2019

©2019 Arindam Mitra

All Rights Reserved

ABSTRACT

While in recent years deep learning (DL) based approaches have been the popular

approach in developing end-to-end question answering (QA) systems, such systems lack

several desired properties, such as the ability to do sophisticated reasoning with knowledge,

the ability to learn using less resources and interpretability. In this thesis, I explore solutions

that aim to address these drawbacks.

Towards this goal, I work with a specific family of reading comprehension tasks, nor-

mally referred to as the Non-Extractive Reading Comprehension (NRC), where the given

passage does not contain enough information and to correctly answer sophisticated rea-

soning and “additional knowledge” is required. I have organized the NRC tasks into three

categories. Here I present my solutions to the first two categories and some preliminary

results on the third category.

Category 1 NRC tasks refer to the scenarios where the required “additional knowledge”

is missing but there exists a decent natural language parser. For these tasks, I learn the

missing “additional knowledge” with the help of the parser and a novel inductive logic

programming. The learned knowledge is then used to answer new questions. Experiments

on three NRC tasks show that this approach along with providing an interpretable solution

achieves better or comparable accuracy to that of the state-of-the-art DL based approaches.

The category 2 NRC tasks refer to the alternate scenario where the “additional knowl-

edge” is available but no natural language parser works well for the sentences of the target

domain. To deal with these tasks, I present a novel hybrid reasoning approach which

combines symbolic and natural language inference (neural reasoning) and ultimately allows

symbolic modules to reason over raw text without requiring any translation. Experiments

on two NRC tasks shows its effectiveness.

The category 3 neither provide the “missing knowledge” and nor a good parser. This

i

thesis does not provide an interpretable solution for this category but some preliminary

results and analysis of a pure DL based approach. Nonetheless, the thesis shows beyond the

world of pure DL based approaches, there are tools that can offer interpretable solutions for

challenging tasks without using much resource and possibly with better accuracy.

ii

DEDICATION

To Ma (Mitali Mitra), Bapi (Amaresh Mitra) and Choma (Priti Ghosh)

iii

ACKNOWLEDGMENTS

Before starting my PhD I was probably good at solving algorithm or tricky Math problems.

However, PhD was different. Most of the problems that most of us work on during our

PhD probably won’t be “solved” in a long time. How to deal with such “hard” problems,

organize and make progress is something among many other things that I have learned

from my advisor Dr.Chitta Baral to whom I am greatly thankful. Without his support and

continuous faith in me I would not have enjoyed my PhD this much. I am also thankful to

Dr.Peter Clark for giving me opportunities to work closely with a group of experts on my

most favorite topic of Science Question Answering and helping me to think big.

I would also like to express my sincerest respect to my school teachers, specially Dulali

didimuni, Tarun sir, Asim sir, Jayashree didimuni, Aniruddha sir, Subrata sir, Lakhi didimuni,

Manu Didimuni, Rina Didimuni, Pramila didimuni, Malay Sir, Lekhashri Didimuni, Deepti

Didimuni, Santosh sir, Ranjit sir, Jhuna sir, Bhupati sir, Bulu didimuni, Dulal sir, Nirumohon

sir, Dulal mama and A.C. sir for the unbounded love and care that I have received from

them.

The two people who have eagerly waited for this day and are more excited than me, are

my parents. I do not have enough words to express how much indebted I am to them and the

members of my big family, chhoma, boro mama, buchu bua, jhuma bua, bhai mama, fulda

mama, manu mesho, babua mesho, raju mesho, mashimoni, mami, deepali mami, shuli di,

dada bhai, appalu da, kaustav, bapan, bhai, mouri, munmun masi and the countless people

of my birthplace, who throughout my entire life have shown utmost care and affection.

I have been very lucky to have a good number of best friends Abhiman, Paplu, Subho,

Papa, Ani who are there for me at any point of time. They continuously teach me what not

to do by making enormous mistakes themselves and I cannot be more grateful for that. The

last one among them has requested (read forced) me to apply for PhD and deserve a special

iv

thanks as I have really enjoyed this journey of five years of study, sports and long vacations

and would have continued for some more time unless she again “requested” me to graduate

soon.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . xv

LIST OF FIGURES . xix

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Non-Extractive Reading Comprehension . 3

1.3 Research Summary . 7

1.3.1 Categorization of the Non-Extractive Reading Comprehension

Tasks . 7

1.3.2 Sketch of the Approach . 8

1.3.2.1 Approach For Category 1 . 8

1.3.2.2 Approach For Category 2 . 11

1.3.2.3 Approach For Category 3 . 12

1.4 Contributions of the Research . 14

1.5 Organization of the Thesis . 16

2 BACKGROUND . 18

2.1 Reasoning . 18

2.1.1 Answer Set Programming . 18

2.1.2 Natural Language Inference . 19

2.2 Knowledge Infusion in Neural QA Systems . 19

2.2.1 Appending Approach . 20

2.2.2 Data Augmentation . 21

2.2.3 Constraint-Based Learning . 21

vi

CHAPTER Page

2.2.4 Constraint-Based Decision Making . 22

2.2.5 Producing Knowledge Aware Embedding . 22

2.2.6 Knowledge-Based Matching . 24

3 LKR PARADIGM: LEARNING INFERENCE ENABLING KNOWLEDGE

AND USING THEM TO ANSWER QUESTIONS . 25

3.1 Background . 30

3.1.1 Answer Set Programming . 30

3.1.1.1 Example . 31

3.1.2 Inductive Logic Programming . 32

3.2 Learning Answer Set Programs for QA . 33

3.2.1 Task 8: Lists/Sets . 34

3.2.1.1 Step 1 . 34

3.2.1.2 Step 2 . 35

3.2.1.3 Step 3 . 36

3.2.1.3.1 Scalability of the Learning Algorithm 36

3.2.2 Task 19 : Path Finding . 37

3.2.3 Learning Coreference Resolution with Reasoning 39

3.3 Related Works . 40

3.4 Experiments . 41

3.4.1 Error Analysis for Basic Induction . 43

3.5 Conclusion . 44

4 SCALING LEARNING OF INFERENCE ENABLING KNOWLEDGE: AN

EFFICIENT INDUCTIVE LOGIC PROGRAMMING ALGORITHM 45

4.1 Introduction . 45

vii

CHAPTER Page

4.2 Background . 49

4.2.1 Answer Set Programming . 49

4.2.2 Mode Declarations . 50

4.2.3 XHAIL . 52

4.2.3.1 Abductive Step . 52

4.2.3.2 Deductive Step . 53

4.2.3.3 Inductive Step . 54

4.3 Algorithm . 54

4.3.1 Example . 58

4.3.2 On the Minimality of the Solution . 60

4.4 Related Work . 60

4.5 Experiments . 62

4.5.1 Question Answering . 62

4.5.1.0.1 Semantic Parsing . 63

4.5.2 Handwritten Digit Recognition . 63

5 APPLICATION OF LKR: LEARNING TO SOLVE GENERAL ARITH-

METIC PROBLEMS . 67

5.1 Answer Set Programming . 70

5.2 Problem Representation . 71

5.3 Representation of Theories . 72

5.3.1 Formulas . 73

5.3.1.1 PartWhole . 73

5.3.1.2 Gain . 74

5.3.1.3 Loss . 74

viii

CHAPTER Page

5.3.1.4 Comparison . 75

5.3.1.5 Unitary . 75

5.3.2 Operations . 75

5.3.2.1 Join & Increase . 76

5.3.2.2 Separate & Decrease . 79

5.3.2.3 Multiply & Divide . 79

5.3.2.4 Count . 79

5.3.3 Unit Change Knowledge . 80

5.4 Training . 80

5.5 Related Work . 82

5.6 Experimental Evaluation . 83

5.6.1 Dataset & Results . 83

5.6.1.1 SingleEQ Dataset . 84

5.6.1.2 AddSub Dataset . 84

5.6.1.3 IL Dataset . 84

5.6.2 Error Analysis . 85

5.7 Conclusion . 86

6 APPLICATION OF LKR: LEARNING INTERPRETABLE MODELS OF

ACTIONS FOR TRACKING STATE CHANGES IN PROCEDURAL TEXT 87

6.1 Introduction . 87

6.2 Representation . 91

6.2.1 Paragraph & Participants . 91

6.2.2 Events . 92

6.3 Reasoning . 93

ix

CHAPTER Page

6.4 Learning Commonsense Event-Centric Knowledge and Analyzing

Learned Knowledge . 96

6.4.1 Learning Rules that Describe Creation . 96

6.4.1.1 Abductive . 97

6.4.1.2 Deductive . 98

6.4.1.3 Inductive . 98

6.4.1.4 Analysis . 99

6.4.2 Learning Rules for Destroy . 100

6.4.2.1 Analysis . 100

6.4.3 Learning Rules for Location Changes . 101

6.4.3.1 Analysis . 102

6.5 Related Works . 103

6.5.1 ProComp . 103

6.5.2 ProLocal . 103

6.5.3 ProGlobal . 104

6.5.4 ProStruct . 104

6.5.5 KG-MRC . 104

6.6 Results . 105

6.6.1 Error Analysis . 106

6.6.1.1 Missing Verb . 106

6.6.1.2 Symbolic Interpretation of Questions 106

6.6.1.3 Discourse . 106

6.7 Conclusion . 107

x

CHAPTER Page

7 TKR PARADIGM: DECLARATIVE QUESTION ANSWERING OVER

KNOWLEDGE BASES CONTAINING NATURAL LANGUAGE TEXT

WITH AN APPLICATION OF ANSWERING LIFE CYCLE QUESTIONS 108

7.1 Background . 110

7.1.1 Answer Set Programming . 110

7.1.2 QA using Declarative Programming . 113

7.2 Proposed Approach . 114

7.2.1 On the choices of a Validate Function . 117

7.3 The Dataset and The Implemented System . 118

7.3.1 Question Categories . 119

7.3.2 Theory . 121

7.4 Dataset Creation . 124

7.5 Related Work . 125

7.6 Experiments . 127

7.7 Conclusion . 130

8 DECLARATIVE QUESTION ANSWERING OVER KNOWLEDGE

BASES CONTAINING NATURAL LANGUAGE TEXT: SOLVING QUAL-

ITATIVE WORD PROBLEMS . 131

8.1 Introduction and Motivation. 131

8.2 Background . 135

8.2.1 The QUAREL Dataset . 135

8.2.2 Textual Entailment and NLI . 137

8.3 Proposed approach . 138

8.3.1 Step 1: Generate . 138

xi

CHAPTER Page

8.3.2 Step 2: Validate . 139

8.3.3 Step 3: Answer Generation . 140

8.4 Textual Entailment Dataset Generation . 141

8.4.1 Dataset for f claim
T E . 141

8.4.2 Dataset for f given
T E . 144

8.5 Related Work . 145

8.6 Experimental Evaluation . 146

8.6.1 Error Analysis . 148

8.7 Conclusion . 149

9 NATURAL LANGUAGE INFERENCE FOR OPEN-BOOK QUESTION

ANSWERING: EXPERIMENTS AND OBSERVATIONS 151

9.1 Introduction . 151

9.2 Related Work . 154

9.3 Approach . 155

9.3.1 Hypothesis Generation . 156

9.3.2 OpenBook Knowledge Extraction . 156

9.3.2.1 BERT Model Trained on STS-B . 157

9.3.2.2 BERT Model Trained on OpenBookQA. 157

9.3.3 Natural Language Abduction and IR . 158

9.3.3.1 Word Symmetric Difference Model . 159

9.3.3.2 Supervised Bag of Words Model . 159

9.3.3.3 Copynet Seq2Seq Model . 160

9.3.3.4 Word Union Model . 161

9.3.4 Information Gain based Re-ranking . 161

xii

CHAPTER Page

9.3.5 Question Answering . 162

9.3.5.1 Question-Answering Model . 162

9.3.5.2 Passage Selection and Weighted Scoring 163

9.4 Experiments . 164

9.4.1 Dataset and Experimental Setup . 164

9.4.2 OpenBook Knowledge Extraction . 165

9.4.3 Abductive Information Retrieval . 166

9.4.4 Question Answering . 167

9.5 Analysis & Discussion . 169

9.5.1 Model Analysis . 169

9.5.2 Error Analysis . 170

10 EXPLORING WAYS TO INCORPORATE ADDITIONAL KNOWLEDGE

TO IMPROVE NATURAL LANGUAGE COMMONSENSE QUESTION

ANSWERING . 172

10.1 Introduction . 172

10.2 MCQ Datasets . 174

10.2.1 Datasets . 175

10.2.1.1 Abductive Natural Language Inference (aNLI) 175

10.2.1.2 Physical Interaction QA . 175

10.2.1.3 Social Interaction QA . 175

10.2.1.4 Parent and Family QA . 176

10.2.2 Knowledge Sources . 177

10.2.3 Relevant Knowledge Extraction . 178

10.3 Standard BERT MCQ Model . 178

xiii

CHAPTER Page

10.3.1 Question Answering Model . 179

10.4 Modes of Knowledge Infusion . 179

10.4.1 Concat . 179

10.4.2 Parallel-Max . 180

10.4.3 Simple Sum . 180

10.4.4 Weighted Sum . 180

10.4.5 MAC . 181

10.5 Related Works . 183

10.6 Experiments . 184

10.6.1 Revision Strategy . 184

10.6.2 Open Book strategy . 184

10.6.3 Revision along with an Open Book Strategy 185

10.6.4 Results . 185

10.7 Discussion and Error Analysis . 186

10.7.1 Social IQA . 187

10.7.2 Parent and Family QA. 188

10.7.3 Physical IQA . 189

10.7.4 Abductive NLI . 190

10.8 Conclusion . 193

11 FUTURE WORK & CONCLUSION . 194

11.1 Conclusion . 195

REFERENCES . 196

APPENDIX

A PROOF OF THEOREM 1 . 212

xiv

LIST OF TABLES

Table Page

1. Example Premise-Hypothesis Pairs from SNLI Dataset with Human-Annotated

Labels. 20

2. The Basic Predicates and Axioms of Simple Discrete Event Calculus (SDEC) . . . 29

3. Representation of the Example 1 in Event Calculus . 30

4. Mode Declarations for the Problem of Task 8 . 33

5. Hypothesis Generation For Path Finding. 39

6. One Rule for Coreference Resolution . 40

7. Performance on the Set of 20 Tasks . 42

8. Failure Cases for Induction . 44

9. A Set of Examples Taken from the Task 17 of BAbI Question Answering Dataset. 47

10. The sample Predicate Is Used to Separate Different Examples. The Con-

stants tri,Rec, S q Respectively Denote Triangle, Rectangle and Square.

holdsAt(Rp(S q,Rec, Above), 1) Says that the Square Is above the Rectan-

gle at Time Point 1. 48

12. Mode Declarations for the Problem of Table 9 . 51

13. Example Question Answering Tasks from BAbI Dataset . 62

14. Performance on the Set of 20 Tasks. The Tasks for Which Training Is Not

Required Is Marked with ‘-’. Running Time Is Measured in Minutes. 64

15. An Example from the Semantic Parsing Task. For Each Word in the Sentence

the Representation Contains Its Lemma and Pos Tag, Which Are Obtained Using

Stanford Parser . 64

xv

Table Page

16. Performance on Handwritten Digit Recognition Tasks. For Each Digit, Column

2 Shows the Numbers of Rules Learned, the Number Instances of that Digit in

the Test Set and the Percentage of Instances Correctly Classified. 66

17. Sample General Arithmetic Problems . 67

18. This Table Shows Relations and Properties of the Derived Quantity. The Derived

Quantity D Is Unknown If Any of A or B Is an Unknown. The before Relations

of D Is Determined by the before Relations of A If A Occurs after B Otherwise It

Is Determined by B. S P and S R Respectively Denotes the Set of All Properties

and the Set of All Relations. 76

19. shows How the Different Formulas and Operations Can Be Used to Solve Arith-

metic Word Problems. 77

20. Comparison with Existing Systems on the Accuracy of Solving Arithmetic

Problems on the Add Sub and Single Eq Datasets. 85

21. Results on the Prediction Task (Test Set). 105

22. A Text for Life Cycle of a Frog with Few Questions. 109

23. Question Templates and Total Number of Questions for Each Question Category. 115

24. The First 12 Rows Show the Performance of Our Method with Different Parsers

and Entailment Functions. The Last 6 Rows Show the Performance of the

Baseline Methods. 129

25. Example Problems Form the QUAREL Corpus . 132

26. Example Premise-Hypothesis Pairs with Annotated Labels. 138

xvi

Table Page

27. Example of Expected Scores and Sample Inputs.The Arguments T,Q, A1 and A2

Take the following Value: T = Tank the Kitten Learned from Trial and Error

that Carpet Is Rougher Then Skin. When He Scratches His Claws over Carpet It

Generates ________ Then When He Scratches His Claws over Skin, Q = When

He Scratches His Claws over Carpet It Generates ________ Then When He

Scratches His Claws over Skin, A1 = More Heat, A2 = Less Heat. 141

28. Associated Templates for Each Qualitative Property. 142

29. shows the Accuracy on Dev and Test Set of QUAREL for Various Choice

of f givenT E and f claimT E. Here, G1,G2,C1 and C2 Respectively Represents

TrainGivenQUAREL, TrainGivenQUAREL∪TrainS NLI, TrainClaimQUAREL,

TrainClaimQUAREL ∪ TrainS NLI. 147

30. Comparing Our Best Performing Model with Existing Solvers of QUAREL. 148

31. An Example of Distracting Retrieved Knowledge . 152

32. Our Approach with an Example for the Correct Option . 155

33. Compares (a) The Number of Correct Facts that Appears across Any Four

Passages (B) The Number of Correct Facts that Appears in the Passage of the

Correct Hypothesis (C) The Accuracy for TF-IDF, BERT Model Trained on STS-

B Dataset and BERT Model Trained on OpenBook Dataset. N Is the Number of

Facts Considered. 163

34. Test Set Comparison of Different Components. Current State of the Art (SOTA)

Is the Only Question Model. K Is Retrieved from Symmetric Difference Model.

KE Refers to Knowledge Extraction. 168

35. Performance of Each of the Five Models (Concat, Max, Simple Sum, Weighted

Sum, Mac) across Four Datasets with External Knowledge. 182

xvii

Table Page

36. Performance of the Best Knowledge Infused Model on the Test Set. State-Of-

The-Art Models Are in Bold. 182

xviii

LIST OF FIGURES

Figure Page

1. An Example of a (Extractive) Reading Comprehension Task that Is Taken from

SQUAD 2.0 Dataset. 4

2. A Variety of Non-Extractive Reading Comprehension Questions from 5 Different

Datasets. All of These Questions Require Reasoning with Knowledge Which Is

Missing in the Passage and the Answer Cannot Be Looked up from a Small Part

of the Passage. 5

3. A Variety of Non-Extractive Reading Comprehension (Multiple Choice) Ques-

tions from 4 Different Datasets. All of These Questions Require Reasoning with

Commonsense Knowledge Which Is Missing in the Passage. 6

4. The Modules that Are Involved in the Training Phase of LKR Framework 10

5. The Modules that Are Involved in the Test Phase of LKR Framework 10

6. The Modules that Are Involved in Solving Category 2 NRC Tasks 11

7. Standard Approach for Category 3 NRC Tasks Using NLI . 13

8. The Architecture for Producing Knowledge-Aware Embeddings in

`yang2019enhancing . 23

9. The Modules that Are Involved in the Training Phase of LKR Framework 28

10. The Modules that Are Involved in the Test Phase of LKR Framework 28

11. AMR Representation of ‘‘Mary Grabbed the Football.” . 29

12. AMR Representation of ‘‘What Is Marry Carrying?” . 29

13. A Set of Images from the MNIST Dataset. 47

14. An Annotated Paragraph from ProPara. Each Filled Row Shows the Existence

and Location of Participants at Each Time Point (“-” Denotes “does Not Exist”).

For Example in Time Point 1, Waves Are Located in the Ocean. 88

xix

Figure Page

15. QA-SRL Representation of a Sentence. 91

16. The QA-SRL Based and High Level Representation of Some of the Sentences

from Fig 14. 94

17. Examples of A is True IF B is True rules that Our System Learns to Identify

Create Events. 99

18. Examples of A is True IF B is True rules that Our System Learns to Identify

Destroy Events. 101

19. Examples of Rules that Our System Learns to Identify Move Events. Here, Eob-

servedAt(V,Q,P,T) Stands for ObservedAt(V,Q,A,T) and Refers(P,A,T). Similarly

LobservedAt(V,Q,L,T) Stands for ObservedAt(V,Q,A,T) and Location(A,L). 102

20. Our Approach . 156

21. Accuracy V/s Number of Facts from F - Number of Facts from K, without

Information Gain Based Re-Ranking for 3 Abductive IR Models and Word

Union Model. 167

22. Accuracy V/s Number of Facts from F - Number of Facts from K, with Infor-

mation Gain Based Re-Ranking for 3 Abductive IR Models and Word Union

Model. 167

23. Examples of Abductive NLI, Social IQA, Physical IQA and Parent & Family

QA Datasets with Retrieved Knowledge . 174

24. Measure of Performance across Different Knowledge Presence in Correct Pre-

dictions . 186

25. Measure of Performance across Different Knowledge Presence in Incorrect

Predictions. 187

xx

Figure Page

26. Performance of the Model with (MAC Model) and without Knowledge (Baseline)

across Different Types of ATOMIC Inference Dimensions. 188

27. Performance of the Model across the Three Different Type of Questions. 189

28. A Sample Question from the Quartz Dataset. The Task Is to Retrieve a Suitable

Knowledge such as More Pollutants Mean Poorer Air Quality from a Given

Knowledge Base and Then Use It to Answer the Question. 195

xxi

Chapter 1

INTRODUCTION

1.1 Motivation

The field of Natural Language Understanding is going through an important phase. In

the last five years, a significant number of datasets have been developed at an unprece-

dented pace targeting different flavors of “question-answering” (QA) such as answering

multiple-choice questions from 8th-grade science textbooks (Clark and Etzioni 2016; Clark

et al. 2018), math word problems (Hosseini et al. 2014; Koncel-Kedziorski et al. 2015), an-

swering questions requiring qualitative reasoning (Tafjord et al. 2019), open-book question

answering (Mihaylov et al. 2018a), commonsense question answering (Levesque, Davis,

and Morgenstern 2012; Sakaguchi et al. 2019; Bhagavatula et al. 2019; Sap, Rashkin,

et al. 2019), answering questions from text which describes a processes (Tandon et al. 2018)

or answering simple look-up style or multi-hop questions over Wikipedia articles (Rajpurkar

et al. 2016; Weston, Chopra, and Bordes 2014). Keeping up with the pace, numerous QA

systems have been developed. However, unlike the diversity that exists in the datasets,

the proposed QA systems are mostly deep neural nets that are designed specifically for

the question-answering task at hand. Is it because the other approaches such as the ones

that use knowledge representation and reasoning, are not good enough to handle the real

world challenges? Is it worth practicing knowledge representation and reasoning when it

comes to building question-answering systems? Or shall we keep aside the ideologies of

knowledge representation and reasoning and keep exploring bigger and better engineered

neural networks to produce the next generation QA systems?

1

Deep neural networks are the most popular solutions for many QA tasks mainly because

of two reasons. First, they are good learners. They can produce surprisingly good results

without any feature engineering. Even if the accuracy is not close to the human level

accuracy, one can see a decent accuracy with comparatively little engineering effort if there

exists a good amount of training data. Second, they can be easily deployed. For most QA

tasks if not all, one can build and train a neural network quite quickly. However, even though

the neural networks possess these important properties they lack several important other

ones.

Arguably the most important feature that they lack is that of interpretability. It is almost

impossible to answer in layman terms what has a deep neural net learned from the end

task and how is it storing that knowledge or how is it using that learned knowledge to

answer the questions. Interpretability of question-answering models is important not only

for our curiosity, but also to address the models’ failures. When a model fails to answer a

question correctly, it is crucial to understand how is it trying to answer the question, what is

going wrong and how to fix it. Is it the case that the representation and reasoning schemes

are not flexible enough to deal with the target task? Is it the case that learning algorithm

is discovering dataset specific ques that are not robust enough? Or is it the case that the

training data or the available knowledge base is not enough, and it needs to more knowledge

to answer the given question? If our models are not interpretable it is difficult to understand

the root cause and make proper amendments. Another important drawback is their source

of learning. Neural Networks cannot learn from testimony. One must gather annotated

examples to teach a neural net something. However, testimony is a valuable source of

knowledge. If one wants to teach the concept of “middle of a sequence” to a QA system,

one should be able to do so just by describing its definition.

The knowledge representation and reasoning community even though have not provided

2

much effort to learning from data, they have devoted an enormous amount of attention

towards interpretability and learning from testimony (McCarthy 1960; Daniel G Bobrow

1964; Green 1969; Simmons 1970; Charniak 1972; Winograd 1972; Bobrow and Winograd

1977; Perrault and Allen 1980; Balduccini, Baral, and Lierler 2008). Several tools and

knowledge representation schemes have been developed over the years with which one

can represent a question-answering problem, represent the required knowledge and the

reasoning scheme and solve it in a declarative manner. One natural question that arises is

that can we take these tools and modify and build more so that the knowledge representation

and reasoning based QA systems without losing their interpretability or the ability to reason

with knowledge 1) can also learn from data 2) can also be easily deployed for a broad

variety of QA problems and 3) can also obtain comparable accuracy to that of state-of-

the-art neural networks? If the answer to this question is yes, then certainly practicing

knowledge representation and reasoning for question-answering is beneficial. In this thesis,

I try to find an affirmative answer to this question while working on “Non-Extractive

Reading Comprehension”- a family of QA tasks where world knowledge and reasoning play

important roles.

1.2 Non-Extractive Reading Comprehension

Reading Comprehension (RC) in general is the task of answering questions with respect

to a given passage. Figure 1 shows a sample reading comprehension problem. The answer

to the question has been highlighted in red. Please see that to answer the question, one

needs to understand only a small portion of the text (the highlighted text). This kind of

reading comprehension where the answer is a span of the given passage and there is a

small portion of the passage which directly answers the question is normally referred to as

3

The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people
who in the 10th and 11th centuries gave their name to Normandy, a region in France. They
were descended from Norse (“Norman“ comes from “Norseman”) raiders and pirates from
Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to
King Charles III of West Francia.

Q: In what country is Normandy located?
: France

Figure 1: An example of a (extractive) reading comprehension task that is taken from
SQUAD 2.0 dataset.

Extractive Reading Comprehension. However not for all reading comprehension questions

the answer is a span or there exists a small portion containing the answer. Figure 2 shows

some examples of those more challenging kind.

In figure 2a, the answer i.e. “leaf” appears in the passage however to compute the answer

one needs to reason with outside knowledge. For e.g., one needs to understand that all the

participants which are undergoing a reaction to produce sugar are in the leaf. This requires

the knowledge of event effects and inertia. Secondly, the commonsense knowledge that

if all the materials that undergone a reaction to produce sugar were at leaf, the outcome

sugar would normally be in the leaf is also needed. For the questions in 2b one needs to

track states and reason with the effects of events such as “grabbing”, “dropping” which is

not given in the passage. For the questions in 2c one needs to understand the meaning of

“indicates”. Frog breathes with lungs in both the froglet and the adult stage. Thus knowing a

frog has lungs does not allow us to determine which stage it is now. Option (B) is thus the

correct answer. Problem in figure 2d requires the knowledge of arithmetic operators and

formulas. Problem in figure 2e requires the knowledge of how increasing/decreasing one

physical entity such as friction, speed, heat, affects others. I would be referring to this kind

of problems where there might not be a small part of text which directly answers the question

4

Chloroplasts in the leaf of the plant trap light from the sun.
The roots absorb water and minerals from the soil. This
combination of water and minerals flows from the stem into
the leaf. Carbon dioxide enters the leaf. Light, water and
minerals, and the carbon dioxide all combine into a mixture.
This mixture forms sugar (glucose) which is what the plant
eats.

Q: Where is sugar produced?
A: in the leaf

(a) A paragraph from ProPara about photosynthesis. Processes
are challenging because questions often require state tracking.

Mary grabbed the football.
Mary traveled to the office.
Mary took the apple there.
What is Mary carrying?
A:football,apple
Mary left the football.
Daniel moved to the bed-
room.
What is Mary carrying?
A:apple

(b) A paragraph from Task 8 of
bAbI
corpus.

Life Cycle Of A Frog
egg - Tiny frog eggs are laid in masses in the water by a female frog. The eggs hatch into
tadpoles.
tadpole - (also called the polliwog) This stage hatches from the egg. The tadpole spends its
time swimming in the water, eating and growing. Tadpoles breathe using gills and have a
tail.
tadpole with legs - In this stage the tadpole sprouts legs (and then arms), has a longer body,
and has a more distinct head. It still breathes using gills and has a tail.
froglet - In this stage, the almost mature frog breathes with lungs and still has some of its
tail.
adult - The adult frog breathes with lungs and has no tail (it has been absorbed by the
body).

Q: What best indicates that a frog has reached the adult stage? (A) When it has
lungs (B) When its tail has been absorbed by the body (Ans. B)

(c) Frog life-cycle and a sample question from it which requires the knowledge of indicate.

Carrie has 125 U.S. stamps. She has 3 times
as many foreign stamps as U.S. stamps.
How many stamps does she have altogether?
A: x = 125 + 3 × 125 = 500

(d) An Arithmetic Word Problem

The propeller on Kate’s boat moved slower
in the ocean compared to the river. This
means the propeller heated up less in the (A)
ocean (B) river (Ans. B)

(e) A qualitative word problem

Figure 2: A variety of Non-Extractive Reading Comprehension questions from 5 different
datasets. All of these questions require reasoning with knowledge which is missing in the
passage and the answer cannot be looked up from a small part of the passage.

5

Which of these would let the most heat
travel through?
A) a new pair of jeans.
B) a steel spoon in a cafeteria.
C) a cotton candy at a store.
D) a calvin klein cotton hat.

(a) A question from Mihaylov et al. 2018a.
Along with the question a “book” containing
a set of knowledge sentences is given which
is not sufficient to answer the question. The
task is to find out the useful knowledge from
the book and missing knowledge from external
sources to answer the question.

Obs1: It was a gorgeous day outside.
Obs2: She asked her neighbor for a jump-
start.
Hyp1: Mary decided to drive to the beach,
but her car would not start due to a dead
battery.
Hyp2: It made a weird sound upon starting.

(b) A sample task from (Bhagavatula et
al. 2019) requiring abductive reasoning. The
task is to decide which of hyp1 and hyp2 fits
between obs1 and obs2, which in turn requires
commonsense knowledge about world.

In the school play, Robin played a hero in the
struggle to the death with the angry villain.
How would others feel as a result?
a) sorry for the villain
b) hopeful that Robin will succeed
c) like Robin should lose the fight

(c) sample task from (Sap, Rashkin, et al. 2019)
requiring reasoning about social interactions,
which in turn requires commonsense knowledge
about state of person executing the action and its
effects on the executor or the other participants
of the event.

You need to break a window. Which object
would you rather use?
a) a metal stool
b) a giant bear
c) a bottle of water

(d) Question from a dataset containing problems
requiring naive physics reasoning focusing on
how we interact with everyday objects in every-
day situations. This dataset focuses on what
actions each physical object affords and what
physical interactions a group of objects afford
(e.g., it is possible to place an apple on top of a
book, but not the other way around).

Figure 3: A variety of Non-Extractive Reading Comprehension (multiple choice) questions
from 4 different datasets. All of these questions require reasoning with commonsense
knowledge which is missing in the passage.

and one might need to use additional knowledge and sophisticated reasoning to derive the

answer as Non-Extractive Reading Comprehension (NRC). In this thesis I aim to develop

energy-efficient and interpretable solutions for Non-Extractive Reading Comprehension

tasks.

6

1.3 Research Summary

1.3.1 Categorization of the Non-Extractive Reading Comprehension Tasks

In the quest to develop knowledge representation and reasoning based question-

answering frameworks that also learns from data and is as easy to deploy as typical deep

neural networks, I have categorized the Non-Extractive Reading comprehension tasks into

three classes:

Category 1 Missing Knowledge In this category, we have a natural language parser such

as AMR, QASRL or Dependency parser, which works well for the sentences pertaining

to the task at hand. However, the knowledge which is required to answer the questions

such as event effects is not present in any existing knowledge corpus and is very large

in amount and thus cannot be handwritten. Based on the current state of research, the

tasks in Figure 2a, 2b and 2d are examples of this kind.

Category 2 Missing Parser In this category, we do not have a natural language parser

which works well for the sentences pertaining to the task at hand. However, the

missing knowledge which is required to answer the questions is present in some

existing knowledge corpus or is very small in amount and thus could be handwritten.

The tasks in Figure 2c and 2e are examples of this kind.

Category 3 Missing both Knowledge & Parser In this category, we do not have a natural

language parser which works well for the sentences pertaining to the task at hand.

Also, We do not have most of the required knowledge in any existing knowledge

corpus. The tasks in Figure 3a, 3b, 3c and 3d are examples of this kind.

7

1.3.2 Sketch of the Approach

To build interpretable solutions for Non-Extractive Reading Comprehension (NRC)

tasks, I have mostly relied on the tools from the Knowledge Representation and Reasoning

(KR) community and have developed new tools and introduced new modules to existing KR

based question answering architectures. In this dissertation, I present an interpretable and

energy-efficient solution for both Category 1 [Missing Knowledge] and Category 2 [Missing

Parser] NRC tasks. I have started investigating interpretable solutions for Category 3 NRC

tasks. My current findings and preliminary results are also part of this dissertation.

1.3.2.1 Approach For Category 1

For Category 1 NRC tasks, I have used pure Knowledge Representation and Reasoning

based approaches. There are two key challenges that one needs to solve to employ a KR

based approach. First challenge comes from the requirement that the passage and the

question has to be given as a set of formal statements. Since, for category 1 NRC tasks

we have a suitable parser, this challenge can be easily overcome. The second more critical

challenge is known as “knowledge bottleneck”. KR based approaches demonstrate strong

reasoning ability which is suitable for NRC tasks. However, for the KR based approach

to draw inferences, it needs inference enabling knowledge. For e.g. given the passage

“John picked an apple. John went to kitchen.” and the question “Where is the apple?” a

KR based QA system would not be able to infer that the answer is “kitchen” unless it has

access to the commonsense knowledge that “if someone moves to a new location while

holding an object, the object also moves to the new location”. Unfortunately for most of the

tasks there does not exist a knowledge base which contains the suitable inference enabling

8

knowledge. The question that we ask then is: can we build an efficient machine learning

algorithm that learns such knowledge from the question answering dataset at hand. It may

be noted that algorithms of this kind are known as Inductive Logic Programming (ILP)

(Muggleton 1991) algorithms and their existence goes way back to 1990. However, when

comes to practice, existing algorithms hardly scale to modern QA datasets. In this thesis, I

describe the issues of existing ILP formulation and propose a new ILP formulation which is

better suited for supervised machine learning and finally describe a novel inductive logic

programming algorithm that learns incrementally and in an iterative manner. The code for

the learning algorithm is publicly available from: https://github.com/ari9dam/ILPME.

Figure 9 and 10 show the overall architecture of the question answering system developed

to deal with the Category 1 NRC tasks. In the training phase, (Figure 9) some background

knowledge is given (could be empty) along with some information about “what needs to

be learned“ (e.g. the name of the predicates). The system then converts the texts to some

application specific representation and creates constraints (can be hard or weak) from the

question and answer pairs in the training data. Finally the ILP algorithm learns the missing

knowledge that when added to the system can infer the answers. The system then uses the

learned knowledge along with the background knowledge, the text and the question parsers

to answer an unknown question during test phase (Figure 10).

To differentiate the knowledge based Question Answering approach where the rules are

learned from annotated dataset from the traditional approach where the rules are handwritten,

I will refer to the approach in Figure 9 & 10 as LKR (the additional ‘L’ merely signifies the

presence of a learning component). The LKR paradigm has been used to develop question

answering systems on three recent Category 1 NRC tasks namely bAbI (Weston et al. 2015),

word arithmetic problem solving (Hosseini et al. 2014; Koncel-Kedziorski et al. 2015; Roy,

9

https://github.com/ari9dam/ILPME

Figure 4: The modules that are involved in the training phase of LKR framework

Figure 5: The modules that are involved in the test phase of LKR framework

Vieira, and Roth 2015; Roy and Roth 2015) and Process Paragraph Comprehension (Tandon

et al. 2018). In the first two cases the system has achieved state-of-the-art performance

beating the deep neural solutions and in the third dataset the difference with the state-of-the-

art performance is statistically insignificant. This shows that it is worthwhile to investigate

LKR paradigm based solutions for category 1 tasks where we have a suitable parser.

10

Figure 6: The modules that are involved in solving Category 2 NRC tasks

1.3.2.2 Approach For Category 2

For Category 2 NRC tasks, standard KR or the proposed LKR paradigms would not

work, as both require the input passage and the question to be given as formal statements.

However, fortunately for the Category 2 questions the missing inference enabling knowledge

is available from some source. With that in mind, I have developed a novel architecture as

shown in Figure 6 that integrates Natural Language Inference with Symbolic Inference to

deal with the missing parser scenario of Category 2.

Given a passage and a question the system first parses the question with a semantic

parser that has been trained for the task. The parsed question along with the original

passage is given to the symbolic reasoning engine, which draws inference based on the

available knowledge and makes calls to the Natural Language Inference (NLI) module, if

any hypothesis (a statement in natural language) needs to be verified from the given passage.

In my experiments I have used a neural Natural Language Inference system, which is trained

with existing NLI datasets.

For example, for the question, What best indicates that a frog has reached the adult

11

stage? in Figure 2c, a semantic parser first parses the question into qIndicator(f rog, adult)

to express that the question type is indicator and asks which of option A and option B

indicates that frog is in the adult stage. The background knowledge contains the definition

that an option is a better indicator of a stage if it is true in only that stage but not in other

stages. Using this knowledge and the answer options the system will generate several

hypothesis like, ‘frog in the froglet stage breathes with lungs’, ‘frog in the adult stage

breathes with lungs’. This hypothesis will then be given to a Natural Language Inference

system which will return its confidence about the hypothesis being true. Those confidence

scores will be used to compute a score for the options. The option with the highest score

will be returned as the correct answer. In this way, the system will reason with knowledge

without requiring the translation of the input passage. I also show that the need of a

custom semantic parser to get the question representation can be avoided by using a Natural

Language Inference system instead. The basic idea is similar, generate controlled natural

language descriptions of the possible question predicates and see which one is better entailed

with respect to the actual given question.

To differentiate the knowledge based Question Answering approach where the premises

are given as natural language statements from the traditional approach where the premises

are given as formal statements, I will refer to the approach in Figure 6 as TKR (the additional

‘T’ merely signifies the presence of text in the knowledge base).

1.3.2.3 Approach For Category 3

This dissertation does not provide a solution for Category 3 tasks. However, I have done

some analysis to evaluate Natural Language Inference and the available benchmarks, which

I describe here.

12

Figure 7: Standard approach for Category 3 NRC tasks using NLI

Natural Language Inference provides a bridge for symbolic reasoning in the absence of

a natural language translation system as shown in Figure 6 and is going to play a key role for

the more general setting of Category 3. To evaluate their performance further, I have selected

four Category 3 question answering tasks (Figure 3) which require commonsense knowledge

to answer the questions, which is hard to get from existing resources. Until now I have

explored only the standard NLI based approach (Figure 7) that extracts some knowledge

from existing corpora given a multiple choice question and then scores each of the answer

choices with respect to the extracted knowledge using a Natural Language Inference system.

