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ABSTRACT

How to teach a machine to understand natural language? This question is a

long-standing challenge in Artificial Intelligence. Several tasks are designed to measure

the progress of this challenge. Question Answering is one such task that evaluates a

machine’s ability to understand natural language, where it reads a passage of text

or an image and answers comprehension questions. In recent years, the development

of transformer-based language models and large-scale human-annotated datasets

has led to remarkable progress in the field of question answering. However, several

disadvantages of fully supervised question answering systems have been observed. Such

as generalizing to unseen out-of-distribution domains, linguistic style differences in

questions, and adversarial samples. This thesis proposes implicitly supervised question

answering systems trained using knowledge acquisition from external knowledge

sources and new learning methods that provide inductive biases to learn question

answering. In particular, the following research projects are discussed: (1) Knowledge

Acquisition methods: these include semantic and abductive information retrieval

for seeking missing knowledge, a method to represent unstructured text corpora as

a knowledge graph, and constructing a knowledge base for implicit commonsense

reasoning. (2) Learning methods: these include Knowledge Triplet Learning, a method

over knowledge graphs; Test-Time Learning, a method to generalize to an unseen

out-of-distribution context; WeaQA, a method to learn visual question answering

using image captions without strong supervision; WeaSel, weakly supervised method

for relative spatial reasoning; and a new paradigm for unsupervised natural language

inference. These methods potentially provide a new research direction to overcome

the pitfalls of direct supervision.
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Chapter 1

INTRODUCTION

“On the never-ending path in pursuit of knowledge,

I ask more questions than I can answer.”

1.1 Overview

Question-answering (QA) is considered to be integral to the human reasoning

process (Turing 1950), and the development of systems that resemble this ability has

been a long-standing research program in natural language processing (Simmons 1965).

QA systems are crucial for evaluating natural language understanding and human-

machine communication via dialog and conversational agents. Several datasets have

been proposed for QA tasks, such as extractive question answering (predicting a span of

text as answer) (Rajpurkar, Jia, and Liang 2018; Zhilin Yang et al. 2018a; Kwiatkowski,

Palomaki, et al. 2019), multiple-choice question answering (predicting an answer from

a list of choices) (Sap, Rashkin, Chen, Le Bras, et al. 2019a; Talmor et al. 2019; Zellers

et al. 2018; P. Clark et al. 2018), retrieval-based question answering (Khot et al. 2020;

P. Clark et al. 2016; Mihaylov et al. 2018a), and visual question answering (Goyal

et al. 2017; Gurari et al. 2018; Agrawal et al. 2018a; Drew A Hudson and Christopher

D Manning 2019a). Many of these tasks require reasoning over contexts, corpora,

images, and commonsense and scientific knowledge.

Large pre-trained language models (PLMs) (Devlin et al. 2019a; Zhilin Yang et

al. 2019; Y. Liu et al. 2019; Brown et al. 2020; Y.-C. Chen et al. 2020; Lu et al. 2019a;
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Tan and Bansal 2019a) have resulted in significant performance improvements on

these tasks, using fully-supervised training protocols. Unfortunately, these methods

overfit the training data and do not transfer well to new domains, especially for

low-resource domains where large-scale training data collection may not be feasible.

Spurious correlations, annotation artifacts, and linguistic biases in NLP datasets also

affect generalization (Gururangan et al. 2018; Niven and Kao 2019; Kaushik and

Lipton 2018; Poliak et al. 2018). Analysis of BERT embeddings reveals artifacts

such as two random words having high cosine similarity (Ethayarajh 2019), and 25%

tokens being assigned to incorrect clusters (Mickus et al. 2019). PLMs also fail in

question-answering tasks with negated questions in cloze completion (Kassner and

Schütze 2020; Ettinger 2020), multiple-choice QA (Asai and Hajishirzi 2020a), and

visual question answering (Gokhale et al. 2020b). These findings are undesirable

for robustness considerations. While carefully-designed crowd-sourcing (Sakaguchi

et al. 2020) and dataset filtering (Le Bras et al. 2020) have been suggested to mitigate

these phenomena, these are typically associated with a high cost of data annotation.

In this dissertation, the focus is on building implicitly supervised methods to learn

question answering. The aim is to develop models and methods to acquire knowledge

from unstructured or structured knowledge bases and design learning methods that

can provide inductive biases to answer questions without strong supervision.

1.2 Knowledge Acquisition

The goal of knowledge acquisition is to collect helpful knowledge to answer a

question. It is usually designed as an information retrieval task. These methods focus
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only on knowledge acquisition and can be combined with supervised and unsupervised

question answering.

In Chapter 3, I curate a scientific knowledge corpus and design a Weakly-Supervised

Learning-to-Rank model to re-rank knowledge retrieved through the Lucene-based

information retrieval system. I also propose a “knowledge segregation model” that

leverages knowledge in transformer-based language models with externally retrieved

knowledge improves the knowledge understanding of large pre-trained transformer-

based language models and makes the model resistant to distractions.

In Chapter 4, I study an alternative to larger-language models and well-structured

knowledge graphs to perform commonsense reasoning with implicit knowledge. I

use smaller language models together with a relatively smaller but targeted nat-

ural language text corpora. The advantage of such an approach is that it is less

resource-intensive, and yet at the same time, it can use unstructured text corpora.

Different unstructured commonsense knowledge sources are defined, three strategies

for knowledge incorporation are explored, and I propose four methods competitive to

state-of-the-art methods to reason with implicit commonsense.

In Chapter 5, I propose methods to create a structured knowledge graph from

unstructured text corpora and semi-structured stories. This structured knowledge

graph is used as input for a new learning task to learn unsupervised question answering.

In Chapter 6, I propose methods to utilize information retrieval to expand test-time

contexts to include similar texts describing similar entities to increase the diversity of

questions generated at test-time generated.
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1.3 Learning Task Design

Learning task design aims to develop models and supervision tasks that utilize the

knowledge acquired and learn robust question answering models that can generalize to

out-of-distribution questions and answers. These methods are focused on representing

knowledge, which can act as an input to neural models and design loss functions and

model designs that provide implicit supervision.

In Chapter 5, I design three representation learning functions that aim to complete

a knowledge triple given two of its elements. These functions and a distance-based

metric to compute answer scores are used to perform zero-shot question answering. In

Chapter 6, I developed a self-supervised learning framework focussed on adapting to

evolving and changing distributions during test-time. In this framework, Test-Time

Learning, models are continuously trained at test-time using a self-supervised task,

which for our case is question answering. The model is trained on procedurally

generated question-answer pairs for a test context and other contexts retrieved using

the input context. This framework is shown to outperform current unsupervised

question answering methods in both lower parameter count and accuracy.

Next, I study the effect of implicit supervision in the visual question answering

domain. In Chapter 7, I further improve the out-of-distribution generalizability of a

VQA system by introducing a noise-contrastive estimation-based loss function that

provides implicit supervision to ground answers from different modalities. This, along

with the type-prediction modules, further improves the performance. In Chapter 8,

I design a fully unsupervised learning paradigm for VQA. The model is pre-trained

on four pre-training tasks and further trained using question-answer pairs generated

from a given knowledge base of images and captions. To further reduce reliance on
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large fully-supervised trained object detectors, I introduce hierarchical image-patch

features as an alternative. These components are shown to perform as well as current

state-of-the-art VQA systems that rely on strong supervision. In Chapter 8, I observed

the reduced performance on spatial questions in VQA. Hence, in Chapter 9 I focus

on developing weakly supervised spatial reasoning tasks that leverage monocular

depth estimation and represent images in a unit-normalized 3-dimensional space with

objects represented as points. This representation format, the weak-supervision tasks,

and the image-patch features mentioned above consistently improve spatial reasoning

questions.

In Chapter 10, I extend the application of implicit supervision to the adjacent

task of natural language inference. In this work, the challenges of annotation and

data-efficiency are addressed and presented as an explorative study on unsupervised

NLI, a paradigm in which no human-annotated training samples are available. Three

different settings with decreasing availability of labelled samples are proposed: PH,

P, and NPH. As a solution, I propose a procedural data generation approach that

leverages a set of sentence transformations to collect PHL (Premise, Hypothesis,

Label) triplets for training NLI models, bypassing the need for human-annotated

training data. Comprehensive experiments with several NLI datasets show that the

proposed approach results in accuracies of up to 66.75%, 65.9%, 65.39% in PH, P, and

NPH settings respectively, outperforming all existing unsupervised baselines, and

12.2% higher accuracy than the model trained from scratch on just 500 instances in a

few-shot learning setting.
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1.4 Summary

A summary of the main contributions of this thesis is provided below:

• In Chapter 2, a comprehensive survey of recent approaches in unsupervised

question answering, both unimodal and multi-modal. This survey outlines

the current research focus on unsupervised question answering and provides

a detailed comparison of different methods and empirical results on popular

evaluation datasets.