The goal of this experiment is to see how useful existing knowledge corpora are and how

effective NLI is for commonsense reasoning. It is part of my future work to introduce KR

components in this naive opaque architecture to make it more transparent.

Below is the list of publications reflecting the contributions of this dissetation:

• Mitra, Arindam, and Chitta Baral. Addressing a Question Answering Challenge by

Combining Statistical Methods with Inductive Rule Learning and Reasoning. AAAI.

2016.

• Mitra, Arindam, and Chitta Baral. Incremental and Iterative Learning of Answer Set

Programs from Mutually Distinct Examples. Theory and Practice of Logic Program-

ming, vol. 18, no. 3-4, 2018, pp. 623–637., doi:10.1017/S1471068418000248.

• Mitra, Arindam, and Chitta Baral. Learning to use formulas to solve simple arith-

13

metic problems. Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Vol. 1. 2016.

• Mitra, Arindam, and Chitta Baral. Solving General Arithmetic Problems with Answer

Set Programming and Inductive Logic Programming.[Under Review]

• Mitra, Arindam, Bhattacharjee, Aurgo and Chitta Baral. Learning Interpretable

Models of Actions for Tracking State Changes in Procedural Text. [Under Review]

• Mitra, Arindam, Peter Clark, Oyvind Tafjord, and Chitta Baral. Declarative Question

Answering over Knowledge Bases containing Natural Language Text with Answer Set

Programming. AAAI, 2019.

• Mitra, Arindam, Chitta Baral, Aurgho Bhattacharjee, and Ishan Shrivastava. A

Generate-Validate Approach to Answering Questions about Qualitative Relation-

ships. [Under Review]

• Arindam Mitra, Banerjee, Pratyay, Kuntal Kumar Pal, and Chitta Baral. Careful

Selection of Knowledge to solve Open Book Question Answering. Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics, 2019.

• Arindam Mitra, Pratyay Banerjee, Kuntal Pal, Swaroop Mishra and Chitta Baral,

Exploring ways to incorporate additional knowledge to improve Natural Language

Commonsense Question Answering. [Under Review]

1.4 Contributions of the Research

In this dissertation I have shown that it is possible to build a knowledge representation

and reasoning based question-answering system for a broad variety of domains which have

the following properties: 1) it can learn from both annotated data and testimony, 2) it can

reason with declarative knowledge 3) is interpretable and 4) achieves better or comparable

14

accuracy to that of a state-of-the-art neural network without much engineering effort. To

achieve this,

• I have developed a novel Inductive Logic Programming algorithm that learns inter-

pretable knowledge from the training data containing question-answer pairs. This

has allowed me to build transparent solutions for the question-answering domains for

which a reasonable natural language parser is available, Prior to my solution no Induc-

tive Logic Programming algorithm could scale to the modern QA datasets. I have ex-

plained the reason and proposed an efficient solution. The implementation of the learn-

ing algorithm is also made publicly available at https://github.com/ari9dam/ILPME.

• I have proposed a lightweight solution for declarative programming with knowledge

bases containing text. Prior to my solution declarative problem solving required

translation of the input text into a formal meaning representation, which significantly

limited its application, as for many reading comprehension tasks the associated

passage cannot be translated properly with most of the existing parsers. However

utilizing the recent advances in Natural Language Inference, I have been able to

eliminate such a need.

I have additionally explored the performance of Natural Language Inference (NLI)

models and the coverage of some suitable commonsense knowledge bases for a set of

multiple-choice commonsense tasks for which neither the necessary knowledge nor a

suitable natural language parser is available. This exercise has enabled me to observe how

NLI systems perform on these datasets. Furthermore, this exercise has also helped me to

identify that the benchmark datasets indeed contain a lot of problems for which the existing

commonsense knowledge bases are not sufficient.

15

https://github.com/ari9dam/ILPME

1.5 Organization of the Thesis

The rest of the dissertation is organized as follows:

Chapter 2 talks about the tools that I will be using in the proposed solutions and describes

some parallel efforts for using external knowledge in deep neural nets.

Chapter 3 shows how to apply LKR paradigm to the bAbI question answering challenge

(Figure 2b) with an existing ILP algorithm namely XHAIL (Ray 2009) and discusses

the issues with the learning algorithm.

Chapter 4 addresses the scalability issue of the existing ILP algorithms and presents a

sound and complete Inductive Logic Programming algorithm that can learn from large

datasets.

Chapter 5 shows how to apply the LKR paradigm to solve word arithmetic problems with

the proposed Inductive Logic Programming algorithm. Particularly, it shows how

a machine can learn from data which operations or formulas to apply and in which

order to incrementally construct an equation.

Chapter 6 shows how to apply the LKR paradigm for the task of Process Paragraph

(ProPara) comprehension (Figure 2a) with the proposed Inductive Logic Program-

ming algorithm. Understanding text describing a process that involves actions is

particularly challenging for NLP, because knowledge about those actions, and how

the world changes as a result of them, are often unstated in text. At the same time,

the knowledge representation and reasoning (KR) community has developed effective

techniques for modeling and reasoning about actions, but integrating them to under-

stand realistic natural language text has remained elusive. This chapter shows how

such an integration can be achieved with the LKR paradigm.

Chapter 7 describes the proposed solution for Category 2 NRC tasks, namely the TKR

16

paradigm with the life cycle question answering task (Figure 2c) where obtaining a

good formal representation of the text is difficult.

Chapter 8 shows how the TKR paradigm can be applied to solve qualitative word problems

(Figure 2e). This chapter also shows how the use of a semantic parser for question

interpretation can be avoided with the help of Natural Language Inference and how it

opens up the opportunity for transfer learning.

Chapter 9 & 10 describes the NLI based architecture for the commonsense question an-

swering tasks in Figure 3.

chapter 11 describes some future directions and concludes the thesis.

17

Chapter 2

BACKGROUND

2.1 Reasoning

2.1.1 Answer Set Programming

In this thesis, I have used the language of Answer Set Programming (Gelfond and

Lifschitz 1988; Baral 2003) to represent and reason with Knowledge. The decision to use

Answer Set Programming as the primary choice for representing and reasoning knowledge

is influenced by main Three reasons. First, most of our commonsense knowledge have

defaults and exceptions. For e.g., we would normally assume that when someone is making

something with some raw materials, the product at the end of the process will normally be

at the same place to that of the raw materials. If you brought all the pieces of your bike to

assemble in a place the final version of the bike will also be in that place. If tree gathered

all water, mineral and light in its leaf to produce the food, then the produced food will

probably be in the leaf. However this is not true in every scenario. For. e.g., if you are

heating water, then the vapor leaves the container and moves to atmosphere as soon as gets

created. A lot of the knowledge that we have or that our system learns by going through the

question-answer pairs are of this kind. Answer Set Programming provides a straight-forward

way to represent the defaults i.e. the normally scenarios and their exceptions, and thus is

a suitable candidate my research work. Second, there exists efficient solvers for Answer

Set Programs which makes it practical. An active body of researchers are using Answer Set

Programming in industry-level applications and producing efficient and better tools which

18

makes it promising. Finally, Answer Set Programming supports calling external functions (

for e.g. a neural network) which is useful while working over Text.

There exists very lucid tutorials and textbooks on Answer Set Programming. So I won’t

go through the syntax and semantics of the language here. Interested readers can go through

any of the following resources (Gebser et al. 2012; Gelfond and Kahl 2014) to learn about

Answer Set Programming. In each chapter, where I use ASP, I describe the relevant syntax

and semantics to make the chapters self-contained.

2.1.2 Natural Language Inference

Natural language inference (NLI) (Bowman et al. 2015) is the task of determining the

truth value of a natural language text, called “hypothesis” given another piece of text called

“premise”. The list of possible truth values include entailment, contradiction and neutral.

Entailment means the hypothesis must be true as the premise is true. Contradiction indicates

that the hypothesis can never be true if the premise is true. Neutral pertains to the scenario

where the hypothesis can be both true and false as the premise does not provide enough

information. Table 26 shows an example of each of the three cases.

Most of the existing NLI models are specially designed neural networks and normally

assume that the premise and hypothesis contain a single sentence. These systems can take

multi-sentence premise, but the underlying model is not suitable for multi-sentence premise.

2.2 Knowledge Infusion in Neural QA Systems

Knowledge is the key ingredient in question answering and often the given passage in

the reading comprehension task does not contain enough information to answer the question.

19

premise: A soccer game with multiple males playing.
hypothesis: Some men are playing a sport.
label: Entailment.
premise: A black race car starts up in front of a crowd
of people.
hypothesis: A man is driving down a lonely road.
label: Contradiction.
premise: A smiling costumed woman is holding an
umbrella.
hypothesis: A happy woman in a fairy costume holds
an umbrella.
label: Neutral.

Table 1: Example premise-hypothesis pairs from SNLI dataset with human-annotated labels.

As a result it is important for the QA systems to get the missing knowledge and use it

while answering a question. In my work, while I try to build systems that explains and

justify its answer, I have mostly relied on two options to deal with the missing knowledge 1)

learn from the training data and 2) obtain the knowledge from existing knowledge base or

manually write an Answer Set Program describing the knowledge. Researchers who are

working on end-to-end deep neural QA systems have also developed several techniques

to infuse existing knowledge. In this section I list those approaches. One can safely skip

this section as I have not used this techniques in my research yet. But the hope is, while

building systems that uses the good features from both the neural and symbolic approaches,

knowledge about both the community will be helpful.

2.2.1 Appending Approach

When the missing knowledge is available as sentences or passages, a trivial way to add

the knowledge is to add it to the original passage and hope the neural network will learn

how to use it. This approach is probably the most popular one while it comes at providing

knowledge to the pretrained models such as BERT (Devlin et al. 2018). However, not

20

all knowledge bases contain texts and knowledge exists in different formats for different

purposes some of which I list here.

2.2.2 Data Augmentation

is one of the most popular knowledge infusion technique. Neural Networks are good

at learning from data. Data augmentation relies on that property. The core idea here is to

increase the size of annotated data by automatically producing more labelled data. For

e.g., if you are learning a function for Natural Language Inference, you might want to add

the knowledge that “X gave Y an object” should not entail that “Y gave X an object“ even

though both the premise and hypothesis has same set of words. The original training data

might not have such examples and one can teach such phenomenon by adding more labelled

data. The work of Mitra, Shrivastava, and Baral 2019 shows how to automatically get the

labelled data for the NLI example.

2.2.3 Constraint-Based Learning

This is one of the recent most addition for knowledge infusion. In this case instead of

learning only from the labelled question-answer < x, y > pairs the function is also trained

using a modified loss function that captures some constraints which encodes background

knowledge. This technique has been applied to tracking an object in a video Stewart

and Ermon 2017. Given a video (sequence of images i.e < x1
i , ..., x

n
i >) the task is to

continuously predict the height of an falling object (i.e. another sequence of numbers

< y1
i , ..., y

n
i >). Since any falling object follows the rule of free fall i.e yt = y0 − gt2, the

21

numbers < y1
i , ..., y

n
i > cannot be random and a loss function is defined which penalizes the

output of the neural network < y1
i , ..., y

n
i > if the relation yt = y0 − gt2 is not satisfied.

2.2.4 Constraint-Based Decision Making

This is another recent most addition to the approaches that utilizes background knowl-

edge with neural-network based decision making which was applied in the work of Tandon et

al. 2018. The core idea is that instead of computing the probability of p(y = ci|x) using only

a neural net, use a function that linearly combines the output of the neural network to that of

a knowledge based predictor i.e p(y = ci|x) = λpNN(y = ci|x) + (1 − lambda)pKB(y = ci|x).

Apart from these general techniques there has been a decent amount of work which tries

to infuse specific knowledge triplets such as the ones that are present in knowledge graphs

for specific architectures. Here we describe those works.

2.2.5 Producing Knowledge Aware Embedding

Every neural architecture in NLP has an embedding layer which converts the “tokens” (

think of words) of the sentences to vectors, commonly known as word embeddings. These

embeddings are then used by the subsequent layers which predicts the answer. The work

of Yang et al. 2019 answers extractive question and the work of Mihaylov and Frank

2018 answers multiple-choice fill-in-the-blank questions, however they are quite similar

in the sense that both uses vector embeddings of knowledge triples and add it to the word-

embeddings to produce knowledge-aware word embeddings which are then used by the

subsequent layers designed for the respective task. The work of Yang et al. 2019 uses triplets

describing general knowledge such as (Donald Trump, person-leads-organization, US)

22

Figure 8: The architecture for producing knowledge-aware embeddings in Yang et al. 2019

whereas the work in Mihaylov and Frank 2018 uses the CenceptNet (Liu and Singh 2004)

facts describing relation between two dictionary words such as (horse, isUsedFor, riding).

to the QA-System. Figure 8 shows the architecture of Yang et al. 2019. Given a passage

and a question, first BERT is used to obtain the embeddings of the tokens. The passage and

the question is also used to get a set of knowledge triplets from the relevant Knowledge

Graph and their embeddings. For each token vector, the Knowledge Integration module then

computes an attention score with each of the retrieved knowledge triplet embeddings and a

sentinel (“no match“) vector. It then computes a weighted sum of the knowledge triplets

and the sentinel vector using the attention scores as weights. The weighted-sum is appended

23

to the original token embedding. The enlarged token embedding is then used by the upper

layers to predict the final output.

2.2.6 Knowledge-Based Matching

In NLP several tasks such as Natural Language Inference or Textual Similarity, require

matching two sentences. To compute the sentence similarity most-systems first do word

level matching and then aggregate those information to compute the sentence level matching.

The work of (Chen et al. 2017; Wang et al. 2019) uses ConceptNet relations between word

pairs in computing the word-level matching. Particularly, they define word-similarity as a

function of word-embeddings based similarity and and an indicator variable which describes

if the two words are related in the ConceptNet (either directly or indirectly within a certain

distance) or not.

24

Chapter 3

LKR PARADIGM: LEARNING INFERENCE ENABLING KNOWLEDGE AND USING

THEM TO ANSWER QUESTIONS

Developing intelligent agents is one of the long term goals of Artificial Intelligence. To

track the progress towards this goal, several challenges have been recently proposed that

employs a Question-Answering (QA) based strategy to test an agent’s understanding. The

Allen Institute for AI’s flagship project ARISTO, Richardson, Burges, and Renshaw 2013’s

MCTest and the Winograd Schema Challenge Levesque, Davis, and Morgenstern 2012 are all

examples of this. As mentioned in the work of Weston et al. 2015, even though these tasks are

promising and provide real world challenges, successfully answering their questions require

competence on many sub-tasks (deduction, use of common-sense, abduction, coreference

etc.); which makes it difficult to interpret the results on these benchmarks. Often the state-

of-the-art systems are highly domain specific. In this light, they Weston et al. 2015 have

proposed a new dataset (Facebook bAbl dataset) that put together several question-answering

tasks where solving each task develops a new skill set into an agent.

In the following paragraph, I provide some examples of the tasks from Weston et al. 2015.

A detailed description of all the tasks can be found there. Each task is noiseless, provides a

set of training and test data and a human can potentially achieve 100% accuracy.

Example 1. Task 8: List/Sets

Mary grabbed the football.

Mary traveled to the office.

25

Mary took the apple there.

What is Mary carrying? A:football,apple

Mary left the football.

Daniel went back to the bedroom.

What is Mary carrying? A:apple

Example 2. Task 19: Path Finding

The office is east of the hallway.

The kitchen is north of the office.

The garden is west of the bedroom.

The office is west of the garden.

The bathroom is north of the garden.

How do you go from the kitchen to the garden? A:s,e

In this work, I describe an agent architecture, which I will refer to as the LKR paradigm,

that simultaneously works with a formal reasoning model and a statistical inference based

model to address the task of question-answering (Fig 9 10). Human beings in their lifetime

learn to perform various tasks. For some tasks they may have a clear reasoning behind

their actions. For example, the knowledge needed to answer the previous question “What

is Mary carrying?” is clear and can be described formally. On the other hand, there are

tasks such as Named Entity Recognition that we can do easily, however, we may not be able

to describe it well enough for anyone else to use the description for recognition. In these

cases, a statistical inference model that allows to learn by observing a distribution may be a

better fit. In this research, thus, I work with a heterogeneous agent model. In our current

implementation, the agent model contains three components.

26

Translation Module This component normally contains statistical NLP models. In this

case study, it contains an Abstract Meaning Representation Parser (AMR) Banarescu

et al. 2013; Flanigan et al. 2014 and an additional formatting module that the the

AMR parser output to the syntax of Event calculus with some naive deterministic

algorithm.

Formal Reasoning Module This module is responsible for formal reasoning. It uses

the Answer Set Programming (ASP) Gelfond and Lifschitz 1988 language as the

knowledge representation and reasoning language. The knowledge required for

reasoning is learned with an Inductive Logic Programming algorithm XHAIL Ray

2009. The reasoning module takes sentences represented in the logical language of

Event calculus which is a temporal logic for reasoning about the events and their

efforts. The ontology of the Event calculus comprises of time points, fluent (i.e.

properties which have certain values in time) and event (i.e. occurrences in time that

may affect fluents and alter their value). The formalism also contains two domain-

independent axioms to incorporate the commonsense law of inertia, according to

which fluents persist over time unless they are affected by an event. The building

blocks of Event calculus and its domain independent axioms are presented in Table 2.

Learning Module The Learning module takes as input the formal representation of the

passage, the question and the answer and some additional information regarding the

learning objective and outputs a set of rules, which are then used by the reasoning

module to answer new questions.

Given a question-answer text such as the one shown in Example 1 (Task 8), the translation

module first converts the natural language sentences to the syntax of Event calculus. While

27

Figure 9: The modules that are involved in the training phase of LKR framework

Figure 10: The modules that are involved in the test phase of LKR framework

doing so, it first obtains the Abstract Meaning Representation (AMR) of the sentence from

the AMR parser in the statistical NLP layer and then applies a rule-based procedure to

convert the AMR graph to the syntax of Event calculus. Figure 1 & 2 show two AMR

representations for the sentence “Mary grabbed the football.” and the question “What is

Marry carrying?“. The representation of the sentences (narratives) and the question-answer

pairs (annotation) of Example 1 in Event calculus is shown in Table 3. The narratives in

Table 3 describe that the event of grabbing a football by Mary has happened at time point

1, then another event named travel has happened at time point 2 and so on. The first two

annotations state that both the fluents specifying Mary is carrying an apple and Mary is

28

Predicate Meaning
happensAt(F,T) Event E occurs at time T
initiatedAt(F,T) At time T a period of time for which fluent F

holds is initiated
terminatedAt(F,T) At time T a period of time for which fluent F

holds is terminated
holdsAt(F,T) Fluent F holds at time T
Axioms

holdsAt(F,T + 1)← initiatedAt(F,T).
holdsAt(F,T + 1)← holdsAt(F,T),

not terminatedAt(F,T).

Table 2: The basic predicates and axioms of Simple Discrete Event Calculus (SDEC)

carrying a football holds at time point 3. The not holdsAt annotation states that at time

point 7 Mary is not carrying a football. Given such a set of narratives and annotations

the reasoning module employs an Inductive Logic Programming algorithm to derive a

HypothesisH , that can explain all the annotations.

The rest of the chapter is organized as follows: in section 4.2, I provide a brief overview

of Answer Set Programming and Inductive Logic Programming; In section 3.2, I describe

the way the task specific ASP reasoning rules are learned. Section 3.2.3 presents training

of the coreference resolution system with reasoning. In section 4.4, I describe the related

works. In section 4.5.1, I present a detailed experimental evaluation of our system. Finally,

section 3.5 concludes our paper. Further details are available at http://goo.gl/JMzHbG.

Figure 12: AMR representation of “What is Marry carrying?”

29

Narrative
happensAt(grab(mary,football),1).
happensAt(travel(mary,office),2).
happensAt(take(mary,apple),3).
happensAt(leave(mary,footbal;),5).
happensAt(go_back(daniel,bedroom),6).
Annotation
holdsAt(carry(mary,football),4).
holdsAt(carry(mary,apple),4).
holdsAt(carry(mary,apple),7).
not holdsAt(carry(mary,football),7).

Table 3: Representation of the Example 1 in Event Calculus

3.1 Background

3.1.1 Answer Set Programming

An answer set program is a collection of rules of the form,

L0 ← L1, ..., Lm,not Lm+1, ...,not Ln

where each of the Li’s is a literal in the sense of a classical logic. Intuitively, the above

rule means that if L1, ..., Lm are true and if Lm+1, ..., Ln can be safely assumed to be false

then L0 must be true Baral 2003 . The left-hand side of an ASP rule is called the head and

the right-hand side is called the body. The semantics of ASP is based on the stable model

(answer set) semantics of logic programming Gelfond and Lifschitz 1988.

30

3.1.1.1 Example

initiatedAt(carry(A,O),T)←

happensAt(take(A,O),T). (3.1)

The above rule represents the knowledge that the fluent carry(A,O), denoting A is

carrying O, gets initiated at time point T if the event take(A,O) occurs at T . Fol-

lowing Prolog’s convention, throughout this chapter, predicates and ground terms in

logical formulae start with a lower case letter, while variable terms start with a cap-

ital letter. A rule with no head is often referred to as a constraint. A rule with

empty body is referred to as a f act. An answer set program P containing the above

rule (Rule 5.1) and the axioms of Event calculus (from Table 2) along with the fact

happensAt(take(mary, f ootball), 1) logically entails (|=) that mary is carrying a football

at time point 2 i.e. holdsAt(carry(mary, f ootball), 2). Since it can be safely assumed that

mary is not carrying a football at time point 1, P |= not holdsAt(carry(mary, f ootball), 1)

or equivalently P 6|= holdsAt(carry(mary, f ootball), 1).

It should be noted that it is also true that P |= holdsAt(carry(mary, f ootball), 3), due to

the axioms in Table 2. However, if we add the following two rules in the program P :

terminatedAt(carry(A,O),T)←

happensAt(drop(A,O),T). (3.2)

happensAt(drop(marry, f ootball), 2). (3.3)

then the new program P will no longer entail holdsAt(carry(mary, f ootball), 3) due the

axioms of Event calculus. This is an example of non-monotonic reasoning when adding

more knowledge changes one’s previous beliefs and such thing is omnipresent in human

31

reasoning. First Order Logic does not allow non-monotonic reasoning and this is one of the

reasons why I have used the Answer Set Programming language as the formal reasoning

language.

3.1.2 Inductive Logic Programming

Inductive Logic Programming (ILP) Muggleton 1991 is a subfield of Machine learning

that is focused on learning logic programs. Given a set of positive examples E+, negative

examples E− and some background knowledge B, an ILP algorithm finds an HypothesisH

(answer set program) such that B ∪H |= E+ and B ∪H 6|= E−.

The possible hypothesis space is often restricted with a language bias that is speci-

fied by a series of mode declarationsMMuggleton 1995. A modeh(s) declaration denotes a

literal s that can appear as the head of a rule (Table 12). A modeb(s) declaration denote a

literal s that can appear in the body of a rule (Table 12). The argument s is called schema

and comprises of two parts: 1) an identifier for the literal and 2) a list of placemakers

for each argument of that literal. A placemaker is either +type (input), -type (output) or

#type (constant), where type denotes the type of the argument. An answer set rule is in the

hypothesis space defined by L (call it L(M)) iff its head (resp. each of its body literals) is

constructed from the schema s in a modeh(s) (resp. in a modeb(s)) in L(M)) as follows:

- By replacing an output (-) placemaker by a new variable.

- By replacing an input (+) placemaker by a variable that appears in the head or in a

previous body literal.

- By replacing a ground (#) placemaker by a ground term.

32

modeh(initiatedAt(carrying(+arg1,+arg3),+time))
modeh(terminatedAt(carrying(+arg1,+arg3),+time))
modeb(happensAt(grab(+arg1,+arg2),+time))
modeb(happensAt(take(+arg1,+arg3),+time))
modeb(happensAt(go_back(+arg1,+arg2),+time))
modeb(happensAt(leave(+arg1,+arg3),+time))

Table 4: Mode declarations for the problem of Task 8

Table 12 shows a set of mode declarationsM for the example problem of Task 8. The

Rule 5.1 of the previous section is in this L(M) and so is the fact,

initiated(carrying(A,O),T).

However the following rule is not in L(M)).

initiated(carrying(A,O),T)←

happensAt(take(A,O),T ′).

The set E− is required to restrain H from being over generalized. Informally, given

a ILP task, an ILP algorithm finds a hypothesis H that is general enough to cover all

the examples in E+ and also specific enough so that it does not cover any example in E−.

Without E−, the learnedH will contain only facts. In this case study, negative examples are

automatically generated from the positive examples by assuming the answers are complete,

i.e. if a question-answer pair says that at a certain time point mary is carrying a football we

assume that mary is not carrying anything else at that time stamp.

3.2 Learning Answer Set Programs for QA

In this section, I illustrate the formulation of an ILP task for a QA task and the way

the answer set programs are learned. I explain the approach with the XHAIL Ray 2009

33

algorithm and specify why a better learning algorithm is needed. I continue with the example

of Task 8 and conclude with path finding.

3.2.1 Task 8: Lists/Sets

Given an ILP task ILP(B,E = {E+ ∪ E−},M), XHAIL derives the hypothesis in a three

step process. For the example of task 8, B contains both the axioms of SDEC and the

narratives from Table 1. The set E comprises of the annotations from Table 1 which contains

three positive and one negative examples. M is the set of mode declarations in Table 2.

3.2.1.1 Step 1

In the first step the XHAIL algorithm finds a set of ground (variable free) atoms 4 =

∪n
i=1αi such that B ∪ 4 |= E where each αi is a ground instance of the modeh(s) declaration

atoms. For the example ILP problem of task 8 there are two modeh declarations. Thus

the set 4 can contain ground instances of only those two atoms described in two modeh

declarations. In the following I show one possible 4 that meets the above requirements for

the ILP task of Example 1.

4 =


initiatedAt(carry(mary, f ootball), 1)

initiatedAt(carry(mary, apple), 3)

terminatedAt(carry(mary, f ootball), 5)



34

3.2.1.2 Step 2

In the second step, XHAIL computes a clause αi ← δ1
i ...δ

mi
i for each αi in 4, where

B ∪ 4 |= δ
j
i ,∀1 ≤ i ≤ n, 1 ≤ j ≤ mi and each clause αi ← δ1

i ...δ
mi
i is a ground instance of a

rule inL(M). In the running example, 4 contains three atoms that each must lead to a clause

ki, i = 1, 2, 3. The first atom α1 = initiatedAt(carry(mary, f ootball), 1) is initialized to the

head of the clause k1. The body of k1 is saturated by adding all possible ground instances of

the literals in modeb(s) declarations that satisfy the constraints mentioned above. There are

six ground instances (all the narratives) of the literals in the modeb(s) declarations; however

only one of them, i.e. happensAt(grab(mary, f ootball), 1) can be added to the body due to

restrictions enforced by L(M). In the following I show the set of all the ground clauses K

constructed in this step and their variabilized version Kv that is obtained by replacing all

input and output terms by variables.

K =



initiatedAt(carry(mary, f ootball), 1)

← happensAt(grab(mary, f ootball), 1).

initiatedAt(carry(mary, apple), 3)

← happensAt(take(mary, apple), 3).

terminatedAt(carry(mary, f ootball), 6)

← happensAt(leave(mary, apple), 6).



35

Kv =



initiatedAt(carry(X,Y),T)

← happensAt(grab(X,Y),T).

initiatedAt(carry(X,Y),T)

← happensAt(take(X,Y),T).

terminatedAt(carry(X,Y),T)

← happensAt(leave(X,Y),T).


3.2.1.3 Step 3

In this step XHAIL tries to find a compressive theoryH by deleting from Kv as many

literals (and clauses) as possible while ensuring that B ∪H |= E. In the running example,

working out this problem will lead toH = Kv.

3.2.1.3.1 Scalability of the Learning Algorithm

The discovery of a hypothesisH depends on the choice of 4. Since the value of 4 that

satisfies the constraints described in Step 1 is not unique, I employ an iterative deepening

strategy to select 4 of progressively increasing size until a solution is found. Furthermore, in

Step 2 of XHAIL I restricted the algorithm to consider only those ground instances of modeb

declarations that are not from the future time points. This method works when the size of the

example is small. However, the dataset of Task 8 like other tasks contains 1000 examples,

where each example comprises of a set of narrative and annotations (as I have shown before)

and the choice of 4 will be numerous. This issue is addressed by learning rules from each

example and then using the learned rules to learn new rules from yet unsolved examples.

36

Even though this strategy works for this dataset, in general it is not a sound strategy, as the

learned rules might not be consistent with the next example.

3.2.2 Task 19 : Path Finding

In this task (Example 2), each example first describes the relative positions of several

places and then asks a question about moving from one place to another. The answer to the

question is then a sequence of directions. For the question “How do you go from the kitchen

to the garden?” in Example 2, the answer “s,e“ tells that to reach garden from kitchen, you

should first head south and then head east.

Given such an example, an agent learns how moving towards a direction changes its

current location with respect to the particular orientation of the places. Let us say, mt(X,Y)

denotes the event of X moving towards the direction Y. Similar to the earlier problem, the

natural language text is first translated to the syntax of ASP (Table 5). However, in this

task the background knowledge B also contains the rules learned from the task 4. In the

following I show an example of such rules:

holdsAt(relative_position(X,Y, east),T)←

holdsAt(relative_position(Y, X,west),T).

The above rule says that if Y is to the west of X at time point T then X is to the east of Y

at T. Similar rules were learned for each direction pair from the Task 4 which were used

in the process of hypothesis generation for the task of path finding. Table 5 shows the

corresponding ILP task for the example of path finding and the hypothesis generated by

the XHAIL algorithm. This example illustrates how the task of path finding can be easily

learned when a formal representation is used. While the state-of-the-art neural network

37

based systems have achieved 36% accuracy on this task with an average of 93% on all tasks,

our system is able to achieve 100% with the two compact rules shown in Table 5.

Input

Narrative

holdsAt(relative_position(office,hallway,east),1).

holdsAt(relative_position(kitchen,office,north),2).

holdsAt(relative_position(garden,bedroom,west),3).

holdsAt(relative_position(office,west,garden),4).

holdsAt(relative_position(bathroom,garden,north),5).

holdsAt(location(you,kitchen),6). happensAt(mt(you,south),6).

happensAt(mt(you,east),7).

Annotation

not holdsAt(location(you, garden), 6).

holdsAt(location(you, garden), 8).

not holdsAt(location(you, kitchen), 8).

Mode declarations

modeh(initiatedAt(location(+arg1,+arg2),+time))

modeh(terminatedAt(carrying(+arg1,+arg2),+time))

modeb(happensAt(mt(+arg1,+direction),+time))

modeb(holdsAt(location(+arg1,+arg2),+time))

modeb(holdsAt(relative_position(+arg2,+arg2, +direction),+time))

Background Knowledge

Axioms of SDEC (Table 1)

Output

initiatedAt(location(X,Y),T)← happensAt(mt(X,D),T),

38

holdsAt(relative_position(Y,Z,D),T), holdsAt(location(X,Z),T).

terminatedAt(location(X,Y),T)← happensAt(mt(X,D),T).

Table 5: Hypothesis Generation For Path Finding

3.2.3 Learning Coreference Resolution with Reasoning

The dataset contains contains two tasks related to coreference resolution : 1) task of

basic coreference resolution and 2) task of compound coreference resolution. Examples of

the tasks are shown below :

Task 11: Basic Coreference

Mary went back to the bathroom.

After that she went to the bedroom.

Daniel moved to the office.

Where is Mary? bedroom

Task 13: Compound Coreference

Daniel and Sandra journeyed to the office.

Then they went to the garden.

Sandra and John travelled to the kitchen.

The office is west of the garden.

After that they moved to the hallway.

Where is Daniel? A:garden

39

I formulate both the coreference resolution tasks as ILP problems and surprisingly it

learns answer set rules that can fully explain the test data. For the task of basic coreference,

it learns a total of five rules one for each of the five different events go, travel, go back,

move, journey that appeared in the training data. The rule corresponding to the event go

(Table 6) states that if a narrative at time point T + 1 contains a pronoun, then the pronoun

is referring to the arg1 (agent) of the event go that happened at time point T . Similar rules

were learned for the other four events. Here, core f Id(X,T) denotes that the pronoun with

id X has appeared in a narrative at time point at T + 1.

initiatedAt(core f (X,Y),T)← core f Id(X,T),
happensAt(go(Y,Z),T).

Table 6: One rule for coreference resolution

One drawback of the learned rules is, they are event dependent, i.e. if a coreference

resolution text contains a pronoun which is referring to an argument of an previously unseen

event, these rules will not be able to resolve the coreference. In spite of that, these rules

reflect one of the basic intuitions behind coreference resolution and all of them are learned

from data.

3.3 Related Works

In this section, I briefly describe the two other attempts on this challenge. The attempt

using Memory Network (MemNN) Weston, Chopra, and Bordes 2014 formulates the QA

task as a search procedure over the set of narratives. This model takes as input the Question-

Answering samples and the set of facts required to answer each question. It then learns

to find 1) the supporting facts for a given question and 2) the word or set of words from

40

the supporting facts which are given as answer. Even though this model performs well on

average, the performance on the tasks of positional reasoning (65%) and path finding (36%)

are far below from the average (93%).

The attempt using Dynamic Memory Network (DMN) Kumar et al. 2015 also models

the the QA task as a search procedure over the set of narratives. The major difference

being the way supporting facts are retrieved. In the case of the Memory Networks, given

a question, the search algorithm scans the narratives in the reverse order of time and finds

the most relevant hypothesis. It then tries to find the next most relevant narrative and the

process continues until a special marker narrative is chosen to be the most relevant one

in which case the procedure terminates. In the case of Dynamic Memory Networks the

algorithm first identifies a set of useful narratives conditioning on the question and updates

the agent’s current state. The process then iterates and in each iterations it finds more useful

facts that were thought to be irrelevant in the previous iterations. After several passes the

module finally summarizes its knowledge and provides the answer. Both the models rely

only on the given narratives to answer a question. However, for many QA tasks (such as

task of Path finding) it requires additional knowledge that is not present in the text (for

path finding, knowledge from Task 4), to successfully answer a question. Both MemNN

and DMN models suffer in this case whereas our method can swiftly combine knowledge

learned from various tasks to handle more complex QA tasks.

3.4 Experiments

Table 14 shows the performance of our method on the set of 20 tasks. For each task,

there are 1000 questions for training and 1000 for testing. Our method was able to answer

all the question correctly except the ones testing basic induction. In the following I provide

41

TASK MemNN DMN Our Method
1: Single Supporting Fact 100 100 100
2: Two Supporting Facts 100 98.2 100
3: Three Supporting facts 100 95.2 100
4: Two Argument Relations 100 100 100
5: Three Argument Relations 98 99.3 100
6: Yes/No Questions 100 100 100
7: Counting 85 96.9 100
8: Lists/Sets 91 96.5 100
9: Simple Negation 100 100 100
10: Indefinite Knowledge 98 97.5 100
11: Basic Coreference 100 99.9 100
12: Conjunction 100 100 100
13: Compound Coreference 100 99.8 100
14: Time Reasoning 99 100 100
15: Basic Deduction 100 100 100
16: Basic Induction 100 99.4 93.6
17: Positional Reasoning∗ 65 59.6 100
18: Size Reasoning 95 95.3 100
19: Path Finding 36 34.5 100
20: Agent’s Motivations∗ 100 100 100
Mean Accuracy(%) 93.3 93.6 99.68

Table 7: Performance on the set of 20 tasks

a detail error analysis for the task of Induction. For each task the modeh and the modeb

declarations were manually defined and can be found at the project website. The test set of

Task 5 (Three argument relations) contains 2 questions that have incorrect answers. The

result is reported on the corrected version of that test set. The details on the error can

be found on the project website. Training of the tasks that are marked with (*) used the

annotation of supporting facts present in the training dataset.

42

3.4.1 Error Analysis for Basic Induction

This task tests basic induction via potential inheritance of properties. The dataset

contains a series of examples like the one described below:

Lily is a frog.

Julius is a swan.

Julius is green.

Lily is grey.

Greg is a swan.

What color is Greg? green

The learning algorithm could not find a hypothesis that can characterize the entire training

data with the given set of mode declarations. So, I took the hypothesis that partially

explained the data. This was obtained by ignoring the examples in the training data which

resulted in a failure. The resulted hypothesis then contained the following single rule:

holdsAt(color(X,C),T)← holdsAt(domain(Z,D),T),

holdsAt(color(Z,C),T),

holdsAt(domain(X,D),T).

The above rule says that X has color C at time T if there exists a Z which is of type D

and has color C at time point T, where X is also of type D. This rule was able to achieve

93.6% accuracy on the test set. However it failed for the examples of following kind where

there are two different entity of type D having two different colors:

For the error case 1, the learned rule will produce two answers stating that Bernhard has

the color grey and yellow. Since, the more number of frogs are grey it may seem like the

correct rule should produce the color that has appeared maximum number of times for that

43

Error Case 1 Error Case 2
Lily is a frog. Lily is a rhino.
Brian is a frog. Lily is yellow.
Greg is frog. Bernhard is a frog.
Lily is yellow. Bernhard is white.
Julius is a frog. Brian is a rhino.
Brian is grey. Greg is a rhino.
Julius is grey. Greg is yellow.
Greg is grey. Julius is a rhino.
Bernhard is a frog. Julius is green.
What color is Bernhard? A:grey What color is Brian? A:green

Table 8: Failure cases for Induction

type (here, frog). However, error case 2 describes a complete opposite hypothesis. There

are two yellow rhino and one grey rhino and the color of Brian which is a rhino is grey.

The actual rule as it appears is the one that determines the color on the basis of the latest

evidence. Since, Memory Networks scans the facts in the deceasing order of time, it always

concludes from the recent most narratives and thus has achieved a 100% accuracy.

3.5 Conclusion

This chapter presents the LKR approach for the task of Question-Answering that benefits

from the field of knowledge representation and reasoning, inductive logic programming and

statistical natural language processing. Ihave shown that to employ knowledge representation

and reasoning, one does not have to write the rules but the rules can be learned and the

resulting system not only is explainable but also performs better than the deep learning

models due to the addition of a formal reasoning layer significantly increases the reasoning

capability of an agent.

44

Chapter 4

SCALING LEARNING OF INFERENCE ENABLING KNOWLEDGE: AN EFFICIENT

INDUCTIVE LOGIC PROGRAMMING ALGORITHM

4.1 Introduction

Answer Set Programming has emerged as a powerful tool for knowledge representation

and reasoning. To use this tool for an application, however, one needs application specific

knowledge. For E.g., if a system uses answer set programming to answer the question from

column 1 in Table 9 the system needs to know that “X is to the right of Y IF Y is to the

left of Z and Z is above X”. Inductive Logic Programming algorithms aim to learn these

kinds of knowledge from a dataset. However, as we have seen in previous chapter, existing

ILP algorithms often have limited scalability. This often leads to manual construction of a

knowledge base which can be very time consuming and may not be practical sometimes.

For E.g., for applications where an effective representation of the rules is unknown, such

as for the case of handwritten digit recognition (Fig. 13), one may need to try several

representations before settling down for a winner. However, this may be unrealistic given

that MNIST dataset (Fig. 13) contains 50, 000 examples and writing down the rules that

explain all these examples for a particular choice of representation will take significant

amount of time.