• In Chapter 3, a novel method for multi-step knowledge retrieval and learning-to-

rank tasks is proposed. These methods improve over baselines by 2.2 and 8.05 on

OpenBookQA and QASC, respectively, and reduce the gap to the state-of-the-art

super-large language models by 14%. A thorough error and prediction analysis

are provided, with explanation extractions, to provide an in-depth view of the

model’s ability and limitations.

• In Chapter 4 I provide a thorough analysis of transformers’ ability to perform

commonsense reasoning with implicit knowledge on three different commonsense

QA tasks using two transformer models. Four models with different ways to

fuse implicit textual knowledge are empirically compared. The methods improve

over pre-trained transformers by 2-9% in the accuracy metric. I also provide

an extensive investigation to study the effect of different knowledge sources,

pre-training tasks, and knowledge quality on the downstream QA task.

• In Chapter 5 I propose the Knowledge Triplet Learning framework over Knowl-

edge Graphs. I perform empirical comparisons of two-different strategies of

this framework. Two heuristic algorithms to generate knowledge graphs from

unstructured text corpora are described. I perform extensive experiments on

6



multiple Science and Commonsense QA tasks, setting state-of-the-art results on

unsupervised QA and providing strong baselines in unsupervised and few-shot

question answering settings.

• In Chapter 6, a new learning paradigm of Test-time learning is described. I

investigate test-time learning in four different settings: single context learning,

k-neighbor learning, curriculum learning, and online learning. This method sets

a new state-of-the-art on the unsupervised reading comprehension task on two

datasets. The method also makes a significantly smaller model competitive with

larger transformers models trained using prior state-of-the-art methods.

• In Chapter 7, I introduce the Mutant training paradigm for visual question

answering. The sample generation algorithm takes advantage of semantic

transformations of the input image or question for the goal of OOD generalization.

I also evaluate three loss functions, a novel training objective using Noise

Contrastive Estimation over the projections of cross-modal features and answer

embeddings on a shared projection manifold, to predict the correct answer;

and a pairwise-consistency loss which is a regularization method that seeks to

bring the distance between ground-truth answer vectors closer to the distance

between predicted answer vectors for a pair of original and mutant inputs.

Overall, Mutant sets a new state-of-the-art on the VQA-CP challenge with an

improvement of 10.57%.

• In Chapter 8, I introduce a new framework, WeaQA, where I generate question-

answer pairs from image captions to train a visual question answering system.

As synthetic samples (unlike popular benchmarks) include multi-word answer

phrases, I propose a sub-phrase weighted-answer loss to mitigate bias towards

such multi-word answers. Several pre-training tasks are also defined, and a novel
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model that uses spatial pyramids of image-patches instead of object bounding

boxes is proposed, further removing the dependence on human annotations.

An extensive empirical evaluation and analysis of the new model are provided

on three visual question answering datasets, which show the model’s efficiency

and efficacy and provide a strong baseline for future unsupervised and few-shot

visual QA methods.

• In Chapter 9 I propose a new approach of combining existing training protocols

for transformer-based visual question answering with novel weakly-supervised

spatial reasoning tasks based on the 3-dimensional visual geometry of a scene.

Two tasks, namely, Object Centroid Estimation and Relative Position Estimation,

are empirically evaluated on a visual-spatial reasoning dataset. The method

improves on open-ended questions by 2.21%, 1.77% overall, outperforming

existing baselines with just 10% labeled samples in the few-shot learning setting.

• In Chapter 10, three novel annotation-efficient learning paradigms are proposed

for the unsupervised natural language inference task. A comprehensive set of

sentence transformations are provided to define a procedural data generation

method. A thorough empirical evaluation over four datasets is done, and in the

few-shot low-data regime, the proposed model outperforms current baselines by

8.4% and 10.4% on SNLI and MNLI datasets, respectively.

1.5 Related Publications

Most ideas in this dissertation have appeared or under review in the following

publications:

• Banerjee, P., Pal, K.K., Mitra, A. and Baral, C., 2019, July. Careful Selection of
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Chapter 2

UNSUPERVISED QUESTION ANSWERING : CHALLENGES, TRENDS,

OUTLOOK

2.1 Introduction

“Your preparation for the real world is not in the answers you’ve learned, but in the

questions you’ve learned how to ask yourself.”

– Bill Watterson

In recent years, with the development of transformer-based language models

and large-scale human-annotated datasets, there has been remarkable progress in

supervised question answering. However, there are several disadvantages observed

in these systems. Firstly, label collection is a challenging task. Supervised neural

networks require a large set of QA pairs. However, collecting them requires significant

time, expertise, and quality control. Without proper quality control, several annotation

biases crop up (Sakaguchi et al. 2020; Le Bras et al. 2020). Secondly, these datasets

provide only QA pairs; however, the additional knowledge to answer these questions is

absent. Hence, searching for clean and appropriate knowledge useful for downstream

question answering tasks is challenging. Finally, generalization to unseen out-of-

distribution QA pairs with robustness to adversarial changes to inputs possesses a

significant challenge (Agrawal et al. 2018b). Current methods tend to overfit the

question styles and limited train answer options.

Several methods have proposed unsupervised question answering as an alternative,
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keeping these challenges in mind. These methods utilize implicit supervision from

external and readily available knowledge sources, such as Wikipedia (Lewis, Denoyer,

and Riedel 2019) and image-captions datasets (Banerjee et al. 2021). Implicit su-

pervision methods have been shown to learn robust representations that transfer

well to multiple and diverse tasks (Devlin et al. 2019b; Lu et al. 2019a; Radford

et al. 2019). These methods are simple to define and are efficient as they do not

need human intervention and labeling efforts. Moreover, these tasks are shown to

improve different model architectures, which is equivalent to intelligence independence

observed in humans (Devlin et al. 2019b; Lu et al. 2019a; Radford et al. 2019). These

observations raise the question, can we learn to answer questions by reading books,

viewing images, and imbibing common sense? I try to answer this question in this

dissertation. Before diving deep into the different methods proposed to answer this

question, we study the existing methods for unsupervised question-answering in the

following survey.

This survey focuses on various efforts towards unsupervised question answering

(on English language inputs). While task-specific (Wang 2006; Wu et al. 2017; Fu

et al. 2020; F. Zhu et al. 2021) and method-specific (Lai, Bui, and Li 2018; Storks, Gao,

and Chai 2019) surveys of question answering and review of recent datasets (Rogers

and Rumshisky 2020) are available, this chapter is the first survey on unsupervised

QA, drafted with the following objectives:

1. to review recent development of QA models trained without explicit supervision,

2. to identify key challenges in unsupervised QA,

3. to recommend potential research directions to mitigate these challenges.

The chapter is structured as follows. Section 2.2 introduces the problem setup

for unsupervised question answering, and provides a categorization of various QA
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tasks and major evaluation benchmarks. Section 2.3 surveys existing methodologies,

training protocols, and results for unsupervised QA models. Section 2.4 discusses the

related problems of learning from weak and partial supervision. Finally, we delineate

challenges associated with unsupervised methods in Section 2.5, and offer our insights

in Section 2.6 to open up potential research directions for future work in this area.

2.2 Unsupervised Question Answering

Problem Setup: In the unsupervised question answering setup, typically, a dataset

of context paragraphs is available, and the model must learn to answer questions

about these paragraphs. In some cases, a set of questions may also be provided as

part of the dataset; however the true answers to each question are not available during

training.

We consider four categories under this problem setup, for which unsupervised

QA methods have been explored: Winograd Schema Challenge (WSC), Extractive

QA (EQA), Multiple-Choice QA (MCQA), and Multi-Modal QA. We distinguish

WSC as a separate category as it only has a test set which necessitates unsupervised

or commonsense knowledge acquisition methods, and could be treated as either a

classification, extractive, or a generative task. Furthermore, it has been studied as an

unsupervised problem for several years.

2.2.1 Winograd Schema Challenge

Inspired by examples from Winograd (1972) illustrating the challenges of natural

language understanding and the importance of contextual knowledge, the Winograd
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Schema Challenge (WSC) was proposed by Levesque, Davis, and Morgenstern (2012)

and further developed by Morgenstern, Davis, and Ortiz (2016). An example from

WSC is shown below:

WSC item: The city councilmen refused the demonstrators a permit because they

[feared/advocated] violence.

Question: Who [feared/advocated] violence?

WSC item: John could not lift his son because he was so [heavy/weak].

Question: Who was so [heavy/weak]?
Winograd Schemas (sentences and questions containing pronouns), are provided

as input, and the system must resolve the entity that the pronoun refers to. If the

co-referent is changed from feared to advocated in both the sentence and the question,

the answer changes from councilmen to demonstrators. The WSC challenge does

not provide a training dataset, but only a test set for evaluating systems – this set

originally had 60 samples which have now grown to 273 or 285. As such, there is no

explicit supervision available to train machine learning models. More similar samples

that need pronoun resolution to train supervised systems for WSC were introduced

by Rahman and Ng (Rahman and Ng 2012).

However, large QA datasets for pronoun resolution have been compiled, such as the

Definite Pronoun Resolution Dataset (Rahman and Ng 2012), Winogender (Rudinger

et al. 2018) where the pair of sentences differ only by gender, and KnowRef (Emami et

al. 2019) with ambiguous pronominal anaphora, and the WinoGrande (WG) (Sakaguchi

et al. 2020) which is a crowdsourced dataset of 44k samples with training-development-

test splits. Table 1 suggests that the supervised RoBERTa model, trained on the WG

corpus is able to achieve a high accuracy of 90.1% on the WSC test set. However,

the same model results in a lower accuracy of 79.4% on the WG test set. Sakaguchi

et al. (2020) have postulated that the model might be picking up spurious correlations
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in WSC, while at the same time being unable to generalize to the WG test set itself.

Thus, we argue that WSC and WSC-style challenges are far from solved, motivating

research into unsupervised methods in this domain to address the issue of spurious

correlations and linguistic biases.

2.2.2 Extractive QA (EQA)

Extractive QA or Reading Comprehension, is the task in which a text “context” or

passage is provided as input along with a question, and EQA systems are expected

to extract the answer as a span of text in the context. Multiple datasets have been

developed for EQA that we describe below.

SQuAD (Stanford Question Answering Dataset) (Rajpurkar et al. 2016a) contains

100k open-ended questions based on context passages fromWikipedia articles. Answers

to these questions are present explicitly in the context and do not require commonsense

reasoning over the context. Following is an example:

Paragraph: In February 2016, over a hundred thousand people signed a petition in just

twenty-four hours, calling for a boycott of Sony Music and all other Sony-affiliated businesses

after rape allegations against music producer Dr. Luke were made by musical artist Kesha.

Kesha asked a New York City Court to free her from her contract with Sony, but the court

denied the request.

Question: How many people signed a petition to boycott Sony Music in 2016?

Answer: over a hundred thousand
SQuAD 2.0 (Rajpurkar, Jia, and Liang 2018) was proposed as an addendum to

SQuAD. It contains a set of 50k “unanswerable” questions, i.e. questions that do

not have answers explicitly in the provided context but may require systems to use

external knowledge and reasoning to find the answer.
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NewsQA (Trischler et al. 2017a) contains over 100k Q-A pairs crowd-sourced from

10k CNN news articles (Hermann et al. 2015), with answers being text-spans in the

articles. The dataset was curated such that question-answering would require reasoning

skills. Subsequently, datasets for advanced reasoning tasks have been proposed, such

as HotPotQA (Zhilin Yang et al. 2018a) which requires multi-hop reasoning, and

Natural Questions (Kwiatkowski, Palomaki, et al. 2019) which contains questions

entered into search engines by real users. The data collection protocol for NQ, where

the users actively search for unknown answers to their questions, is markedly different

from previous work where the question annotators typically know the answer to their

own question (Lee, Chang, and Toutanova 2019a).

2.2.3 Multiple-choice QA (MCQA)

In contrast to extractive QA, in a multiple-choice question answering (MCQA)

task, a list of answer choices is provided as input. Thus the system must interpret

the question and predict an answer from one of these choices. Datasets developed for

MCQA are listed below.

CommonsenseQA (Talmor et al. 2019) is a five-way multiple-choice QA benchmark

containing 9500 questions. Each question requires disambiguation of a target concept

from three connected concepts. These connected concepts come from ConceptNet (Liu

and Singh 2004), which is a large knowledge-base that capture a diverse range

of commonsense concepts and relations about spatial, physical, social, temporal,

and psychological aspects of everyday life. As such, a QA task constructed using

ConceptNet is challenging.
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aNLI (Bhagavatula et al. 2019) is intended to judge the abductive reasoning ability

of QA systems to form possible explanations for a given set of observations. The task

is to find a hypothesis (from a list of choices) that explains an input “post-observation”

given a “pre-observation”. As such, the task calls for an understanding of the sequential

occurrence of events. Following is an example:

Observation 1: Jim was working on a project.

Observation 2: Luckily, he found it in a nearby shelf.

Hypothesis 1: Jim found he was missing an item. X

Hypothesis 2: Jim needed a certain animal for it.

SocialIQA (Sap, Rashkin, Chen, Le Bras, et al. 2019a) is a dataset containing

3-way multiple-choice questions that require reasoning about social interactions and

implications of events, given a passage about a social situation as context. Several

question types in this dataset are derived from the Atomic inference dimensions (Sap,

Rashkin, Chen, Le Bras, et al. 2019a), such as actor intention, actor motivation, effect

on the actor and others, etc.

Science-based Question Answering: Several MCQA datasets require an ability

to answer scientific questions at different difficulty levels. The AI2 Reasoning Challenge

(ARC) (P. Clark et al. 2018) contains 8000 four-way multiple-choice science questions

and answers along with a large corpus of 14 million scientific facts that are necessary to

answer the questions. These questions require multi-hop reasoning, i.e. the ability to

combine information spread over multiple disconnected facts. OpenBookQA (Mihaylov

et al. 2018a) is a 4-way MCQA dataset, for which partial information from a small

corpus of 3000 facts is necessary to answer the question. Systems are free to retrieve

the other partial information from any external source. QASC (Khot et al. 2020), is

an 8-way MCQA dataset, for which it is ensured that questions can be answered by

exactly two facts from an associated corpus of 18 million science facts.
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Is there a boy?

Is the boy dressed for sports?

What color is the frisbee?

What is the boy holding in his 
hands?

INPUT IMAGE INPUT QUESTION ANSWER

Yes

No

Green

Frisbee

Figure 1: Example of a visual question answering task.

2.2.4 Multi-modal QA

Question-answering has also been extended to questions about images or videos

as shown in Figure 1. VQA-v2 (Goyal et al. 2017), VizWiz (Gurari et al. 2018),

GQA (Drew A Hudson and Christopher D Manning 2019a), and CLEVR (Johnson

et al. 2017) are major benchmarks for image-based question answering, where the

answers are open-ended words or short phrases. VizWiz is catered towards answering

questions that may aid visually-impaired people and GQA is focused on questions

about spatial reasoning. In all three benchmarks, the images are natural and non-

iconic, i.e. multiple objects are present. VQA-CP-v2 (Agrawal et al. 2018a) is a

reorganization of VQA-v2 that seeks to measures the out-of-distribution generalization

ability of the question answering system. Reasoning aspects have also been explored

for multi-modal QA, such as Visual Commonsense Reasoning (Zellers et al. 2019a)

focusing on commonsense reasoning and rationalizing in a four-way multiple-choice

task, OK-VQA (Marino et al. 2019) that requires reasoning with external knowledge,

VQA-LOL (Gokhale et al. 2020b) focusing on logical questions, and introspective

sub-questions in (Selvaraju et al. 2020). In the domain of video question answering,
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Approach Accuracy

RoBERTa-WG (Sakaguchi et al. 2020)* 90.1
K-Parser (A. Sharma et al. 2015) 53.0
Modified Skip-Gram (Zhang and Song 2018) 60.3
BERT Inner Attention (Klein and Nabi 2019) 60.3
BERT-MASKEDWIKI (Kocijan et al. 2019) 61.9
UDSSM (Shuohang Wang et al. 2019) 62.4
Ensemble LMs (Trinh and Le 2018) 63.7
CSS (Klein and Nabi 2020) 69.6
GPT-2 (Brown et al. 2020) 70.7
WSC Knowledge Hunting (Prakash et al. 2019) 71.1

Table 1: Comparison of the different unsupervised methods on the Winograd Schema
Challenge. (*) indicates supervised method.

VideoQA (H. Yang et al. 2003), MSR-VTT-QA (D. Xu et al. 2017), MovieQA (Tapaswi

et al. 2016), and TVQA (Lei et al. 2018) have been proposed.

2.3 Unsupervised Methods for QA

In this section, we describe the different approaches to unsupervised QA. Results

on the respective benchmark datasets are shown in Tables 1, 2, and 3.

2.3.1 Winograd Schema Challenge

Semantic Parsing and Sample-guided Graph-based Reasoning. The method

in (A. Sharma et al. 2015) utilizes semantic parsing and information retrieval to gather

similar sentences with disambiguated pronouns using the original schema sentence

as a query. Question answering is guided using a graph-based reasoning algorithm
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defined over the output of the semantic parser, exploiting the retrieved unambiguous

sentence structure.