In this chapter, I consider this scalability issue. I observe that one major obstruction in

scalability arises from the discrepancy between the definition of Inductive Logic Program-

ming and the structure of a machine learning dataset. The learning problem in Inductive

Logic Programming (ILP) is defined as follows Muggleton 1991:

45

Definition 1 (Inductive Logic Programming) Given a set of positive examples E+, nega-

tive examples E− and some background knowledge B, an ILP algorithm finds an Hypothesis

H such that,

B ∪ H |= E+, B ∪ H 6|= E−

The hypothesis space is restricted with a language bias that is specified by a series of mode

declarations M.

A machine learning dataset on the other hand contains a series of 〈x, y〉 pairs, x being the

input and y being the desired output (Table 9). To work with an ILP algorithm, one needs to

first convert the 〈x, y〉 pairs in the format of 〈B, E+, E−〉. The conversion process is carried

out by the user and so there might be some variations. However, normally the sets E+ and

E− are created using y’s and the x’s go inside B. Extra care is taken so that different 〈x, y〉

pairs do not interfere with each other. Table 2(a) shows one example of this process. Since

the number of 〈x, y〉 pairs are usually large, the problem instance becomes too big for the

ILP solvers to handle . For example, consider someone wants to employ an ILP algorithm to

learn from a question answering task from bAbI dataset Weston et al. 2015, which contains

1, 000 comprehension examples similar to the ones in Table 9. The resulting background

knowledge B will contain about 10, 000 facts and E+ will contain 1, 000 positive annotations

pertaining to answers and E− will contain a total of 1, 000 negative examples describing

what is not an answer for each question. An ILP solver such as XHAIL Ray 2009 will throw

memory errors when given an input of this size. The question that I ask here is “can we find

a solution to the ILP problem without considering all the 〈x, y〉 pairs together ?” I show that

the answer is yes. In fact it is possible to find a solution considering only one 〈x, y〉 pair at a

time. To achieve this I model the learning task as follows:

46

The square is above the
rectangle.

The square is below the
rectangle.

The square is below the
rectangle.

x The triangle is to the left
of the square.

The triangle is to the right
of the square.

The triangle is to the right
of the square.

Is the rectangle to the
right of the triangle?

Is the rectangle to the
right of the triangle?

Is the triangle below the
rectangle?

y Yes No Yes

Table 9: A set of examples taken from the Task 17 of bAbI question answering dataset.

Figure 13: A set of images from the MNIST dataset.

Definition 2 (Inductive Logic Programming for Distinct Examples) An ILP task for

Distinct Examples (denoted as ILPDE) is a tuple 〈B,M,D〉, where B is an Answer Set

Program, called the background knowledge, M defines the set of rules allowed in hypothe-

ses (the hypothesis space) and D is the dataset containing a series of context dependent

examples 〈E1, E2, ..., En〉. Here each Ei is a tuple 〈Oi, E+
i , E

−
i 〉 where, Oi is a logic program,

called observation , E+ is a set of positive ground literals and E− is a set of negative ground

literals. A hypothesis H is an inductive solution of T (written as H ∈ ILPDE(B,M,D)) iff,

H ∪ B ∪ Oi ` E+
i , ∀i = 1...n

H ∪ B ∪ Oi 0 E−i , ∀i = 1...n

In this formulation, each example 〈Oi, E+
i , E

−
i 〉 directly corresponds to an 〈x, y〉 pair and

it takes into consideration that there are several distinct examples in a dataset, so there is

no need to explicitly isolate them from each other. Table 2(b) shows the encoding of the

running example in the format of ILPDE . It turns out that the ILPDE task described here is a

47

simplification of the Context-dependent Learning from Ordered Answer Sets task proposed

in Law, Russo, and Broda 2016. However, to solve the Context-dependent Learning from

Ordered Answer Sets task the authors in Law, Russo, and Broda 2016 convert it to a standard

ILP problem which creates the same scalability issue.

ans(X, no)← not ans(X, yes), id(X).
sample(1, holdsAt(rp(sq, rec, above), 1)).
sample(1, holdsAt(rp(tri, sq, le f t), 1)).
ans(1, yes)←

sample(1, holdsAt(rp(rec, tri, right), 1)).
sample(2, holdsAt(rp(sq, rec, below), 1)).

B sample(2, holdsAt(rp(tri, sq, right), 1)).
ans2(yes)←

sample(2, holdsAt(rp(rec, tri, right), 1)).
sample(3, holdsAt(rp(tri, sq, le f t), 1)).
sample(3, holdsAt(rp(tri, sq, le f t), 1)).
ans(3, yes)←

sample(3, holdsAt(rp(tri, rec, below), 1)).
E+ {ans(1, yes),ans(2, no),ans(3, yes).}
E− {ans(1, no),ans(2, yes),ans(3, no).}

(a) ILP encoding of the problem in Table 9

holdsAt(rp(sq, rec, above), 1).
O1 holdsAt(rp(tri, sq, le f t), 1).

E1 ans(yes)← holdsAt(rp(rec, tri, right), 1).
E+

1 {ans(yes)}
E−1 {ans(no)}

holdsAt(rp(sq, rec, below), 1).
O2 holdsAt(rp(tri, sq, right), 1).

E2 ans(yes)← holdsAt(rp(rec, tri, right), 1).
E+

2 {ans(no)}
E−2 {ans(yes)}

holdsAt(rp(tri, sq, le f t), 1).
O3 holdsAt(rp(tri, sq, le f t), 1).

E3 ans(yes)← holdsAt(rp(tri, rec, below), 1).
E+

3 {ans(yes)}
E−3 {ans(no)}

(b) ILPDE encoding of the problem in Table 9

Table 10: The sample predicate is used to separate different examples. The constants
tri, rec, sq respectively denote triangle, rectangle and square. holdsAt(rp(sq, rec, above), 1)
says that the square is above the rectangle at time point 1.

It should be noted that any standard ILP problem 〈B,M, E+, E−〉 can be thought of as an

ILPDE problem with only one example, 〈{},M, 〈(B, E+, E−)〉〉. Similarly any ILPDE task can

be converted to an ILP task. However, utilizing the ‘distinctness’ property of the examples

we can do better. The algorithm that I propose here roughly works as follows: Given an

instance of the ILPDE task, it first finds a solution H1 of E1. Then it expands H1 minimally

to solve only E2 and obtains H2 . In the next iteration it again expands H2 minimally to solve

E1 and it continues expanding until it finds a hypothesis that solves both E1 and E2. Next it

starts with a solution of 〈E1, E2〉 and tries to expand it iteratively until it solves all of E1, E2

and E3. The process continues until a hypothesis is found that explains all the examples.

48

Section 4.3 describes the algorithm. I show that the algorithm is sound and complete when

H ∪ B ∪ Oi is stratified for all i = 1, ..., n.

The proposed algorithm allows more control over the mode declarations (Section 4.2)

which can lead to noticeable speed up in the search process. I evaluate our algorithm on

two popular datasets: 1) a question answering dataset published by Facebook AI Research

Weston et al. 2015 and 2) a handwritten digit recognition database LeCun 1998. To the best

of my knowledge, no sound and complete ILP algorithm previously could learn from these

two datasets.

4.2 Background

In this section, I describe the type of rules that the algorithm can deal with, the syntax of

the mode declarations and the XHAIL algorithm which plays a crucial role in the proposed

algorithm.

4.2.1 Answer Set Programming

An answer set program is a collection of rules of the form,

L0 ← L1, ..., Lm,not Lm+1, ...,not Ln

where each of the Li’s is a literal in the sense of a classical logic. Intuitively, the above rule

means that if L1, ..., Lm are true and if Lm+1, ..., Ln can be safely assumed to be false then L0

must be true. The left-hand side of an ASP rule is called the head and the right-hand side is

called the body. Predicates and ground terms in a rule start with a lower case letter, while

variable terms start with a capital letter. I will follow this convention throughout the paper.

A rule with no head is called a constraint. A rule with empty body is referred to as a f act.

49

The semantics of ASP is based on the stable model semantics of logic programming Gelfond

and Lifschitz 1988. In this work, both the background knowledge B and the solution H are

a collection of such ASP rules.

4.2.2 Mode Declarations

Given a set of positive examples E+, negative examples E− and some background

knowledge B, an ILP algorithm computes a set of rules H so that B ∪ H |= E. The rules in

H are often restricted with a language bias that is specified by a series of mode declarations

M Muggleton 1995. One can think of this as a way of injecting expert knowledge for the

learning task.

There are two types of mode declarations, namely modeh declarations and modeb

declarations. A modeh(s) declaration (Table 12) specifies a literal s that can appear as the

head of a rule in H. A modeb(s) declaration (Table 12) specifies a literal s that can appear

in the body of a rule. The argument s is called schema and comprises of two parts: 1) an

identifier for the literal and 2) a list of placemakers for each argument of that literal. A

placemaker is either +type (input), -type (output) or $ type (constant), where type denotes

the type of the argument. An answer set rule is in the hypothesis space defined by M (call it

L(M)) if and only if its head (resp. each of its body literals) is constructed from the schema

s in a modeh(s) (resp. in a modeb(s)) in L(M)) as follows:

- by replacing an output (-) placemaker by a new variable.

- by replacing an input (+) placemaker by a variable that appears in the head or in a

previous body literal and

- by replacing a ground ($) placemaker by a ground term.

Table 12 shows a set of mode declarations Msample that one can use to solve the example

50

problem in Table 9.There is only one modeh(s) declaration in Msample, where the schema

is holdsAt(relativeposition(+op1,+op1, $ direction), +time). Assuming that there are only

four constants of type directions, the set of possible head literals are:



holdsAt(relativeposition(X,Y, le f t),T),

holdsAt(relativeposition(X,Y, right),T),

holdsAt(relativeposition(X,Y, above),T),

holdsAt(relativeposition(X,Y, below),T)


Where X and Y are variables of type op1 and T has type time. There are three modeb

declarations and they restrict additions of literals to the body as directed by their individual

schema. Note that the following rule,

holdsAt(relativeposition(X,Y, le f t),T)← holdsAt(relativeposition(Z, X, above),T),

holdsAt(relativeposition(Y,Z, right),T).

is in L(Msample), as the head is allowed by the modeh (Table 12) and the third

modeb (Table 12) allows the addition of holdsAt(relativeposition(Z, X, above),T)

with Z being an output (new) variable and the first modeb allows the addition of

holdsAt(relativeposition(Y,Z, right),T), as all the associated variables Y, Z and T have

appeared before.

#modeh holdsAt(relativeposition(+op1,+op1,$ direction),+time).
#modeb holdsAt(relativeposition(+op1,+op1,$ direction),+time).
#modeb holdsAt(relativeposition(+op1,-op1,$ direction),+time).
#modeb holdsAt(relativeposition(-op1,+op1,$ direction),+time).

Table 12: Mode declarations for the problem of Table 9

Additionally, weights can be assigned to modeh and modeb (written as #modeh(s)=W)

and they express the cost that is involved when a mode declaration is used. The default

51

weight for mode declarations is 1. Existing implementations of the ILP algorithms, take

only one set of mode declarations and thus all the modeh declarations share the same set of

modebs. Our algorithm allows the user to provide modeh specific modeb declarations. This

additional feature allows the user to provide more supervision in the search procedure and

makes the search faster.

4.2.3 XHAIL

The XHAIL Ray 2009 algorithm plays a crucial role in the algorithm that I present

here. In this section, I describe various concepts and notations associated with the XHAIL

algorithm. Given an ILP task ILP(B,M, E = {E+ ∪ E−}), XHAIL Ray 2009 derives the

hypothesis in three steps, namely the abductive step, the deductive step and the inductive

step. I will explain these steps with respect to the example E1 from Table 2(b). The set

B contains the representation of x1, denoted by O1 and the set E the contains annotations

derived from y1. M is the set of mode declarations described in Table 12.

4.2.3.1 Abductive Step

In the first step XHAIL finds a set of ground (variable free) atoms 4 = {α1, ..., αn} such

that B ∪ 4 |= E, where each αi is a ground instance of the modeh(s) declaration atoms. For

the running example there is only one modeh declaration. Thus the set 4 can contain ground

instances of only holdsAt(relativeposition(X,Y,Z),T). In the following I show one possible

4 that meets the above requirement.

4 =

{
holdsAt(relativeposition(rectangle, triangle, right), 1)

}

52

4.2.3.2 Deductive Step

In the second step, XHAIL computes a clause αi ← δ1
i ...δ

mi
i for each αi in 4,

where B ∪ 4 |= δ
j
i ,∀1 ≤ i ≤ n, 1 ≤ j ≤ mi and each clause αi ← δ1

i ...δ
mi
i is a

ground instance of a rule in L(M). In the running example, 4 contains only one atom,

α1 = holdsAt(relativeposition(rectangle, triangle,

right), 1) which is initialized to the head of the clause k1. The body of k1 is saturated by

adding all possible ground instances of the literals in modeb(s) declarations that satisfy the

constraints mentioned above. There are two ground instances, holdsAt(relativeposition

(square, rectangle, above), 1) and holdsAt(relativeposition(triangle, square, le f t), 1), of

the literals in the modeb(s) declarations and both of them can be added to the body as

specified by M. In the following I show the set of ground clauses K (called kernel) con-

structed in this step and their variabilized version Kv (called generalization) that is obtained

by replacing all input and output terms by variables.

K =


holdsAt(relativeposition(rectangle, triangle, right), 1)

← holdsAt(relativeposition(square, rectangle, above), 1),

holdsAt(relativeposition(triangle, square, le f t), 1).



Kv =


holdsAt(relativeposition(X,Y, right),T)

← holdsAt(relativeposition(Z, X, above),T),

holdsAt(relativeposition(Y,Z, le f t),T).



53

4.2.3.3 Inductive Step

In this step XHAIL tries to find a compressive theory H by selecting from Kv as few

literals as possible while ensuring that B ∪ H |= E. For this example, working out this

problem will lead to a unique solution,

H =

{
holdsAt(relativeposition(X,Y, right),T).

}
which contains a single rule with empty body. In general, the compression process may lead

to multiple options for H.

Let 〈HI ,HG,4〉 denote a solution returned by XHAIL(B,M, E), where HG is the gener-

alization computed from 4 and HI is a compressed version of HG that solves E. It should

be noted that there might be many choices for 4 and correspondingly there might be many

possible solutions 〈HI ,HG,4〉. In the following table, I define few notations which will be

useful later.

Notations
XHAIL(B,M,E) The set of all the solutions 〈HI ,HG,4〉 to the prob-

lem P = ILP(B,M, E), where HI is minimal i.e. no
compressed version of HI can solve P.

4(B,M, E) {4|〈HI ,HG,4〉 ∈ XHAIL(B,M, E) for some HI ,HG}.
HG(B,M, E) {HG|〈HI ,HG,4〉 ∈ XHAIL(B,M, E) for some 4,HI}.
HG(4) The generalization computed from 4.

4.3 Algorithm

XHAIL can compute the solutions of ILP(BE1 ,M, {E
+, E−}E1). However how to com-

pute the solutions of ILPDE(B,M, 〈E1, E2〉) without solving the standard Inductive Logic

54

Programming task constructed from E1 and E2 (denoted by ILP(BE1,E2 ,M, {E
+, E−}E1,E2)) ?

This section addresses this question. Before that I define the following terms which will be

needed for the discussion.

Definition 3 H1 ≤ H2 Two answer set programs H1 and H2 are related by “≤” (denoted as

H1 ≤ H2) if and only if H1 can be transformed into H2 by either adding new rules to H1 or

by adding new literals in the body of the existing rules.

Definition 4 Minimality A solution H of ILP(B,M, E) is minimal iff @H′ < H in L(M)

that solves ILP(B,M, E).

Definition 5 Distinctness A series of examples Ei〈Oi, E+
i , E

−
i 〉, i = 1...n are said to be dis-

tinct iff, ∆(B∪O1∪...∪On,M,∪n
i=1E+

i ,∪
n
i=1E−i) = {∪n

i=14i|(41, ...,4n) ∈ ∆(B∪O1,M, E+
1 , E

−
1)×

... × ∆(B ∪ On,M, E+
n , E

−
n)}. A series of examples Ei〈Oi, E+

i , E
−
i 〉, i = 1...n are said to be

mutually distinct iff all subsets of the examples are distinct.

Now consider the two examples E1 and E2 . Since E1 and E2 are distinct examples

constructed from two different 〈x, y〉 pairs, by definition, ∆(B∪O1∪O2,M,∪2
i=1E+

i ,∪
2
i=1E−i) =

{41 ∪ 42|(41,42) ∈ ∆(B ∪ O1,M, E+
1 , E

−
1) × ∆(B ∪ O2,M, E+

2 , E
−
2)}. Thus, for any solution

〈HI ,HG,4〉 of ILP(B ∪ O1 ∪ O2,M,∪2
i=1E+

i ,∪
2
i=1E−i), ∃41 ∈ ∆(B ∪ O1,M, E+

1 ∪ E−1) and

∃42 ∈ ∆(B ∪ O2,M, E+
2 ∪ E−2) such that,

HG(4) = HG(41) ∪ HG(42) ≥ HI

This property allows us to search for HI’s without solving ILP(B∪O1 ∪O2,M,∪2
i=1E+

i ,

∪2
i=1 E−i) directly. The search procedure can be briefly described as follows: For any choice

of (41,42) pair, first find all the minimal H ≤ HG(41) ∪ HG(42) that solves E1 and then

expand those minimally, with respect to E2 and E1 alternatively, until all the minimal

55

HI’s that solves both E1 and E2 are found. To find all the HI one simply needs to iterate

over all possible (41,42) pairs which can be computed from ILP(B ∪ O1,M, E+
1 , E

−
1) and

ILP(B ∪ O2,M, E+
2 , E

−
2) individually.

It should be noted that it is possible to have HG(4′) = HG(4′′), even though 4′ , 4′′.

Thus, the above search procedure can be optimized by iterating over pairs of generaliza-

tions instead of iterating over the abducibles. Another drawback of the above search

procedure is that the search results of (H1
G(41),H2

G(42)) do not give any information

for the search initiated on (H1
G(4′1),H2

G(4′2)). In every iteration it starts from scratch.

However, if we remember the solutions of ILPDE(B,M, E1), we can use those as lower

bounds for finding the solutions of ILPDE(B,M, 〈E1, E2〉). This is because, if HI is a

minimal solution of ILPDE(B,M, 〈E1, E2〉), then HI also solves ILPDE(B,M, E1) and there

exists a 〈H1
I ,H

1
G,41〉 ∈ ILPDE(B,M, E1) such that H1

I ≤ HI. Thus, for the iteration

(H1
G(41),H2

G(42)), one can search if some H1
I ≤ H1

G(41) can be expanded by either expand-

ing some rules in H1
I or by adding new rules from the remainder of H1

G(41) ∪ H2
G(42) or

both to solve E2 along with E1. Theorem 1 formalizes this idea.

Theorem 1 For any solution 〈HI ,HG,4〉 of ILPDE(B,M, 〈E1, ..., En〉) there exists a solution

〈H′I ,H
′
G,4

′〉 of ILPDE(B,M, 〈E1, ..., En−1〉) and a generalization H′′G in ILPDE(B,M, En)

such that, H′I ≤ HI ≤ H′G ∪ H′′G , when H ∪ B ∪ Oi is stratified for any choice of i ∈ {1, ..., n}

and H ∈ {HG,H′G,H
′′
G}. Here, Oi is the observation from Ei. �

With this in mind, the algorithm for finding the solutions of ILPDE(B,M, {E1, E2, ..., En})

is described in Algorithm 1. The proof of the theorem is in Appendix A.

56

Algorithm 1: I2XHAIL
1 1.0 Data: An instance of ILPDE(B,M, {E1, . . . , En})

Result: A solution to the problem
/* initialize a stack with the solutions of ILP(B,M, E1) */

2 stack = XHAIL(ILP(B,M, E1));
3 while stack is not empty do

/* pop the hypothesis from the top */
4 〈HI ,HG〉 = stack.pop();

/* get an example Ei such that B ∪ HI ∪ Oi 0 E+
i or B ∪ HI ∪ Oi ` E−i */

5 Ei = nextUncoveredExample(HI);
/* No such example exists */

6 if Ei is null then
/* found a solution */

7 return HI .

8 else
/* Find expansions of HI that also solves Ei */

9 re f inementsS tack = <> ;
/* support set denotes the set of examples from which < Hi,HG >

is created */
10 supports = supportS et(HI) ∪ {Ei};

/* compute a set of lower bound-upper bound pairs for the search
space. */

11 HG(Ei) = f indGeneralizatons(B,M, Ei);
12 foreach H in HG(Ei) do
13 push 〈HI ,HG ∪ H〉 to re f inementsS tack

14 while refinementsStack is not empty do
/* get a candidate lower bound-upper bound pair */

15 〈H′I ,H
′
G〉 = re f inementsS tack.pop();

/* get an example from supports that is not covered by H′I */
16 E j = nextUncoveredExampleFromS (H′I , supports);
17 if E j is null then

/* if no such example exists then we found a solution to
the subproblem. Push it to the stack. */

18 push 〈H′I ,H
′
G〉 to stack;

19 else
/* Expand H′I minimaly along H′G so that it covers E j */

20 expansions = expandMinimal(〈H′I ,H
′
G〉, B, E j);

/* Push all expansions in the re f inementsS tack for further
updates. */

21 foreach 〈H′′I ,H
′′
G〉 in expansions do

22 refinementsStack.push(〈H′′I ,H
′′
G〉)

57

4.3.1 Example

In this subsection I describe how our algorithm computes a solution to the running

example ILPDE(B,M, 〈E1, E2, E3〉) from Table 9. Here B contains all the constants of type

op1, direction and time and M is the one described in Table 12 .

Initialization: First the stack is filled with the output from XHAIL(B,M, E1). In section

1, we have seen that the output contains only one tuple. The following block shows the

content of the stack after initialization.The underlined part denotes HI, where HG is the

entire program.

holdsAt(relativeposition(X,Y, right),T)

← holdsAt(relativeposition(Z, X, above),T), holdsAt(relativeposition(Y,Z, le f t),T).

Iteration 1: In iteration 1, the hypothesis on the top (denoted as Top〈HTop
I ,HTop

G 〉) of

the stack is popped. One can see that the hypothesis HTop
I does not cover E2. So, the

algorithm tries to find an expansion of it which solves E2 and E1 both. For that it first finds

HG(B,M, E2) and creates a new refinement stack with lower bound (HTop
I) - upper bound

(HTop
G ∪ HTop

G) pairs as shown below:

holdsAt(relativeposition(X,Y, right),T)

← holdsAt(relativeposition(Z, X, above),T),

holdsAt(relativeposition(Y,Z, le f t),T).

58

It may be noted that HG(B,M, E2) is empty as E2 does not contain any positive example,

so the stack contains only and exactly the Top. Next it pops the refinement stack and tries

to find the minimal extensions of the Top that covers E2. There are two such minimal

extensions , H′,H′′ and both of them are pushed to the refinement stack.

H′ =


holdsAt(relativeposition(X,Y, right),T)

← holdsAt(relativeposition(Z, X, above),T),

holdsAt(relativeposition(Y,Z, le f t),T).



H′′ =


holdsAt(relativeposition(X,Y, right),T)

← holdsAt(relativeposition(Z, X, above),T),

holdsAt(relativeposition(Y,Z, le f t),T).


The algorithm then goes on popping the top of the refinement stack, say H′. Since H′

solves both E1 and E2 the condition on line 16 of Algorithm 1 is satisfied and H′ is pushed

into the main stack. Similarly, H′′ is popped next and pushed to the main stack. At this point

refinement stack becomes empty and iteration 1 exits as it has discovered all the minimal

extensions of Top. The stack now contains H′′ on top of H′.

Iteration 2: In the next iteration the algorithm pops 〈H′′I ,H
′′
G〉 which is currently at the

top of the stack. The next problem that it does not solve is E3. It then computes HG(B,M, E3)

which contain only one element,

H′′′ =


holdsAt(relativeposition(X,Y, below),T)

← holdsAt(relativeposition(Z,Y, below),T),

holdsAt(relativeposition(X,Z, right),T).


It then pushes 〈H′′I ,H

′′
G ∪ H′′′〉 to the refinement stack and finds the minimal expansions

of H′′I within the bound of H′′G ∪ H′′′. There will be only one such expansion, H f inal which

59

will then be pushed into the refinement stack and finally into the main stack. Since H f inal

solves all three examples, the algorithms terminates returning H f inal as the solution.

H f inal =


holdsAt(relativeposition(X,Y, right),T)

← holdsAt(relativeposition(Y,Z, le f t),T).

holdsAt(relativeposition(X,Y, below),T)← .


4.3.2 On the Minimality of the Solution

The solution returned by algorithm 1 may not be minimal. This is because if HI is

expanded minimally to H′I to solve a new example E, it does not ensure that H′I is minimal

with respect to the relevant subproblem. An example of this is the following: B = {}, E1 =

〈{p., b., c.}, {a}, {}〉, E2 = 〈{b.}, {}, {a}〉, E3 = 〈{c.}, {a}, {}〉, and M = {#modeh a, #modeb b,

#modeb c, #modeb p}. There are two solutions in ILPDE(B,M, 〈E1, E2〉): H1 = {a ← c.}

and H2 = {a← p.}. If H2 is expanded first, it will produce {a← p., a← c.} as the solution

of ILPDE(B,M, 〈E1, E2, E3〉) and since it covers all the examples, it will be returned as

the solution. However, only {a ← c.} is sufficient to cover E1, E2, E3. Thus the output

is not minimal. The minimal solution can be found by computing all the solutions to

ILPDE(B,M, 〈E1, E2, E3〉) and then discarding the ones which have a compressed version

of it already in ILPDE(B,M, 〈E1, E2, E3〉). However, algorithm 1 prefers efficiency over

minimality and returns the first solution found.

4.4 Related Work

In recent years the field of Inductive logic programming has seen major advancements

in many of its areas. Different ILP algorithms have been proposed Ray 2009; Athakravi

60

et al. 2013; Law, Russo, and Broda 2014; Athakravi et al. 2015; Katzouris, Artikis, and

Paliouras 2015; Kazmi, Schüller, and Saygın 2017; Schüller and Kazmi 2017. Researchers

have analyzed various kinds of “good” rules that cannot be learned with the current definition

of entailment (called “cautious inference”) and proposed an alternative to that, named as

“brave inference”. ILP Algorithms have thus been proposed that can do only “brave inference”

Otero 2001 or both Sakama 2005; Sakama and Inoue 2009; Law, Russo, and Broda 2015.

Efforts have also been made to learn answer set programs that not only contain Horn

clauses but also choice rules and constraints Law, Russo, and Broda 2015. With these

developments and the various systems that have been produced with these researches,

people have successfully applied the paradigm of Inductive logic programming to various

areas Gulwani et al. 2015; Arindam Mitra and Baral 2016a. And with these exposures to

different applications, several changes are being made to the paradigm of ILP.

Recently Law, Russo, and Broda 2016 proposed context dependent learning for ordered

answer set programs. Interested readers can refer to Law, Russo, and Broda 2016. The

definition of context dependent learning in this work is an adaptation of their definition for

standard ILP setting. It should be noted that even though the concept of context depending

learning was proposed in Law, Russo, and Broda 2016, to solve the problem their method

converts it to a standard ILP problem using choice rules. Here, I have made the first attempt

to solve the problem in its original form.

In this work, I deal with the situation where there are many small distinct examples

{(x1, y1), ..., (xn, yn)}. Another situation where scalability is needed, is when there is a single

but large example. Works in Katzouris, Artikis, and Paliouras 2015, 2017 talk about this

situation. Our work is also related to the work in logical vision Dai, Muggleton, and Zhou

2015 that aims to learn symbolic representation of simple geometric concepts.

61

4.5 Experiments

I have applied the proposed algorithm on two datasets. They are discussed below:

Task 6: Lists/Sets Task 17: Path finding Task 10: Indefinite reason-
ing

Sandra picked up the
football there.

The office is east of the hall-
way.

Fred is either in the school or
the park.

Sandra journeyed to the
office.

The kitchen is north of the
office.

Mary went back to the office.

Sandra took the apple
there.

The garden is west of the
bedroom.

Bill is either in the kitchen or
the park.

Sandra discarded the ap-
ple.

The office is west of the gar-
den.

Fred moved to the cinema.

What is Sandra carrying? How do you go from the
kitchen to the garden?

Is Bill in the office?

Table 13: Example question answering tasks from bAbI dataset

4.5.1 Question Answering

Recently a group of researchers from Facebook has proposed a question answering

challenge Weston et al. 2015 containing 20 different tasks. Table 9 and 13 shows examples

of such tasks. Each task contains 1000 or more such stories in the training data. The goal is

to build a system that uniformly solves all the tasks.

The previous chapter has shown how Inductive logic programming can be used to solve

the tasks. The overall method can be summarized as follows: Given the input containing a

story and a question, first translate it to an Answer Set Program using a natural language

parser and some handwritten rules, then use some knowledge to answer the question. In

the training phase, learn the necessary knowledge. In the previous chapter, I have used

XHAIL system to learn the knowledge. However, XHAIL could not scale to the entire

62

dataset. So I have divided the dataset. For each task then I have taken a bunch of examples

together. XHIAL then learns from that bunch. I then add the learned hypothesis back to

the background knowledge and XHAIL then takes the next bunch to learn from. Since

knowledge learned from a group of examples is never updated again, I had to manually find

a group size that will work for this dataset. The group size depended on the task and clearly

it might happen that for some new task there does not exist a group size to which xhail can

scale. In this work, I reuse the mode declarations from the previous chapter and have found

that the proposed algorithm can learn all the knowledge given the input ILPDE(B,M,Dtask),

where Dtask contains all the 1000 examples of a task. Table 14 shows the time it has taken,

the number of rules learned for each task and the accuracy for each task. The new system

has achieved the same accuracy as that of the previous chapter.

4.5.1.0.1 Semantic Parsing

I have done further experiments with the task of semantic parsing. I took all the unique
sentences in the training dataset of Weston et al. 2015 and the corresponding parse tree
of the sentences and then trained an ILP system to do the conversion from scratch. Table
15 shows an example of this task. The training dataset contains 5458 such examples. The
developed system learned a collection of 165 rules in 128 minutes from the training data
which accurately parsed all the sentences in the test data.

4.5.2 Handwritten Digit Recognition

The MNIST dataset LeCun 1998 contains images of handwritten digits. Each image is a

28 × 28 matrix and is labeled with a number between 0 to 9 denoting the digit it represents.

The value of a cell (pixel) in the matrix (image) ranges between 0 (black) to 255 (white)

63

TASK Time Rules Acc
1 Single Supporting Fact 3 10 100
2 Two Supporting Facts 3 2 100
3 Three Supporting facts _ _ 100
4 Two Argument Relations 2 8 100
5 Three Argument Relations 6 20 100
6 Yes/No Questions _ _ 100
7 Counting 5 14 100
8 Lists/Sets 4 8 100
9 Simple Negation 4 13 100

10 Indefinite Knowledge 9 21 100
11 Basic Coreference 4 5 100
12 Conjunction _ _ 100
13 Compound Coreference _ _ 100
14 Time Reasoning 4 4 100
15 Basic Deduction 4 1 100
16 Basic Induction 4 1 93.6
17 Positional Reasoning 4 26 100
18 Size Reasoning 4 4 100
19 Path Finding 17 2 100
20 Agent’s Motivations 2 6 100

Table 14: Performance on the set of 20 tasks. The tasks for which training is not required is
marked with ‘-’. Running time is measured in minutes.

Sentence
Daniel journeyed to the bathroom.
ASP Representation Oi

index(1..5). lemma(1,daniel). pos(1,nn). lemma(2,journey). pos(2,vbd). lemma(3,to).
pos(3,to). lemma(4,the). pos(4,dt). lemma(5,bathroom). pos(5,nn).
Positive Examples E+

i
arg1(journey01,daniel), arg2(journey01,bathroom) .
Positive Examples E−i
any possible output that is not in E+.

Table 15: An example from the semantic parsing task. For each word in the sentence the
representation contains its lemma and pos tag, which are obtained using Stanford parser .

capturing the darkness at that point. In this experiment we use our ILP algorithm to learn

rules that identifies digits. For that I represent the images in the following way:

64

1. First, I divide all cell value by 255 so that the value of each cell is in the range of

[0, 1].

2. For each 4 × 4 non-overlapping submatrix I create a super-pixel whose value is the

sum of the all the pixels in that region. This gives a 7× 7 size matrix representation of

the original image. Note that in this reduced matrix, each cell value ranges between 0

to 16.

3. If the value of a super-pixel from the 7 × 7 matrix is less than 2 I consider it to be in

the off state. If the value is more than or equal to 5 I consider it be in the on state. The

original image is then described as two disjoint sets: 1) a set of positions where the

state of the super-pixel is off and 2) another set where all the super-pixel are on.

The system learn rules on this representation. Each learned rule for a digit d simply

says, if the super-pixels in certain positions are off and are on for some other positions then

the image represents the digit d. The training data in the MNIST dataset contains a total of

60, 000 images with approximately 6, 000 images for each digit. To learn the rules for each

digit I take all the examples of that digit and take equal amount of images that represent

other digits and pass that to our algorithm. Table 16 shows the number of rules learned for

each digit and the performance on the test data. Except for the digit 1, it takes 160 hours to

learn the rules for each digit.

As the Table 16 suggests the performance on handwritten digit recognition is quite poor

in comparison to the state-of-the-art neural network classifier Wan et al. 2013 that achieves

99.79% accuracy on this dataset. The number of rules column in Table provides insights on

this high error rates. Consider the example of digit 0. If there are 5000 instances of digit 0

and the algorithm outputs 3, 021 rules that means the representation that I have chosen does

65

Digit #Rules #Test Examples Acc(%)
0 3,021 980 60.91
1 444 1134 95.85
2 4,606 1032 32.95
3 3,661 1010 49.80
4 3,416 982 49.59
5 3,459 891 42.65
6 2,621 958 65.03
7 2,430 1028 63.52
8 3,237 978 54.50
9 2,382 1009 69.18

Table 16: Performance on handwritten digit recognition tasks. For each digit, column 2
shows the numbers of rules learned, the number instances of that digit in the test set and the
percentage of instances correctly classified.

not allow good generalization. However, the representation seems to work quite well for the

digit 1.

An important lesson learned from this experiment is that even though it takes a small

amount of time to perform a hypothesis refinement when finding a solution H for 〈E1, ..., Ei〉

from a solution of 〈E1, ..., Ei−1〉, the algorithm needs to verify if H explains all of {E1, ..., Ei}

before it can proceed to the next iteration. If the size of H is big (such as the case for digit

recognition) and too many refinements are taking place then the algorithm spends a lot of

time in the verification phase. An important future work will be to optimize this step by

identifying which examples could have been affected if a hypothesis goes through refinement.

Nevertheless, the algorithm is able to output a solution and does not blow up when a problem

of this size is given as input. The dataset associated with all the experiments and the learned

rules are available at https://goo.gl/k6AEEz. All experiments were performed on an intel i7

machine with 12 GB RAM.

66

https://goo.gl/k6AEEz

Chapter 5

APPLICATION OF LKR: LEARNING TO SOLVE GENERAL ARITHMETIC

PROBLEMS

In this chapter, I describe how to apply LKR paradigm for solving general arithmetic

problems (Table 17). Solving math problems require applying theories related to math and

reasoning with such knowledge. This makes knowledge representation and reasoning an

important aspect of any automated word problem solver. However, only knowing the theory

is not sufficient, we also want to learn how to apply them. This makes LKR a suitable

paradigm for word math problem solving.

1. Ned bought 14 boxes of chocolate candy and gave 5 to his little brother. If each box has
6 pieces inside it, how many pieces did Ned still have?

2. Carrie has 125 U.S. stamps. She has 3 times as many foreign stamps as U.S. stamps.
How many stamps does she have altogether?

3. Sam, Dan, Tom, and Keith each have 15 Pokemon cards. How many Pokemon cards do
they have in all?

4. Bert runs 2 miles every day. How many miles will Bert run in 3 weeks?

Table 17: Sample General Arithmetic Problems

To solve an arithmetic word problem one can express the problem in terms of an

equation or some equivalent representation such as expression tree or a formula from where

the equation can be generated and then an equation solver can be employed to compute

the solution. Existing methods following this approach generally work in two steps. In the

first step, given an input problem it generates a set possible equations. In the second step, it

ranks all these possibilities and picks the best one. It normally learns to do the second part

67

from the data. A natural question that arises here is what should the set of possible equations

contain. As an answer to this question, existing systems only consider the equations that

can be generated using the operators +,−,÷,× and the numbers from the text with no

repetition allowed. A quick look over the problems in Table 17 shows that this restriction

does not work well in practice. For example, the correct equation (x = 125 + 3 ∗ 125) for

the problem 2 requires the use of the number 125 twice. To overcome this issue with the

existing approach one may think of allowing repetition of numbers to a certain limit such as

2, however such a measure will drastically increase the number of possibilities and introduce

another limitation that the approach can solve only problems with at most one repetition.

Problem 3 and 4 requiring the use of counting and additional knowledge of unit conversion

pose further challenges to this approach.

In this work, I present an approach that constructs a correct equation incrementally

without iterating and ranking. The general idea is as follows: given an input problem

P, represent P in the knowledge representation and reasoning language of Answer set

programming. Add some “domain knowledge” to the representation and pass the entire

program to the answer set solver. If there is sufficient knowledge to generate the equation,

the output of the solver will contain the equation.

The domain knowledge here contains information about the theories of arithmetic,

including its set of operations, formulas, unit conversion knowledge and contains information

about how to use those theory in problem solving. The latter is learned from data using the

Inductive Logic Programming algorithm from the previous chapter. The output equation

has no limit on the repetition of a number, can use as many unit conversion knowledge as

necessary and can use information obtained from counting. For the problem 4 from Table

17, the output of our system will contain the following:

Here the symbol k1 represents the fact that there are 7 days in a week and q1, q2 and

68

per f orm(mult(k1, q2), 1)
per f orm(mult(q1, k1), 1)
apply(unitaryConcept(q1,mult(k1, q2), x), 2)
apply(unitaryConcept(mult(q1, k1), q2, x), 2)
equation(“x = 2 ∗ (7 ∗ 3)”, 2),
equation(“x = (2 ∗ 7) ∗ 3”, 2)

x respectively stand for ‘Bert runs 2 miles every day’, ‘in 3 weeks’ and the unknown in

the question. The system at time step 1 decides that it needs to use an unit conversion

knowledge and it can convert either q1 or q2. As a result of which it will know that ‘Bert

runs 14 miles every week’ and ‘in 3 weeks’ is same as ‘in 21 days’. Here the knowledge that

it has used to decide that it needs to multiply q1 with k1 or k2 with q2 is learned from the

data. The knowledge that helps it to understand the meaning of multiplication, i.e. q1 × k1

denotes ‘Bert runs 14 miles every week’ is provided as part of domain knowledge. The

system continues reasoning and in the next time step, using the knowledge it has gained

from problem solving, decides that it can apply the unitary formula. The unitary formula

says that if one item costs r unit and you get m number of items and the total cost incurred is

t, then t = m × r. In this case, the system finds that both unitaryConcept(mult(q1, k1), q2, x)

and unitaryConcept(q1,mult(k1, q2), x), 2) are possible i.e. the value of the unknown can

be found by multiplying the “amount of miles Bert runs per week” by the “total number

of weeks” (unitaryConcept(mult(q1, k1), q2, x)) or by multiplying the ”amount of miles

Bert runs per day” with the “total number of days” (unitaryConcept(q1,mult(k1, q2), x), 2).