Skip-Gram and Semantic Dependencies Pre-Training. Zhang and Song

(2018) propose a modified skip-gram (Mikolov, Chen, et al. 2013) objective for pre-

training word embeddings to predict semantic dependencies between verbs and related

dependency relations. A set of vector-space models are trained to capture the verb

meaning and transferred to related ambiguous pronouns.

Word Attention Scores. Shuohang Wang et al. (2019) propose Unsupervised Deep

Structured Semantic Models (UDSSM), in which a BiLSTM is trained to compute

contextual word embeddings and use the word attention scores between ambiguous

pronouns and the noun as the prediction scores. Extending the previous work, Klein

and Nabi (2019) directly exploit the inner attention layers of BERT to compute a

maximum over the attention scores between the pronoun and the noun. The score is

computed using attention scores of all intermediate layers and the max of those scores

are taken.

Pre-training on Masked Noun or Entity Prediction. Kocijan et al. (2019)

construct a synthetic dataset called MaskedWiki, crawled from English Wikipedia to

pre-train a language model for a synthetic masked-noun prediction pseudo-task. In

this task, a noun-word is masked, and the model is asked to predict the word. Ye

et al. (2019) adopt a “align, mask, and select (AMS)” strategy where entities that are

connected with ConceptNet are masked, and the model is asked to predict among a

list of similar candidate entities.

Large Language Models. An ensemble of large pre-trained models was first

utilized by Trinh and Le (2018) and GPT is evaluated on WSC by Brown et al. (2020).

Prakash et al. (2019) extend a language model with a knowledge hunting strategy
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using a probabilistic soft-logic framework with hand-crafted rules and entity alignment

strategy. A similar knowledge-hunting approach is evaluated on Winogrande dataset

by Sakaguchi et al. (2020).

Contrastive Self-Supervision. Klein and Nabi (2020) study a self-supervised

learning approach by exploiting the structural information present in Winograd

Schema pairs – if one word is changed, the pronoun becomes the coreference of

a different noun. A contrastive margin loss is defined to operate on a particular

sentence’s probable answer candidates and a mutual exclusion loss operating on a pair

of sentences.

2.3.2 Extractive QA

Unlike the unsupervised methods for WSC which acquire commonsense knowledge

from word embeddings, knowledge hunting, or large-scale pre-training of language

models, unsupervised methods for EQA focus on synthesizing question-answer pairs

given a text passage. Using these synthetic data, a QA model can be trained, and

evaluated on existing human-authored EQA benchmarks described in Section 2.2.2.

The focus is on training a neural reader model on these generated question-answer

pairs and evaluates the model on a zero-shot transfer paradigm where the test domain

contains human-authored questions and answers. Below, we discuss various question-

answer pair generation methods.

Cloze Generation. In Cloze Generation, a textual passage is divided into a prelim-

inary introduction P and a trailing part from which the question Q and the answer

A are selected. The answer-span is selected first, such that it is present in both the
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SQuAD 1.1 NewsQA

BERT-Large (*) 85.1 / 91.8 N/A / 73.6
BERT-Large +
(Dhingra, Danish, and Rajagopal 2018) 28.4 / 35.8 18.6 / 27.2
(Lewis, Denoyer, and Riedel 2019) 44.2 / 54.7 17.9 / 27.0
(A. Fabbri et al. 2020) 46.1 / 56.8 21.2 / 29.4
(Z. Li et al. 2020) 61.1 / 71.4 32.1 / 45.1

Table 2: Comparison of different unsupervised methods on extractive QA task. Exact
Match and F1 scores are reported. (*) indicates supervised method.

premise and question, and is replaced with a placeholder in the question as shown

below:

Passage: Autism is a neuro-developmental disorder characterized by impaired social inter-

action, verbal and non-verbal . . .

Question: People with autism tend to be a little aloof with little to no ________.

Answer: social interaction.
Cloze generation for training was proposed Dhingra, Danish, and Rajagopal (2018),

with ground-truth answer-spans being a sequence of overlapping text between the

introduction passage and the trailing part. In (Lewis, Denoyer, and Riedel 2019),

answer-spans are selected from noun-phrases as well as named-entities.

Unsupervised Cloze Translation. On the other hand, Lewis, Denoyer, and Riedel

(2019) select answer spans from noun-phrases as well as named-entities, and present

four methods of unsupervised cloze translation, adapted to convert a cloze-style

question-answer pair to a more natural question-answer pair: (1) Identity Mapping,

where original cloze-style pairs are evaluated, (2) Clozes, where a random perturbation,

word-ordering change, and random or heuristics based “Wh-word” is prepended, (3)

rule-based question generation (Heilman and Smith 2010) using Wh-movement via

syntactic transformation, and (4) a Seq-2-Seq neural model trained in an unsupervised
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fashion with two non-parallel training corpus, the source Cloze-style questions, and the

target natural questions. The training process is similar to translation models (Lample

et al. 2018) with a bidirectional combination of in-domain training using denoising

autoencoding and cross-domain training using online-back-translation.

Retrieval and Template-based Question Generation. A. Fabbri et al. (2020)

propose a two-step method as an extension to the above work. First, the context

is used to retrieve similarly-structured sentences. These sentences are then used to

generate questions using template-based methods. Given a context of the format:

[Fragment I][Answer][Fragment II]

a template of the form: “Wh + II + I + ?” is used to construct the question,

with a Wh-word replacing the answer-word in the question.

RefQA and Iterative Refinement. There are several limitations of using Cloze

Generation as the only source of question-answer pair generation. There are significant

lexical overlaps between the generated questions and the paragraph, which allows

the QA model to predict the answer simply via word matching, thereby affecting

generalization. Moreover, the answer category is limited to the named entity or noun

phrase, further restricting the model’s coverage. To mitigate these challenges, Z. Li

et al. (2020) propose RefQA, which utilizes cited documents in parent Wikipedia

context documents to extract clozes with minimal text overlap with parent context.

Furthermore, they propose a dependency-parsing-based cloze-translation to natural

questions. First, the right child nodes of the answer are retained, and the left children

are pruned. Second, if the child node’s subtree contains the answer for each node of

the parse tree, the child node is moved to the first child node. Finally, an in-order
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traversal is performed over the reconstructed tree. A rule-based mapping is applied to

replace the special mask token of the cloze with an appropriate “Wh-word”.

In Iterative Refinement, a neural model is first trained with a generated question-

answer pair. This model is used for answer prediction to generate a new answer Â. If

Â is different from the original answer A, then this new answer span is used as a seed

for a new question generation Q̂ using the above method. This process is repeated till

no new Q,A pairs are generated.

Multi-hop Question Generation (L. Pan et al. 2020) utilizes multiple parallel

data sources, such as tables and associated paragraphs. A fixed set of operators

is defined to extract, generate, aggregate, or merge information. Six pre-defined

reasoning graphs (similar to action templates) are used for generating multi-hop

questions.

2.3.3 Multiple-choice QA

Unsupervised MCQA methods rely on external knowledge graphs such as

Atomic (Sap, Rashkin, Chen, Le Bras, et al. 2019a) and ConceptNet (Liu and

Singh 2004), or additional factual sentences as provided in the ARC, QASC, and

OpenBookQA datasets. Some methods also use large language models such as GPT-2

and Comet (Bosselut et al. 2019).

Information Retrieval Solver was proposed in ARC (P. Clark et al. 2016), in

which (context, question, answer) options are used as queries. The top retrieved

sentence with a non-stop-word overlap with the question-answer pair is used as

a representative, and its corresponding ranking score (BM25) is used as answer

confidence. The option with the highest score is chosen as the answer.
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CSQA aNLI SIQA ARC QASC OBQA

Random 20.0 50.0 33.3 25.0 12.5 25.0
RoBERTa (*) 78.5 85.6 76.6 67.0 61.8 72.0
RoBERTa 45.0 65.5 47.3 23.8 23.8 19.7
GPT-2 41.4 56.5 44.6 25.0 13.2 27.0
IR Solver 24.4 54.8 36.0 21.2 19.4 28.8
Self-Talk 32.4 N/A 46.2 N/A N/A N/A
Dynamic Gr. N/A N/A 50.1 N/A N/A N/A
Know. Trip. L. 38.8 65.3 48.5 28.4 27.2 33.8
Dataset Cons. 67.9 70.8 63.2 N/A N/A N/A

Table 3: Comparison of classification accuracies for different unsupervised methods
on multiple-choice QA task. (*) indicates supervised method.

Self-Talk (Shwartz et al. 2020) is an unsupervised framework inspired by inquiry-

based discovery learning. In this approach, the system inquires a language model

such as GPT-2 or Comet with several information-seeking questions such as “what

is the definition of [concept]” to discover additional background knowledge. After

an answer is generated, the method utlizes these additional question-answer pairs

as context. Finally, the answer is selected from the given choices using the least

cross-entropy score for the sequence of text generated by concatenating the generated

context, question, and the answer option.