Once a formula is applied, the equation connecting the unknown with the other numbers is

generated using the meaning of the formula.

In this work, the formulas are treated as relations which when extracted generates an

equation. The operators on the other hand helps to infer new information from known ones.

The rest of the paper is organized as follows: in section 5.1, I describe the language of

Answer Set Programming; In section 5.2, I describe the representation of a word problem.

69

Section 5.3 describe the representation of the theories. In section 5.4, I describe the

learning model. Section 5.5 describes the related works. In section 5.6, I present a detailed

experimental evaluation of our system. Finally, section 5.7 concludes our paper. The code

and the data has been uploaded with the submission and will be made publicly available.

5.1 Answer Set Programming

An answer set program (ASP) is a collection of rules of the form,

L0 :- L1, ..., Lm,not Lm+1, ...,not Ln

where each of the Li’s is a literal in the sense of a classical logic. Intuitively, the above

rule means that if L1, ..., Lm are true and if Lm+1, ..., Ln can be assumed to be false then L0

must be true Gelfond and Lifschitz 1988. The left-hand side of an ASP rule is called the

head and the right-hand side is called the body. Predicates and constants in a rule start with

a lower case letter or a digit, while variable terms start with a capital letter. I will follow this

convention throughout the paper. A rule with empty body is referred to as a f act.

Example

time(1). time(2).

multiply(X,Y,T) :- time(T), goodRateMultiplier(X,Y,T), not exists(mult(X,Y),T).

exists(mult(X,Y),T + 1) :- multiply(X,Y,T), time(T).

goodRateMultiplier(q1, q2, 1). goodRateMultiplier(q1, q2, 2).

Consider the above program containing 6 rules. The first line of the program contains two

facts saying that 1 and 2 are the possible values of time. The rule in the second line says that

the quantity X and Y can be multiplied at time T if the relation goodRateMultiplier holds

70

between them at time T and mult(X,Y) does not exist at time T. The next rule says that if

X and Y are multiplied at time T then mult(X,Y) exists at time T + 1. The last two lines

describe that the relation goodRateMultiplier holds between the q1 and q2 at both time points.

The output of this program will contain two additional facts, namely multiply(q1, q2, 1) and

exists(mult(q1, q2), 2) along with the four given facts.

5.2 Problem Representation

In this work, an arithmetic word problem is represented as an ASP program that contains

only facts. There are mainly two types of facts: 1) facts that denote that a quantity q has

a property p, written as ‘holdsAt(p(q), 1).’. 2) facts that describe that a relation r holds

between two quantities q1 and q2, written as ‘holdsAt(r(q1, q2), 1).’. The holdsAt(F,T)

predicate denotes that F holds at time point T . Here a quantity can be a number from

the text, an unit conversion knowledge, number obtained from counting or the unknown

corresponding to the question. Three additional predicates namely exp(q1, n), verb(q1, v)

and order(q1, k) describe that the number value of q1 is n, the verb associated with the

quantity is v and the appearance order of the quantity from left to right is k. There are 24

possibilities for properties and 36 possible relations.

To compute these facts, a quantity object is created for each occurrence of a number in

the text and for the question representing the unknown. For each of these quantities a list

of attributes is extracted using Stanford Core NLP Manning et al. 2014. The value of each

attribute is a set of words from the sentence that contains the quantity. The list of attributes

includes the verb attribute i.e. the verb attached to the number, and attributes corresponding

to Stanford dependency relations De Marneffe and Manning 2008, such as nsubj, tmod, prep

in, that spans from the associated verb. A special attribute type denotes the kind of object

71

the quantity refers to. Another special attribute rate denotes the denominator of a rate type.

For example, for the quantity “20 balls per box” or “each box contains 20 balls” the type is

“ball” and the rate refers to “box”. For the quantity, “Carrie has 125 US stamps” , the type is

{US,stamps} but rate is φ. The relations correspond to whether a pair of attributes matches

with each other or is a subset of another or disjoint. The set of properties include whether an

attribute value is empty, whether the quantity has a non-empty rate, whether it is unknown,

and the type of the verb as defined in Arindam Mitra and Baral 2016b. The following table

shows the properties and relations for the quantity “2 miles” in problem 4 of table 17. The

complete representation will contain additional facts regarding the remaining quantities.

exp(q1, “2”). exp(q2, “3”). exp(x, “x”).
holdsAt(hasEmptyPrepon(q1), 1).
holdsAt(hasEmptyPrepin(q1), 1).
holdsAt(hasEmptyPrepo f (q1), 1).
holdsAt(verb(q1, run), 1).
holdsAt(denotesRate(q1), 1).
order(q1, 1).
holdsAt(hasPresentTense(q1), 1).
holdsAt(sub jectMatch(q1, q2), 1).
holdsAt(exactVerbMatch(q1, q2), 1).
holdsAt(typeMatch(q1, x), 1).

5.3 Representation of Theories

Akin to any other field, the field of arithmetic has its own set of theories. In this section

I show how those theories can be represented and passed to an AI system as background

knowledge.

72

5.3.1 Formulas

Formulas are relations that when applied produces an equation. The predicate

apply(F,T) denotes that the formula F should be applied at time T . There are five formulas

that are relevant to general arithmetic problems. Here I describe the meaning of each of

those formulas along with the rules that captures that meaning.

5.3.1.1 PartWhole

The part-whole formula says that the value of the whole (W) is equal to the sum of its

parts (P1, ..., Pn). The predicate partWhole(

W, P1, ..., Pn) represents this relation. To capture its meaning the following rules are written:

apply(partWhole(W, P1, ..., Pn),T) :- partsO f (W, P1, ..., Pn,T),
not hasMoreParts(W, P1, ..., Pn,T).

equation(“Vw = V1 + ... + Vn”,T) :- apply(partWhole(W, P1, ..., Pn),T),
exp(W,Vw), exp(P1,V1), ..., exp(Pn,Vn).

Here, the first rule says that one can apply partWhole(W, P1, ..., Pn) at time T if partsO f (

W, P1, ..., Pn,T) holds i.e. P1, ..., Pn are the parts of W at time T and W does not have any

more parts at time T . partsO f (W, P1, ..., Pn,T) holds if each Pi is a part of W (represented

as partO f (Pi,W)) and all pairs of Pi, P j are joinable (represented as joinable(Pi, P j)). The

rules for theses two predicates, partO f and joinable will be learned from data. The second

rule shows that an equation gets created if a part whole formula is applied at time T . Similar

rule for equation generation is written for all other formulas.

73

5.3.1.2 Gain

The gain formula says that if the value of a quantity increases by G from S and the final

value is E, then E = S + G. The predicate gainFormula(S ,G, E) represents this relation.

The executability condition of this formula is written as follows:

apply(gainFormula(Q_1,Q_2,Q_3),T) :-

goodStartGain(Q_1,Q_2,T), goodGainEnd(Q_2,Q_3,T),

goodStartEnd(Q_1,Q_3), holdsAt(before(Q_1,Q_3),T),

holdsAt(before(Q2,Q3),T).

The before predicate captures the order of the quantities. The definition of goodStartGain ,

goodGainEnd, goodStartEnd is learned from data.

5.3.1.3 Loss

The loss formula says that if the value of a quantity decreases by L from S and the final

value is E, then S − L = E. The predicate lossFormula(S , L, E) represents this relation.

The executability condition of this formula is written as follows:

apply(lossFormula(Q_1,Q_2,Q_3),T) :-

goodStartLoss(Q_1,Q_2,T), goodLossEnd(Q_2,Q_3,T),

goodStartEnd(Q_1,Q_3), holdsAt(before(Q_1,Q_3),T),

holdsAt(before(Q2,Q3),T).

Here, the definition of goodStartLoss, goodLossEnd, goodStartEnd is learned from data.

74

5.3.1.4 Comparison

The comparison formula says that if D represents the difference between two quantities

B and S , then value(B) = value(S) + value(S). The predicate comparison(B, S ,

D) represents this relation. The executability condition is written as follows:

apply(coparison(Q1,Q2,Q3),T) :- goodBigDiff(Q1,Q3,T),

goodSmallDiff(Q2,Q3,T), goodBigSmall(Q1,Q2).

Here, the definition of goodBigDiff, goodSmallDiff, goodBigSmall is learned from data.

5.3.1.5 Unitary

The unitary formula says that if one item costs R unit and you get M number of items

and the total cost incurred is T , then T = R × M. The predicate unitaryConcept(R,M,T)

represents this relation. The following rules shows the executability condition:

apply(unitaryConcept(Q_1,Q_2,Q_3),T) :-

goodRateMultiplier(Q_1,Q_2,T),

goodRateTotal(Q_1,Q_3,T),

goodMultiplierTotal(Q_2,Q_3).

The definition of goodRateMultiplier, goodRate- Total, goodMultiplierTotal is learned from

data.

5.3.2 Operations

Operations produces new numeric quantities from existing ones. To reason with these

new quantities it is important for a machine to understand their meaning. Rules are written

75

1.0
Operation Properties of Output D Relations of D

join(A, B)
∀p ∈ S p \ {isUnknown}, Attributes value of D is the union of the attribute

values of A and B.p(D) ⇐⇒ p(A)∧p(B).

increase(A, B)
∀p ∈ S p \ {isUnknown}, ∀r ∈ S p \ {be f ore}, r(D,Q) ⇐⇒ r(A,Q).

p(D) ⇐⇒ p(A). be f ore(Q,D) ⇐⇒ be f ore(Q, B).
be f ore(D,Q) ⇐⇒ be f ore(B,Q).

separate(A, B)
∀p ∈ S p \ {isUnknown}, Attributes of D is the intersection of the attributes of

A and B plus their set difference.p(D) ⇐⇒ p(A).

decrease(A, B)
∀p ∈ S p \ {isUnknown}, ∀r ∈ S p \ {be f ore}, r(D,Q) ⇐⇒ r(A,Q).

p(D) ⇐⇒ p(A). The before relations follow the use case of increase.

multiply(A, B)
∀p ∈ S p \ {isUnknown}, rateTypeMatch(D,Q)⇐⇒ rateTypeMatch(B,Q).

p(D) ⇐⇒ p(A)∧p(B). typeMatch(D,Q) ⇐⇒ typeMatch(A,Q).
denotesRate(D) ⇐⇒

denotesRate(B)
∀r ∈ S p\{be f ore}, r(D,Q) ⇐⇒ r(A,Q)∨r(B,Q).

divide(A, B)
∀p ∈ S p \ {isUnknown}, rateTypeMatch(D,Q) ⇐⇒ typeMatch(B,Q).

p(D) ⇐⇒ p(A). typeMatch(D,Q) ⇐⇒ typeMatch(A,Q).
denotesRate(D). ∀r ∈ S p \ {be f ore}, r(D,Q) ⇐⇒ r(A,Q).

Table 18: This table shows relations and properties of the derived quantity. The derived
quantity D is unknown if any of A or B is an unknown. The before relations of D is
determined by the before relations of A if A occurs after B otherwise it is determined by B.
S P and S R respectively denotes the set of all properties and the set of all relations.

for this purpose that capture the semantics of these operations and assign name and meaning

to these derived quantities. I have used a total of 7 operations and I briefly describe them

here. Table 18 shows the meaning of the derived quantity for each of these operations.

5.3.2.1 Join & Increase

Both join and increase operations correspond to addition. The increase operation

represents an increase to the value of an existing quantity such as the case in problem 6

(Table 23). The join action on the other hand combines two quantities to produce a new

quantity with a value equal to the sum of those two quantities. An example of this action is

shown in Table 23. The following rule shows the result of the join action:

76

Problem Output
1. Amy had 4 music files and 21 video files on her
flash drive. If she deleted 23 of the files, how many
files were still on her flash drive?

perform(join(4, 21),1)
apply(LossFormula(joined(4,21),23, x),2)

2. Benny bought a soft drink for 2 dollars and 5
candy bars. He spent a total of 27 dollars. How
much did each candy bar cost?

perform(multiply(5, x),1)
apply(partWhole(27, {2,mult(5, x)}),2)

3. A company invited 18 people to a luncheon, but
12 of them didn’t show up. If the tables they had
held 3 people each, how many tables do they need?

perform(separate(18, 12),1)
apply(unitary(x, 3,separated(18,12)),2)

4. Oscar’s bus ride to school is 0.75 of a mile and
Charlie’s bus ride is 0.25 of a mile. How much
longer is Oscar’s bus ride than Charlie’s?

apply(comparison(0.75, 0.25, x),1)

5. After eating at the restaurant, Sally, Sam and
Alyssa decided to divide the

perform(count(c1 ≡{Sally,Sam,Alyssa}),1)

bill evenly. If each person paid 45 dollars, what
was the total of the bill?

apply(unitary(c1, 45, x),2)

6. Mika had 20 stickers. She bought 26 stickers
from a store in the mall

perform(increase(20, 26),1)

and gave 6 of the stickers to her sister. Then Mika
got 20 stickers for her

perform(decrease(increased(20,26),6),2)

birthday. How many stickers does Mika have now? apply(gainFormula(decreased(
increased(20,26),6), 20, x),3)

7. Fred has 90 cents in his bank. How many dimes does Fred have ?apply(unitary(90, kdime−cent, x),1)

Table 19: shows how the different formulas and operations can be used to solve arithmetic
word problems.

exists(joined(Q1,Q2),T + 1) :-

per f orm(join(Q1,Q2),T).

Here, exists(joined(Q1,Q2),T + 1) denotes that the quantity joined(Q1,Q2) exists at time

T + 1 and thus can be used in an operation or a formula from T + 1 onwards. joined(Q1,Q2)

is the symbolic name that is assigned to the derived quantity. Similar rules are written for

all remaining operations. The increase action creates a quantity named increased(Q1,Q2).

The following rules show how the typeMatch relation is computed for the quantity

joined(Q1,Q2).

77

tm(joined(Q1,Q2),Q1) :- tm(Q1,Q2).
stm(Q1, joined(Q1,Q2)) :- not tm(Q1,Q2).
stm(Q2, joined(Q1,Q2)) :- not tm(Q1,Q2).
tm(joined(Q1,Q2),Q) :- tm(joined(Q1,Q2), Q2), tm(joined(Q1,Q2),Q1).

Here tm, stm is used as a shorthand for typeMatch, subTypeMatch.The first rule says that

the type of joined(Q1,Q2) matches with Q1 if Q1 and Q2 has the same type. The second

and third rules say that if Q1 and Q2 does not have the same type then their type must be

a sub type of the new quantity. The fourth rule computes the type match using the type

match relations of Q1 when Q1 has the same type of the joined quantity. When type of

Q1 and Q2 does not match, an additional rule checks if Q1 and Q2 are sub type of some

quantity Q. If the answer is yes and there are no more subtypes of Q, then the type of Q

and joined(Q1,Q2) is declared to be same. Similar rules are written to compute the other

relations and properties of the derived quantity for all the operations. Due to space limitation

I briefly summarize them in Table 18.

The executability conditions of these operations are defined in terms of the same pred-

icates that are used to define the applicability of formulas and are learned together. The

following rule show the executability conditions of the increase operation.

per f orm(increase(Q1,Q2),T) :-
goodStartGain(Q1,Q2,T), not
holdsAt(canApplyGainFormula(Q1,Q2),T).

The holdsAt(canApplyGainFormula(Q1,Q2),T) predicate is true if at any time T there

exists another quantity Q3 such that the gain formula is applicable to Q1,Q2,Q3. This

extra condition in the body eliminates unnecessary execution of increase operation. The

executability condition of join is defined in terms of the joinable predicate. Recall that the

definition of both goodStartGain and join are learned from data.

78

5.3.2.2 Separate & Decrease

Both separate and decrease operations correspond to subtraction. The decrease operation

represents an ‘decrease’ to the value of an existing quantity (problem 6 Table 23). The

separate operation on the other hand separates a part from the whole to produce a new

part with a value equal to their difference (problem 3 Table 23). The separate operation

creates a quantity named separated(Q1,Q2) and execution of it is defined in terms of the

partOf predicate. The decrease operation creates a quantity named decreased(Q1,Q2) and

execution of it is defined in terms of the goodStartLoss predicate.

5.3.2.3 Multiply & Divide

These two operations correspond to standard multiplication and division. They produce

quantities named mult(Q1,Q2) and div(Q1,Q2) respectively and the execution of these two

operations is defined using goodRateMultiplier and goodMultiplierTotal respectively.

5.3.2.4 Count

For each input problem I compute a list of countable quantities, c1, ..., cm. Each countable

quantity is associated with a set of words. The value of the quantity is set to the size of

that set and the type being equal the common WordNet Miller 1995 or NER (e.g. person)

class of those words. The count operation decides if those quantities should be used in

reasoning, which is written as exists(ci,T + 1) :- per f orm(count(ci),T). The executability

of this operation is defined using canCount and is learned from data.

79

5.3.3 Unit Change Knowledge

Along with the definitions of formulas and operations the background knowledge also

contains a set of unit conversion knowledge. To provide uniformity, an unit conversion

knowledge saying 1 fromUnit = y toUnit (e.g. 1 dollar = 100 cents) is represented as a

quantity with value equal to y, type attribute equal to toUnit and the rate attribute being

equal to fromUnit. Properties of an unit conversion quantity and its relations with other

quantities for are computed based on the type and the rate attribute.

5.4 Training

The previous section has defined the effect of each formula and operation. However,

to apply a formula or perform an operation one needs to learn the definitions of the 13

predicates, partOf, joinable, goodStartGain, goodStartEnd, goodStartLoss, goodGainEnd,

goodLossEnd, goodRateMultiplier, goodMultiplierTotal, goodRateTotal goodBigDiff, good-

BigSmall, goodDiffSmall, canCount that defines the executability conditions of the opera-

tions and formulas. In this section I present the task of learning these predicates.

Inductive Logic Programming Muggleton 1991 is a subfield of machine learning that

aims to learn rules from data. To learn the rules for the 13 predicates I use the Inductive

Logic Programming algorithm from Arinam Mitra and Baral 2018. The input to the

algorithm is a tuple 〈B,M, {E1,, En}〉. B is normally called the background knowledge.

In this work B contains all the rules from the previous section that defines the theories of

arithmetic and the set of unit change knowledge. The set M contains mode declarations

which describe what to learn and in terms of what. In this work, it will contain the name

of the 13 predicates under the category of what to learn and the name of all the properties

80

and all the relations as the predicates that it can use in the body of the learned rules.

E1, ..., En are the set of examples from which the algorithm will learn. Each Ei is a tuple

< Oi, E+
i , E

−
i >, where Oi is called the context, E+

i is the set of facts that follows from the

context and E−i is the set of facts that should not follow from the context. In this work, Oi

is the logical representation of the ith problem in the training dataset. The set E+
i contains

per f orm(O,T) and apply(F,T) predicates denoting the set of operations and formulas that

should be used to solve the problem. E− set contains the operations and formulas that

should not be performed. I use the meaning of the operations and formulas to populate

this set. For example, if per f orm(increase(Q1,Q2),T) holds that means no other operation

should be done on Q1 and Q2. Similarly if apply(gainFornula(Q1,Q2,Q3),T) ∈ E+
i holds I

add apply(partWhole(Q1,Q2,Q3),T) to E−i but not apply(partWhole(Q3,Q1,Q2),T). The

output of the algorithm is a collection of rules, called the hypothesis H, s.t.

H ∪ B ∪ Oi ` E+
i , ∀i = 1...n

H ∪ B ∪ Oi 0 E−i , ∀i = 1...n

Here, ` represents logical entailment. The above conditions describe that the output of

the program containing the rules from H and B and facts from the problem Oi contains all

the actions and formulas from E+
i and does not contain any of the formulas or actions from

E−i .

I have annotated the dataset in Koncel-Kedziorski et al. 2015 with the per f orm(O,T)

and apply(F,T) predicates. When trained on this dataset the algorithm learns a total of 134

rules. The following shows an example of a learned rule:

81

partO f (Q1,Q2,T) :-

holdsAt(hasEmptyS ub ject(Q1),T),

holdsAt(verb(Q2,make),T),

holdsAt(verb(Q1, leaveover),T). (5.1)

The rule 5.1 intuitively says that the amount of left over is a subset of the amount of

items made.

5.5 Related Work

Developing algorithms to solve arithmetic word problems is a long standing challenge in

NLP Feigenbaum and Feldman 1963. Early years saw systems that solve the word problems

in a constrained domain by either limiting the input sentences to a fixed set of patterns

Daniel G. Bobrow 1964; Daniel G Bobrow 1964; Hinsley, Hayes, and Simon 1977 or by

directly operating on a propositional representation Kintsch and Greeno 1985; Fletcher

1985. Mukherjee and Garain 2008 survey these works.

Among the recent algorithms, the most general ones are the work in Kushman et al. 2014;

Zhou, Dai, and Chen 2015; Upadhyay et al. 2016; Huang et al. 2017; Wang, Liu, and Shi

2017; Huang et al. 2017 which can solve both arithmetic and algebraic word problems.

All these algorithms try to map a word math problem to one of the n possible ‘equation

template’s, such as ax + b = c, by filing the empty slots a, b, c with numbers from the text.

These n templates are collected from the training data. They implicitly assume that these

templates will reoccur in the new examples which is a major drawback of these algorithms.

82

Also none of these algorithms properly handle the use of missing unit conversion knowledge

or counting.

The closest to our work are the ones in Koncel-Kedziorski et al. 2015; Roy and Roth

2015, 2016, 2017; L. Wang et al. 2018 that try find the best expression tree for the input word

problem. However, the expression trees considered contain only the numbers specifically

mentioned in the text and do not allow any repetition of numbers. Thus cannot solve the last

three problems in Table 17. Also these algorithms explicitly assume that a single equation is

needed to solve the problem. Our approach put no such restriction.

Work of Arindam Mitra and Baral 2016b is also close to our work in the sense that

they have used formulas. However they have used formulas as a replacement of equation

templates Kushman et al. 2014 and their method follows the generate and rank approach.

Thus it has the same drawbacks to that of any other generate and rank approach. Moreover

their method can only solve addition-subtraction problems.

Also there has been some work on very specific types of word problems Hosseini et

al. 2014; Shi et al. 2015; Matsuzaki et al. 2017. Finally, this work is also related to semantic

parsing Zelle and Mooney 1996; Zettlemoyer and Collins 2012, a task of mapping sentences

to formal expressions. However most of the semantic parsers process single sentences

whereas arithmetic problem solving requires the entire narrative to be considered together.

5.6 Experimental Evaluation

5.6.1 Dataset & Results

I evaluate our system on 3 standard datasets.

83

5.6.1.1 SingleEQ Dataset

This dataset Koncel-Kedziorski et al. 2015 contains a total of 508 general arithmetic

problems requiring multiple steps. I have annotated the problems of this dataset manually

to train our system. The authors have performed 5-cross validation and have reported the

average. I follow the same setting.

5.6.1.2 AddSub Dataset

This dataset released by Hosseini et al. 2014 consists of a total of 395 addition-

subtraction arithmetic problems for third, fourth, and fifth graders. They have reported

3-fold cross validation. Due to lack of suitable annotation, I use this dataset as test data and

report the accuracy of problem solving using the SingleEQ dataset as the training data.

5.6.1.3 IL Dataset

This dataset Roy, Vieira, and Roth 2015 contains a total of 562 arithmetic problems

involving all the four arithmetic operators. Each problem from this dataset can be solved in

a single step and does not require any use of counting or outside knowledge. Due to lack

of suitable annotation I have used this dataset only as test data. When trained on SingleEq

dataset our system solves 369 problems giving an accuracy of 65.66%. The state-of-the-art

performance Roy and Roth 2015 on this dataset is 74% (average of 5 cross validation). In

this dataset each problem is repeated four times on average, thus the difference of 8.34%

which corresponds to 46 problems is actually equivalent to 12 problems.

Table 20 compares the performance of our system on AddSub and SingleEq dataset.

84

Method Add
Sub

Single
Eq

Hosseini et al. 2014 77.7 48.0
Kushman et al. 2014 64.0 67.0
Koncel-Kedziorski et
al. 2015

77.0 72.0

Roy and Roth 2015 78.0 -
Arindam Mitra and Baral
2016b

86.07 -

L. Wang et al. 2018 78.5 -
Our System 75.7 80.3

Table 20: Comparison with existing systems on the accuracy of solving arithmetic problems
on the Add Sub and Single Eq datasets.

There is an increase of 8.3% in the accuracy of solving problems in SingleEq dataset. One

important factor behind this improvement is that the existing systems cannot solve problems

where the equation uses numbers that are not mentioned in the text. The accuracy on the

AddSub dataset is within a range of 2.8% from the accuracy of all the systems except the

one in Arindam Mitra and Baral 2016b. Note that I did not train our system on the AddSub

on contrary to the other systems that reported 3-fold cross-validation accuracy (Table 20).

However, as the result shows our system generalizes quite well.

5.6.2 Error Analysis

Among all the problems 38% of the error occurs in the application of Unitary formula.

Our system uses a set of simple patterns to extract the rate attribute of a numeric quantity;

however, the extraction fails sometimes resulting in an error. A majority of the error (45%)

occurs in the application of the Part Whole formula. There are several ways to describe a

part whole relationship which presents rigorous challenges for part whole relation extraction.

One example of a part whole problem which our system fails to solve is “There were 3409

85

pieces of candy in a jar. If 145 pieces were red and the rest were blue, how many were

blue?”. Since no quantity schema captures the information that “the rest were blue” it fails

to identify the correct relationship. Also, unit conversion rates are not the only types of

missing information. To solve the problem, “532 people are watching a movie in a theater.

The theater has 750 seats. How many seats are empty in the theater?”, it is important to

know that one person normally acquires one seat in a theater. Our system does not have

this knowledge and fails to solve this problem. Some problems do not specify ‘has/have’

verbs properly which creates issues for change problems. For the problem, “There are 9

crayons in the drawer. Benny placed 3 more crayons in the drawer. How many crayons are

now there in total”, using the tense information our system assumes that Benny placed the

crayons before there were 9 crayons, which results in error. Also creating a single quantity

for a number does not work always. The following problem shows an example of this

type of error, “When Joan was visited by the toothfairy, she received 14 each of quarters,

half-dollars, and dimes. How much did the toothfairy leave Joan?”.

5.7 Conclusion

While a human being solves a math problem, she considers various missing knowledge

that are necessary to solve the problem. Also, she is never preoccupied with the thought

that each number can be used only once in the equation. It is part of the problem-solving

process to decide what additional knowledge is needed and what should be the structure of

the equation. In this chapter I how the LKR paradigm can be used to learn to generate the

equations in such free-form manner. It is part of my future work to apply this method to

word algebra problems and to analyse the additional challenges that it would create.

86

Chapter 6

APPLICATION OF LKR: LEARNING INTERPRETABLE MODELS OF ACTIONS FOR

TRACKING STATE CHANGES IN PROCEDURAL TEXT

6.1 Introduction

With success in some reading comprehension aspects such as factoid question answering

(QA) Rajpurkar et al. 2016; Joshi et al. 2017 and QA with respect to machine generated

text Weston et al. 2015, newer QA challenges are being proposed that try to take the

understanding to a higher level. One such dataset is ProPara Dalvi et al. 2018 where

paragraphs are natural texts about processes that describe a changing world and answering

the questions requires reasoning with commonsense knowledge that is implicit and not

given. As of now several learning systems have been proposed for this task, all of which are

neural. However a significant amount of technology has been developed in the knowledge

representation and reasoning (KR) community which is well suited for the task of reasoning

about dynamic world. In this chapter, I show how to effectively use such technology

for reading comprehension of procedural text through thr LKR. The resulting system is

interpretable and (potentially) more transferable, and it could also support more complex

reasoning as needed.

Fig 14 shows an annotated paragraph from the ProPara dataset which describes “erosion

by ocean”. The paragraph comprises of a sequence of 6 events each occurring in a distinct

time point. The annotation tracks the states (location and existence) of three given partici-

pants:“waves”, “rocks” and “tiny parts of rocks”. For e.g., the state at time point 1, shows

that the “waves” exist and the location is “ocean’; the ‘rocks’ also exist and is located on

87

Figure 14: An annotated paragraph from ProPara. Each filled row shows the existence and
location of participants at each time point (“-” denotes “does not exist”). For example in
time point 1, waves are located in the ocean.

“beach”; the “tiny pieces of rocks” however “does not exist”. Here, the symbol “-” denotes

“does not exist”. Another special value “?” denotes “exists but location is unknown”. The

state at time point T describes the location and the existence of the participants before the

event that starts at T. The state at T + 1 describe the state that follows the event at T and

precedes the event starting at T + 1. The training dataset of ProPara contains 395 such

annotated paragraphs. The goal is to develop a natural language understanding system ,

which given a new paragraph and a set of participants, predicts the states at each time point.

These predictions can lead to the answer of a wide variety of questions such as: (1)

Where is the tiny parts of rocks located at time point 5? (2) What participants existed before

the process began, but not afterwards and vice versa? (3) Which participants were converted

to which other participants? and (4) Which participants moved ?

All these questions requires more than mere look up. For e.g., to answer question 1, one

needs to understand that “tiny parts of rocks” came off the larger rocks during the event

that started at time point 4 and during that period “larger rocks” was on “beach”. So “tiny

parts of rocks” should be on “beach” at time point 5. Similarly, answering questions of the

88

type 2, 3 and 4 require precise knowledge of the entire state sequence. As a result existing

machine comprehension systems face several challenges while answering questions that

require tracking states Dalvi et al. 2018.

Predicting the states at each time point mainly requires two types of knowledge. The

first type of knowledge helps one to understand the deeper meaning of the events: does it

describe a location change? does it create or destroy anything? This type of knowledge

provides “explicit information“ about the state of a participant. For e.g., knowledge about

“washes onto” tells us that the location of “waves” is “ocean” at time point 1 and will change

to “beach” after its completion (time point 2) and none of the given participants has been

created or destroyed during this event (Fig 14). Similarly, knowledge about “comes off”

tells us that the “tiny parts of rocks” is created during the event starting at time point 4 and

will exist from time 5 and again nothing is destroyed during time point 4. From now on, we

will refer to this type of knowledge as event-centric knowledge. All the knowledge of this

type are learned from the annotated paragraphs in the training data.

The second type of knowledge helps to predict the existence or location of a participant

in the absence of any “explicit information“. For e.g., the event at time point 4 does not

provide any information about the location of “waves”. However, it can be assumed that

the “waves” are still at “beach” since the last known location was “beach” and the event

that started at 3 did not change its location. Similarly, “rocks” should be on “beach” since

the beginning of the process as before the event at time point 3 it was on “beach” (“explicit

information”) and none of the events during time point 1 or 2 have changed its location. This

type of knowledge is popularly known as “inertia” knowledge. The “inertia” knowledge is

provided to the system as background knowledge.

Over the years the KR community has developed several formalisms describing how

to represent these two types of knowledge as rules so that an automated reasoner can track

89

the state changes. In this work we use one such knowledge representation and reasoning

language, namely Answer Set Programming Gelfond and Lifschitz 1988; Gelfond and Kahl

2014; Brewka, Eiter, and Truszczyński 2011.

The proposed system, has the three main components from the LKR paradigm. A

translation layer which takes as input a paragraph and the participants and outputs a

predicate logic representation of the text; a reasoning layer which takes in the formal

representation of the text, the learned event-centric rules and the rules describing inertia

and outputs the state sequence; and finally, a learning component which takes as input

the formal representation of the paragraphs, the annotation (Fig 14), the inertia rules and

outputs a set of event-centric rules.

This work has two key contributions: (1) It shows that with the recent advancement

in question answering based meaning representation of sentences FitzGerald et al. 2018;

Michael et al. 2017; He, Lewis, and Zettlemoyer 2015 and Inductive Logic Programming

Arindam Mitra and Baral 2018, it is possible to learn good quality rules. To the best of my

knowledge, this is the first work that uses question answering based meaning representation

to learn the effect of events from a noisy dataset. The developed system, which integrates

symbolic and machine learning approach, matches the state of the art performance while

also providing interpretable reasoning for its predictions. (2) I analyze the learned rules and

describe what additional knowledge could help the systems to generalize and perform better

for state tracking, which also has gone unseen by the previous methods.

90

6.2 Representation

6.2.1 Paragraph & Participants

To perform symbolic reasoning or rule learning, it is important to first translate the text

into a predicate logic. In this work we use a question-answering based meaning representa-

tion, namely QA-SRL FitzGerald et al. 2018 to obtain the predicate logic representation of

the sentence(s). Our choice is motivated by the fact that the QA-SRL parser is trained on

a much larger corpus (~250K sentences) than the ones for AMR Banarescu et al. 2013 or

semantic role labelling Palmer, Gildea, and Xue 2010. The formalism of QA-SRL represents

the predicate-argument structure of a sentence in terms of (question, answer) pairs where a

(question, answer) pair is created for each argument of a verb in the sentence. Fig 15 shows

the QA-SRL representation of a sentence in Fig 14.

Figure 15: QA-SRL representation of a sentence.

To obtain a predicate logic representation of a sentence, each (question, answer) pair is

wrapped inside an observedAT(V,Q,A,T) predicate, where V is the lemma of the verb for

which the question is created, Q is the question with the verb replaced by the special symbol

‘v’, A stores the answer and T is the associated time point. For example, the sentence in Fig

15 would be translated as follows:

The second column of Fig 16 shows the predicate logic representation of all the sentences

91

in paragraph of Fig 14. For each answer A of an observedAT(V,Q,A,T) predicate I also add

a location(A,L) predicate to the paragraph representation if there exists a sub phrase L of A

which represents a location. During the training phase, I use the available annotation to verify

if a phrase L represents a location. For e.g., three predicates location(“waves”, “wave”),

location(“onto beaches”, ”beach”) and location(“the ocean”, “ocean”) will be added to the

paragraph representation of Fig 14. We also use this data to fine tune a BERT Devlin

et al. 2018 classifier to obtain a “is it a location ?” score for each sub-phrase of an answer in

the test phase.

Each participant is given a symbolic name, pi (i = 1, 2, ...). The predicate

description(pi,D) binds the symbolic name to the string description of the partic-

ipant. For the running example of Fig 14, three description predicates, namely

description(p1, “waves”), description(p2, “rocks”) and description(p3, “tiny parts of rocks”)

will be added to the paragraph representation.

The representation of the paragraph also contains refers(pi,A,T) predicates if the answer

A from the event at T contains a reference to the participant pi. We use simple world overlap

to generate the refers facts. The simple look up, may miss some of the reference. In the

training data, we manually fix such error to learn better rules. No such manual annotation is

used for the dev or the test set.

6.2.2 Events

To track the states of participants it is important to know whether the event(s) in a

sentence creates, destroys or moves any participants. Accordingly, a high-level meaning

92

representation scheme is devised for the sentences, which contains the following five

predicates:

1. create(P,T): the participant P is created during the event at time T.

2. destroy(P,T): the participant P is destroyed in the event at time T.

3. beforeLocation(P,L,T): the location of the participant P before the event at T is L.

4. afterLocation(P,L,T): the location of location of the participant P after the event at T

is L.

5. terminate(P,T) : the location of the participant P is changed during the event T, but

new location is not specified.

Fig 16 shows the high-level representation of the sentences from the paragraph in Fig 14

along with its QA-SRL based representation. For e.g., the first sentence is represented in

terms of two facts: beforeLocation(p1, “ocean”, 1) and afterLocation(p1, “beach”, 1), which

describes that p1 (“waves“) was at “ocean” at time point 1 and is at “beach” at time point

2. In the training phase, the proposed system learns rules that predicts the high-level

representation of a sentence from its QA-SRL based representation which comprises of

observedAt, location, description and refers. One sample rule might look like the following:

IF observedAt("wash","where does something v ?",A1,T),

observedAt("wash","how does something v into

something ?",A2), location(A1,L), refers(A2,P)

Then afterLocation(P,L,T)

6.3 Reasoning

The reasoning module uses the learned event-centric knowledge to first extract a high

level representation of the events from the QA-SRL based paragraph representation. It then

93

Figure 16: The QA-SRL based and High level representation of some of the sentences from
Fig 14.

uses the high level representation to predict the state sequence. The prediction function,

utilizes the notion of a critical point. For a participant P, a time point T is a critical point if

any the following is true:

1. create(P,T − 1)

2. destroy(P,T − 1)

3. ∃L.afterLocation(P,L,T − 1)

4. ∃L.beforeLocation(P,L,T)

5. terminate(P,T − 1)

For the running example, according to the high level description in Fig 16, the critical

points of p1 are 1, 2 and 7. The reasoning module first computes the state of a participant

in the critical time points using the definition of the five high level predicates. For e.g., it

would infer that location of p1 is “ocean” at time point 1, “beach” at time point 2 and “ocean”

at time point 7 using the following information respectively beforeLocation(p1, “ocean”, 1),

afterLocation(p1, “beach”, 1) and afterLocation(p1, “ocean”, 6). A participant P does not

exist at T if it is destroyed during the event at T-1 i.e. destroy(P,T − 1) is true. The location

of a participant is unknown at T if it is created during the event at T-1 but the event does

94

not provide any information about “afterLocation” and the event at the next critical point

also does not provide any “beforeLocation”. Similarly, the location of a participant can also

be unknown at T if the previous location is terminated i.e. terminate(P,T − 1) is true and

the event at T-1 does not provide any “locationAfter” information neither the next event

provide any “beforeLocation”.

The state at a non-critical time point is then computed with a set of inertia rules on a

case-by-case basis. For any participant P, in a non-critical time point T only one of this must

be true:

Case 1: There exists no critical point for P before or after T.

Case 2: There is no time point before T which is a critical point for P but there is one after

it.

Case 3: There is no time point after T which is a critical point for P there is one before it.

Case 4: There is a critical point for P both before and after T.

In case 1, it is assumed that P does not exist at any time point T. In case 2, the location

is L if the right critical point (the first critical point after T) T′ provides “beforeLocation”

i.e. beforeLocation(P,L,T′) is true otherwise it is unknown. For e.g., the location of “rocks”

(p2) is “beach” at time time point 1, as the right critical point i.e. time point 3 provides

beforeLocation(p2, “beach′′, 3). In case 3, the state at T is same as the state of the left critical

point (the critical point that appears just before T). For e.g., the location of “wave” is “beach”

at time point 5 as it was on “beach” at the left critical point which is 2. In case 4, the state

at T is same as the state of the left critical point if the event at right critical point does not

provide any “beforeLocation”. Otherwise it might take any of the two values and there

might be several possibilities.

95

The reasoning module also use two more defeasible rules to derive more afterLocation

facts using the states of the other participants. One such rule, named “conversion” derives

afterLocation(P,L,T − 1) if created(P,T − 1) is true and P′ participates in the event at T-1

and had location L at T-1 and the event at T-1 provides no information of “afterLocation“ for

P. In the running example, this rule triggers and output afterLocation(p3, “beach′′, 5) as

tiny part of rock came off the larger rocks. Another rule, namely the container rule, infer

afterLocation(P,L,T − 1), if the location of P at T-1 is P′ and afterLocation(P′,L,T − 1) is

true. This rule infers afterLocation(p3, “ocean′′, 6) as the waves contain the tiny rocks while

going back to the ocean.