Self-Supervised Knowledge Triplet Learning (Banerjee and Baral 2020b) was

proposed to pre-train large language models such as RoBERTa, with three repre-

sentation learning functions that aim to complete a knowledge triple given two of

its elements. For example, given a (context, question, answer) triple, one function

generates the context given the QA pair, another generates the question given the

context and the answer. These functions are used in conjunction to compute the

distance for each answer candidate from the generated answer representation. Methods
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for knowledge graph construction from unstructured text corpora are proposed that

use noun/verb phrases to create knowledge triples required for pre-training.

Dynamic Neuro-Symbolic Knowledge Graph Construction. In Bosselut,

Bras, and Choi (2021), an initial study on zero-shot commonsense question an-

swering is conducted by formulating the task as inference over dynamically generated

commonsense knowledge graphs. In contrast to prior studies for knowledge integration

that rely on retrieval from static knowledge graphs, this work requires commonsense

knowledge integration where contextually relevant knowledge is often not present

in existing knowledge bases. The method generates contextually-relevant symbolic

knowledge structures “on-demand” using generative neural commonsense knowledge

models such as Comet and GPT-2. The method defines a reasoning algorithm using

this “on-demand” generated knowledge graphs and selects the most supported answer

option from the additional knowledge context.

Knowledge-driven Data Construction. In Ma et al. (2021), a neuro-symbolic

framework for zero-shot question answering across commonsense tasks is proposed.

Guided by a set of hypotheses, the framework studies how to transform various

pre-existing knowledge resources into a most effective form for pretraining models.

The framework varies the set of language models, training regimes, knowledge sources,

and data generation methods and measures their impact across tasks. Extending on

Self-Talk and Knowledge Triplet Learning, it compares and contrasts four constrained

distractor-sampling strategies. The key insight derived from the work is while an

individual knowledge graph is better suited for specific tasks, a global knowledge graph

brings consistent gains across different tasks. Also, preserving the task structure and

generating questions that are fair and informative helps large language models learn

more effectively.

26



2.3.4 Multi-Modal Question Answering

There are few unsupervised methods for VQA and video-QA where human-authored

QA pairs are unavailable. We categorize the methods in two categories, the first

being unsupervised methods for out-of-vocabulary generalization, and the second being

weakly supervised QA in which no human-authored QA pairs are available, but other

signals such as captions and transcriptions can be used.

Zero-Shot VQA. In this task, the systems are expected to generalize to out-

of-vocabulary questions or answers during test-time. The task was first proposed

in (Teney and A. v. d. Hengel 2016), in which they introduced multiple methods based

on pre-trained word embeddings, object classifiers with semantic embeddings, and

test-time retrieval of example images that are encoded in a semantic embedding space.

The final answer is generated using a look-up table and nearest neighbor search in

answer-embedding space.

Unsupervised Task Discovery proposed by Noh et al. (2019), utilizes existing

large-scale visual datasets with annotations such as image class labels, bounding boxes,

and region descriptions to learn rich and diverse visual concepts. The missing link

between question-dependent answering models and visual data without questions makes

learning visual concepts challenging. This is mitigated by learning a task conditional

visual classifier capable of solving diverse question-specific visual recognition tasks, and

transferring the classifier to VQA models. To learn the unsupervised task discovery,

external structured knowledge sources such as ConceptNet and WordNet are utilized.

Weakly Supervised from Captions Two recent papers utilize captions to gener-

ate QA pairs for image-based VQA and video QA, respectively. Both the methods

have shown a competitive performance to existing supervised methods.
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Banerjee et al. (2020) utilize various question generation techniques such as cloze-

generation, template-based methods, and semantic role-labeling, using the image

captions as context. Paraphrasing using back-translation is employed for linguistic

diversity. Particular object entity-based and yes/no based questions are generated

following the process introduced in COCO-QA (Ren, Kiros, and Zemel 2015). In

semantic role labeling (FitzGerald et al. 2018a), the role-labels are expressed as

question-answer pairs. For example, for the caption “A girl in a red shirt holding

a skateboard sitting in an empty open field”, Q-A pairs such as (“What is someone

holding?”, “a skateboard”) are generated.

In (Antoine Yang et al. 2020), captions for a huge set of videos are generated using

automated speech recognition. A pre-trained transformer model on SQuAD is used

for generating question-answer pairs from these pre-processed captions.

2.4 Related Paradigms of Learning

Self-Supervised Pre-Training. Self-supervised learning leverages auxiliary tasks

with input-output samples extracted from unlabeled datasets, to learn generalizable

representations applicable to multiple downstream tasks. Self-supervision has been

used to train transformer-based language models using masked token prediction De-

vlin et al. 2019a; Raffel et al. 2020b, sequence prediction Zhilin Yang et al. 2019,

discriminator-based plausible alternative prediction K. Clark et al. 2019.

MARGE Lewis, Ghazvininejad, et al. 2020 is trained to retrieve a set of related

multilingual texts for a target document, and to reconstruct the target document from

the retrieved documents.
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Low-Resource Question Answering. In many cases, training datasets for QA

may be small, thereby affecting model generalization. To alleviate this, methods

utilizing reinforcement learning for question generation Zhilin Yang et al. 2017a, cloze

question generation Dhingra, Danish, and Rajagopal 2018, and meta learning Yan

et al. 2020 have been proposed.

Zero-Shot and Few-Shot Learning. An approach is to utilize domain adaptation

methods to train the model on a large-scale source task and to fine-tune it on the

low-resource target task Kadlec et al. 2016; Golub et al. 2017; Wiese, Weissenborn, and

Neves 2017b; Chung, Lee, and Glass 2018a. However, this approach assumes access to

a labeled source dataset. Recently, GPT-3 Brown et al. 2020, a large language model

(175B parameters) has been trained with huge text corpora (300B tokens). While

GPT-3 is able to perform a wide variety of NLP tasks after this expensive pre-training,

the zero-shot performance is still below some unsupervised methods discussed in this

survey, such as 70.2% on WSC and 59.5% on SQuAD-v2. This, in our opinion, makes

a strong case for further research in unsupervised learning, especially with regard to

generalization.

2.5 Challenges

Aforementioned methods for unsupervised QA have unveiled challenges related to

reasoning abilities and generalization that need to be addressed. We discuss these

challenges below.

Question-Answer Pair Generation. Although question-answer pair generation

has improved a lot over the years, there is still a gap to fill that is observed when

purely unsupervised methods are compared to self-training methods such as (Alberti
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Figure 2: Discrepancy between dataset questions and generated questions. Left: Plot
from Lewis, Denoyer, and Riedel (2019) showing a comparison of question lengths for
various generation methods. Right: tSNE plot from Banerjee et al. (2020) comparing
question embeddings for VQA.

et al. 2019; Puri, Spring, Shoeybi, et al. 2020) that use human-authored questions

and answers to train question-generation models and then train neural readers only

using the generated synthetic question-answer pairs. Figure 2 shows the gap between

generated questions (Lewis, Denoyer, and Riedel 2019) and original SQuAD dataset

distribution (left), and VQA-v2 and GQA vs. synthetic questions from (Banerjee

et al. 2020). Further improving non-parallel unsupervised cloze translation, utilizing

existing lexical and knowledge graphs for additional supervision, and improving

parsing-based question generation would be an interesting direction to bridge this gap.

Answer-Phrase Generation. Named-entities and noun-phrases are the current

focus for answer generation. While recent methods (Banerjee et al. 2020) have

introduced semantic-role labeling to generate a answer-phrases with diversity in

parts-of-speech generated, there remains a large room for improving synthetic answer

generation.

Training Sample Selection. As the procedural question-answer pair generation

does not restrict the size of the synthetic training corpus, there is a limit to positive
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inductive bias that can be incorporated into certain neural architectures, limiting

the generalization ability and moving towards over-fitting to the synthetic corpus.

Utilizing train sample selection, adversarial sample selection, hard-sample mining, and

curriculum learning would be the next step to understand which samples are more

useful to learn question answering.

Reasoning Abilities. Although commonsense reasoning is required in WSC, aNLI,

and other commonsense-related tasks, other tasks such as complex multi-hop rea-

soning, abductive reasoning where the hypotheses are generated and not selected,

quantitative, temporal, qualitative, and non-monotonic reasoning, all remain uphill

battles. Similarly, in visual question answering, unsupervised question-answer pair

generation with complex spatial reasoning in focus is still unexplored. Meanwhile (Ye

and Kovashka 2021) have shown that supervised models can take advantage of short-

cuts and co-occurring words between the question and answer-choices in VCR (Zellers

et al. 2019a). Unsupervised learning could help break these spurious shortcuts in

order to boost generalization.

Evaluation Metrics used in current question answering benchmarks range from

classification accuracy for multiple-choice QA, exact match, and F1-score for extractive

QA, to a custom visual question answering metric incorporating multiple allowed

phrases for VQA tasks. While there has been work towards generative question

answering models (Bhakthavatsalam et al. 2021), existing evaluation metrics designed

for classification or MCQA tend to over-penalize methods that generate correct but

descriptive answers (Goyal et al. 2017; Banerjee et al. 2020). It is intractable to

annotate datasets with all possible answers to a question given that some questions

may be subjective and have multiple answers, and in lieu of the plethora of synonymous

or equivalent phrases in natural language. Hence, there is a need for newer metrics
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that judge multi-word descriptive paraphrased versions of the correct answer equally.

While the issue of better evaluation has attracted attention for the tasks of machine

translation Edunov et al. 2020 and text generation systems Gehrmann et al. 2021, it

remains under-explored in the QA domain, with few works such as (Luo et al. 2021a)

which seeks to develop automated methods to augment answer annotations with

equivalent and alternate answers.

2.6 Outlook

In a typical QA setting, specific words in the text may not be enough to answer the

question since contextual knowledge may be required, as is aptly highlighted by the

Winograd Schema Challenge. Collection of such external knowledge covering a wide

range of knowledge and reasoning abilities is often infeasible. Therefore, development

of techniques that do not rely on the collection of datasets is important for low-resource

settings and for adapting models to new domains, or when the knowledge-base changes

over time – for instance Wikipedia entries on most topics are updated over time.

There has been recent interest in “Test-Time Training” (Sun, Wang, et al. 2020) for

image classification –an approach that turns a single unlabeled test sample into a self-

supervised learning problem on which the model is trained before making a prediction.

This paradigm could be potentially extended to QA tasks for improving generalization

without reliance on human-authored data. Spurious correlations and biases bring in

imminent risks, especially when it comes to sociocultural biases that have been shown

to percolate into training datasets. Unsupervised learning can potentially serve as

a tool to not only mitigate these risks but also study their impact, as any observed

biases could be attributed back to data synthesis methods.
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Chapter 3

WEAKLY-SUPERVISED LEARNING-TO-RANK AND KNOWLEDGE

SEGREGATION FOR OPEN BOOK SCIENCE QA

3.1 Introduction

Open Domain QA is a challenging Natural Language QA task where systems need

to retrieve external knowledge and perform multi-hop reasoning by understanding

knowledge spread over multiple sentences. Several open domain NLQA datasets and

challenges have been proposed in recent years. These challenges try to replicate

the human QA setting where humans are asked to answer questions and refer to

books or other information sources available to them. Datasets such as HotPotQA

(Zhilin Yang et al. 2018a), Natural Questions (Kwiatkowski, Palomaki, et al. 2019),

MultiRC (Khashabi et al. 2018), ComplexWebQuestions (Talmor and Berant 2018)

and WikiHop (Welbl, Stenetorp, and Riedel 2018) require finding relevant knowledge

and reasoning over multiple sentences. In these tasks, the systems are not constrained

to any pre-determined knowledge bases. Both the task of finding knowledge and

reasoning over multiple sentences demands deep natural language understanding.

These tasks’ goal is not to memorize the texts and facts, but to understand and apply

the knowledge to new and different situations (Jenkins 1995).

In our work, we focus on openbook science QA, such as in OpenBookQA and

QASC (Mihaylov et al. 2018b; Khot et al. 2019). They differ from the tasks mentioned

above in the following aspects. Special care is taken in OpenBookQA and QASC

to avoid simple syntactic cues in questions that allow decomposition into more
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Figure 3: An example from the QASC Dataset.

straightforward queries (Khot et al. 2019). Human verification has shown that

answering questions in both of these tasks requires a composition of two or more

facts. Both OpenBookQA and QASC are accompanied by a knowledge corpus, for

OpenBookQA, an openbook of 1324 facts, which contains partial knowledge to answer

the questions, and QASC a knowledge corpus of 19 million science facts. These facts

are independent and short with less than 20 words and describe different scientific

phenomena, as seen in Figure 3. Creating a reading comprehension passage from such

discrete sentences create a non-coherent context, making the task challenging.

We need to address several challenges for performing QA in such a context. The

first challenge is the task of relevant knowledge retrieval. We design a novel multi-step

information retrieval system that uses both an algorithm for query generation and

a weakly-supervised ranking model to address this challenge. We require multiple

steps during retrieval as the questions need the composition of knowledge in multiple

sentences to answer the questions correctly. A multi-step information retrieval intro-

duces a significant noise; hence we reduce this noise by learning a transformer-based

weakly-supervised knowledge ranking model. The second challenge we address is
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formulating the Weakly-Supervised learning-to-rank task. The design choices for the

task formulation are demonstrably impactful on the downstream QA task.

The third challenge we address is about knowledge composition and understanding.

Transformer encoder-based language models possess knowledge learned through their

pre-trained language modeling tasks. Prior work has shown that these transformers

can reason with explicit knowledge (Banerjee et al. 2019a; Yadav, Bethard, and

Surdeanu 2019; Khot et al. 2019), but we observe they are brittle towards repeated

distractor sentences. To avoid this, we propose a knowledge segregation module that

improves performance under such a scenario.

Finally, we analyze our knowledge ranking and QA models to identify how dif-

ferent components contribute. We analyze what noise our knowledge ranking model

introduces, where our QA model fails, and why it cannot answer such questions. We

extract explanation sentences from the retrieved knowledge sentences using attention

scores and identify which knowledge sentences are useful, distracting, and correctly

answered questions without any support. Our analysis shows some drawbacks of

using Attention-based language models and the necessity of improvements in specific

components. The dataset and code is public here in the spirit of open science.

Our contributions are summarized below:

• We provide novel ways to prepare queries for a multi-step knowledge retrieval

system.

• We formulate a weakly-supervised learning method for the learning-to-rank task,

curating a synthetic training dataset that will be useful for future studies on science

QA.

• We propose a new model to perform better knowledge composition and QA with

external knowledge, resistant to repeated distractors.
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Figure 4: A question present in QASC. The source of facts for QASC is the available
knowledge corpus.

• Our methods improve over baselines by 2.2% and 8.05% on OpenBookQA and

QASC, respectively, and reduce the gap to the state-of-the-art super-large language

models by 14%.

• We analyze our knowledge ranking and knowledge composition models to under-

stand the failures better to enable future improvements.

3.2 Multi-Step Knowledge Retrieval

Knowledge Source Indexing We use the aforementioned knowledge sources from

OpenBookQA and QASC, and also include the ARC knowledge Corpus (P. Clark

et al. 2018) containing 1.7 billion facts. To enable better retrieval, we preprocess the

facts before indexing them into Elasticsearch. Elasticsearch stores documents in an

efficient reverse index data structure to enable low latency retrieval. As Lucene does

not support parts-of-speech tagging, we cannot define queries to retrieve sentences

where we need to search particular nouns or verbs. We extract noun-chunks and

verb-chunks from each sentence using Spacy to support this. We further lemmatize

each word present in these chunks to obtain a normalized form. We index the original

document with these lemmatized words in a different field over which the search is done.

We preprocess the ARC facts by removing non-English characters and punctuations

that do not impact sentence structure. We create 1K distinct clusters of lemmatized

words using Glove embeddings (Pennington, Socher, and Manning 2014) of original
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un-lemmatized words and cosine similarity using K-means clustering. We expand the

query (temperature,water) with a random sample of atmost 5 words (hot,cold,water

vapor, moisture) from these clusters.

Query Generation We do knowledge retrieval in two steps. The sentence, question,

or answer phrase are processed to extract noun-chunks and verb-chunks using Spacy

in each step. We further lemmatize the noun-chunks and verb-chunks and remove

stop-words from the lemmatized word list.

Retrieval Step-1 In the first step of knowledge retrieval, question Q, and the ith

answer options, Ai are given. We generate the query by concatenating the question

and answer and follow the query generation policy mentioned above. We query

Elasticsearch and retrieve top-50 sentences. These sentences are denoted as F1. To

illustrate, let us refer to the question in Figure 4. The question will yield the following

lemmatized words: describe, term, temperature, water, air. The answer (b) will yield

climate. The final query will be union of both.