6.4 Learning Commonsense Event-Centric Knowledge and Analyzing Learned Knowl-

edge

Three separate learning tasks are created, one for each of the create, destroy and location

change (terminate, beforeLocation,afterLocation) rules. The inductive logic programming

(ILP) algorithm of I2XHAIL Arindam Mitra and Baral 2018 is used for learning. The input

to the learning algorithm, the working of the I2XHAIL algorithm and a fine-grained analysis

of the learned rules are presented in this section.

6.4.1 Learning Rules that Describe Creation

To learn the “create” rules with the Inductive Logic Programming algorithm of I2XHAIL,

each annotated paragraph from the training dataset is converted into an ILP sample S i of the

following form: 〈Oi, E+
i , E

−
i 〉, where Oi called an observation contains the predicate logic

representation of the paragraph and the participants; E+
i is a set containing the true create

96

events and E−i is a set containing the false create events. For the running example, E+
i will

contain only one fact create(p3, 4) and E−i will contain all the grounding of create predicate

that does not happen such as {create(p3, 3), create(p1, 1), create(p2, 3)...}. The I2XHAIL

system takes a sequence of such examples S 1, ..., S n, the name of the predicates that should

be learned (in this case create), some background knowledge B (in this case empty) and

outputs a set of rules H such that the following holds:

Oi ∪ B ∪ H ` E+
i ,∀i = 1..n

Oi ∪ B ∪ H 0 E−i ,∀i = 1..n

Here, ` represents logical entailment using stable model semantics Gelfond and Lifschitz

1988. In simple words, the above two equations describe that the output of the program

Pi containing the rules and facts from H, B and Oi must contain all the facts in E+
i and

must not contain any of the element from E−i . The I2XHAIL algorithm finds a solution

H incrementally, i.e., it first finds a solution for only S 1, then it expands the solution so it

solves both S 1 and S 2 and the process continues until it finds a set of rules that solves all the

n samples. It obtains the solution(s) of S 1 in three steps, called the abductive, deductive and

the inductive step.

6.4.1.1 Abductive

In the abductive step, it finds out several minimal collection of the grounded create

atoms 1 which if added to Oi and B, entails E+
i and does not entail any of E−i . These sets are

called abducibles. One such abducible ∆ for the running example is {create(p3, 4)}.

1A predicate is grounded when the variable arguments are replaced with constants

97

6.4.1.2 Deductive

In the second stage, it considers the possible causes of each ground predicate in ∆ and

creates the most specific rule for each of them by adding the possible causes into the body

of a rule. For the running example, there is only one predicate in ∆, namely create(p3, 4) and

the possible causes are all the facts about time point 4. Thus it will create the following rule:

IF observedAt("come","what v off something ?", "tiny parts of the rocks",4),

observedAt("come","what does something v off?","the larger rocks",4),

refers(p3,"tiny parts of the rocks",4), refers(p2,"the larger rocks",4)

,describe(P2,"rocks"), describe(p3,"tiny parts of the rocks")

THEN create(p3,4)

6.4.1.3 Inductive

In the third stage, it tries to generalize the rule as much as possible by removing elements

from the “IF” condition or by replacing the constants (such as “tiny parts of the rocks”,

4, “the larger rocks“) by variables. The rule (H1) that it learns from this example is the

following:

IF observedAt("come","what v off something ?",X,T), refers(E,X,T)

THEN create(E,T)

Next it takes only S 2 and perform the abductive and the deductive steps to obtain another

set of most specific rules. The new most specific rules along with the previous one from

S 1 then provides a upper bound for the solution of S 1 and S 2. It then expands H1 along the

new upper bound until it finds a set of rules that solves both S 1 and S 2.

98

6.4.1.4 Analysis

Fig 17 shows some of the rules that the system learns from this task. There are two

types of create rules. The first set of rules captures how some verbs such “provide”, “form”,

“make” are used to describe a create event. The first three rules in Fig 17 show few such

examples. The second type of rule is specific to the creation of a certain participant. The

last three rules that respectively describe evaporation creates water vapour, melting of cans

creates molten metal and pupa grows create adult butterfly are examples of this kind. If a

new paragraph contains a participant such as “lava” whose creation involves a very specific

event such as “magma going outside of volcano”, our system would not be able to detect the

creation. This shows what kind of additional knowledge might be given to the system to

help to detect create events.

Figure 17: Examples of A is true IF B is true rules that our system learns to identify create
events.

99

6.4.2 Learning Rules for Destroy

The task of learning destroy rules is similar to that of the create rules; Oi contains the

representation of the paragraph and the participant, E+
i contains the true destroy events and

the E−i contains the destroy events that should not be predicted. However instead of learning

the rules which directly identify destroy events, I define the destroy event in terms of two

predicates (“normallyDestroys” and “exception”) and learn the definition of those two lower

level predicates.

IF normallyDestroy(P,T),not exception(P,T)

THEN destroy(P,T)

The above rule describes, if the event at time point T normally destroys its participant,

then P can be assumed to be destroyed at T unless P is a special case. For, e.g, water turning

into water vapour destroys water, tadpole turning into adult frog ends its tadpole phase but

water vapour turning into cloud does not destroy the water vapor. Thus in this case two

rules will be learned. One that captures that the “turn” event normally destroys its agent and

“water vapor” is an exception to this if it is transformed into “cloud”.

6.4.2.1 Analysis

Fig 18 shows some of the rules that the system learns to identify destroy events. The

rules for destroy can be divided into three categories. The first type of rule describes how

some verbs such as “eat”, “decompose” and “form” (e.g., Sulfur in the coal combines with

oxygen to form sulfur oxides) are normally used to describe destruction. The first three rules

in Fig 18 show examples of such rules. The second type of rules capture exceptions such

100

Figure 18: Examples of A is true IF B is true rules that our system learns to identify destroy
events.

as caterpillar forming cocoon does not destroy the caterpillar (unlike the sulfur). Similarly,

mixing food with saliva does not destroy the food unlike some chemical reactions. The 4th

and 5th rules from Fig 18 are learned to deal with these two exceptions. The third type of

rules are very specific to the destruction of a certain participant. The last two rules that

describe ‘hatching of cocoon marks the end of pupa” and “magma when flows outside as

lava is no longer described as magma” are examples of this type of rules. Rules of first

type are relatively small in number and can be learned well from a annotated dataset like

ProPara. Several background knowledge such as examples of chemical reaction can help to

understand the exceptions better.

6.4.3 Learning Rules for Location Changes

Unlike destroy, the location change events do not depend much on the participants in the

domain of ProPara. For this task, Oi contains the predicate logic representation of paragraph

and participants and the gold create and destroy events that happens during the process;

the background knowledge B contains all the rules from section 3, and the E+
i contains the

101

state descriptions at each time point (Fig 14). From these it learns to identify locationAfter,

terminate and locationBefore. Fig 19 shows few rules that describe location changes.

Figure 19: Examples of rules that our system learns to identify move events. Here, eob-
servedAt(V,Q,P,T) stands for observedAt(V,Q,A,T) and refers(P,A,T). Similarly lobserve-
dAt(V,Q,L,T) stands for observedAt(V,Q,A,T) and location(A,L).

6.4.3.1 Analysis

Fig 19 shows some of the rules that the system learns to identify move events. The rules

for move can be divided into two categories. The first type describes how some verbs such as

“travel”, “fill”, put”, “evaporate” and “launch”are normally used to describe location changes.

The first five rules in Fig 19 are examples of this type. Sometimes, the event and participant

together can determine the location on the next time point, even if the sentence does not

explicitly mention it. The second category refers to such rules. The last (over-generalized)

rule in Fig 19 shows an example of such rule describing that water after turning into water

vapour normally moves to atmosphere.

102

6.5 Related Works

The task of state tracking is a long studied problem in AI. However, there exist very

few benchmarks to track the states in procedural text. The bAbI Weston et al. 2015 ques-

tion answering dataset which also requires state tracking contains synthetically generated

sentences with a very simplified grammar and few events. Thus the performance of the

systems on the bAbI dataset does not carry forward to the ProPara dataset. For e.g., two

state-of-the-art neural models on the bAbI task namely EntNet Henaff et al. 2016 and QRN

Seo, Min, et al. 2016 gets only 39.40% and 41.10% F1 score on ProPara which is ~15% less

than the performance of our method.

As of now, the following five systems have been proposed for ProPara.

6.5.1 ProComp

The ProComp Clark, Dalvi, and Tandon 2018 system uses formal reasoning to track the

state changes. While doing so it uses a set of handcrafted rules describing the effects of all

the verbs in VerbNet. The rules do not depend on the nature of the participant. By learning

the rules, I observe how the very specific nature of the participants plays a crucial role in

decision making which the ProComp system does not verbalize.

6.5.2 ProLocal

The ProLocal Dalvi et al. 2018 system uses a deep neural classifier to find out if the

sentence (event) at time point T destroys, creates or moves a participant P. A set of rules

(similar to our inertia rules) are then used to propagate these local predictions to find the

103

states at each time point. In our work, instead of a neural classifier I have used an Inductive

Logic Programming algorithm. As a result, our system is explainable like ProComp. Also

experiments show that our work performs better than the ProLocal system.

6.5.3 ProGlobal

The ProGlobal Dalvi et al. 2018 system aims to learn a state transition function, which

takes as input the entire paragraph, a participiant, the sentence at the current time point and

outputs the state as “-“, “?” or a phrase from the paragraph describing the location in the

next state.

6.5.4 ProStruct

The ProStruct Tandon et al. 2018 system improves upon the ProLocal and the ProGlobal

system by injecting commonsense knowledge (e.g., do not move a participant which has

been destroyed) as hard and weak constraints. It uses a similar neural network architecture

to that of the ProGlobal and the ProLocal system to explore the several possible next states.

It then uses commonsense constraints to filter out “bad” states.

6.5.5 KG-MRC

The KG-MRC Das et al. 2018 system represents the state as a bipartite graph where

the nodes on one side corresponds to entities and nodes on the other side corresponds to

location phrases. A neural network then takes the graph (state) at current time, the entire

104

Precision Recall F1
ProLocal 77.4 22.9 35.3
QRN 55.5 31.3 40.0
EntNet 50.2 33.5 40.2
ProGlobal 46.7 52.4 49.4
ProStruct 74.2 42.1 53.7
KG-MRC 64.52 50.68 56.77
ProKR (ours) 76.00 45.10 56.60

Table 21: Results on the prediction task (test set).

paragraph, the sentence in the current time point and computes the graph for the next time

point.

6.6 Results

Table 21 compares the results of our system. All the solvers are evaluated with the

ProPara evaluator script on the following four metrics: (Q1) What are the inputs to the

process? (Q2) What are the outputs of the process? (Q3) What conversions occur, when and

where? (Q4) What movements occur, when and where?

Inputs to a process are defined as participants that existed before the process started,

but not at the end. Outputs are participants that did not exist at the start, but did at the end.

A conversion is when some participants are destroyed and others are created. Finally, a

movement is an event where an entity changes location.

The evaluator script Tandon et al. 2018 computes a F1 score for each question by

comparing the gold and predicted answers. For Q1 and Q2, this is straightforward as

answers are atomic (i.e., individual names of entities). For Q3, each answer is a 4-tuple

(convert-from, convert-to, location, sentence-id) and some answers may only be partially

correct. To score partial correctness, the evaluator script pair gold and predicted answers by

105

requiring the sentence-id in each to be the same, and then score each pair by the Hamming

distance of their tuples. For Q4, each answer is also a 4-tuple (entity, from-location, to-

location, sentence-id), and the same procedure is applied. The four F1 scores are then

macro-averaged. The total number of items to predict in the train/dev/test partitions is

7043/913/1095.

6.6.1 Error Analysis

6.6.1.1 Missing Verb

Sometimes the sentence in a paragraph does not explicitly mention the verb. For e.g.,

“The air travels through your windpipe. Into your lungs.“ In this cases, the predicate

representation fails to capture that air traveled to lungs, which results in error.

6.6.1.2 Symbolic Interpretation of Questions

In the current implementation questions are treated symbolically. However, “What

forms?”, “what is formed?”, “what has been formed?” all represent the same thing and

symbolic similarity does not capture that, which affects the generalizability.

6.6.1.3 Discourse

The current system does not learn to understand discourse relations such as coreference,

which affects the performance. In some cases, coreference can be particularly challenging

since two participants have the same description. Also sometimes, a participant in an event is

106

implicitly mentioned. Consider the following sentences: “Trash is removed from everything

else. Goes to a landfill.”. Here what goes to landfill is not directly mentioned which results

in errors.

6.7 Conclusion

Reasoning about actions and events have been long studied in the KR community and

have led to the development of a variety of tools. However, they do not work directly with

natural language text, and require experts to manually write the knowledge. This makes it

challenging to use them in reading comprehension. In this paper, I show that with the recent

development in sentence parsing (QA-SRL) and Inductive Logic Programming from chapter

4, it is possible to learn interpretable models of actions from the training data which then

can be used with KR formalisms to reason about procedural text. Moreover, experiments

reveal that it is crucial to have some participant specific knowledge base to generalize better,

which to the best of my knowledge has not been discussed before and shows the importance

of an interpretable solution.

107

Chapter 7

TKR PARADIGM: DECLARATIVE QUESTION ANSWERING OVER KNOWLEDGE

BASES CONTAINING NATURAL LANGUAGE TEXT WITH AN APPLICATION OF

ANSWERING LIFE CYCLE QUESTIONS

In the previous chapters, we have seen how to develop interpretable solutions for

the question-answering tasks for which the input can be translated to some predicate

representation, i.e., a set of category 1 Non-Extractive Reading Comprehension tasks.

However, currently, we do not have a parser, that works well for all sentences. In thus

chapter, we thus try to avoid the need of a general purpose parser. Particularly, we want to

develop solutions for Category 2 Non-Extractive Reading Comprehension tasks, where we

have the missing “additional knowledge” that is required to correctly answer the questions

however we do not have a parser that can translate the passage sentences well. To pursue this

goal, I have developed a dataset which contains a particular genre of school level science

questions (Clark et al. 2018), namely questions about life cycles (and more generally,

sequences).

To get a better understanding of the “life cycle” questions and the “hard“ ones among

them consider the questions from Table 22. The text in Table 22, which describes the life

cycle of a frog does not contain all the knowledge that is necessary to answer the questions.

In fact, all the questions require some additional knowledge that is not given in the text.

Question 1 requires knowing the definition of “middle” of a sequence. Question 2 requires

the knowledge of “between“. Question 3 on other hand requires the knowledge of “a good

indicator”. Note that for question 3, knowing whether an adult frog has lungs or if it is

the adult stage where the frog loses its tail is not sufficient to decide if option (A) is the

108

indicator or option (B). In fact an adult frog satisfies both the conditions. An adult frog has

lungs and the tail gets absorbed in the adult stage. It is the uniqueness property that decides

that option (B) is an indicator for the adult stage. We believe to answer these questions the

system requires access to this knowledge.

Life Cycle of a Frog
order: egg→ tadpole→ tadpole with legs→ adult

egg - Tiny frog eggs are laid in masses in the water by a female frog. The eggs hatch into
tadpoles.

tadpole - (also called the polliwog) This stage hatches from the egg. The tadpole spends its
time swimming in the water, eating and growing. Tadpoles breathe using gills and have a
tail.

tadpole with legs - In this stage the tadpole sprouts legs (and then arms), has a longer body,
and has a more distinct head. It still breathes using gills and has a tail.

froglet - In this stage, the almost mature frog breathes with lungs and still has some of its
tail.

adult - The adult frog breathes with lungs and has no tail (it has been absorbed by the body).

1. What is the middle stage in a frog’s life? (A) tadpole with legs (B) froglet

2. What is a stage that comes between tadpole and adult in the life cycle of a frog? (A) egg
(B) froglet

3. What best indicates that a frog has reached the adult stage? (A) When it has lungs (B)
When its tail has been absorbed by the body

Table 22: A text for life cycle of a Frog with few questions.

Since this additional knowledge of “middle“, “between”, “indicator” (and some related

ones which are shown later) is applicable to any sequence in general and is not specific to

only life cycles, we aim to provide this knowledge to the question answering system and

then plan to train it so that it can recognize the question types. The paradigm of declarative

programming provides a natural solution for adding background knowledge. Also the

109

existing semantic parsers perform well on recognizing questions categories. However the

existing declarative programming based question answering methods demand the premises

(here the life cycle text) to be given in a logical form. For the domain of life cycle question

answering this seems a very demanding and impractical requirement due to the wide variety

of sentences that can be present in a life cycle text. Also a life cycle text in our dataset

contains 25 lines on average which makes the translation more challenging.

The question that we then address is, “can the system utilize the additional knowledge

(for e.g. the knowledge of an “indicator“) without requiring the entire text to be given

in a formal language?” I show that by using Answer Set Programming and some of its

recent features (function symbols) to call external modules that are trained to do simple

textual entailment, it is possible do declaratively reasoning over text. I have developed a

system following this approach, which I will refer to as the TKR paradigm that answers

questions from a given text by declaratively reasoning about background concepts such as

“middle“, “between”, “indicator” over premises given in natural language text. To evaluate

this method a new dataset has been created with the help of Amazon Mechanical Turk. The

entire dataset contains 5811 questions that are created from 41 life cycle texts. A part of

this dataset is used for testing. The developed system achieved up to 18% performance

improvements when compared to standard baselines. The dataset and code is available from

https://goo.gl/YmNQKp.

7.1 Background

7.1.1 Answer Set Programming

An Answer Set Program is a collection of rules of the form,

110

https://goo.gl/YmNQKp

L0 :- L1, ..., Lm,not Lm+1, ...,not Ln.

where each of the Li’s is a literal in the sense of classical logic. Intuitively, the above rule

means that if L1, ..., Lm are true and if Lm+1, ..., Ln can be safely assumed to be false then L0

must be true Gelfond and Lifschitz 1988. The left-hand side of an ASP rule is called the

head and the right-hand side is called the body. The symbol :- (“if”) is dropped if the body

is empty; such rules are called facts. Throughout this paper, predicates and constants in a

rule start with a lower case letter, while variables start with a capital letter. The following

ASP program represents question 3 from Table 22 with three facts and one rule.

Listing 7.1: a sample question representation

qIndicator(frog,adult).

option(a, has(lungs)).

option(b, hasNo(tail)).

ans(X):- option(X,V), indicator(O,S,V),

qIndicator(O,S).

The first fact represents that question 3 is an ‘indicator’ type question and is looking for

something which indicates that a frog is in the adult stage. The later two facts roughly

describes the two answer choices, namely “(a) when it has lungs” and “(b) when its tail has

been absorbed by the body”. The last rule describes that for an indicator type question, the

option number X is a correct answer if the answer choice V is an indicator for the organism

O being in stage S i.e. if indicator(O, S ,V) is true.

Aggregates A rule in ASP can contain aggregate functions. An aggregate function takes

as input a set. ASP has four built-in aggregates namely #count, #max, #min, #sum which

respectively computes the number of elements in a set, the maximum, minimum or the sum

111

of numbers in the set. The follows rule defines the concept of an ‘indicator’ using the #count

aggregate.

Listing 7.2: Defining Indicator of a stage

indicator(O,Stage,P) :-

stageFact(O,Stage,P),

#count {stageFact(O,S1,P)} = 1.

Here, stageFact(O, S tage, P) captures the attributes P that are true when the organism O is

in the stage S . The above rule then describes that P is an indicator for O being in stage S if P

is true in S and it is only true in S i.e. the total number of stages S 1 where Prop is true is one.

String valued Terms The object constants in ASP can take string values (written inside

quotes “ ”). This is useful while working with text. For example, the options in the question

3 can also be represented as follows:

option(a, "when it has lungs").

option(b, "when its tail has

been absorbed by the body").

Function Symbols A function symbol allows calling an external function which is defined

in a scripting language such as lua or python Calimeri et al. 2008. An occurrence of

a function symbol making an external call is preceded by the ‘@’ symbol. For e.g.,

@stageFact(O, S , P) denotes a function symbol that calls to an external function named

stageFact which takes three arguments as input. A function symbol can return any simple

term such as name, number and strings as output.

112

7.1.2 QA using Declarative Programming

A question answering (QA) system that follows declarative programming approach

primarily requires three components: a semantic parser SP, a knowledge base KB and a

set of rules (let’s call it theory) T .

• The goal of the semantic parser SP is to translate a given question into a logical

form.

• The KB provides facts or “premises“ with respect to which the question should be

answered. For e.g. for the frog life cycle the KB might look like the following:

Listing 7.3: A sample KB for part of the Frog life cycle

stageFact(frog,tadpole,has(tail)).

stageFact(frog,froglet,has(lungs)).

stageFact(frog,froglet,has(tail)).

stageFact(frog,adult,has(lungs)).

stageFact(frog,adult,hasNo(tail)).

• The theory T contains inference enabling rules.

To answer a question, the system first translates the question into a logical form and

then combines that with the KB and the T to create a consolidated program. The

output (models) of which provides the answer.

For the running example of the ‘indicator’ question (Q3 from Table 22) if the the-

ory T contains the rule in listing 7.2, some semantic parser provides the ques-

tion representation in listing 7.1 and the KB contains the facts in listing 7.3,

then the output will contain the deduced fact ans(b) describing that option (B)

is the correct answer. This is because, the rule in listing 7.2 will deduce from

113

the KB that indicator(f rog, adult, hasNo(tail)) is true. The last rule in listing

7.1 will then conclude that ans(b) is true. Since there is no reason to believe

that indicator(f rog, adult, has(lungs)) is true, ans(a) will not be part of the output

(model). The semantics of ASP is based on the stable model semantics Gelfond and

Lifschitz 1988. For further details interested readers can refer to Gebser et al. 2012;

Gelfond and Kahl 2014.

7.2 Proposed Approach

The issue in the running example is that it is difficult to get the facts in terms of

stageFact/3 predicate and in the actual KB we do not have facts in this format.

Rather we have the life cycle texts (Table 22) describing the facts. To deal with this

we replace such predicates with two external function symbols, namely generate and

validate.

Generate A generate function for a predicate takes the arguments of the predicate

and returns a textual description of the predicate instance following some

template. For example, a generate function for stageFact can take (frog, adult,

hasNo(tail)) as input and returns a string such as “an adult frog has no tail“ or

if it is for a predicate named parent it can take (x, y) and return “x is a parent of

y”.

Validate A validate function takes a string describing a proposition (e.g. an adult

frog has no tail) and validates the truthfulness of the proposition against a KB

containing text (e.g. Table 22). For now let us assume a validate function

114

Question Template Example Question Instantiated Template #Qs
qLookup(O) How do froglets

breath?
qLookup(“ f rog”) 2525

qDi f f erence(O, S 1, S 2) What is an adult
newt able to do that
a tadpole cannot?

qDi f f erence(“newt”, “tadpole”, “adult”) 167

qIndicator(O, S) When do you con-
sider a penguin to
have reached the
adult stage?

qIndicator(“penguin”, “adult”) 125

qNextS tage(O, S) A salmon spends
time as which of
these after emerging
from an egg?

qNextS tage(“salmon”, “egg”) 346

qS tageBe f ore(O, S) Newt has grown
enough but it is not
yet in the tadpole
stage, where it
might be?

qS tageBe f ore(“newt”, “tadpole”) 123

qS tageBetween(O, S 1, S 2) What is the stage
that comes after egg
and before eft in the
newt life cycle?

qS tageBetween(“newt”, “egg”, “e f t”) 123

qS tageAt(O, P) What stage a lon-
gleaf pine will be in
when it is halfway
through its life?

qS tageAt(“longlea f pine”,middle) 520

qCorrectlyOrdered(O) To grow into an
adult, fleas go
through several
stages. Which of
these is ordered
correctly?

qCorrectlyOrdered(“ f lea”) 43

qCountS tages(O) From start to finish,
the growth process
of a wolf consists of
how many steps?

qCountS tages(“wol f ′′) 113

qIsAS tageO f (O) The growth process
of lizards includes
which of these?

qIsAS tageO f (“lizard”) 1500

qIsNotAS tageO f (O) To grow into an
adult, fleas go
through 4 stages.
Which of these is
not one of them?

qIsNotAS tageO f (“ f lea”) 227

Table 23: Question templates and total number of questions for each question category.

115

returns 1 or 0 depending on whether the proposition is true or false according

to the text in the KB.

With this transformation the “indicator“ rule from listing 7.2 will look as follows:

indicator(O,Stage,Prop) :-

P = @g_StageFact(O,Stage,Prop),

@v_StageFact(P) ==1,

#count { S1: v_StageFact(P1)==1,

P1 = @g_StageFact(O,S1,Prop)} == 1.

The above rule could be read as follows: Prop denotes that O is in stage S if the natural

language description of S tageFact(O, S tage, Prop) which is obtained by calling the

g_S tageFact function is true according to the v_S tageFact function and also the num-

ber of stages S 1 where the natural language description of S tageFact(O, S 1, Prop)

true is equal to 1.

The pair of generate-validate function symbols delegates the responsibility of ver-

ifying if a proposition is true or not to an external function and I believe that if the

proposition is simple enough and close to the texts described in a KB, a simple vali-

date function might be able to compute the truth value with good accuracy. However,

one important issue with this rule is that it is not “safe”. In simple words the above

rule does not specify what values the variables O, S tage, Prop, S 1 can take and as

a result what to pass as arguments to the g_S tageFact functions is undefined. To

mitigate this issue one needs to add some domain predicates which describes the

possible values of the unbounded variables. For our question answering task, I have

used the predicates that represent the question as domain predicates. The resulting

rule, then, looks as follows:

116

indicator(O,Stage,Prop) :-

qIndicator(O,Stage),qOption(X,Prop),

P = @g_StageFact(O,Stage,Prop),

@v_StageFact(P) ==1,

#count { S1: (isAStageOf(S1,O)),

v_StageFact(P1)==1,

P1 = @g_StageFact(O,S1,Prop)} == 1.

The isAS tageO f (S 1,O) describes the stages in the life cycle of the organism O and

is extracted from the “order” field in life cycle texts (“Order” in Table 22).

7.2.1 On the choices of a Validate Function

The task of deciding if a proposition is true based on a given text is a much studied

problem in the field of NLP and is known as textual entailment. There exist several

textual entailment functions. All of which can be used as validate function. However,

the textual entailment functions returns a real value between 0 to 1 denoting the

probability that the proposition is true and thus one needs to decide a threshold value

to obtain a boolean validate function. In the implementation of our system I have

not used a boolean validate function but used the entailment score as it is. I describe

how to use a fuzzy validate function in the next section after describing the life cycle

dataset and the representation of the texts.

117

7.3 The Dataset and The Implemented System

The life cycle question answering dataset contains a total of 41 texts and 5.8k

questions. Each text contains a sequence which describes the order of stages and a

natural language description of the life cycle as shown in Table 22. The life cycle

texts are collected from the internet. The sequence of the stages are manually added

by either looking at the associated image in the website that describes the order of the

stages or from the headings of the text (Table 22).

Representing Life Cycle Texts

Each life cycle text is represented in terms of two predicates, namely, stageAt(URL, O,

P, S) and description(URL, O, T). The stageAt predicate describes that according to

the source URL (from which the text is collected) the stage that comes at position P

in the life cycle of O is S . The description stores the text that describes the life cycle.

The following ASP program shows the representation of the text in Table 22. To save

space the actual value of the URL is replaced by ‘u’. TheKB contains representations

of 41 such texts.

stageAt(u,"frog",1,"egg").

stageAt(u,"frog",2,"tadpole").

stageAt(u,"frog",3,"tadpole with legs")

stageAt(u,"frog",4,"froglet").

stageAt(u,"frog",5,"adult").

description(u,"frog",

"Egg: Tiny frog eggs are laid...").

118

7.3.1 Question Categories

The question that are created from these texts are divided into 11 categories. The

first three types of questions namely look up, difference, indicator require reading

the textual description of stages whereas the remaining six types of questions can be

answered solely from the sequence of stages (egg→ tadpole→ tadpole with legs→

adult).

Look Up Questions This category contains questions the answer to which can be

directly looked up from the description of the stages and does not require any special

thinking. The following list shows some questions in this category:

How do froglets breath? (A) using lungs (B) using gills

The tail of a frog disappears at what stage? (A) adult (B) froglet

Where do female frogs lay their eggs? (A) In water (B) On land

Difference Questions This category of questions compare two stages based on their

physical attributes, abilities or need that is true in one stage but not in other. The

following list shows examples:

What is an adult newt able to do that a tadpole cannot? (A) walk on land

(B) swim in water

A tadpole just turned into an eft. What does it need now? (A) shade

(B)water

A seedling develops what that a sprout does not have? (A) protective

bark (B) root

119

Indicator Questions This category of questions mentions an organism, a stage, two

answer choices and asks which one of those indicates that the organism is in the given

stage. Question 3 in Table 22 provides an example of this.

Sequence Based Questions Questions from this category can be answered based on

the sequence of stages that describes journey of an organism from beginning to the

end (e.g. egg→ tadpole→ tadpole with legs→ adult). Questions in this category

are further divided into 8 classes which takes one of the following forms: (1) Next

Stage Questions: given a stage and an organism, asks for the next stage. (2) Before

Stage Questions: given a stage and an organism, asks for the stages that appear before.

(3) Between Stage Questions: given two stages and an organism, asks for the stages

that appear between those two. (4) Stage At Questions: given an organism and a

position, asks for the stages that appear at that position. (5) Count Questions: given

an organism asks how many stages are there in the life cycle. (6) Correctly Ordered

Questions: given an organism asks the sequence that describes the correct order of the

stages. (7) Stage Of Questions: given an organism asks for the stages that appear in

its life cycle. (8) Not a Stage of Questions: given an organism asks for the stages that

do not appear in its life cycle. Table 23 shows an example of each types of questions.

Question Representation

The representation of a question comprises of four ASP facts. Given an MCQ question

of the form “〈Q?〉 (A) 〈answer choice 1〉 (B) 〈answer choice 2〉 ”, the first three facts

are computed trivially as follows:

question(``Q?'').

option(a,``answer choice 1'').

120

option(b,``answer choice 2'').

The fourth fact captures the type of the question (i.e. look up, difference etc.) and

some associated attributes (i.e. organism, stages, position). For each one of the

11 types of questions in the dataset there is a fixed template which describes the

associated attributes for each type of question. The fourth fact is an instantiation

of that template which is computed by a semantic parser. Table 23 describes the

questions templates and shows an example instantiation.

7.3.2 Theory

The theory contains a total of 36 ASP rules, 3 generate functions one for each of the

look up, difference and stage indicator question type and a single validate function.

The validate function, @validate(Text,Hypothesis) takes as input a life cycle text

and a hypothesis (string) and returns a score between 0 to 1. The score is computed

using a textual entailment function as follows:

score = max{ textual_entailment(S ,Hypothesis) :

S is a sentence in Text}

To find the answer, a confidence score V ∈ [0, 1] is computed for each answer option

X (denoted by con f idence(X,V)). The rules in the theory computes these confidence

scores. The correct answer is the option that gets maximum score. The following rule

describes this:

ans(X):- option(X,V), confidence(X,V),

V == #max {V1:confidence(X1,V1)}.

Here I describe only the non-trivial rules that call entailment functions through

121

function symbols.

Lookup Questions Given the representation of a lookup question such as:

{qLookup(“frog”). question(“How do froglets breathe?”). option(a,“using gills”).

option(b,“using lungs”).}, the following rule computes the confidence score for each

option.

confidence(X,V):-

question(Q), qOption(X,C),

H = @generate_lookup(Q,C),

qLookup(Org), description(URL,Org,P),

V = @validate(P,H),

While creating the confidence for option “a” this rule will call the gener-

ate_lookup(Q,C) function with Q = “How do froglets breathe?” and C = “using

gills”. The generate_lookup function then returns a hypothesis “froglets breathe using

gills”. The validate function then takes the description of the frog life cycle and

the hypothesis and verifies if any of the sentence in the text supports the hypothesis:

“froglets breathe using gills”. The confidence score of option “a” is the score returned

by the validate function. Similarly it will compute the confidence score for option

“b”.

The work of Khot, Sabharwal, and Clark 2018 presents a function that creates a

hypothesis from a question and an answer choice which was used to solve MCQ

questions. The generate_lookup function here reuses their implementation.

Difference Questions Given a difference question (e.g. “What is an adult newt able

to do that a tadpole cannot?” and an answer choice (e.g. “walk on land”) a generate

122

function returns two hypothesis H1 and H2. (“adult newt able to walk on land”, “a

tadpole cannot walk on land”). The fuzzy truth value for each each hypothesis is

computed with the validate function. The product of which is assigned to be the

confidence score of the answer choice. A rule is written in ASP to describe the same.

Indicator Questions When dealing with a fuzzy validate function the definition of

an indicator is modified as follows: Let v be the score for an answer choice c that

indicates that the organism O is in stage S . If O goes through n stages, S represents the

j-th stage and pi is the truth value that c is true in stage i, then v = p j ∗
∏n

k=1,k, j(1− pk).

The following five ASP rules are written to describe the same.

stageIndicatorIndex(ID):-

stageAt(URL, O, ID, S),

qStageIndicator(O,S).

trueForStage(Idx,X,V):-qIndicator(O,S),

option(X,C),stageAt(URL,O, Idx, S1),

H = @generate_indicator(S1,C)

description(URL, O, Text),

V = @validate(Text, H).

result(1, X , @product("1.0",V,1,ID)):-

trueForStage(O, 1,X,V),

stageIndicatorIndex(SRC,ID).

result(O, N, X, @product(V1,V2,N,ID)):-

123

result(O, N-1, X , V1),

trueForStage(O, N,X,V2),

stageIndicatorIndex(ID).

confidence(X,V):- res(N, X , V),

N = #max {P:stageAt(URL,O, P, S)}.

The first rule finds out the index of the stage specified in the question. The second rule

computes the truth value pi (trueForStage(Idx, X, V)) for each stage index Idx and each

option X. The last three rules compute the confidence score v = p j ∗
∏n

k=1,k, j(1 − pk)

iteratively. Here product(V1, V2, N, ID) function returns either V1∗V2 or V1∗(1−V2)

depending on whether N is equal to ID. The generate_indicator function follows a

simple template. It takes as input a stage such as “froglet” and an answer choice, for

e.g. “when it has lungs” and returns “In the 〈froglet〉 stage, 〈it has lungs〉”.

7.4 Dataset Creation

I crowdsourced the dataset of 5811 multiple-choice life cycle questions with their

logical forms with the help of Amazon Mechanical Turk. The workers did not create

the logical forms. I collected them using reverse-engineering without exposing the

workers to the underlying formalism.

To obtain the sequence based questions I followed the crowdsourcing technique

in Wang, Berant, and Liang 2015. Using stageAt predicates in the KB and the

rules in the theory I first computed a database of sequence based facts such as

nextS atge(f rog, egg, tadpole). I then used a simple grammar to create an MCQ

question out of it, for e.g, “What stage comes after egg stage in frog’s life? (A)

124

tadpole (B) adult”. Finally I asked the workers to rephrase these questions as much

as possible. Since the seed questions were generated using logical facts I could also

compute the logical form and the correct answer beforehand.

To collect indicator type questions I gave the workers a life cycle text and described

what is meant by an stage indicator question. Each worker were then asked to create

two multiple choice stage indicator questions and write down the correct option and

associated stage for each question. There were two workers working on each text.

As a result I got 41 × 2 × 2 = 164 questions. I manually removed the questions that

did not meet the requirements and finally ended up with 125 questions. Using the

stage name that was written down for each question I were able to compute the logical

form qS tageIndicator(organism, stage). Similarly, a separate task was created to

collect stage difference questions where the workers apart from the question and the

answer choices also wrote down the two stages that are being compared. Using that I

computed the logical form.

To obtain look up questions I gave the workers a life cycle text and asked them to

create free form MCQ questions, which gave us 2710 questions. I then manually

filtered the questions that should belong to the other 10 categories and ended up

with 2525 look up questions. Since the question template of a look up question only

contains the organism name I did not need any extra supervision to create the logical

form.

7.5 Related Work

Many question answering systems Sharma et al. 2015; Arindam Mitra and Baral 2016a,

2015; Wang, Lee, and Kim 2017; Lierler, Inclezan, and Gelfond 2017; Clark, Dalvi,

125

and Tandon 2018; Moldovan et al. 2003 have been developed that use declarative

programming paradigm. Among these the closest to our work are the works of

Lierler, Inclezan, and Gelfond 2017; Arindam Mitra and Baral 2016a; Clark, Dalvi,

and Tandon 2018 which try to answer a question with respect to a given text. But

to do so they convert the associated text into some action language with existing

natural language parsers Bos 2008; He et al. 2017; Flanigan et al. 2014. Having a

formal representation of the text is helpful but the ability to provide special domain

knowledge should not be impaired by the absence of a formal representation of the

text. Our work can be considered as a step towards that direction.

Our work is also related to Eiter et al. 2006; Havur et al. 2014. Eiter et al. have used

function symbols (referred to as external atoms) to interface ASP with an ontology

language (e.g. OWL) that has different formats and semantics. In Havur et al. 2014

function symbols are used to delegate some low level feasibility checks (such as “is it

possible to move left without colliding”) in a robotics application.

The task of textual entailment Dagan, Glickman, and Magnini 2006 and semantic

parsing Zelle and Mooney 1996 play a crucial role in our work. With access to new

datasets both the task have received significant attention Bowman et al. 2015; Parikh

et al. 2016; Chen et al. 2018; Wang, Berant, and Liang 2015; Krishnamurthy, Dasigi,

and Gardner 2017.

Finally, recently there has been a surge of new question answering datasets. Depending

on their restrictions on the possible answers they can be divided into three categories:

(1) the answer is an exact substring of the text (2) the answer can take values from

a fixed which is decided by the training dataset and (3) multiple choice questions. I

have used the accuracy of existing science MCQ solvers Khot, Sabharwal, and Clark

2018 as baselines in our experiment.

126

7.6 Experiments

Setup To evaluate our system I divide the 41 texts and the 5811 questions in two

different ways:

Text Split : In this case, I follow the machine comprehension style question answering

and divide the 41 life cycle texts into three sets. The training set then contains 29 texts

and 4k associated questions, the dev set contains 4 texts and 487 questions and the

test set contains 8 texts with 1368 questions. Given a text and a MCQ question the

task is to find the correct answer choice.

Question Split : In this split I mimic the open book exam setting and divide the

5.8k questions randomly into train, dev and test set each containing 4011, 579 and

1221 questions respectively. Here the knowledge base contains all the texts. Given a

MCQ question the task is to find out the correct answer choice with respect to the

knowledge base.

Our System I experiment with four different textual entailment functions. One of

those is a neural network based model Parikh et al. 2016. The remaining three are

variations of n-grams and lexical similarity based model Jijkoun and De Rijke 2006.

The first variation (NGram-LS-1) uses WordNet based lexical similarity. The second

variation uses (NGram-LS-2) weighted words Jijkoun and De Rijke 2006 along with

simple synonym based similarity. The third variation (NGram-LS-3) uses both word

weights and WordNet based lexical similarity.