Retrieval Step-2 For each question Q, answer option Ai and F1ij, the knowledge

retrieved from first step and semantically ranked, we find the set of unique words

present in Q, Ai and F1ij using the following unsupervised algorithm: Quij = ((Q ∪

Ai) ∪ F1ij) \ ((Q ∪ Ai) ∩ F1ij), where Qu is the generated query, ith answer option,

and jth retrieved sentence from F1i. This operation is designed to retrieve the missing

knowledge in an openbook QA task by selecting entities not present in (Q ∪ Ai) and

retrieved F1ij. For example, the goal is to identify the key-words moisture and water

from the retrieved F1i and Q in Figure 4. The words are further lemmatized to define

the final query. The sentences retrieved in this step are denoted as F2. We retrieve

the top-20 sentences in this step.
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3.3 Weakly-Supervised Learning-to-Rank

Task Definition In our weakly-supervised learning-to-rank task, we have partial

ground-truth labels for one class and noisy labels for the other class. In the following

sections, we define how we gather ground-truth positive labels and define a procedure

for hard mining negative samples. We model the ranking task as a binary sentence-pair

classification task, i.e., given the question Q and answer option Ai, we classify the

corresponding retrieved knowledge Fkij into two classes, irrelevant and relevant, where

k is the retrieval step, i is the answer option number, and j is the retrieved sentence

number. We rank the sentences using the class probabilities for the relevant class.

Formally, we learn the following probability: Rel(Fkij, Q,Ai) = P (Fkij ∈ G|Q,Ai),

where G is the set of relevant facts.

We compare multiple task settings for ranking, such as a regression task similar to

Semantic Textual Similarity. Though this task is more appropriate as a ranking task,

it is harder to get correct and noiseless annotations for such a task using automatic

techniques. We rerank the top 50 retrieved sentences after each step.

Positive Labels Questions in QASC are accompanied by two human-annotated

gold core knowledge facts (F1, F2), which can be used to answer the questions when

composed. These annotated facts provide us the positive labels. We gather more

positive labels from the OpenBookQA datasets. The OpenBookQA also has an

additional resource that contains the most relevant gold fact(F1) from the openbook.

This fact is not sufficient to answer the question, but contains partial knowledge.

The final source of positive labels is the SciTail dataset (Khot, Sabharwal, and Clark

2018). SciTail contains questions, the correct answer, and a sentence pair. The task

in SciTail is natural language inference, i.e., does the fact entails or is neutral to the
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hypothesis (QA pair). The hypothesis is not a concatenated version of the QA pair

but a well-structured sentence. Unfortunately, we do not possess a well-structured

sentence equivalent to our QA pairs in our target application. We select the QA

pair for positive labels and the corresponding premise as the relevant facts from the

samples annotated as “entails”.

Negative Labels From SciTail, we take all samples marked as “neutral” as an initial

set of irrelevant facts. We gather further negative samples using the following algorithm.

For all QA pairs from QASC and OpenBookQA, we do an initial knowledge retrieval

using the query generation, as mentioned in step one of multi-step knowledge retrieval.

From this set of retrieved facts, we select facts outside the T threshold of document

similarity compared to the gold relevant facts. Those sentences which are “similar”

to the gold facts are selected as positively labeled samples. We compute document

similarity using cosine similarity between document embeddings, which are extracted

using Spacy (Honnibal and Montani 2017) Glove word vector embeddings. We try

different values of T and study the threshold’s impact on the downstream QA task.

We mark the knowledge retrieved using wrong answer options, which are more than T

distance away from the gold facts as irrelevant. The key focus here is to mark those

sentences which contain the wrong answer and question extracted noun/verb chunks

as irrelevant. Train and validation sets are balanced for both classes, with each having

145,200 and 16,134 samples, respectively.

Model Description We evaluate two transformer encoder-based language models,

BERT-large-cased (Devlin et al. 2019a) and RoBERTa (Y. Liu et al. 2019) for the

ranking task. We provide the concatenated QA pair as sentence A and the fact as

sentence B. Let SA and SB denote tokens from sentence A and B, then the input to

the BERT model is defined as {[CLS]SAi
[s]SBj

[s]}, with [s] as separator token and
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Fkij
A retrieved sentence or fact. k denotes the step of retrieval.
i the answer option used for retrieval. j the sentence rank.

K
A collection of facts used as part of the QA model.
Facts may be repeated or redundant.

C A set of common facts that appear across all answer options.
Ui A set of unique facts for ith answer option.

Table 4: A Table of notations for different types of facts.

[CLS] as class token. We take the encoding of z = [CLS] token from the BERT’s

final layer β, which we pass through a feed-forward layer FF and a final softmax layer

for getting probabilities. We use cross-entropy loss between the predicted scores and

the gold relevance labels.

logits = FF (β(z, SA, SB)), score = softmax(logits)

β is the BERT model, FF is the feedforward layer.

3.4 Knowledge Segregation QA Model

Overview of Transformer encoder-based QA Models Let Q̂, Âi, and K̂i be set

of tokens from the question Q, ith answer option Ai, and the retrieved knowledge Ki.

The current systems (Devlin et al. 2019a; Y. Liu et al. 2019; Banerjee et al. 2019a;

Khot et al. 2019) define the input as follows: {[CLS] K̂i Q̂ [s] Âi [s]}. It acts as an

entailment model to predict each answer’s entailment score, given the knowledge and

question, where each answer is a separate input. This way of creating input and

modeling QA has certain drawbacks.

Each knowledge retrieved is unique to the corresponding answers. The transformer
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encoder has multiple layers of stacked attention neural units, and attention with the

corresponding knowledge enables the system to perform the QA task. However, the

knowledge retrieved uses the QA pair tokens; consequently, there is much lexical

overlap between the knowledge and QA pair tokens. Firstly, this overlap, though

helpful in answering, also introduces noise and confusion. Secondly, the input does

not enable comparing different answers using attention layers. Cross-answer attention

is needed to answer comparative questions.
Question: Owls are likely to hunt at?

Options: a. 3:00 PM b. 2:00 AM c. 6:00 PM d. 7:00 AM
Entailment models may falter in such comparative questions, as they do not

compare different answers and are only aware of one answer at a time.

Finally, the set and order of facts retrieved for each answer are unique for an

answer, but sentences are retrieved, which may be common to all the answer options.

These sentences are relevant to the question, and cross-attention to these facts with

all the answer options should enable the model to discriminate between the correct

and incorrect answer options. We use the above insights to develop our input and

knowledge segregation component.

Input Description Facts are categorized into two classes. Let C denote the set of

facts present in the knowledge retrieved for each answer option. Let Ui denote the

set of unique facts to an answer option. Facts’ order is maintained after retrieval and

re-ranking. For creating C, we count each sentence’s appearance across different Ui,

i.e, count(Fij) and multiply the max score for this sentence from the ranking model

across all answers, max_rank_score(Fij).

final_score(Fij) = count(Fij) ∗max_rank_score(Fij)

We sort the sentences in decreasing order of this final score. We concat the

unique knowledge Ui to the question similar to the input mentioned above to
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(a) Threshold v
QA Acc

(b) F1 Depth v F2
Recall

(c) # of Facts v
QA Acc

(d) Prediction Confidence Distribu-
tion

Figure 5: (a) Impact of threshold T for selection of negative samples on the Learning-
to-rank model and the downstream QA. L2R and QA accuracy is measured on the
QASC dataset.(b) Impact of Depth of Step 1 on Recall of Fact 2, post L2R model.
We select top 20 in Step 2 and re-rank using L2R to get Fact 2 recall.(c) Impact of
knowledge on the respective validation QA tasks. > 10 is limited by transformer
encoder max token length. KS is the QA model. (d) Distribution of prediction
confidence of the our KS Model for the QASC Validation set.

Step 1 of Retrieval (%) ↑ Step 2 of Retrieval (%) ↑

Model Accuracy (%) ↑ Dataset F1 F2 R@5 F1 F2 R@10 F1 & F2 R@10 F1 F2 R@5 F1 F2 R@10 F1 & F2 R@10

BM 25 All Words N/A QASC 29.60 8.30 35.80 18.60 4.40 30.30 13.20 44.80 13.68 8.10
OBQA 28.20 N/A 32.50 N/A N/A N/A N/A N/A N/A N/A

BM 25 N/V Chunks N/A QASC 34.32 11.45 47.54 14.78 08.12 35.18 18.78 47.78 24.56 11.34
OBQA 33.50 N/A 42.60 N/A N/A N/A N/A N/A N/A N/A

BERT Classification 88.32 QASC 46.80 22.50 51.80 29.67 14.44 48.60 27.85 50.30 29.33 15.88
OBQA 54.60 N/A 65.80 N/A N/A N/A N/A N/A N/A N/A

RoBERTa Regression 84.78 QASC 44.78 23.34 49.66 27.12 11.24 46.48 27.50 49.80 27.64 14.79
OBQA 48.34 N/A 64.25 N/A N/A N/A N/A N/A N/A N/A