The semantic parser in Krishnamurthy, Dasigi, and Gardner 2017 is trained to obtain

the question template instances (e.g. qIndicator(“ f rog”, “adult”)). I observed that

the semantic parser predicts the question types (e.g. qIndicator) with high accuracy

127

but often make errors in identifying the associated attributes (e.g. “adult”). For

example it predicts that a given question is of qStageAt type with 100% accuracy but

fails to identify the associated stage index attribute 38% times. Since the question

templates in our dataset is quite simple and only contains one organism name,

maximally two stage names or one stage index, I employ a simple search to extract

the attributes. The resulting semantic parser then works as follows: it first obtains

the question type from the trained parser of Krishnamurthy, Dasigi, and Gardner

2017. Then it calls a function with a list containing all the organism names and

the question. The function then returns the specified organism based on the first

organism name that appears in the question. Similarly it makes subsequent calls for

extracting stage names and positions. From now on I refer to the semantic parser in

Krishnamurthy, Dasigi, and Gardner 2017 as “KDG” and the customized version as

“Customized-KDG”.

Baselines I use the performance of the entailment functions as baseline scores. For

each option a hypothesis is created by combining the question and the answer choice

using the code from Khot, Sabharwal, and Clark 2018, which is then passed to an

entailment function to compute the confidence score. A second set of baseline is

computed using BiDaF Seo, Kembhavi, et al. 2016 which performed well across

several machine comprehension tasks. Given a passage and a question, BiDaF returns

a substring of the passage as an answer. I then use that substring to compute the

confidence score for each option. Two versions of BiDaF is used: BiDaF-1 which

is trained on Rajpurkar et al. 2016 and BiDaF-2 which is trained on both Rajpurkar

et al. 2016; Clark et al. 2018. To make the comparison fair, I have added a sentence

of the type “The i-th stage is S“ for each stageAt(O, I, S) fact in the KB. Also during

128

the evaluation of “Question Split” only the necessary life cycle text is given as the

passage.

System Acc(%)
Ques-
tion
Split

Acc(%)
Text
Split

Gold + Parikh et al. 2016 73.63 78.87
Gold + NGram-LS-1 78.95 84.06
Gold + NGram-LS-2 79.20 83.77
Gold + NGram-LS-3 79.28 83.77
KDG + Parikh et al. 2016 70.60 72.51
KDG + NGram-LS-1 73.87 76.17
KDG + NGram-LS-3 74.28 75.88
KDG + NGram-LS-3 74.61 76.02
Custom-KDG + Parikh et al. 2016 72.40 76.68
Custom-KDG + NGram-LS-1 77.07 80.70
Custom-KDG + NGram-LS-2 77.72 80.41
Custom-KDG + NGram-LS-3 77.80 80.48
Parikh et al. 2016 53.07 51.02
NGram-LS-1 61.29 61.25
NGram-LS-2 60.44 58.04
NGram-LS-3 62.40 61.98
BidaF-1 60.03 57.27
BidaF-2 58.44 60.20

Table 24: The first 12 rows show the performance of our method with different parsers and
entailment functions. The last 6 rows show the performance of the baseline methods.

Results Table 24 presents the performance of all the systems on both splits. The first

four rows show the accuracy of our system when gold representation of the question is

used. This shows the best performance that the system can achieve with the entailment

functions at hand; which is 79.28% with the NGram-LS-3 entailment function on the

“Question Split“ and 84.06% with the NGram-LS-2 entailment function on the “Text

Split”. The next four rows show the performance with the KDG parser. The errors

129

made by the parser result in an accuracy drop of ∼ 5% on “Question Split“ and a drop

of ∼ 8% on “Text Split”. However, when the customized-KDG parser is used the

accuracy on both the split increases. The best accuracy on “Text Spit“ is 77.8% which

is within 1.5% of the achievable best with the entailments at hand. The accuracy drop

on “Text split” also reduces from ∼ 8% to ∼ 3.3%. Among the baseline methods

which are shown in the last 6 rows, the best score is achieved by the NGram-LS-3

entailment function which is 15.4% less than the best performance achieved by our

system on “Question Split“ and 18.72% less on “Text Split”.

7.7 Conclusion

Developing methods that allow machines to reason with background knowledge with

premises written in natural language enhances the applicability of logical reasoning

methods and significantly reduces the effort required in building a knowledge based

question answering system. In this chapter I describe one such method by using

ASP with textual entailment functions. Experiments show the success of this method.

However there is still scope for further improvements with the best accuracy being

80.7%. The life cycle dataset and the associated code is publicly available to track the

progress towards this direction.

130

Chapter 8

DECLARATIVE QUESTION ANSWERING OVER KNOWLEDGE BASES

CONTAINING NATURAL LANGUAGE TEXT: SOLVING QUALITATIVE

WORD PROBLEMS

8.1 Introduction and Motivation

In this chapter, I describe how to apply the TKR paradigm for declarative question

answering over Text for solving qualitative word problems. Qualitative relationships

describe how increasing or decreasing one property (e.g. altitude) affects another (e.g.

temperature). They are an important aspect of natural language question answering

and are crucial for building chatbots or voice agents where one may enquire about

qualitative relationships. In various natural language question answering domains,

applications, and challenge corpora one often encounters textual content and questions

about qualitative relationships. For example, a chatbot developer developing a chatbot

for a company dealing with windows and curtains would need the chatbot to be able

to answer questions such as: “Will a larger window make the room warmer?”, and

“Will a white curtain in the window make the room cooler?”. Similarly, in the Aristo

Clark 2015 corpus there are several items that involve qualitative relationships. An

example from that corpus is as follows:

In a large forest with many animals, there are only a small number of
bears. Which of these most likely limits the population of bears in the
forest?
(A) supply of food
(B) type of tree

131

(C) predation by carnivores
(D) amount of suitable shelter

Considering the importance of being able to answer questions about qualitative
relationships in a question answering setting, recently the QUAREL corpus Tafjord
et al. 2018 has been proposed. Table 25 shows some examples from the QUAREL
corpus.

I: A boomerang thrown into a windy sky heats up quite a bit, but one thrown into a
calm sky stays about the same temperature. Which surface puts the least amount of
friction on the boomerang? (A) windy sky (B) calm sky

II: Tank the kitten learned from trial and error that carpet is rougher then skin. When
he scratches his claws over carpet it generates ________ then when he scratches his
claws over skin (A) more heat (B) less heat

III: The propeller on Kate’s boat moved slower in the ocean compared to the river.
This means the propeller heated up less in the (A) ocean (B) river

IV: Juan is injured in a car accident, which necessitates a hospital stay where he is
unable to maintain the strength in his arm. Juan notices that his throwing arm feels
extremely frail compared to the level of strength it had when he was healthy. If Juan
decides to throw a ball with his friend, when will his throw travel less distance? (A)
When Juan’s arm is healthy (B) When Juan’s arm is weak after the hospital stay.

Table 25: Example problems form the QUAREL corpus

My goal is to develop a method for answering questions about qualitative relation-

ships, especially with respect to the QUAREL dataset. There are several challenges

associated with question answering in this domain. First, it requires reasoning with

external knowledge about qualitative relations. Although a small knowledge base

related to QUAREL has been provided by the QUAREL authors, which I refer to

as QRKB (Qualitative Relations Knowledge Base), incorporating that knowledge

into the question answering process is a challenge. Second, as pointed out in Tafjord

et al. 2018 direct IR based methods, and word association based methods do not do

well in this domain. That is because neither of them properly capture reasoning with

132

external knowledge. A Knowledge Representation and Reasoning (KR&R) based

approach, that can use reasoning modules from the qualitative reasoning literature

Daniel G Bobrow 2012; Weld and De Kleer 2013 can be employed. For e.g., the

problem I from table 25 can be translated to the following tuple: (qrel(friction, higher,

carpet),qrel(heat, higher, carpet),qrel(heat, lower, carpet))2. The first component of

the tuple qrel(friction, higher, carpet) denotes the given fact i.e. “friction is more

on carpet“. The second component denotes the claim corresponding to option A

i.e. “more heat is generated on carpet” and the third component captures the claim

corresponding to option B which is “less heat is generated on carpet”. The reasoning

module using the qualitative knowledge that more friction results in more heat can

then decide that option A is true. However such approach requires accurate semantic

parsing of the text and the question and that is a big challenge. Nevertheless, the

authors of QUAREL provide annotations that can facilitate a limited semantic parsing

and use that to develop a type constrained neural semantic parser (QUASP) which

together with delexicalization results in their best performing system (QUASP+).

Our approach aims to address the drawbacks of using a traditional semantic parser for

obtaining the logical representation. Existing semantic parsers are trained to translate

the natural language sentences into an application specfic logical representation.

Before training, the semantic parsers have some prior knowledge of the input (natural)

language, which is normally captured by the word vectors, existing knowledge bases

such as WordNet, ConceptNet or parse trees. The target language however is a

complete unknown. The model must learn the meaning of the symbols in the target

language (i.e. the association between the symbols in the target vocabulary to the

2This is for illustration purpose.This is not exactly same as the logical form that QUASP or QUASP+

translates to.

133

ones in input vocabulary) and how to combine these symbols given the input sentence

solely from the annotated training data. These expectations naturally increase the

demand for more annotated data and these models often suffer if some of the symbols

from the output vocabulary do not appear in the training dataset but appear in test set.

To address these challenges we apply the TKR framework from the previous chapter

which promotes the following idea:

If a reasoning algorithm requires facts to be given in a logical form and
the application developer has natural language texts at hand, then instead
of employing a semantic parser to convert the text to suitable logical facts,
generate a natural language description of the logical fact and validate
if the text entails the natural language description.

Thus instead of generating the logical form from the input problem as is done in

Tafjord et al. 2018, I ‘roughly iterate’ over the space of possible logical forms, generate

a natural language description for each logical form, validate (score) each of those

natural language descriptions using multiple “textual entailment” calls and then finally

use those scores to detect the correct answer choice. Since, the space of possible

logical forms can be quite big, instead of performing a brute-force search I perform

an efficient search, which we describe later in section 8.3.

Unlike in the previous chapter where we train to semantic parser to translate the

question, here I use an NLI function to do both question understanding and passage

understanding and which facilitates transfer like for. e.g. using Natural Language

Inference dataset, or pre-trained models. This heavily boost the performance on

QUAREL when instead of directly generating the logical form, semantic parsing is

done through the generte-validate ideology of TKR. The developed system obtains an

accuracy of 76.63% which is 7.93% better than QUASP+ model and 20.53% better

than QUASP model.

134

8.2 Background

8.2.1 The QUAREL Dataset

The QUAREL dataset Tafjord et al. 2018 has 2771 annotated multiple choice story

questions. Table 25 shows some sample questions from the QUAREL dataset. Each

question in the QUAREL dataset has annotation in the form of logical forms and

world literals which we show here for items I and II of Table 25:

Annotation for Problem I:

Logical Form

qval(heat, high,world1), qval(heat, low,world2)→

qrel(f riction, lower,world1);

qrel(f riction, lower,world2)

Literals

world1_literal :“windy sky”

world2_literal : “calm sky”

Annotation for Problem II:

Logical Form

qrel(smoothness, lower,world1)→

qrel(heat, higher,world1); qrel(heat, lower,world1)

Literals

world1_literal : “carpet”

world2_literal: “skin’

135

The two examples show two types of logical forms. Syntactically, the logical forms

have two parts: the setup part that describes the set of explicitly given facts and the

answer choice part that gives two claims, one for option A (here after claimA) and

another for option B (here after claimB). The setup part and the answer choice part are

separated by the ‘→’ symbol whereas ‘;’ separates the two claims inside the answer

choice part.

Both the claims and the given facts are represented by the two predicates,

qrel and qval. In the first example the setup part provides two facts:

qval(heat, high,world1), qval(heat, low,world2) which should be read as: heat is

high in world1 and heat is low in world2. The claimA is qrel(f riction, lower,world1)

which should be read as friction is lower in world1 compared to the other world

whereas claimB is qrel(f riction, lower,world2) which represents friction is lower

in world2 compared to the other world. Here, world1 and world2 are two special

symbols which refer to “windy sky” and “calm sky” respectively. This information is

given through the world literal annotation. Each logical form in QUAREL has at max

two worlds however the meaning of the worlds i.e. world1_literal and world2_literal

changes with each problem. Both the predicate qrel and qval has three arguments.

The first one is a qualitative property, the second one is called direction which could

be either low or high and the third one is the special variable world which also takes

two values world1 or world2. In this work, we treat qval and qrel uniformly and same

natural language description is generated for both of them as there only two worlds

and thus the ‘absolute’ (qval) and the ‘relative’ (qrel) descriptions are equivalent.

The QRKB of QUAREL has the following 19 qualitative properties: friction, speed,

distance, smoothness, heat, loudness, brightness, apparentSize, time, weight, strength,

mass, flexibility, exerciseIntensity, acceleration, thickness, gravity, breakability, and

136

amountSweat. The QRKB has 25 qualitative relations about pairs of these properties.

These relations use the predicates q+ and q-. Some example relations are: q-(friction,

speed), and q+(friction, heat). Intuitively, q-(X,Y) means that the amount of X is

inversely proportional to the amount of Y and q+(X,Y) means that the amount of X is

proportional to the amount of Y. Every possible relation pairs are precomputed and

stored in QRKB.

8.2.2 Textual Entailment and NLI

As briefly mentioned in Section 8.1 our approach uses Textual Entailment Dagan

et al. 2013 and Natural Language Inference Bowman et al. 2015 models. Natural

language inference (NLI) is the task of determining the truth value of a natural

language text, called hypothesis given another piece of text called premise. The list of

possible truth values include entailment, contradiction and neutral. Entailment means

the hypothesis must be true if the premise is true. Contradiction indicates that the

hypothesis can never be true if the premise is true. Neutral pertains to the scenario

where the hypothesis can be both true and false as the premise does not provide

enough information. Textual Entailment is a binary version of NLI task, where one

has to decide if the truth value is entailment or not. Table 26 shows some examples.

Recently, several large scale NLI dataset has been developed. One of which is

SNLI Bowman et al. 2015 which we use in this work. Any NLI dataset can be

converted to a textual entailment dataset by replacing the contradiction and neutral

label with not-entailment label. Among the recent NLI models, the two most popular

models are BERT Devlin et al. 2018 and ESIM Chen et al. 2016 which we use in our

implementation.

137

premise: Tank the kitten learned from trial
and error that carpet is rougher then skin.
hypothesis: Carpet is less smooth.
label: entailment.
premise: Tank the kitten learned from trial
and error that carpet is rougher then skin.
hypothesis: skin is less smooth.
label: not-entailment.

Table 26: Example premise-hypothesis pairs with annotated labels.

8.3 Proposed approach

A qualitative problem P in QUAREL is a sequence of k sentences followed by two

option choices. Let T denote the sequence of k sentences and A1 and A2 be the two

answer choices. The last sentence in T is a question and is denoted by Q. For e.g., for

the problem 1 in Table, T = A boomerang thrown into a windy sky heats up quite a

bit, but one thrown into a calm sky stays about the same temperature. Which surface

puts the least amount of friction on the boomerang?, A1 = windy sky, A2 = calm sky

and Q = Which surface puts the least amount of friction on the boomerang? Given

such a problem P = (T,Q, A1, A2), the task is to decide if A1 is a better answer choice

or A2. Our algorithm, namely generate validate qualitative problem solver (gvQPS),

has three key steps, namely generate, validate and inference, which are discussed in

this section.

8.3.1 Step 1: Generate

Given T,Q, A1, and A2 a set H(T,Q, A1, A2) of 46×n hypothesis such as “windy sky

has more friction” is created using templates such as “X has more friction”. Our

algorithm uses a total of 46 manually authored templates. Each template has only one

138

variable X which is substituted by the n noun phrases in the T , Q, A1 and A2 parts to

create the set H(T,Q, A1, A2).

Table 28 shows the templates. Each template pertains to a qrel(P,D, X) predicate

where P is a qualitative property from QUAREL, D ∈ {low, high}, X is a variable

representing the textual description of the world. All the properties except speed

and distance have two templates, one for D = low and another for D = high. The

two properties speed and distance however have more than two templates to capture

different senses.

For the example 2 from Table 25, there are a total of 10 noun-phrases3, namely “heat” ,

“trial and error“, “claws”, “kitten“, “carpet”, “skin“, “tank kitten”, “error“, “tank”,

“trial“. Thus the set H(T,Q, A1, A2) contains a total of 460 (= 46 × 10) hypothesis.

Among these the ones related to friction and high are as follows: heat has more

friction, trial and error has more friction, kitten has more friction, claws has more

friction, carpet has more friction, skin has more friction, tank kitten has more friction,

error has more friction, tank has more friction, trail has more friction.

8.3.2 Step 2: Validate

Recall that the logical form has three parts: the given facts, the claimA and the

claimB all of which are represented by the qrel or qval predicate. In step 1 the system

has generated the set of natural language descriptions of all possible grounded qval

predicates, some of which are the given facts, the claimA or claimB. The goal of

step 2 is to precisely identify which statement from H(T,Q, A1, A2) is claimA, which

statement pertains to claimB and which statements represents the given facts. To do

3according to Spacy constituency parser

139

this, the system scores the statements in H(T,Q, A1, A2) using two different Textual

Entailment functions. Let givenscore(.), claimAscore(.) and claimBscore(.) respectively

denote the score for a hypothesis to be a given fact, the claimA and the claimB. These

scores are then computed as follows:

givenscore(Hi,T,Q, A1, A2) = f given
T E (T,Hi)

claimAscore(Hi,T,Q, A1, A2) = f claim
T E (QA1,Hi)

claimBscore(Hi,T,Q, A1, A2) = f claim
T E (QA2,Hi)

Here, QA1 and QA2 respectively denotes the concatenation of Q,“(option)”, A1

and Q,“(option)“, A2 and f given
T E and f claim

T E are the two different Textual Entail-

ment functions. f given
T E and f claim

T E might have same architecture but they are

trained on different datasets and take different inputs. For the example II from

Table 25 which has a logical representation of (smoothness, lower,world1) →

(heat, higher,world1); (heat, lower,world1), I expect the textual entailment functions

to produce the following scores for the sample inputs of table 27.

8.3.3 Step 3: Answer Generation

In this step, the system computes the final answer by using the scores that are com-

puted in step 2. Let claimA∗ and claimB∗ be the hypothesis in H(T,Q, A1, A2) which

has respectively the highest claimAscore(.) and the highest claimBscore(.) score. The

answer is option A if givenscore(claimA∗) is more than givenscore(claimB∗), otherwise

the answer is option B. Here, I assume that the givenscore will learn to capture the

qualitative relationship. For e.g., if it assigns a high score to the hypothesis skin has

140

givenscore(“Carpet is less smooth.′′) 1
givenscore(“Skin is less smooth.′′) 0
givenscore(“Carpet is more smooth.′′) 0
claimAscore(“Carpet is less smooth.′′) 0
claimAscore(“more heat is generated on carpet′′) 1
claimAscore(“less heat is generated on carpet′′) 0
claimBscore(“more heat is generated on carpet′′) 0
claimBscore(“less heat is generated on carpet′′) 1
claimBscore(“less heat is generated on skin′′) 0

Table 27: Example of expected scores and sample inputs.The arguments T,Q, A1 and A2

take the following value: T = Tank the kitten learned from trial and error that carpet is
rougher then skin. When he scratches his claws over carpet it generates ________ then
when he scratches his claws over skin, Q = When he scratches his claws over carpet it
generates ________ then when he scratches his claws over skin, A1 = more heat, A2 = less
heat.

less friction, it will also assign high score to the hypothesis less heat is generated on

skin.

8.4 Textual Entailment Dataset Generation

Our algorithm uses two textual entailment functions namely, f given
T E and f claim

T E both of

which needs to be trained. In this section I describe the process that generates labeled

premise-hypothesis pairs from the QUAREL annotations.

8.4.1 Dataset for f claim
T E

Let qrel(PA,DA,WA) or qval(PA,DA,WA) be the claimA and qrel(PB,DB,WB) or

qval(PB,DB,WB) be claimB as per the associated logical form. I use this information

to create following annotated premise-hypothesis pairs (I use 1 to denote entailment

and 0 to denote not-entailment):

141

(Property, Direction) Template(s)
(Friction, high) X has more friction
(Friction, low) X has less friction
(Smoothness, high) X is more smooth
(Smoothness, low) X is less smooth
(Heat, high) more heat is generated on X
(Heat, low) small amount of heat is generated on X
(Loudness, high) X sounds louder
(Loudness, low) X sounds softer
(Brightness, high) X shines more
(Brightness, low) X looks dim
(apparentSize, high) X appears big
(apparentSize, low) X appears small

(Speed, high) X is fast
moves fast through X

(Speed, low) X is slow
moves slowly through X

(time, high) X takes more time
(time, low) X takes less time
(weight, high) X has more weight
(weight, low) X has less weight
(acceleration, high) acceleration is more for X
(acceleration, low) acceleration is less for X
(strength, high) X has more strength
(strength, low) X has little strength

(distance, high)

travelled more on X
X is far
X travelled more
X threw the object far

(distance, low)

travelled less on X
X is near
X travelled less
X could not throw the object far

(thickness, high) X is thicker
(thickness, low) X is thin
(mass, high) X has more mass
(mass, low) X has less mass
(gravity, high) X has stronger gravity
(gravity, low) X has weaker gravity
(flexibility, high) X is more flexible
(flexibility, low) X is less flexible
(breakability, high) X is more likely to break
(breakability, low) X is less likely to break
(amountSweat, high) X is exercising more
(amountSweat, low) X is almost idle
(exerciseIntensity, high) X is sweating more
(exerciseIntensity, low) X is sweating less

Table 28: Associated templates for each qualitative property.

142

1. premise = QA1, hypothesis = generate(PA,DA,WA) and label = 1

2. premise = QA2, hypothesis = generate(PB,DB,WB) and label = 1

3. premise = QA1, hypothesis = generate(PA, opposite(DA),WA) and label = 0

4. premise = QA2, hypothesis = generate(PB, opposite(DB),WB) and label = 0

5. If WA , WB, premise = QA1, hypothesis = generate(PA,DA,WB) and label = 0

6. If WA , WB, premise = QA2, hypothesis = generate(PB,DB,WA) and label = 0

7. premise = QA1, hypothesis = generate(P,D,WA) and label = 0 where P ∈

QRKB and P < {PA, PB}, D ∈ {low, high}

8. premise = QA2, hypothesis = generate(P,D,WB) and label = 0 where P ∈

QRKB and P < {PA, PB}, D ∈ {low, high}

9. premise = QA1, hypothesis = generate(PA,DA,W) and label = 0 where W ∈ bad

10. premise = QA2, hypothesis = generate(PB,DB,W) and label = 0 where W ∈ bad

Here, generate(.) denotes the string that is created for the given input of the type (qual-

itative property, direction, world_literal) using the templates in table 28; opposite(D)

returns the only member of the set {high, low} \ D and bad is set of noun phrases

from the problem P which does not have any word overlap with either world1_literal

or world2_literal. For the problem II in table 25, world1_literal = “carpet” and

world1_literal = “skin” and the noun phrases are = “heat” , “trial and error“, “claws”,

“kitten“, “carpet”, “skin“, “tank kitten”, “error“, “tank”, “trial“. Thus the bad set

contain the following elements: “heat” , “trial and error“, “claws”, “kitten“, “tank

kitten”, “error“, “tank”, “trial“.

143

8.4.2 Dataset for f given
T E

Similar to f claim
T E , I create the following annotated premise-hypothesis pairs for each

given fact (PG,DG,WG):

1. premise = T, hypothesis = generate(PG,DG,WG) and label = 1

2. premise = T, hypothesis = generate(PG, opposite(DG),WG) and label = 0

3. premise = T, hypothesis = generate(PG,DG, {world1_literal,

world2_literal} \WG) and label = 0

4. premise = T, hypothesis = generate(PG,DG,W) and label = 0, for all W ∈ bad

5. premise = T, hypothesis = generate(P,D,W) and label = 0, for all property P

where none of q+(P, PA), q-(P, PA),q+(P, PB), q-(P, PB) is in QRKB, D is either

high or low, W ∈ {world1_literal,world2_literal}.

However, unlike f claim
T E , I also create the following annotated premise-hypothesis pairs

for each given fact (PG,DG,WG) using QRKB:

1. premise = T, hypothesis = generate(P,DG,WG) and label = 1, for all property

P such that q+(P, PG) in QRKB.

2. premise = T, hypothesis = generate(P, opposite(DG),WG) and label = 1, for all

property P such that q-(P, PG) in QRKB.

3. premise = T, hypothesis = generate(P,DG,WG) and label = 0, for all property

P such that q-(P, PG) in QRKB.

4. premise = T, hypothesis = generate(P, opposite(DG),WG) and label = 0, for all

property P such that q+(P, PG) in QRKB.

Let TrainQUAREL
Given , DevQUAREL

Given and TestQUAREL
Given respectively denote the dataset that are

created for f given
T E from train, dev and test split of the QUAREL dataset. Similarly, let

144

TrainQUAREL
Claim , DevQUAREL

Claim and TestQUAREL
Claim denote the dataset that are created for f claim

T E

from train, dev and test split of the QUAREL dataset. TrainQUAREL
Given , DevQUAREL

Given and

TestQUAREL
Given respectively contains 3, 58, 647, 50, 874 and 98, 057 premise-hypothesis

pairs. On the other hand, TrainQUAREL
Claim , DevQUAREL

Claim and TestQUAREL
Claim respectively

contains 3, 06, 545, 43, 914 and 87, 236 premise-hypothesis pairs. Note that, to make

the dataset balanced, the pairs with label 1 are oversampled. I also use the two-class

version of the SNLI dataset to further increase the dataset size.

8.5 Related Work

Our work is related to both the works in semantic parsing Zelle and Mooney 1996;

Kwiatkowski et al. 2011; Berant et al. 2013; Krishnamurthy, Dasigi, and Gardner

2017; Reddy, Lapata, and Steedman 2014 and question answering using semantic

parsing Lev et al. 2004; Berant et al. 2014; Mitra et al. 2019a.

The problem of QUAREL is quite similar to the word math problems Hosseini et

al. 2014; Kushman et al. 2014 in the sense that both are story problems and use

semantic parsing to translate the input problem to a suitable representation.

Our work is also related to the work in Mitra et al. 2019a that uses generate-validate

framework to answer questions w.r.t life cycle text. Mitra et al. 2019a uses generate-

validate framework to verify “given facts”. Particularly, it shows how rules can be

used to infer new information over raw text without using a semantic parser to create

a structured knowledge base. The work in Mitra et al. 2019a uses a semantic parser to

translate the question into one of the predefined forms. In our work, however I use

generate-validate for both question and “given fact” understanding.

The work of Tafjord et al. 2018 is most related to us. Tafjord et al. 2018 proposes

145

two models for QUAREL. One uses a state-of-the-art semantic parser Krishnamurthy,

Dasigi, and Gardner 2017 to convert the input problem to the desired logical repre-

sentation. They call this model QUASP, which obtains an accuracy of 56.1%. The

other model, called QUASP+ uses a delexicalization step before giving the input to

the semantic parser. The delexicalization step identifies the value(s) of world1_literal

and word2_literal and then replaces all the occurrences of those strings in the text by

the symbol “world1“ and “world2”. The modified input is then passed to the semantic

parser. The delexicalization helps the semantic parser by giving explicit pointers to

world1 and world2, which results in an accuracy of 68.7%. Our model does not use

such preprocessing and still performs significantly better than QUASP+ model.

8.6 Experimental Evaluation

I use the notation f M
D to denote that the textual entailment model in use is M which can

be either ESIM or BERT and the model M is trained on the dataset D which can be any

of following: TrainQUAREL
Given , TrainQUAREL

Given ∪ TrainS NLI, TrainQUAREL
Claim , TrainQUAREL

Claim ∪

TrainS NLI. Correspondingly there are a total of 4 possible values for f given
T E namely

f ES IM
TrainQUAREL

Fact

, f BERT
TrainQUAREL

Given

, f ES IM
TrainQUAREL

Given ∪TrainS NLI
and f BERT

TrainQUAREL
Fact ∪TrainS NLI

. Similarly, there are

a total of 4 possible values for f claim
T E namely f ES IM

TrainQUAREL
claim

, f BERT
TrainQUAREL

claim

, f ES IM
TrainQUAREL

claim ∪TrainS NLI

and f BERT
TrainQUAREL

Fact ∪TrainS NLI
. Table 29 shows the results of our algorithm for all these 4×4=

16 combinations.

– The best performance is achieved when, f BERT
TrainQUAREL

Fact ∪TrainS NLI
is used as f given

T E and

f ES IM
TrainQUAREL

claim

is used as f claim
T E . I refer to this as gvQPSB+E. The performance of this

146

f given
T E f claim

T E Dev(%) Test(%)
f ES IM
G1

f ES IM
C1

67.27 71.2
f ES IM
G1

f BERT
C1

62.23 69.12
f ES IM
G1

f ES IM
C2

66.54 69.57
f ES IM
G1

f BERT
C2

59.71 67.39
f BERT
G1

f ES IM
C1

67.99 71.56
f BERT
G1

f BERT
C1

67.62 69.38
f BERT
G1

f ES IM
C2

62.95 69.2
f BERT
G1

f BERT
C2

68.35 67.93
f ES IM
G2

f ES IM
C1

68.34 67.21
f ES IM
G2

f BERT
C1

59.35 66.49
f ES IM
G2

f ES IM
C2

66.55 66.3
f ES IM
G2

f BERT
C2

58.63 64.3
f BERT
G2

f ES IM
C1

73.38 76.63
f BERT
G2

f BERT
C1

72.66 75.36
f BERT
G2

f ES IM
C2

70.50 73.55
f BERT
G2

f BERT
C2

73.02 70.29

Table 29: shows the accuracy on dev and test set of QUAREL for various choice of f given
T E

and f claim
T E . Here, G1,G2,C1 and C2 respectively represents TrainQUAREL

Given , TrainQUAREL
Given ∪

TrainS NLI , TrainQUAREL
Claim , TrainQUAREL

Claim ∪ TrainS NLI .

combination is 5.07% more than the combination of f ES IM
TrainES IM

Fact
and f ES IM

TrainQUAREL
claim

which shows the boost offered by BERT and SNLI.

– The accuracy normally drops when SNLI dataset is used in the training for the

f claim
T E function irrespective of the model on both dev and test set. I speculate that

this happens because the premise in SNLI contain proper sentences whereas the

premise in the TrainQUAREL
claim are options appended to questions and thus have

different distributions.

– ESIM models perform consistently better as TrainQUAREL
claim than BERT models

irrespective of the training dataset on both dev and test set.

Table 30 compares our best performing method with other approaches. As shown, in
table 30 our model provides an improvement of 7.93% over the previous state-of-the-
art QUASP+.

147

Model Accuracy(%)
IR 48.6
PMI 50.5
QUASP 56.1
QUASP+ 68.7
gvQPSB+E 76.63

Table 30: Comparing our best performing model with existing solvers of QUAREL.

8.6.1 Error Analysis

Our best model, gvQPSB+E fails to solve 129 problems. The majority of the error

occurs due to the error in givenscore(.). The following figure shows two examples of er-

ror with claimA∗ and claimB∗ and the scores of the relevant hypothesis by givenscore(.).

148

Error Example I:

Nell has very thick hair; Lynn’s hair is much thinner. Whose hair is stronger? (A) Nell (B)

Lynn

claimA∗ : (strength, high, ‘Nell’)

claimB∗ : (strength, high, ‘Lynn’s hair’)

Sample givenscore(.) scores

lynn ’s hair has more strength, 0.01

nell has more strength, 0.00003

Error Example II:

David noticed that it was harder to push his snow blower on snowy pavement than on dry

pavement. This is because the dry pavement has (A) more friction or (B) less friction

claimA∗ : (f riction, high, ‘dry pavement’)

claimB∗ : (strength, low, ‘dry pavement’)

Sample givenscore(.) scores

dry pavement has more friction, 0.9645242997992661

dry pavement has less friction, 0.000003

As seen in the above figure, for both the error examples, the claimA∗ and claimB∗ have

been identified correctly, however the givenscore(.) predicts wrongly which results in

an error.

8.7 Conclusion

In several situations one need to reason with background knowledge while answering

questions. The TKR paradigm is one approach to deal with such scenarios. Apart from

allowing declarative programming over text, it provides a sweet point for transfer

learning where you can utilize existing datasets or models for Natural Language

149

Inference and allows on to work with limited numbers labelled data as is true for both

the qualitative word problems and life cycle questions.

150

Chapter 9

NATURAL LANGUAGE INFERENCE FOR OPEN-BOOK QUESTION

ANSWERING: EXPERIMENTS AND OBSERVATIONS

9.1 Introduction

Till now I have presented my solutions that uses knowledge representation and

reasoning (KR) and learning for two types of reading comprehension problems.

Even though the solutions that I have proposed have widens the applicability of KR

frameworks to a larger extent the requirement of having a natural language parser

or the set of additional knowledge as logic programs limits its applicability by a

significant margin when it is compared to that of the deep neural networks. It is part

of my future work, to bridge this gap. Towards that goal, I have selected 4 QA tasks

which requires access to additional knowledge which is missing and where existing

parser perform poorly and have started by analysing how DL solutions work for these

datasets and what are their drawbacks in terms of using knowledge. Here, I present

our analysis on one of the task, called open-book question answering.

In recent years, many NLQA datasets and challenges have been proposed, for example,

SQuAD Rajpurkar et al. 2016, TriviaQA Joshi et al. 2017 and MultiRC Khashabi et

al. 2018, and each of them have their own focus, sometimes by design and other times

by virtue of their development methodology. Many of these datasets and challenges

try to mimic human question answering settings. One such setting is open book

question answering where humans are asked to answer questions in a setup where

they can refer to books and other materials related to their questions. In such a setting,

151

the focus is not on memorization but, as mentioned in OpenBookQA2018, on “deeper

understanding of the materials and its application to new situations Jenkins 1995;

Landsberger 1996.” In OpenBookQA2018, they propose the OpenBookQA dataset

mimicking this setting.

Question: A tool used to identify the per-
cent chance of a trait being passed down
has how many squares ? (A) Two squares
(B) Four squares (C) Six squares (D)
Eight squares
Extracted from OpenBook:
a punnett square is used to identify the per-
cent chance of a trait being passed down
from a parent to its offspring.
Retrieved Missing Knowledge:
Two squares is four.
The Punnett square is made up of 4
squares and 2 of them are blue and 2 of
them are brown, this means you have a
50% chance of having blue or brown eyes.

Table 31: An example of distracting retrieved knowledge

The OpenBookQA dataset has a collection of questions and four answer choices for

each question. The dataset comes with 1326 facts representing an open book. It is

expected that answering each question requires at least one of these facts. In addition

it requires common knowledge. To obtain relevant common knowledge we use an IR

system Clark et al. 2016 front end to a set of knowledge rich sentences. Compared

to reading comprehension based QA (RCQA) setup where the answers to a question

is usually found in the given small paragraph, in the OpenBookQA setup the open

book part is much larger (than a small paragraph) and is not complete as additional

common knowledge may be required. This leads to multiple challenges. First, finding

152

the relevant facts in an open book (which is much bigger than the small paragraphs

in the RCQA setting) is a challenge. Then, finding the relevant common knowledge

using the IR front end is an even bigger challenge, especially since standard IR

approaches can be misled by distractions. For example, Table 31 shows a sample

question from the OpenBookQA dataset. We can see the retrieved missing knowledge

contains words which overlap with both answer options A and B. Introduction of such

knowledge sentences increases confusion for the question answering model. Finally,

reasoning involving both facts from open book, and common knowledge leads to

multi-hop reasoning with respect to natural language text, which is also a challenge.

We try to address the first two challenges in this chapter: (a) We improve on knowl-

edge extraction from the OpenBook present in the dataset. We use semantic textual

similarity models that are trained with different datasets for this task; (b) We propose

natural language abduction to generate queries for retrieving missing knowledge; (c)

We show how to use Information Gain based Re-ranking to reduce distractions and

remove redundant information; (d) We provide an analysis of the dataset and the

limitations of BERT Large model for such a question answering task.

The current best model on the leaderboard of OpenBookQA is the BERT Large model

Devlin et al. 2018. It has an accuracy of 60.4% and does not use external knowledge.

Our knowledge selection and retrieval techniques achieves an accuracy of 72%, with

a margin of 11.6% on the current state of the art. We study how the accuracy of the

BERT Large model varies with varying number of knowledge facts extracted from

the OpenBook and through IR.

153

9.2 Related Work

In recent years, several datasets have been proposed for natural language question

answering Rajpurkar et al. 2016; Joshi et al. 2017; Khashabi et al. 2018; Richardson,

Burges, and Renshaw 2013; Lai et al. 2017; Reddy, Chen, and Manning 2018; Choi

et al. 2018; Tafjord et al. 2018; Mitra et al. 2019b and many attempts have been made

to solve these challenges Devlin et al. 2018; Vaswani et al. 2017; Seo, Kembhavi,

et al. 2016.

Among these, the closest to our work is the work in Devlin et al. 2018 which perform

QA using fine tuned language model and the works of Sun et al. 2018; Zhang et

al. 2018 which performs QA using external knowledge.

Related to our work for extracting missing knowledge are the works of Ni et al. 2018;

Musa et al. 2018; Khashabi et al. 2017 which respectively generate a query either by

extracting key terms from a question and an answer option or by classifying key terms

or by Seq2Seq models to generate key terms. In comparison, we generate queries

using the question, an answer option and an extracted fact using natural language

abduction.

The task of natural language abduction for natural language understanding has been

studied for a long time Norvig 1983, 1987; Hobbs 2004; Hobbs et al. 1993; Wilensky

1983; Wilensky et al. 2000; Charniak and R. Goldman 1988; Charniak and R. P.

Goldman 1989. However, such works transform the natural language text to a logical

form and then use formal reasoning to perform the abduction. On the contrary, our

system performs abduction over natural language text without translating the texts to

a logical form.

154

9.3 Approach

Our approach involves six main modules: Hypothesis Generation, OpenBook Knowl-

edge Extraction, Abductive Information Retrieval, Information Gain based Re-ranking,

Passage Selection and Question Answering. A key aspect of our approach is to accu-

rately hunt the needed knowledge facts from the OpenBook knowledge corpus and

hunt missing common knowledge using IR. We explain our approach in the example

given in Table 32.

Question: A red-tailed hawk is searching
for prey. It is most likely to swoop down
on what? (A) a gecko
Generated Hypothesis :
H : A red-tailed hawk is searching for prey.
It is most likely to swoop down on a gecko.
Retrieved Fact from OpenBook:
F : hawks eat lizards
Abduced Query to find missing knowl-
edge:
K : gecko is lizard
Retrieved Missing Knowledge using
IR:
K : Every gecko is a lizard.

Table 32: Our approach with an example for the correct option

In Hypothesis Generation, our system generates a hypothesis Hij for the ith question

and jth answer option, where j ∈ {1, 2, 3, 4}. In OpenBook Knowledge Extraction,

our system retrieves appropriate knowledge Fij for a given hypothesis Hij using

semantic textual similarity, from the OpenBook knowledge corpus F. In Abductive

Information Retrieval, our system abduces missing knowledge from Hij and Fij. The

system formulates queries to perform IR to retrieve missing knowledge Kij. With

155

Figure 20: Our approach

the retrieved Kij, Fij, Information Gain based Re-ranking and Passage Selection our

system creates a knowledge passage Pij. In Question Answering, our system uses Pij

to answer the questions using a BERT Large based MCQ model, similar to its use in

solving SWAG Zellers et al. 2018.

9.3.1 Hypothesis Generation

Our system creates a hypothesis for each of the questions and candidate answer

options as part of the data preparation phase as shown in the example in Table 32.

The questions in the OpenBookQA dataset are either with wh word or are incomplete

statements. To create hypothesis statements for questions with wh words, we use the

rule-based model of demszky2018transforming. For the rest of the questions, we

concatenate the questions with each of the answers to produce the four hypotheses.

This has been done for all the training, test and validation sets.

9.3.2 OpenBook Knowledge Extraction

To retrieve a small set of relevant knowledge facts from the knowledge corpus F, a

textual similarity model is trained in a supervised fashion on two different datasets

156

and the results are compared. We use the large-cased BERT Devlin et al. 2018 (BERT

Large) as the textual similarity model.

9.3.2.1 BERT Model Trained on STS-B

We train it on the semantic textual similarity (STS-B) data from the GLUE dataset

A. Wang et al. 2018. The trained model is then used to retrieve the top ten knowledge

facts from corpus F based on the STS-B scores. The STS-B scores range from 0 to

5.0, with 0 being least similar.

9.3.2.2 BERT Model Trained on OpenBookQA

We generate the dataset using the gold OpenBookQA facts from F for the train and

validation set provided. To prepare the train set, we first find the similarity of the

OpenBook F facts with respect to each other using the BERT model trained on STS-B

dataset. We assign a score 5.0 for the gold F̂i fact for a hypothesis. We then sample

different facts from the OpenBook and assign the STS-B similarity scores between

the sampled fact and the gold fact F̂i as the target score for that fact Fij and Hij. For

example:

157

Hypothesis : Frilled sharks and angler fish live

far beneath the surface of the ocean, which is

why they are known as Deep sea animals.

Gold Fact : deep sea animals live deep in the

ocean : Score : 5.0

Sampled Facts :

coral lives in the ocean : Score : 3.4

a fish lives in water : Score : 2.8

We do this to ensure a balanced target score is present for each hypothesis and fact.

We use this trained model to retrieve top ten relevant facts for each Hij from the

knowledge corpus F.

9.3.3 Natural Language Abduction and IR

To search for the missing knowledge, we need to know what we are missing. We

use “abduction” to figure that out. Abduction is a long studied task in AI, where

normally, both the observation (hypothesis) and the domain knowledge (known fact)

is represented in a formal language from which a logical solver abduces possible

explanations (missing knowledge). However, in our case, both the observation and

the domain knowledge are given as natural language sentences from which we want

to find out a possible missing knowledge, which we will then hunt using IR. For

example, one of the hypothesis Hij is “A red-tailed hawk is searching for prey. It is

most likely to swoop down on a gecko.”, and for which the known fact Fij is “hawks

eats lizards”. From this we expect the output of the natural language abduction system

to be Kij or “gecko is a lizard”. We will refer to this as “natural language abduction”.

158

For natural language abduction, we propose three models, compare them against a

baseline model and evaluate each on a downstream question answering task. All the

models ignore stop words except the Seq2Seq model. We describe the three models

and a baseline model in the subsequent subsections.

9.3.3.1 Word Symmetric Difference Model

We design a simple heuristic based model defined as below:

Ki j = (Hi j ∪ Fi j) \ (Hi j ∩ Fi j) ∀ j ∈ {1, 2, 3, 4}

where i is the ith question, j is the jth option, Hi j, Fi j, Ki j represents set of unique

words of each instance of hypothesis, facts retrieved from knowledge corpus F and

abduced missing knowledge of validation and test data respectively.

9.3.3.2 Supervised Bag of Words Model

In the Supervised Bag of Words model, we select words which satisfy the following

condition:

P(wn ∈ Ki j) > θ

where wn ∈ {Hi j ∪ Fi j}. To elaborate, we learn the probability of a given word wn

from the set of words in Hi j ∪ Fi j belonging to the abduced missing knowledge Ki j.

We select those words which are above the threshold θ.

To learn this probability, we create a training and validation dataset where the words

similar (cosine similarity using spaCy) Honnibal and Montani 2017 to the words in

the gold missing knowledge K̂i (provided in the dataset) are labelled as positive class

and all the other words not present in K̂i but in Hi j ∪ Fi j are labelled as negative class.

159

Both classes are ensured to be balanced. Finally, we train a binary classifier using

BERT Large with one additional feed forward network for classification. We define

value for the threshold θ using the accuracy of the classifier on validation set. 0.4 was

selected as the threshold.

9.3.3.3 Copynet Seq2Seq Model

In the final approach, we used the copynet sequence to sequence model Gu et al. 2016

to generate, instead of predict, the missing knowledge given, the hypothesis H and

knowledge fact from the corpus F. The intuition behind using copynet model is

to make use of the copy mechanism to generate essential yet precise (minimizing

distractors) information which can help in answering the question. We generate

the training and validation dataset using the gold K̂i as the target sentence, but we

replace out-of-vocabulary words from the target with words similar (cosine similarity

using spaCy) Honnibal and Montani 2017 to the words present in Hi j ∪ Fi j. Here,

however, we did not remove the stopwords. We choose one, out of multiple generated

knowledge based on our model which provided maximum overlap_score, given by

overlap_score =

∑
i count((Ĥi ∪ Fi) ∩ Ki)∑

i count(K̂i)

where i is the ith question, Ĥi being the set of unique words of correct hypothesis,

Fi being the set of unique words from retrieved facts from knowledge corpus F, Ki

being the set of unique words of predicted missing knowledge and K̂i being the set of

unique words of the gold missing knowledge .

160

9.3.3.4 Word Union Model

To see if abduction helps, we compare the above models with a Word Union Model.

To extract the candidate words for missing knowledge, we used the set of unique

words from both the hypothesis and OpenBook knowledge as candidate keywords.

The model can be formally represented with the following:

Ki j = (Hi j ∪ Fi j) ∀ j ∈ {1, 2, 3, 4}

9.3.4 Information Gain based Re-ranking

In our experiments we observe that, BERT QA model gives a higher score if sim-

ilar sentences are repeated, leading to wrong classification. Thus, we introduce

Information Gain based Re-ranking to remove redundant information.

We use the same BERT Knowledge Extraction model Trained on OpenBookQA data

(section 9.3.2.2), which is used for extraction of knowledge facts from corpus F

to do an initial ranking of the retrieved missing knowledge K. The scores of this

knowledge extraction model is used as relevancy score, rel. To extract the top ten

missing knowledge K, we define a redundancy score, redi j , as the maximum cosine

similarity, sim, between the previously selected missing knowledge, in the previous

iterations till i, and the candidate missing knowledge K j. If the last selected missing

knowledge is Ki, then

redi j(K j) = max(redi−1, j(K j), sim(Ki,K j))

rank_score = (1 − redi, j(K j)) ∗ rel(K j)

For missing knowledge selection, we first take the missing knowledge with the highest

rel score. From the subsequent iteration, we compute the redundancy score with the

161

last selected missing knowledge for each of the candidates and then rank them using

the updated rank_score. We select the top ten missing knowledge for each Hij.

9.3.5 Question Answering

Once the OpenBook knowledge facts F and missing knowledge K have been extracted,

we move onto the task of answering the questions.

9.3.5.1 Question-Answering Model

We use BERT Large model for the question answering task. For each question,

we create a passage using the extracted facts and missing knowledge and fine-tune

the BERT Large model for the QA task with one additional feed-forward layer for

classification. The passages for the train dataset were prepared using the knowledge

corpus facts, F. We create a passage using the top N facts, similar to the actual gold

fact F̂i, for the train set. The similarities were scored using the STS-B trained model

(section 9.3.2.1). The passages for the training dataset do not use the gold missing

knowledge K̂i provided in the dataset. For each of our experiments, we use the same

trained model, with passages from different IR models.

The BERT Large model limits passage length to be lesser than equal to 512. This

restricts the size of the passage. To be within the restrictions we create a passage for

each of the answer options, and score for all answer options against each passage. We

refer to this scoring as sum score, defined as follows:

For each answer options, A j, we create a passage P j and score against each of the

answer options Ai. To compute the final score for the answer, we sum up each

162

F Any Passage Correct Passage Accuracy(%)
N TF-IDF Trained STS-B TF-IDF Trained STS-B TF-IDF Trained STS-B
1 228 258 288 196 229 234 52.6 63.6 59.2
2 294 324 347 264 293 304 57.4 66.2 60.6
3 324 358 368 290 328 337 59.2 65.0 60.2
5 350 391 398 319 370 366 61.6 65.4 62.8
7 356 411 411 328 390 384 59.4 65.2 61.8

10 373 423 420 354 405 396 60.4 65.2 59.4

Table 33: Compares (a) The number of correct facts that appears across any four passages
(b) The number of correct facts that appears in the passage of the correct hypothesis (c) The
accuracy for TF-IDF, BERT model trained on STS-B dataset and BERT model trained on
OpenBook dataset. N is the number of facts considered.

individual scores. If Q is the question, the score for the answer is defined as

Pr(Q, Ai) =

4∑
j=1

score(P j,Q, Ai)

where score is the classification score given by the BERT Large model. The final

answer is chosen based on,

A =A Pr(Q, Ai)

9.3.5.2 Passage Selection and Weighted Scoring

In the first round, we score each of the answer options using a passage created from the

selected knowledge facts from corpus F. For each question, we ignore the passages of

the answer options which are in the bottom two. We refer to this as Passage Selection.

In the second round, we score for only those passages which are selected after adding

the missing knowledge K.

We assume that the correct answer has the highest score in each round. Therefore we

multiply the scores obtained after both rounds. We refer to this as Weighted Scoring.

163

We define the combined passage selected scores and weighted scores as follows :

Pr(F,Q, Ai) =

4∑
j=1

score(P j,Q, Ai)

where P j is the passage created from extracted OpenBook knowledge, F. The top two

passages were selected based on the scores of Pr(F,Q, Ai).

Pr(F ∪K,Q, Ai) =

4∑
k=1

δ ∗ score(Pk,Q, Ai)

where δ = 1 for the top two scores and δ = 0 for the rest. Pk is the passage created

using both the facts and missing knowledge. The final weighted score is :

wPr(Q, Ai) = Pr(F,Q, Ai) ∗ Pr(F ∪K,Q, Ai)

The answer is chosen based on the top weighted scores as below:

A =A wPr(Q, Ai)

9.4 Experiments

9.4.1 Dataset and Experimental Setup

The dataset of OpenBookQA contains 4957 questions in the train set and 500 multiple

choice questions in validation and test respectively. We train a BERT Large based

QA model using the top ten knowledge facts from the corpus F, as a passage for

both training and validation set. We select the model which gives the best score

for the validation set. The same model is used to score the validation and test set

with different passages derived from different methods of Abductive IR. The best

Abductive IR model, the number of facts from F and K are selected from the best

validation scores for the QA task.

164

9.4.2 OpenBook Knowledge Extraction

Question: .. they decide the best way to save money is ? (A) to quit eating lunch out (B) to

make more phone calls (C) to buy less with monopoly money (D) to have lunch with friends

Knowledge extraction trained with STS-B:

using less resources usually causes money to be saved

a disperser disperses

each season occurs once per year

Knowledge extraction trained with OpenBookQA:

using less resources usually causes money to be saved

decreasing something negative has a positive impact on a thing

conserving resources has a positive impact on the environment

Table 33 shows a comparative study of our three approaches for OpenBook knowledge

extraction. We show, the number of correct OpenBook knowledge extracted for all

of the four answer options using the three approaches TF-IDF, BERT model trained

on STS-B data and BERT model Trained on OpenBook data. Apart from that, we

also show the count of the number of facts present precisely across the correct answer

options. It can be seen that the Precision@N for the BERT model trained on OpenBook

data is better than the other models as N increases.

The above example presents the facts retrieved from BERT model trained on Open-

Book which are more relevant than the facts retrieved from BERT model trained on

STS-B. Both the models were able to find the most relevant fact, but the other facts for

STS-B model introduce more distractors and have lesser relevance. The impact of this

is visible from the accuracy scores for the QA task in Table 33 . The best performance

of the BERT QA model can be seen to be 66.2% using only OpenBook facts.

165

9.4.3 Abductive Information Retrieval

We evaluate the abductive IR techniques at different values for number of facts from

F and number of missing knowledge K extracted using IR. Figure 21 shows the

accuracy against different combinations of F and K , for all four techniques of IR

prior to Information gain based Re-ranking. In general, we noticed that the trained

models performed poorly compared to the baselines. The Word Symmetric Difference

model performs better, indicating abductive IR helps. The poor performance of the

trained models can be attributed to the challenge of learning abductive inference.

For the above example it can be seen, the pre-reranking facts are relevant to the

question but contribute very less considering the knowledge facts retrieved from the

corpus F and the correct answer. Figure 22 shows the impact of Information gain

based Re-ranking. Removal of redundant data allows the scope of more relevant

information being present in the Top N retrieved missing knowledge K.

Question: A red-tailed hawk is searching for prey. It is most likely to swoop down on what?

(A) an eagle (B) a cow (C) a gecko (D) a deer

Fact from F : hawks eats lizards

Pre-Reranking K :

red-tail hawk in their search for prey

Red-tailed hawks soar over the prairie and woodlands in search of prey.

Post-Reranking K:

Geckos - only vocal lizards.

Every gecko is a lizard.

166

Figure 21: Accuracy v/s Number of facts from F - number of facts from K, without
Information Gain based Re-ranking for 3 abductive IR models and Word Union model.

Figure 22: Accuracy v/s Number of facts from F - number of facts from K, with Information
Gain based Re-ranking for 3 abductive IR models and Word Union model.

9.4.4 Question Answering

Table 34 shows the incremental improvement on the baselines after inclusion of

carefully selected knowledge.

Passage Selection and Weighted Scoring are used to overcome the challenge of

boosted prediction scores due to cascading effect of errors in each stage.

167

Solver Accuracy (%)
Leaderboard
Guess All (“random) 25.0
Plausible Answer Detector 49.6
Odd-one-out Solver 50.2
Question Match 50.2
Reading Strategies 55.8
Model - BERT-Large (SOTA)
Only Question (No KB) 60.4
Model - BERT-Large (Our)
F - TF-IDF 61.6
F - Trained KE 66.2
F ∪K 70.0
F ∪K with Weighted Scoring 70.4
F ∪K with Passage Selection 70.8
F ∪K with Both 72.0
Oracle - BERT-Large
F gold 74.4
F ∪K gold 92.0

Table 34: Test Set Comparison of Different Components. Current state of the art (SOTA) is
the Only Question model. K is retrieved from Symmetric Difference Model. KE refers to
Knowledge Extraction.

Question: What eat plants? (A) leopards (B) eagles (C) owls (D) robin

Appropriate extracted Fact from F : some birds eat plants

Wrong Extracted Fact from F : a salamander eats insects

Wrong Retrieved Missing Knowledge: Leopard geckos eat mostly insects

For the example shown above, the wrong answer leopards had very low score with only

the facts extracted from knowledge corpus F. But introduction of missing knowledge

from the wrong fact from F boosts its scores, leading to wrong prediction. Passage

selection helps in removal of such options and Weighted Scoring gives preference to

168

those answer options whose scores are relatively high before and after inclusion of

missing knowledge.

9.5 Analysis & Discussion

9.5.1 Model Analysis

BERT Question Answering model: BERT performs well on this task, but is prone

to distractions. Repetition of information leads to boosted prediction scores. BERT

performs well for lookup based QA, as in RCQA tasks like SQuAD. But this poses a

challenge for Open Domain QA, as the extracted knowledge enables lookup for all

answer options, leading to an adversarial setting for lookup based QA. This model is

able to find the correct answer, even under the adversarial setting, which is shown by

the performance of the sum score to select the answer after passage selection.

Symmetric Difference Model This model improves on the baseline Word Union

model by 1-2%. The improvement is dwarfed because of inappropriate domain knowl-

edge from F being used for abduction. The intersection between the inappropriate

domain knowledge and the answer hypothesis is ∅, which leads to queries which are

exactly same as the Word Union model.

Supervised learned models The supervised learned models for abduction under-

perform. The Bag of Words and the Seq2Seq models fail to extract keywords for

many F −H pairs, sometimes missing the keywords from the answers. The Seq2Seq

model sometimes extracts the exact missing knowledge, for example it generates

“some birds is robin” or “lizard is gecko”. This shows there is promise in this approach

3No Passage Selection and Weighted Scoring.

169

and the poor performance can be attributed to insufficient train data size, which was

4957 only. A fact verification model might improve the accuracy of the supervised

learned models. But, for many questions, it fails to extract proper keywords, copying

just a part of the question or the knowledge fact.

9.5.2 Error Analysis

Other than errors due to distractions and failed IR, which were around 85% of the

total errors, the errors seen are of four broad categories.

Temporal Reasoning: In the example 4 shown below, even though both the options

can be considered as night, the fact that 2:00 AM is more suitable for the bats than

6:00 PM makes it difficult to reason. Such issues accounted for 5% of the errors.

Question: Owls are likely to hunt at?

(A) 3:00 PM (B) 2:00 AM (C) 6:00 PM (D) 7:00 AM

Negation: In the example shown below, a model is needed which handles negations

specifically to reject incorrect options. Such issues accounted for 1% of the errors.

Question: Which of the following is not an input in photosynthesis? (A) sunlight (B)

oxygen (C) water (D) carbon dioxide

Conjunctive Reasoning: In the example as shown below, each answer options are

partially correct as the word “ bear” is present. Thus a model has to learn whether all

parts of the answer are true or not, i.e Conjunctive Reasoning. Logically, all answers

are correct, as we can see an “or”, but option (A) makes more sense. Such issues

4Predictions are in italics, Correct answers are in Bold.

170

accounted for 1% of the errors.

Question: Some berries may be eaten by (A) a bear or person (B) a bear or shark (C) a

bear or lion (D) a bear or wolf

Qualitative Reasoning: In the example shown below, each answer options would

stop a car but option (D) is more suitable since it will stop the car quicker. A deeper

qualitative reasoning is needed to reject incorrect options. Such issues accounted for

8% of the errors.

Question: Which of these would stop a car quicker? (A) a wheel with wet brake pads (B)

a wheel without brake pads (C) a wheel with worn brake pads (D) a wheel with dry brake

pads

171

Chapter 10

EXPLORING WAYS TO INCORPORATE ADDITIONAL KNOWLEDGE TO

IMPROVE NATURAL LANGUAGE COMMONSENSE QUESTION

ANSWERING

10.1 Introduction

Continuing from previous chapter here I will describe my analysis and experiments

with the three remaining category 3 tasks.

In recent months language models such as GPT Radford et al. 2018, BERT Devlin

et al. 2019 and their variants (such as RoBERTa Liu et al. 2019) that have been

pre-trained on Wikipedia articles and books are able to perform very well on many

of the natural language question answering tasks. Most often they do better than

models specifically designed for specific datasets and these days they form the defacto

base line for most new datasets that are proposed. Some times, they even perform

at superhuman level, on newly proposed natural language QA datasets Rajpurkar

et al. 2016; Zellers et al. 2018. These models do well even on some of the question

answering tasks where question answering seemingly requires knowledge beyond

what is given in the QA items. Perhaps it is because some of the needed knowledge

that may be present in textual form is “encapsulated” by the language model based

systems as they are trained on huge text corpora. But one may wonder whether

more can be done; i.e., can the performance be improved by further infusion of

the needed knowledge (or a knowledge base containing the needed knowledge),

and what are ways of doing such knowledge infusion. Few months back DARPA

172

and Allen AI upped the ante by developing several question answering challenges

where commonsense knowledge and reasoning with them is expected to play an

important rule. The expected additional challenge in these domains is that often

commonsense knowledge is not readily available in textual form. To answer the

above mentioned questions I consider three of those QA challenges: Abductive NLI,

Physical Interaction QA and Social Interaction QA.

In this chapter, I explore ways to infuse knowledge into any language model to

reason and solve multiple choice question answering task. Considering a baseline

performance of BERT whole-word-masked model, I improve the performance on

each of the datasets with three strategies. First, in revision strategy, I fine-tune the

BERT model on a knowledge-base (KB) which has knowledge statements relevant to

that of each of the datasets and then use the model to answer questions. In the second,

Open-Book Strategy, I choose a certain number of knowledge statements from the KB

that are textually similar to each of the samples of the datasets. Then I fine-tune the

pre-trained BERT model for the question answering task to choose the answer. In

the final strategy, I take the advantage of both the above mentioned strategies. I first

fine-tune the pre-trained BERT model on the KB and then use additional knowledge

extracted for each sample for the question-answering.

To use the extracted knowledge from the KB, I propose five models, concat, max,

simple sum, weighted sum, mac. Each of the models use knowledge in a different way

to choose the correct answer among the options.

Apart from these I have created a dataset, Parent and Family QA. The first dataset

is intended to test BERT’s memorizing ability for MCQ questions in a controlled

environment, while the other is to test BERT’s ability for answering MCQ questions

with necessary information scattered over multiple knowledge sentences.

173

Figure 23: Examples of Abductive NLI, Social IQA, Physical IQA and Parent & Family
QA datasets with retrieved knowledge

10.2 MCQ Datasets

For the study of how to incorporate knowledge, we need datasets which are shown to

need external knowledge for question-answering systems to be able to answer. We

chose four datasets to evaluate our models, each with a different kind of common

sense knowledge. Out of the four, three are made publicly available recently by

Allen AI researchers and one is generated synthetically. To incorporate additional

knowledge, we choose appropriate knowledge bases that are relevant to each of the

datasets. The knowledge paragraphs are retrieved using Information Retrieval and

Re-ranking methods.

174

10.2.1 Datasets

10.2.1.1 Abductive Natural Language Inference (aNLI)

This benchmark dataset Bhagavatula et al. 2019 is intended to judge potential of an

AI system to do abductive reasoning and common sense in order to form possible

explanations for a given set of observations. The dataset consists of a total of 169,654

training examples and 1532 validation examples. Given a pair of observations (O1)

and (O2), the task is to find which of the hypothesis options (H1) or (H2) better

explains the observations.

10.2.1.2 Physical Interaction QA

This commonsense QA benchmark is created to evaluate the physics reasoning ca-

pability of an AI system. The dataset requires reasoning about the use of physical

objects and how we use them in our daily life. Given a goal (G) and a pair of choices

(C1) and (C2), the task is to predict the choice which is most relevant to the goal (G).

There are 16,113 training and 1,838 validation samples.

10.2.1.3 Social Interaction QA

The dataset is a collection of instances about reasoning on social interaction and the

social implications of their statements. Given a context (C) of a social situation and a

question (Q) about the situation, the task is to choose the most appropriate answer

options (AOi) out of three choices. There are several question types in this datasets,

175

which are derived from ATOMIC inference dimensions Sap, Rashkin, et al. 2019; Sap,

Le Bras, et al. 2019. In total, there are 33,410 training and 1,954 validation samples.

10.2.1.4 Parent and Family QA

We synthetically create this dataset to test both, the memorizing capability of neural

language models and the ability to combine knowledge spread over multiple sentences.

The knowledge retrieved for the three datasets mentioned in the above subsections,

may be error prone and in some cases, absent. This is due to the errors from the

Information Retrieval step. We create this synthetic dataset to have a better control

over the knowledge and ensure we do have the appropriate knowledge to answer the

questions.

The source of this dataset is DBPedia Auer et al. 2007, from which we query for

people and extract their parent information. Using this information, we generate 3

kinds of questions, which are, Who is the parent of X?, Who is the grandparent of X?

and Who is the sibling of X?. The dataset has a question (Q) and 4 answer options

(AOi). The names of a parent and their family members have many things in common,

which can be used to answer such a question. To make the task harder, we remove

middle and last names from the answer options. To select wrong answer options, we

select those names which are at an edit distance of one or two. This ensures, all the

answer options are nearly same, and to actually answer the question, the system needs

to have the appropriate knowledge. We also ensure all three kinds of questions for a

particular person be present in that particular training or validation set. In total, there

are 7,4035 training, 9,256 validation and 9,254 test questions.

176

10.2.2 Knowledge Sources

Reasoning with data from each of the above mentioned datasets, needs some com-

monsense knowledge. I choose four different knowledge bases for each of them.

For aNLI, we retrieve knowledge from the Story Cloze Test and ROCStories Corpora

Mostafazadeh et al. 2016. Most of the examples in aNLI are based on everyday life

stories which depict commonsense relations among daily life activities. Corpora

consists of set of five sentence stories about daily life events. These are suitable for

the situations present in the aNLI dataset. There are 101903 stories in the entire

corpora consisting of ROCStories winter 2017 set, ROCStories spring 2016 set, Story

Cloze Test Spring 2016 validation and test set.

Wikihow dataset Koupaee and Wang 2018 is an ideal commonsense knowledge-base

for solving questions of PhysicalIQA dataset. This is a large collection of paragraphs

of detailed steps or actions needed to complete a task. The answers of these How

type questions mostly deals with interactions of humans with physical objects in our

surroundings in everyday life. We selected only the titles and headlines from the

answers of around 214,544 questions from the dataset and cleaned them to create

paragraphs. We ignored the details of each points to reduce the volume of the

knowledge.

For Social IQA, we synthetically generate a knowledge-base from the events and

inference dimensions provided by the ATOMIC dataset Sap, Le Bras, et al. 2019.

The ATOMIC dataset contains events and eight types of if-then inferences. The total

number of events are 732,723. Some events are masked, which we fill by using a

BERT Large model and the Masked Language Modelling task Devlin et al. 2019. We

177

extend the knowledge source, and replace PersonX and PersonY, as present in the

original ATOMIC dataset, using gender neutral names.

For Parent and Family QA, we already possess the gold knowledge sentences. The

knowledge for these questions are represented with a simple sentence, The parent of

X is Y. We do not provide knowledge sentences for questions about grandparents and

siblings. To answer such questions, the systems need to combine information spread

over multiple sentences. Nearly all language models are trained over Wikipedia, so

all language models would have seen this knowledge.

10.2.3 Relevant Knowledge Extraction

For knowledge retrieval, we use a similar approach as in Banerjee et al. 2019. We first

use an information retrieval model and then re-rank using Information Gain based

Re-ranking. The query is generated using a simple heuristic of unique non-stopwords

present in the question, answer option and context if present. For each dataset, we

select the top ten knowledge sentences.

Examples of each dataset and their retrieved knowledge from respective KBs are

shown in Figure 23.

10.3 Standard BERT MCQ Model

After extracting relevant knowledge from the respective KBs, we move onto the task

of Question Answering. In all our experiments we use BERT’s uncased whole-word-

masked model (BERTUWWM) Devlin et al. 2019.

178

10.3.1 Question Answering Model

As a baseline model, we used pre-trained BERTUWWM for the question answering task

with an extra feed-forward layer for classification as a fine-tuning step.

10.4 Modes of Knowledge Infusion

We experiment with five different models of using knowledge with the standard BERT

architecture for the open-book strategy. Each of these modules take as input a problem

instance which contains a question Q, n answer choices a1, ..., an and a list called

premises of length n. Each element in premises contains m number of knowledge

passages which might be useful while answering the question Q. Let ki j denotes the

j-th knowledge passage for the i-th answer option. Each model computes a score

score(i) for each of the n answer choices. The final answer is the answer choice that

receives the maximum score. Here, we describe how the different models compute

the scores differently.

10.4.1 Concat

In this model, all the m knowledge passages for the i − th choice is joined together to

make a single knowledge passage ki. The sequence of tokens {[CLS] Ki [SEP] Qai

[SEP]} is then passed to BERT to pool the [CLS] embedding from the last layer. This

way we get n [CLS] embeddings for n answer choices, each of which is projected to a

real number (score(i)) using a linear layer.

179

10.4.2 Parallel-Max

For each answer choice ai, it uses each of the knowledge passage ki j to create the

sequence {[CLS] Ki j [SEP] Qai [SEP]} which is then passed to the BERT model

to obtain the [CLS] embedding from the last layer which is then projected to a real

number using a linear layer. score(i) is then taken as the maximum of the m scores

obtained using each of the m knowledge passage.

10.4.3 Simple Sum

Unlike the previous model, simple sum and the next two models assume that the

information is scattered over multiple knowledge passages and try to aggregate those

scattered information. To do this, the simple sum model, for each answer choice ai

and each of the knowledge passage ki j creates the sequence {[CLS] Ki j [SEP] Qai

[SEP]} which it then passes to the BERT model to obtain the [CLS] embedding from

the last layer. All of these m vectors are then summed to find the summary vector,

which then is projected to a scalar using a linear layer to obtain the score(i).

10.4.4 Weighted Sum

The weighted sum model unlike the simple sum computes a weighted sum of the

[CLS] embeddings as some of the knowledge passage might be more useful than

others. It computes the [CLS] embeddings in a similar way to that of the simple sum

model. It computes a scalar weight wi j for each of the m [CLS] embedding using a

linear projection layer which we will call as the weight layer. The weights are then

180

normalized through a softmax layer and used to compute the weighted sum of the

[CLS] embeddings. It then uses (1) a new linear layer or (2) reuses the weight layer

(tied version) to compute the final score score(i) for the option ai. We experiment

with both of these options.

10.4.5 MAC

The Multi-Sentence Alignment Classification (MAC) model, similar to the weighted

sum model, computes a weight-sum of the m [CLS] embeddings however with an

additional weight-adjustment step. It first obtains a score wi j for a knowledge passage

ki j following the weighted sum model and normalize them with a softmax. It then

reduces the normalized scores further using the following formula:

w′i j = wi j − (1 − wi j) ∗ max j,l∧l∈{1...m}{link_strengthi jl} (10.1)

Here, link_strengthi jl ∈ [0, 1] captures how well the two knowledge passage ki j and kil

can be “joined” in the sense of joining rows of two tables. Intuitively we want a high

link strength score between the two knowledge passages “Facebook was launched in

Cambridge“ and “Cambridge is in MA” but the score should be less for “Facebook

was launched in Cambridge“ and “Boston is in MA”. If two knowledge passage has

good link strength score then probably they can be joined to infer new information

such as “Facebook was launched in MA“. The intuition of the weight reduction in

equation 10.1 is that if kil is not strong enough to support the answer choice ai and it

cannot be “joined” with another knowledge passage then probably there is no need to

consider it during the final prediction stage. See that if wi j is too close to 1 i.e. if a

ki j is very informative, the penalty because of “joinable“ or not is negligible. It only

becomes prominent when wi j neither too low or too high.

181

Dataset Strategy Concat Max Sim-Sum Wtd-Sum Mac

Abductive NLI
Only Openbook 73.89 73.69 73.50 73.26 73.69
Only Revision 72.65 NA NA NA NA

Revision & Openbook 74.35 74.28 74.02 75.13 74.15

Physical IQA
Only Openbook 67.84 72.41 72.58 72.52 75.52
Only Revision 74.53 NA NA NA NA

Revision & Openbook 67.74 73.83 76.76 76.82 75.46

Social IQA
Only Openbook 70.22 67.75 70.21 69.96 70.26
Only Revision 69.45 NA NA NA NA

Revision & Openbook 68.80 66.56 68.86 69.29 70.01

Parent & Family QA
Only Openbook 91.21 89.8 93.16 91.96 91.15
Only Revision 78.30 NA NA NA NA

Revision & Openbook 87.21 91.92 93.32 90.63 91.20

Table 35: Performance of each of the five models (Concat, Max, simple sum, Weighted sum,
mac) across four datasets with external knowledge.

Dataset Model Dev Test

Abductive NLI
Baseline 67.36 66.75

Baseline (Ours) 70.36 NA
BestModel 75.13 74.96

Physical IQA
Baseline 70.89 69.23

Baseline (Ours) 71.44 NA
BestModel 75.63 72.28

Social IQA
Baseline 66.00 64.50

Baseline (Ours) 68.86 NA
BestModel 70.36 67.53

Parent & Family QA
Baseline NA NA

Baseline (Ours) 77.85 76.96
BestModel 93.32 91.24

Table 36: Performance of the best knowledge infused model on the Test set. State-of-the-art
models are in bold.

The link strength score link_strengthi jl can be computed in different ways. Here we

show a memory-efficient way. Since, loading BERT itself takes lot of memory if we

create sequences like {[CLS] Ki j [SEP] kil [SEP]} to compute the link_strengthi jl

score, it will add a lot of memory overhead and if m is big, it might throw memory

exceptions. Here we show how we compute the link strength scores from the BERT

outputs of the {[CLS] ki j [SEP] Qai [SEP]} sequences without producing any addi-

tional {[CLS] Ki j [SEP] kil [SEP]} sequences. We take the last layer output from the

BERT model and use the segment id information (see that segment id for the tokens

182

starting from [CLS] to the first [SEP] token is 0 and is 1 for the remaining tokens)

to extract only the token embeddings that belongs to the knowledge passage ki j. Let

h1
i j, ..., h

p
i j be those token embeddings. We compute a link vector linki j from these

token embeddings for the the knowledge passage ki j. The score link_strengthi jl is

then computed as follows:

link_strengthi jl =
exp(linkT

i j linkil)∑x=1...m
x, j exp(linkT

i j linkix)

To compute the link vector linki j we first pass each token embedding ht
i j through a

linear layer which assigns a scalar score st
i j denoting whether ht

i j should be part of

link description linki j or not. The link vector is then calculated as follows:

linki j =

p∑
t=1

st
i j ∗ ht

i j

10.5 Related Works

Datasets like SQuAD Rajpurkar et al. 2016, TriviaQA Joshi et al. 2017, WikiQA

Yang, Yih, and Meek 2015, CoQA Reddy, Chen, and Manning 2019 have gained

enormous attention over the past few years. Various models have been proposed to

solve them. The questions from these datasets are easy to solve since the answers are

present in either the passages, contexts or in the options itself.

A more challenging task is, when the multiple choice questions do not have sufficient

knowledge to answer correctly given a passage, context or options like ARC Clark

et al. 2018, RACE Lai et al. 2017, OpenBook QA Mihaylov et al. 2018b. But the

language models trained on huge amount of data have been able to solve them quite

comfortably.

183

Our focus in this paper is on datasets which not only requires external facts but

also commonsense knowledge to predict the correct options like Abductive NLI

Bhagavatula et al. 2019, Physical IQA AI 2018 and Social IQA Sap, Rashkin, et

al. 2019.

10.6 Experiments

Let D be an MCQ dataset and T be a pre-trained language model, KD be a knowledge

base (a set of paragraphs or sentences) which is useful for D and let K be a general

knowledge base where T was pre-trained and K might or might not contain KD. We

took three approaches to infuse knowledge.

10.6.1 Revision Strategy

In this strategy, T is fine-tuned on KD with respect to Masked LM and next sentence

prediction task and then fine-tuned on the dataset D with respect to the Question

Answering task.

10.6.2 Open Book strategy

Here a subset of KD is assigned to each of the training samples on the dataset D and

the model T is fine-tuned on the modified dataset D.

184

10.6.3 Revision along with an Open Book Strategy

In this strategy, T is fine-tuned on KD with respect to Masked LM and next sentence

prediction task and also a subset of KD is assigned to each of the training samples on

D. The model is then fine-tuned with respect to the modified dataset as a Question

Answering task.

10.6.4 Results

Table 35 and Table 36 show summary of our experiments on the four datasets. We can

see knowledge helps in improving the performance of neural language models. Both

the Open Book and the Revision strategy works, together the performance improves

even further. We achieve state of the art performances on aNLI, Social IQA and

Physical IQA datasets.

The performance of the Revision strategy is poor for the Social IQA dataset. The

reason behind this drop in performance can be attributed to the synthetic nature of

the sentences and the unavailability of next sentence prediction task data. This leads

to a decrease in the performance of the language model. All the sentences in the KB

for Social IQA are single sentence statements, and not paragraphs. The results for

Physical IQA and Abductive NLI datasets are better due to the presence of natural

and contiguous knowledge sentences.

185

10.7 Discussion and Error Analysis

To understand how knowledge is used and whether the knowledge is useful or not, we

do the following analysis: For each of the datasets we have randomly selected 100

samples where our best performing model predicts correctly and 100 samples where

it has failed. We identified the following broad categories of analysis.

For the correct predictions, we check, (1) Exact appropriate knowledge is present,

(2) A related but relevant knowledge is present, (3) Knowledge is present only in the

correct option, and (4) No knowledge is present. Figure 24 shows the counts for the

above categories. All the cases do not occur in all the datasets.

Figure 24: Measure of performance across different knowledge presence in correct predic-
tions

For the errors (Figure 25), we analyze, (1) Is the knowledge insufficient, (2) Is the

knowledge present in the wrong answer, (3) Knowledge is appropriate but model fails,

and (4) Gold label is questionable.

We also analyze given appropriate knowledge, how the model performs. From Figure

24, it can be seen that BERT can answer quite a number of question without knowledge.

186

Figure 25: Measure of performance across different knowledge presence in incorrect
predictions.

Also from Figure 25, it is clear that inspite of having good knowledge, BERT fails to

answer correctly.

In the following subsections, we analyze the different dataset specific errors.

10.7.1 Social IQA

We measure the performance across the 8 different ATOMIC inference dimensions

for the best knowledge infused model. In figure 26 we can see both with and without

knowledge the model performs nearly equally across all dimensions. There is no

considerable improvement across any particular dimension.

In some cases the model fails to predict the correct answer inspite of the appropriate

knowledge being present.

187

Figure 26: Performance of the model with (MAC model) and without knowledge (Baseline)
across different types of ATOMIC inference dimensions.

Question: Kendall took their dog to the new dog park in the neighbor-

hood. . What will Kendall want to do next?

(A) walk the dog (B) meet other dog owners Knowledge: Jody takes

Jody’s dog to the dog park, as a result Jody wants to socialize with other

dog owners.

In the above example, the above knowledge was retrieved but still the model predicted

the wrong option. 341 questions were predicted wrongly after addition of knowledge.

We also identified out of the set of 100 analyzed correct predictions, 29% of the

questions had partial information relevant to the question.

10.7.2 Parent and Family QA

In Figure 27, we see with addition of knowledge, there is a considerable improvement

in performance. Other than questions asking about parents, which just need a look up

to answer, the sibling and grandparent questions need models to combine information

present across multiple sentences. We can see the model improves even in this

188

Figure 27: Performance of the model across the three different type of questions.

questions, showing knowledge infusion helps. Out of the three types of the questions,

the performance is lowest on the sibling questions, indicating that it is harder for

the models to perform this task. The model accuracy is reasonably good on this

dataset, which shows BERT has a strong capability to memorize factual knowledge.

Its performance improves with infusion of knowledge,

Here also, 1,790 questions which were previously predicted correctly, are predicted

wrong with addition of knowledge.

10.7.3 Physical IQA

Out of the 100 failures that we have analysed, we found that for 8 samples the

goal matches the knowledge statements but the answers present in the knowledge is

different. As for example,

Goal: How can I soothe my tongue if I burn it?

(A) Put some salt on it. (B) Put some sugar on it.

Knowledge: How to Soothe a Burnt Tongue.Chew a menthol chewing gum.

189

Also, there are 33 samples in the whole train and dev dataset for which the words in

one options are a subset of second option. In those cases, the knowledge retrieved is

same for both the options and this confuses the BERT model.

Goal: What can I drink wine out of if I don’t have a wine glass?

(A) Just pour the wine into a regular mug or glass and drink. (B) Just pour the

wine into a regular mug or wine glass and drink.

Knowledge: How to Serve Foie Gras. Pour a glass of wine.

On addition of knowledge, 359 samples have become correctly predicted with our

best model for Physical IQA dataset which were initially incorrect. But in the process,

166 samples which were correct in our baseline model have now been incorrectly

predicted.

10.7.4 Abductive NLI

In this dataset, we also have some examples where negative knowledge is being fed to

the model, and it still produces the correct output. There are 8 such examples among

the 100 samples we analyzed. For example:

190

Obs1: Pablo likes to eat worms.

Obs2: Pablo does not enjoy eating worms.

(Hyp1) Pablo thought that worms were a delicious source of protein. (Hyp2)

Pablo then learned what worms really are.

Knowledge: Pablo likes to eat worms. He read a book in school on how to do this.

He fries them in olive oil. He likes to do this at least once a month. Pablo enjoys

worms and views them as a delicacy.

Similarly, we have examples where knowledge favors incorrect hypothesis, however

our system still produces correct output. We found 12 such examples among the 100

samples we analyzed. For example:

Obs1: Dotty was being very grumpy.

Obs2: She felt much better afterwards.

(Hyp1) Dotty ate something bad. (Hyp2) Dotty call some close friends to chat.

Knowledge: Allie felt not so good last night. She ate too much. So she had to

sleep it off. Then she woke up. She felt so much better

We have 12 cases among 100 analyzed samples, where both hypothesis are very

similar. So,our system is unable to produce correct output. For example:

Obs1: Bob’s parents grounded him.

Obs2: He came back home but his parents didn’t even know he left.

(Hyp1) Bob got caught sneaking out. (Hyp2) Bob got away with sneaking out.

We also have 34 examples where incorrect hypothesis has more word similarity with

191

the observation and knowledge, whereas correct hypothesis has been paraphrased or

has less word similarity. The system predicts the wrong answer in such a situation.

One such example is:

Obs1: Mary’s mom came home with more bananas than they could possibly eat.

Obs2: That was the best way ever to eat a banana!

(Hyp1) Mary and her mom decided to make chocolate covered frozen ba-

nanas to avoid waste. (Hyp2) Mary made pineapple splits for everyone.

Knowledge: Mary s mom came home with more bananas than they could possibly

eat. She wondered why she had bought them all. Then after dinner that night she

got a surprise. Mom made banana splits for the whole family. That was the best

way ever to eat a banana

Another area where the system fails, is where the problem seems to be open-ended,

and many hypotheses can explain the pair of observations. It is tough to find exact

knowledge in such a scenario. For example,
Obs1: Lisa went for her routine bike ride.

Obs2: Some days turn out to be great adventures.

(Hyp1) Lisa spotted a cat and followed it off trail (Hyp2) Lisa saw a lot of great

food.

Knowledge: Lisa went for her routine bike ride.Only this time she noticed an

abandoned house.She stopped to look in the house.It was full of amazing old

antiques.Some days turn out to be great adventures.

192

10.8 Conclusion

In this work, we have evaluated different ways to incorporate knowledge into language

models. We have pushed the current state of the art of the three commonsense

knowledge tasks. We have provided five new models for multiple choice natural

language QA using knowledge and analyzed their performance on these commonsense

datasets. We also make a synthetic dataset available which measures the memorizing

and reasoning ability of language models.

We observe that, existing knowledge bases even though do not contain all the knowl-

edge that is needed to answer the questions, they do provide a significant amount of

knowledge. BERT, even though utilizes some of the knowledge, there are areas where

model can be further improved, particularly the ones where the knowledge is present

but the model could not answer, and where it predicted wrong answers with irrelevant

knowledge. Our future work is to analyze the source of this errors and try to explore

possible solutions.

193

Chapter 11

FUTURE WORK & CONCLUSION

In this thesis, I have presented two new paradigms for knowledge based NLU systems

and showed their efficacy with experiments on several datasets. Particularly, I have

shown with the help of the scalable Inductive Logic Programming (ILP) algorithm,

which I have developed as part of this research, it is possible to build knowledge

based NLU systems using LKR framework which achieve state-of-the-art accuracy

on various question answering datasets. However, the current ILP algorithm updates

its hypothesis by looking at one example. This has drawbacks similar to that of a

stochastic gradient descent when the batch size is 1. Thus, one of the future work is

to parallaly look over multiple examples and make an update which works well for

most of them.

The proposed framework of TKR that allows declarative programming over text

requires the knowledge to be given as a logic program. However, sometimes such

knowledge (rules) might be described in natural language sentences. One of my

future work is to extend the TKR framework to such scenarios. The dataset of Quartz

is a potential application requiring such functionality. Figure 28 shows an example

problem from this dataset. The task is to retrieve a suitable knowledge such as “More

pollutants mean poorer air quality.” from a given knowledge base and then use it to

answer the question.

One of my main goal is to extend my solutions to cover the category 3 questions. One

possible approach to achieve it is to understand the latent structures that are present in

194

Figure 28: A sample question from the Quartz dataset. The task is to retrieve a suitable
knowledge such as More pollutants mean poorer air quality from a given knowledge base
and then use it to answer the question.

pre-trained models. If such structures can be exploited to perform relational reasoning,

it will not be much difficult to enable interpretable relational learning.

11.1 Conclusion

The initial popularity of Knowledge based Natural Language Understanding (NLU)

systems, which was inspired by the original goals of AI, gradually decreased due to

the knowledge bottleneck and the lack of good parsers. The reality that the knowledge

based language understanding requires high quality machine-tractable knowledge

which is expensive to build favoured supervised statistical machine learning. However,

if the required knowledge can be learned at scale from the big noisy machine learning

datasets the knowledge bottleneck can be successfully addressed. This proposal is a

work towards this direction. A scalable learning algorithm has been developed that

can learn Answer Set Programs from large noisy datasets. Also a technique to reason

over text with rules in background has been developed. One further step to enable

learning from text without parsing is needed to be done to make Knowledge based

Natural Language Understanding (NLU) systems as applicable as the deep learning

based systems.

195

REFERENCES

AI, Allen. 2018. “Physical IQA.” URL https://allenai.org/.

Athakravi, Duangtida, Dalal Alrajeh, Krysia Broda, Alessandra Russo, and Ken
Satoh. 2015. “Inductive learning using constraint-driven bias.” In Inductive Logic
Programming, 16–32. Springer, Cham.

Athakravi, Duangtida, Domenico Corapi, Krysia Broda, and Alessandra Russo. 2013.
“Learning through hypothesis refinement using answer set programming.” In
International Conference on Inductive Logic Programming, 31–46. Springer.

Auer, Sören, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. “DBpedia: A Nucleus for a Web of Open Data.” In
Proceedings of the 6th International The Semantic Web and 2Nd Asian Confer-
ence on Asian Semantic Web Conference, 722–735. ISWC’07/ASWC’07. Busan,
Korea: Springer-Verlag. http://dl.acm.org/citation.cfm?id=1785162.1785216.

Balduccini, Marcello, Chitta Baral, and Yuliya Lierler. 2008. “Knowledge represen-
tation and question answering.” Foundations of Artificial Intelligence 3:779–
819.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.
2013. “Abstract Meaning Representation for Sembanking.”

Banerjee, Pratyay, Kuntal Kumar Pal, Arindam Mitra, and Chitta Baral. 2019. “Careful
Selection of Knowledge to Solve Open Book Question Answering.” In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics,
6120–6129. Florence, Italy: Association for Computational Linguistics, July.
https://www.aclweb.org/anthology/P19-1615.

Baral, Chitta. 2003. Knowledge representation, reasoning and declarative problem
solving. Cambridge university press.

Berant, Jonathan, Andrew Chou, Roy Frostig, and Percy Liang. 2013. “Semantic
parsing on freebase from question-answer pairs.” In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, 1533–1544.

Berant, Jonathan, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany
Harding, Brad Huang, Peter Clark, and Christopher D Manning. 2014. “Modeling
biological processes for reading comprehension.” In Proceedings of the 2014

196

http://dl.acm.org/citation.cfm?id=1785162.1785216
https://www.aclweb.org/anthology/P19-1615

Conference on Empirical Methods in Natural Language Processing (EMNLP),
1499–1510.

Bhagavatula, Chandra, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari
Holtzman, Hannah Rashkin, Doug Downey, Scott Wen-tau Yih, and Yejin Choi.
2019. “Abductive Commonsense Reasoning.” arXiv preprint arXiv:1908.05739.

Bobrow, Daniel G. 1964. “A Question-answering System for High School Algebra
Word Problems.” In Proceedings of the October 27-29, 1964, Fall Joint Computer
Conference, Part I, 591–614. AFIPS ’64 (Fall, part I). San Francisco, California:
ACM. doi:10.1145/1464052.1464108.

Bobrow, Daniel G. 1964. “Natural language input for a computer problem solving
system.”

. 2012. Qualitative reasoning about physical systems. Vol. 24. 1-3. Elsevier.

Bobrow, Daniel G, and Terry Winograd. 1977. “An overview of KRL, a knowledge
representation language.” Cognitive science 1 (1): 3–46.

Bos, Johan. 2008. “Wide-coverage semantic analysis with boxer.” In Proceedings of
the 2008 Conference on Semantics in Text Processing. Association for Computa-
tional Linguistics.

Bowman, Samuel R, Gabor Angeli, Christopher Potts, and Christopher D Manning.
2015. “A large annotated corpus for learning natural language inference.” arXiv
preprint arXiv:1508.05326.

Brewka, Gerhard, Thomas Eiter, and Mirosław Truszczyński. 2011. “Answer set
programming at a glance.” Communications of the ACM 54 (12): 92–103.

Calimeri, Francesco, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. 2008.
“Computable functions in ASP: Theory and implementation.” In International
Conference on Logic Programming. Springer.

Charniak, Eugene. 1972. “Toward a model of children’s story comprehension.” PhD
diss., Massachusetts Institute of Technology.

Charniak, Eugene, and Robert Goldman. 1988. “A logic for semantic interpretation.”
In Proceedings of the 26th annual meeting on Association for Computational
Linguistics, 87–94. Association for Computational Linguistics.

197

http://dx.doi.org/10.1145/1464052.1464108

Charniak, Eugene, and Robert P Goldman. 1989. “A Semantics for Probabilistic
Quantifier-Free First-Order Languages, with Particular Application to Story
Understanding.” In IJCAI, 89:1074–1079. Citeseer.

Chen, Qian, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen, and Si Wei. 2017. “Neural
natural language inference models enhanced with external knowledge.” arXiv
preprint arXiv:1711.04289.

. 2018. “Neural natural language inference models enhanced with external
knowledge.” In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1:2406–2417.

Chen, Qian, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen.
2016. “Enhanced lstm for natural language inference.” arXiv preprint
arXiv:1609.06038.

Choi, Eunsol, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy
Liang, and Luke Zettlemoyer. 2018. “QuAC: Question answering in context.”
arXiv preprint arXiv:1808.07036.

Clark, Peter. 2015. “Elementary School Science and Math Tests as a Driver for AI:
Take the Aristo Challenge!” In AAAI, 4019–4021.

Clark, Peter, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. 2018. “Think you have solved question answer-
ing? try arc, the ai2 reasoning challenge.” arXiv preprint arXiv:1803.05457.

Clark, Peter, Bhavana Dalvi, and Niket Tandon. 2018. “What Happened? Leveraging
VerbNet to Predict the Effects of Actions in Procedural Text.” arXiv preprint
arXiv:1804.05435.

Clark, Peter, and Oren Etzioni. 2016. “My Computer is an Honor Student but how In-
telligent is it? Standardized Tests as a Measure of AI.” AI Magazine.(To appear).

Clark, Peter, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter
Turney, and Daniel Khashabi. 2016. “Combining retrieval, statistics, and infer-
ence to answer elementary science questions.” In Thirtieth AAAI Conference on
Artificial Intelligence.

Dagan, Ido, Oren Glickman, and Bernardo Magnini. 2006. “The PASCAL recognising
textual entailment challenge.” In Machine learning challenges. evaluating predic-
tive uncertainty, visual object classification, and recognising tectual entailment,
177–190. Springer.

198

Dagan, Ido, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto. 2013. “Rec-
ognizing textual entailment: Models and applications.” Synthesis Lectures on
Human Language Technologies 6 (4): 1–220.

Dai, Wang-Zhou, Stephen H Muggleton, and Zhi-Hua Zhou. 2015. “Logical Vision:
Meta-Interpretive Learning for Simple Geometrical Concepts.” In ILP (Late
Breaking Papers), 1–16.

Dalvi, Bhavana, Lifu Huang, Niket Tandon, Wen-tau Yih, and Peter Clark. 2018.
“Tracking State Changes in Procedural Text: a Challenge Dataset and Models for
Process Paragraph Comprehension.” In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), 1:1595–1604.

Das, Rajarshi, Tsendsuren Munkhdalai, Xingdi Yuan, Adam Trischler, and Andrew
McCallum. 2018. “Building Dynamic Knowledge Graphs from Text using Ma-
chine Reading Comprehension.” arXiv preprint arXiv:1810.05682.

De Marneffe, Marie-Catherine, and Christopher D Manning. 2008. Stanford typed
dependencies manual. Technical report. Technical report, Stanford University.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. “Bert:
Pre-training of deep bidirectional transformers for language understanding.”
arXiv preprint arXiv:1810.04805.

. 2019. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding.” In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 4171–4186. Minneapolis,
Minnesota: Association for Computational Linguistics, June. doi:10.18653/v1/

N19-1423.

Eiter, Thomas, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. 2006.
“Effective integration of declarative rules with external evaluations for semantic-
web reasoning.” In European Semantic Web Conference, 273–287. Springer.

Feigenbaum, Edward A, and Julian Feldman. 1963. “Computers and Thought.”

FitzGerald, Nicholas, Julian Michael, Luheng He, and Luke Zettlemoyer. 2018.
“Large-scale qa-srl parsing.” arXiv preprint arXiv:1805.05377.

199

http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423

Flanigan, Jeffrey, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A Smith.
2014. “A discriminative graph-based parser for the abstract meaning representa-
tion.”

Fletcher, Charles R. 1985. “Understanding and solving arithmetic word problems: A
computer simulation.” Behavior Research Methods, Instruments, & Computers
17 (5): 565–571.

Gebser, Martin, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2012.
“Answer set solving in practice.” Synthesis Lectures on Artificial Intelligence and
Machine Learning 6 (3): 1–238.

Gelfond, Michael, and Yulia Kahl. 2014. Knowledge representation, reasoning, and
the design of intelligent agents: The answer-set programming approach. Cam-
bridge University Press.

Gelfond, Michael, and Vladimir Lifschitz. 1988. “The stable model semantics for
logic programming.” In ICLP/SLP, 88:1070–1080.

Green, Claude Cordell. 1969. The application of theorem proving to question-
answering systems. Technical report. STANFORD UNIV CALIF DEPT OF
COMPUTER SCIENCE.

Gu, Jiatao, Zhengdong Lu, Hang Li, and Victor O.K. Li. 2016. “Incorporating Copying
Mechanism in Sequence-to-Sequence Learning.” In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 1631–1640. Berlin, Germany: Association for Computational
Linguistics. doi:10.18653/v1/P16-1154.

Gulwani, S., J. Hernandez-Orallo, E. Kitzelmann, S.H. Muggleton, U. Schmid, and
B. Zorn. 2015. “Inductive programming meets the real world.” Communications
of the ACM 58 (11): 90–99.

Havur, Giray, Guchan Ozbilgin, Esra Erdem, and Volkan Patoglu. 2014. “Geometric
rearrangement of multiple movable objects on cluttered surfaces: A hybrid
reasoning approach.” In Robotics and Automation (ICRA), 445–452. IEEE.

He, Luheng, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2017. “Deep semantic
role labeling: What works and what’s next.” In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers).

200

http://dx.doi.org/10.18653/v1/P16-1154

He, Luheng, Mike Lewis, and Luke Zettlemoyer. 2015. “Question-answer driven
semantic role labeling: Using natural language to annotate natural language.” In
Proceedings of the 2015 conference on empirical methods in natural language
processing, 643–653.

Henaff, Mikael, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun.
2016. “Tracking the world state with recurrent entity networks.” arXiv preprint
arXiv:1612.03969.

Hinsley, Dan A, John R Hayes, and Herbert A Simon. 1977. “From words to equations:
Meaning and representation in algebra word problems.” Cognitive processes in
comprehension 329.

Hobbs, Jerry R. 2004. “Abduction in natural language understanding.” Handbook of
pragmatics: 724–741.

Hobbs, Jerry R, Mark E Stickel, Douglas E Appelt, and Paul Martin. 1993. “Interpre-
tation as abduction.” Artificial intelligence 63 (1-2): 69–142.

Honnibal, Matthew, and Ines Montani. 2017. “spaCy 2: Natural language understand-
ing with Bloom embeddings, convolutional neural networks and incremental
parsing.” To appear.

Hosseini, Mohammad Javad, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman.
2014. “Learning to solve arithmetic word problems with verb categorization.” In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 523–533.

Huang, Danqing, Shuming Shi, Chin-Yew Lin, and Jian Yin. 2017. “Learning fine-
grained expressions to solve math word problems.” In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, 805–814.

Jenkins, Tony. 1995. Open Book Assessment in Computing Degree Programmes.
Citeseer.

Jijkoun, Valentin, and Maarten De Rijke. 2006. “Recognizing textual entailment: Is
word similarity enough?” In Machine Learning Challenges. Evaluating Predic-
tive Uncertainty, Visual Object Classification, and Recognising Tectual Entail-
ment.

Joshi, Mandar, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. “TriviaQA:
A Large Scale Distantly Supervised Challenge Dataset for Reading Compre-

201

hension.” In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1:1601–1611.

Katzouris, Nikos, Alexander Artikis, and Georgios Paliouras. 2015. “Incremental
learning of event definitions with Inductive Logic Programming” [in English].
Machine Learning 100 (2-3): 555–585. doi:10.1007/s10994-015-5512-1.

. 2017. “Distributed Online Learning of Event Definitions.” CoRR
abs/1705.02175. arXiv: 1705.02175. http://arxiv.org/abs/1705.02175.

Kazmi, Mishal, Peter Schüller, and Yücel Saygın. 2017. “Improving Scalability of
Inductive Logic Programming via Pruning and Best-Effort Optimisation.” Expert
Systems with Applications.

Khashabi, Daniel, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan
Roth. 2018. “Looking beyond the surface: A challenge set for reading compre-
hension over multiple sentences.” In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), 1:252–262.

Khashabi, Daniel, Tushar Khot, Ashish Sabharwal, and Dan Roth. 2017. “Learn-
ing what is essential in questions.” In Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL 2017), 80–89.

Khot, Tushar, Ashish Sabharwal, and Peter Clark. 2018. “SciTail: A textual entailment
dataset from science question answering.” In Proceedings of AAAI.

Kintsch, Walter, and James G Greeno. 1985. “Understanding and solving word
arithmetic problems.” Psychological review 92 (1): 109.

Koncel-Kedziorski, Rik, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and
Siena Dumas Ang. 2015. “Parsing Algebraic Word Problems into Equations.”
Transactions of the Association for Computational Linguistics 3:585–597.

Koupaee, Mahnaz, and William Yang Wang. 2018. “WikiHow: A Large Scale Text
Summarization Dataset.” arXiv preprint arXiv:1810.09305.

Krishnamurthy, Jayant, Pradeep Dasigi, and Matt Gardner. 2017. “Neural semantic
parsing with type constraints for semi-structured tables.” In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, 1516–
1526.

202

http://dx.doi.org/10.1007/s10994-015-5512-1
http://arxiv.org/abs/1705.02175
http://arxiv.org/abs/1705.02175

Kumar, Ankit, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian
Pierce, Peter Ondruska, Ishaan Gulrajani, and Richard Socher. 2015. “Ask Me
Anything: Dynamic Memory Networks for Natural Language Processing.” arXiv
preprint arXiv:1506.07285.

Kushman, Nate, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. 2014. “Learning
to automatically solve algebra word problems.” Association for Computational
Linguistics.

Kwiatkowski, Tom, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. 2011.
“Lexical generalization in CCG grammar induction for semantic parsing.” In Pro-
ceedings of the conference on empirical methods in natural language processing,
1512–1523. Association for Computational Linguistics.

Lai, Guokun, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. “RACE:
Large-scale ReAding Comprehension Dataset From Examinations.” In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Process-
ing, 785–794. Copenhagen, Denmark: Association for Computational Linguistics.
doi:10.18653/v1/D17-1082.

Landsberger, J. 1996. “Study guides and strategies.” Http://www.studygs.net/tsttak7.
htm..

Law, Mark, Alessandra Russo, and Krysia Broda. 2014. “Inductive learning of answer
set programs.” In European Workshop on Logics in Artificial Intelligence, 311–
325. Springer, Cham.

. 2015. “Learning weak constraints in answer set programming.” Theory and
Practice of Logic Programming 15 (4-5): 511–525.

. 2016. “Iterative learning of answer set programs from context dependent
examples.” Theory and Practice of Logic Programming 16 (5-6): 834–848.

LeCun, Yann. 1998. “The MNIST database of handwritten digits.” http://yann. lecun.
com/exdb/mnist/.

Lev, Iddo, Bill MacCartney, Christopher Manning, and Roger Levy. 2004. “Solving
logic puzzles: From robust processing to precise semantics.” In Proceedings of
the 2nd Workshop on Text Meaning and Interpretation.

Levesque, Hector J, Ernest Davis, and Leora Morgenstern. 2012. “The Winograd
schema challenge.” In KR.

203

http://dx.doi.org/10.18653/v1/D17-1082
Http://www.studygs.net/tsttak7.htm.
Http://www.studygs.net/tsttak7.htm.

Lierler, Yuliya, Daniela Inclezan, and Michael Gelfond. 2017. “Action Languages
and Question Answering.” In IWCS 2017—12th International Conference on
Computational Semantics.

Liu, Hugo, and Push Singh. 2004. “ConceptNet—a practical commonsense reasoning
tool-kit.” BT technology journal 22 (4): 211–226.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. “RoBERTa:
A Robustly Optimized BERT Pretraining Approach.” CoRR abs/1907.11692.
arXiv: 1907.11692. http://arxiv.org/abs/1907.11692.

Manning, Christopher D, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. “The Stanford CoreNLP Natural Language
Processing Toolkit.” In ACL (System Demonstrations), 55–60.

Matsuzaki, Takuya, Takumi Ito, Hidenao Iwane, Hirokazu Anai, and Noriko H Arai.
2017. “Semantic parsing of pre-university math problems.” In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), 1:2131–2141.

McCarthy, John. 1960. Programs with common sense. RLE / MIT computation center.

Michael, Julian, Gabriel Stanovsky, Luheng He, Ido Dagan, and Luke Zettlemoyer.
2017. “Crowdsourcing question-answer meaning representations.” arXiv preprint
arXiv:1711.05885.

Mihaylov, Todor, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018a. “Can a suit
of armor conduct electricity? a new dataset for open book question answering.”
arXiv preprint arXiv:1809.02789.

. 2018b. “Can a Suit of Armor Conduct Electricity? A New Dataset for Open
Book Question Answering.” In EMNLP.

Mihaylov, Todor, and Anette Frank. 2018. “Knowledgeable reader: Enhancing cloze-
style reading comprehension with external commonsense knowledge.” arXiv
preprint arXiv:1805.07858.

Miller, George A. 1995. “WordNet: a lexical database for English.” Communications
of the ACM 38 (11): 39–41.

204

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

Mitra, Arinam, and Chitta Baral. 2018. “Incremental and Iterative Learning of
Answer Set Programs from Mutually Distinct Examples.” arXiv preprint
arXiv:1802.07966.

Mitra, Arindam, and Chitta Baral. 2015. “Learning to automatically solve logic grid
puzzles.” In EMNLP, 1023–1033.

. 2016a. “Addressing a Question Answering Challenge by Combining Statis-
tical Methods with Inductive Rule Learning and Reasoning.” In AAAI, 2779–
2785.

. 2016b. “Learning to use formulas to solve simple arithmetic problems.” ACL.

. 2018. “Incremental and Iterative Learning of Answer Set Programs from
Mutually Distinct Examples.” Theory and Practice of Logic Programming 18
(3-4): 623–637.

Mitra, Arindam, Peter Clark, Oyvind Tafjord, and Chitta Baral. 2019a. “Declarative
Question Answering over Knowledge Bases containing Natural Language Text
with Answer Set Programming.” In AAAI 2019.

. 2019b. “Declarative Question Answering over Knowledge Bases containing
Natural Language Text with Answer Set Programming.”

Mitra, Arindam, Ishan Shrivastava, and Chitta Baral. 2019. Understanding Roles and
Entities: Datasets and Models for Natural Language Inference. arXiv: 1904.
09720 [cs.CL].

Moldovan, Dan, Christine Clark, Sanda Harabagiu, and Steve Maiorano. 2003. “Co-
gex: A logic prover for question answering.” In Proceedings of the 2003 Con-
ference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1.

Mostafazadeh, Nasrin, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra,
Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. “A corpus and
evaluation framework for deeper understanding of commonsense stories.” arXiv
preprint arXiv:1604.01696.

Muggleton, Stephen. 1991. “Inductive logic programming.” New generation comput-
ing 8 (4): 295–318.

. 1995. “Inverse entailment and Progol.” New generation computing 13 (3-4):
245–286.

205

http://arxiv.org/abs/1904.09720
http://arxiv.org/abs/1904.09720

Mukherjee, Anirban, and Utpal Garain. 2008. “A review of methods for automatic
understanding of natural language mathematical problems.” Artificial Intelligence
Review 29 (2): 93–122.

Musa, Ryan, Xiaoyan Wang, Achille Fokoue, Nicholas Mattei, Maria Chang, Pavan
Kapanipathi, Bassem Makni, Kartik Talamadupula, and Michael Witbrock. 2018.
“Answering Science Exam Questions Using Query Rewriting with Background
Knowledge.” arXiv preprint arXiv:1809.05726.

Ni, Jianmo, Chenguang Zhu, Weizhu Chen, and Julian McAuley. 2018. “Learning
to attend on essential terms: An enhanced retriever-reader model for scientific
question answering.” arXiv preprint arXiv:1808.09492.

Norvig, Peter. 1983. “Frame Activated Inferences in a Story Understanding Program.”
In IJCAI, 624–626.

. 1987. “Inference in text understanding.” In AAAI, 561–565.

Otero, Ramon. 2001. “Induction of stable models.” Inductive Logic Programming:
193–205.

Palmer, Martha, Daniel Gildea, and Nianwen Xue. 2010. “Semantic role labeling.”
Synthesis Lectures on Human Language Technologies 3 (1): 1–103.

Parikh, Ankur P, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. “A
decomposable attention model for natural language inference.” arXiv preprint
arXiv:1606.01933.

Perrault, C Raymond, and James F Allen. 1980. “A plan-based analysis of indirect
speech acts.” Computational Linguistics 6 (3-4): 167–182.

Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. “Improv-
ing language understanding by generative pre-training.” URL https://s3-us-west-2.
amazonaws. com/openai-assets/research-covers/languageunsupervised/language
understanding paper. pdf.

Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. “Squad:
100,000+ questions for machine comprehension of text.” arXiv preprint
arXiv:1606.05250.

Ray, Oliver. 2009. “Nonmonotonic abductive inductive learning.” Journal of Applied
Logic 7 (3): 329–340.

206

Reddy, Siva, Danqi Chen, and Christopher D Manning. 2018. “Coqa: A conversational
question answering challenge.” arXiv preprint arXiv:1808.07042.

. 2019. “Coqa: A conversational question answering challenge.” Transactions
of the Association for Computational Linguistics 7:249–266.

Reddy, Siva, Mirella Lapata, and Mark Steedman. 2014. “Large-scale semantic
parsing without question-answer pairs.” Transactions of the Association for
Computational Linguistics 2:377–392.

Richardson, Matthew, Christopher JC Burges, and Erin Renshaw. 2013. “MCTest: A
Challenge Dataset for the Open-Domain Machine Comprehension of Text.” In
EMNLP, 1:2.

Roy, Subhro, and Dan Roth. 2015. “Solving general arithmetic word problems.”
EMNLP.

. 2016. “Unit dependency graph and its application to arithmetic word problem
solving.” arXiv preprint arXiv:1612.00969.

. 2017. “Mapping to Declarative Knowledge for Word Problem Solving.”
arXiv preprint arXiv:1712.09391.

Roy, Subhro, Tim Vieira, and Dan Roth. 2015. “Reasoning about quantities in natural
language.” Transactions of the Association for Computational Linguistics 3:1–13.

Sakaguchi, Keisuke, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2019.
“WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale.” arXiv
preprint arXiv:1907.10641.

Sakama, Chiaki. 2005. “Induction from Answer Sets in Nonmonotonic Logic Pro-
grams.” ACM Trans. Comput. Logic (New York, NY, USA) 6, no. 2 (April):
203–231. doi:10.1145/1055686.1055687.

Sakama, Chiaki, and Katsumi Inoue. 2009. “Brave induction: a logical framework for
learning from incomplete information.” Machine Learning 76, no. 1 (July): 3–35.
doi:10.1007/s10994-009-5113-y.

Sap, Maarten, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas
Lourie, Hannah Rashkin, Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
“ATOMIC: an atlas of machine commonsense for if-then reasoning.” In Proceed-
ings of the AAAI Conference on Artificial Intelligence, 33:3027–3035.

207

http://dx.doi.org/10.1145/1055686.1055687
http://dx.doi.org/10.1007/s10994-009-5113-y

Sap, Maarten, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. 2019.
“SocialIQA: Commonsense Reasoning about Social Interactions.” arXiv preprint
arXiv:1904.09728.

Schüller, Peter, and Mishal Kazmi. 2017. “Best-Effort Inductive Logic Program-
ming via Fine-grained Cost-based Hypothesis Generation.” arXiv preprint
arXiv:1707.02729.

Seo, Minjoon, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2016.
“Bidirectional attention flow for machine comprehension.” arXiv preprint
arXiv:1611.01603.

Seo, Minjoon, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. 2016. “Query-
reduction networks for question answering.” arXiv preprint arXiv:1606.04582.

Sharma, Arpit, Nguyen Ha Vo, Somak Aditya, and Chitta Baral. 2015. “Towards
Addressing the Winograd Schema Challenge-Building and Using a Semantic
Parser and a Knowledge Hunting Module.” In IJCAI.

Shi, Shuming, Yuehui Wang, Chin-Yew Lin, Xiaojiang Liu, and Yong Rui. 2015. “Au-
tomatically solving number word problems by semantic parsing and reasoning.”
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), Lisbon, Portugal.

Simmons, Robert F. 1970. “Natural language question-answering systems: 1969.”
Communications of the ACM 13 (1): 15–30.

Stewart, Russell, and Stefano Ermon. 2017. “Label-free supervision of neural net-
works with physics and domain knowledge.” In AAAI, 1:1–7. 1.

Sun, Kai, Dian Yu, Dong Yu, and Claire Cardie. 2018. “Improving Machine Reading
Comprehension with General Reading Strategies.” CoRR abs/1810.13441.

Tafjord, Oyvind, Peter Clark, Matt Gardner, Wen-tau Yih, and Ashish Sabharwal.
2018. “QuaRel: A Dataset and Models for Answering Questions about Qualitative
Relationships.” arXiv preprint arXiv:1811.08048.

. 2019. “Quarel: A dataset and models for answering questions about qualita-
tive relationships.” In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33:7063–7071.

208

Tandon, Niket, Bhavana Dalvi Mishra, Joel Grus, Wen-tau Yih, Antoine Bosselut,
and Peter Clark. 2018. “Reasoning about actions and state changes by injecting
commonsense knowledge.” arXiv preprint arXiv:1808.10012.

Upadhyay, Shyam, Ming-Wei Chang, Kai-Wei Chang, and Wen-tau Yih. 2016. “Learn-
ing from explicit and implicit supervision jointly for algebra word problems.” In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, 297–306.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. “Attention is all you need.”
In Advances in Neural Information Processing Systems, 5998–6008.

Wan, Li, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. 2013. “Regu-
larization of neural networks using dropconnect.” In International Conference
on Machine Learning, 1058–1066.

Wang, Alex, Amapreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. “Glue: A multi-task benchmark and analysis platform for natural
language understanding.” arXiv preprint arXiv:1804.07461.

Wang, Lei, Dongxiang Zhang, Lianli Gao, Jingkuan Song, Long Guo, and Heng
Tao Shen. 2018. “MathDQN: Solving Arithmetic Word Problems via Deep
Reinforcement Learning.”

Wang, Xiaoyan, Pavan Kapanipathi, Ryan Musa, Mo Yu, Kartik Talamadupula,
Ibrahim Abdelaziz, Maria Chang, Achille Fokoue, Bassem Makni, Nicholas
Mattei, et al. 2019. “Improving Natural Language Inference Using External
Knowledge in the Science Questions Domain.” In Proceedings of the AAAI
Conference on Artificial Intelligence, 33:7208–7215.

Wang, Yan, Xiaojiang Liu, and Shuming Shi. 2017. “Deep Neural Solver for Math
Word Problems.” In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, 845–854.

Wang, Yi, Joohyung Lee, and Doo Soon Kim. 2017. “A Logic Based Approach to
Answering Questions about Alternatives in DIY Domains.” In AAAI, 4753–4759.

Wang, Yushi, Jonathan Berant, and Percy Liang. 2015. “Building a semantic parser
overnight.” In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol. 1.

209

Weld, Daniel S, and Johan De Kleer. 2013. Readings in qualitative reasoning about
physical systems. Morgan Kaufmann.

Weston, Jason, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. 2015. “Towards
AI-complete question answering: a set of prerequisite toy tasks.” arXiv preprint
arXiv:1502.05698.

Weston, Jason, Sumit Chopra, and Antoine Bordes. 2014. “Memory networks.” arXiv
preprint arXiv:1410.3916.

Wilensky, Robert. 1983. “Planning and understanding: A computational approach to
human reasoning.”

Wilensky, Robert, David N Chin, Marc Luria, James Martin, James Mayfield, and
Dekai Wu. 2000. “The Berkeley UNIX consultant project.” In Intelligent Help
Systems for UNIX, 49–94. Springer.

Winograd, Terry. 1972. “Understanding natural language.” Cognitive psychology 3
(1): 1–191.

Yang, An, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu, Hua Wu, Qiaoqiao She, and
Sujian Li. 2019. “Enhancing Pre-Trained Language Representations with Rich
Knowledge for Machine Reading Comprehension.” In Proceedings of the 57th
Conference of the Association for Computational Linguistics, 2346–2357.

Yang, Yi, Wen-tau Yih, and Christopher Meek. 2015. “Wikiqa: A challenge dataset
for open-domain question answering.” In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, 2013–2018.

Zelle, John M, and Raymond J Mooney. 1996. “Learning to parse database queries
using inductive logic programming.” In Proceedings of the national conference
on artificial intelligence, 1050–1055.

Zellers, Rowan, Yonatan Bisk, Roy Schwartz, and Yejin Choi. 2018. “Swag: A large-
scale adversarial dataset for grounded commonsense inference.” arXiv preprint
arXiv:1808.05326.

Zettlemoyer, Luke S, and Michael Collins. 2012. “Learning to map sentences to
logical form: Structured classification with probabilistic categorial grammars.”
arXiv preprint arXiv:1207.1420.

210

Zhang, Yuyu, Hanjun Dai, Kamil Toraman, and Le Song. 2018. “KGˆ 2: Learning
to Reason Science Exam Questions with Contextual Knowledge Graph Embed-
dings.” arXiv preprint arXiv:1805.12393.

Zhou, Lipu, Shuaixiang Dai, and Liwei Chen. 2015. “Learn to solve algebra word
problems using quadratic programming.” In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, 817–822.

211

APPENDIX A

PROOF OF THEOREM 1

212

Theorem 1
For any solution 〈HI ,HG,4〉 of ILPDE(B,M, 〈E1, ..., En〉) there exists a so-
lution 〈H′I ,H

′
G,4

′〉 of ILPDE(B,M, 〈E1, ..., En−1〉) and a generalization H′′G in
ILPDE(B,M, En) such that, H′I ≤ HI ≤ H′G ∪ H′′G , when H ∪ B ∪ Oi is strati-
fied for any choice of i ∈ {1, ..., n} and H ∈ {HG,H′G,H

′′
G}. Here, Oi is the observation

from Ei.

A.0.0.0.1 Proof

Recall that ∆(B,M, E) ={4|〈HI ,HG,4〉 ∈ XHAIL(B,M, E) for some HI ,HG}. We
further define,

4(B,M, 〈E1, ..., En〉) = {(41,42, ...,4n)|4i ∈ 4(B,M, Ei),∀i = 1..n}
HG(4 = (41,42, ...,4n)) = ∪n

i=1HG(4i)

Since HI is a solution to ILPDE(B,M, 〈E1, E2, ..., En−1〉) and HI ∪ B ∪ Oi is assumed
to be a stratified program, there is a unique set containing only ground instances of
modeh literals (abducible predicates), 4∗ = (4∗1,4

∗
2, ...,4

∗
n−1) in 4(B,M, 〈E1, ..., En〉)

such that ∀i ∈ 1, ..., n − 1,

i B ∪ Oi ∪ HI ` 4
∗
i ,

ii @4′i .(4
′
i ∈ 4(B,M, Ei)) ∧ (B ∪ Oi ∪ HI ` 4

′
i) ∧ (4∗i ⊂ 4

′
i).

Similarly, since HI is a solution to ILPDE(B,M, En) there is a unique 4̄ such that,

i B ∪ On ∪ HI ` 4̄,
ii @4′n.(4

′
n ∈ 4(B,M, En)) ∧ (B ∪ On ∪ HI ` 4̄) ∧ (4̄ ⊂ 4′n).

HI is then bounded by HG(4∗) ∪ HG(4̄). If this is not the case then HI has at least
one rule whose body is not satisfied in any of the context provided by B ∪ Oi, for all
i = 1, ..., n. And hence HI cannot be minimal. Now consider the set S containing
all the minimal solution 〈H′I ,H

′
G,4

∗〉 of ILPDE(B,M, 〈E1, E2, ..., En−1〉) that can be
obtained from 4∗. Let H∗I denote the set of all rules from HI that are satisfied
in at least one of the context B ∪ Oi ∪ HI, for i = 1...n − 1. Then, there must
exist at least one H′I ∈ S such that H′I ≤ H∗I ≤ HI. Otherwise, H∗I is a minimal
solution of ILPDE(B,M, 〈E1, E2, ..., En−1〉) that can be obtained from 4∗ but not in S .
A contradiction. �

213

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 INTRODUCTION
	2 Background
	3 LKR Paradigm: Learning Inference Enabling Knowledge and Using them to Answer Questions
	4 Scaling Learning of Inference Enabling Knowledge: An Efficient Inductive Logic Programming Algorithm
	5 Application of LKR: Learning to Solve General Arithmetic Problems
	6 Application of LKR: Learning Interpretable Models of Actions for Tracking State Changes in Procedural Text
	7 TKR paradigm: Declarative Question Answering over Knowledge Bases containing Natural Language Text with an application of Answering Life Cycle Questions
	8 Declarative Question Answering over Knowledge Bases containing Natural Language Text: Solving Qualitative Word Problems
	9 Natural Language Inference for Open-Book Question Answering: Experiments and Observations
	10 EXPLORING WAYS TO INCORPORATE ADDITIONAL KNOWLEDGE TO IMPROVE NATURAL LANGUAGE COMMONSENSE QUESTION ANSWERING
	11 Future Work & Conclusion

	References
	Appendix
	A Proof of Theorem 1