Dense Passage Retrieval N/A QASC 47.48 16.75 52.60 19.30 11.58 49.20 29.13 53.45 32.68 17.20
OBQA 52.98 N/A 68.70 N/A N/A N/A N/A N/A N/A N/A

RoBERTa Classification 91.56 QASC 49.32 28.38 55.80 31.35 15.56 51.40 32.56 57.68 35.40 19.80
OBQA 59.62 N/A 79.60 N/A N/A N/A N/A N/A N/A N/A

Table 5: Results for Learning-to-rank model. F1 and F2 represent the two core
knowledge facts. Accuracy is the classification accuracy of the classifiers on the
validation set. Recall@N (R@N) is the measure of the fact being present in the top N
retrieved sentences. F1 & F2 represent both the facts are present in the top 10. For
OpenBookQA we do not have annotations for gold F2. Best scores are marked in
Bold.

the entailment model. This input is the “per answer option input” defined as

{[CLSAi
]Ui Q̂ [s] Âi [s]}. Another different input is where we concat the question, all

the answer options, and the common knowledge C. This “common input” is defined

as {[CLSC ] Q̂ [s] Â1 . . . [s] Â4 [s]C [s]} . Total inputs is n + 1 if n is the number of

options.
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Encoder Each input is fed to a transformer encoder, which is initialized with pre-

trained transformer encoder weights, such as BERT or RoBERTa (Devlin et al. 2019a;

Y. Liu et al. 2019). The unique encoder is used to encode the unique inputs, and

the common encoder is used to encode the common input. In the unique encoder, we

mean-pool the embeddings for the last four layers of the [CLS] token, as evaluated

as the best method to extract embeddings from BERT (Devlin et al. 2019a). In the

common encoder, we mean pool the last four layers of the [CLS] and answer tokens,

and take the mean of all the tokens. We evaluate both separate and shared weights

for these encoders. However, the shared weights encoder outperforms significantly

and the following results are for the shared weights encoder.

Projection Layer and Fusion Function We project all the inputs’ encodings

through a two-layer feed-forward layer, and GeLU activation (Hendrycks and Gimpel

2016) as the non-linearity. In the fusion function, we take the element-wise product of

the unique answer vectors and the common vector. We then concatenate the unique

answer vector and the result of the element-wise product. Let [zAi] be the encoding

for each answer specific input, and [zC ] for the “common input”. Let Fus be the

fusion function, β the transformer encoder, and P the projection layer. V is the final

concatenated vector. For QA, we feed this vector to another feed-forward layer FF to

get the answer logits. We train the model using cross-entropy loss between predictions

and gold answer labels.

zAi = βu(z, Ui, Q,Ai), zC = βc(z, C,Q,A1..4)

Fus(X,Y ) = [X · Y : X], Vi = Fus(P (zAi), P (zC))

score(Q,Ai, Ui, C) = softmax(FF (Vi))
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3.5 Results and Discussion

Baselines: We use the following as baselines. Multi-step BM25 Retrieval with all

words : We perform the multi-step retrieval using all the words and ignore our prepro-

cessing steps. The retrieval is done against the full sentences field in Elasticsearch.

The scoring function is BM25 (Robertson and Walker 1994). Multi-step BM25 Re-

trieval with noun/verb chunks: In this method, we perform the multi-step retrieval

using our preprocessing steps but do not use the Learning-to-rank model. Multi-

hop Dense Passage Retrieval : This is a state-of-the-art open-domain QA retriever

model (Karpukhin et al. 2020; Xiong et al. 2020) that encodes passages into vectors

and uses cosine-similarity and FAISS (Johnson, Douze, and Jégou 2019) to do a fast

vector retrieval. The retriever is trained using our corpus. The QA model it needs uses

these vector representations as knowledge. We adapt the QA model by replacing the

knowledge sentence encoders with these representations. We use knowledge retrieved

from baseline retrieval models and BERT, and RoBERTa QA models as strong QA

baselines.

Training Parameters Both the Learning-to-rank model and the QA models were

trained using the following parameters. Each model is trained with a hyperparameter

budget of ten runs (Dodge et al. 2019), and the mean of the accuracies are reported.

We use the Huggingface (Wolf et al. 2019) and Pytorch framework (Paszke et al. 2019).

The models were trained with BertAdams optimizer, a learning rate in range [1e-5,5e-

5], batch sizes of [16,32,48,64], linear weight-decay in range [0.001,0.1], dropout of 0.1,

and warm-up steps in range of [100,1000].

Metrics: We use Recall@10 to compare the retrieval methods. OpenBookQA has

ground-truth Fact 1s or F , and QASC has gold Fact 1 F1 and Fact 2 F2. As we only
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have one relevant sentence, we calculate mean Recall@10 across all questions and all

answer options. For QA, we use classification accuracy.

Datasets: OpenBookQA is a multiple-choice QA task that contains four answer

options for each question. There are 4,957 questions in train and 500 questions in

each validation and test set. QASC has 9,980 8-way multiple-choice questions. There

are 900 validation and 920 test questions.

3.5.1 Learning-to-Rank

Weak-Labels Dataset Analysis: We sample 100 questions for each label type and

threshold and study the information content present in the positive and negative facts,

i.e., can the answer be entailed from the positive labels, and the negative answers

should not entail the answer. Table 6 shows our analysis results. We can observe if

we select positive labels and negative labels using a lower similarity threshold, only

9 out of 100 negative labels contain partial knowledge to answer the question, but

the positive labels are noisy. Similarly, if we use a higher similarity threshold, we

mark more noisy negative labels as the facts within the range of 0.9 to 0.95 are also

included. We identify negative labels with a lower threshold of 0.8 and positive labels

with a higher threshold of 0.95.

A similar insight is seen in Figure 5, which shows how varying the threshold to

select negative samples impacts the ranking task and the QA task. A lower threshold

value makes the ranking task trivial, but the QA task accuracy is low due to more

similar but noisy retrieved facts. A higher threshold makes the ranking task harder due

to very similar sentences, leading to lower confidence predictions, and consequently,

noisy facts are retrieved, leading to a drop in QA accuracy.
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Label, IC T=0.8 T=0.9 T=0.95 Length

Positive 74 81 95 10.23

Negative 9 15 32 10.28

Table 6: Analysis of ranking dataset. IC refers to information content. T is the
similarity threshold. Length is the average number of tokens in the fact.

Model Acc %

Human 91.7
Random 25.0
Reading Strategies (Sun et al. 2018) 56.0
BERT (Devlin et al. 2019a) 60.4
Microsoft BERT MT* 64.0
Knowledge Passage (X. Pan et al. 2019) 70.0
AristoBERTv7*(AllenAI 2019) 72.0
Careful Selection (Banerjee et al. 2019a) 72.0
AristoRobertav7*(AllenAI 2019) 77.8
T5 11B* (Raffel et al. 2020a) 85.4
UnifiedQA T5 11B* (Khashabi et al. 2020) 87.2
Dense Passge Retrival RoBERTa 76.4
BERT with Gold Facts 92.0
RoBERTa with Gold Facts 93.8

Ours: RoBERTa + Step2 76.4
Ours: RoBERTa + Step2 + L2R 77.6
Ours: KS + Step2 + L2R 81.4

Table 7: OpenBookQA test set comparison of different models. Our model is with
learning-to-rank model and knowledge segregation. (*) Prior work uses additional
datasets and multi-task learning.

Recall of Facts: Table 5 shows the accuracy of the transformer encoder-based

ranking model and the impact of knowledge ranking on the retrieval recall-metric of

gold annotated knowledge facts for OpenBookQA and QASC validation set after both

retrieval steps. We can observe that our ranking model considerably improves the

recall, notably Recall@10 of F2 facts for single-step retrieval. The model also beats

the state-of-the-art dense passage retriever. We hypothesize the retrieved facts being
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Split Model Accuracy (∆) Deviation
V
al
id
at
io
n

BERT 42.60 ±2.3
RoBERTa 59.40 (+16.8) ±1.9
RoBERTa + Step1 62.40(+3.0) ±1.8
RoBERTa + Step1 + L2R 66.70(+4.3) ±1.7
KS + Step1 70.50(+3.8) ±0.9
KS + Step1 + L2R 76.20(+5.7) ±0.8
RoBERTa + Step2 82.50(+7.9) ±1.1
RoBERTa + Step2 + L2R 83.90(+1.4) ±1.2
KS + Step2 84.20(+0.3) ±0.9
KS + Step2 + L2R 85.20(+1.0) ±0.6
Dense Passage Retrival RoBERTa 73.60 -
BERT with Gold Facts 93.47 -
RoBERTa with Gold Facts 96.20 -

Te
st

Human 93.00 -
Random 12.50 -
BERT-LC 2019 68.48 -
BERT-LC[WM] 2019 73.15 -
UnifiedQA + T5 11B 2020 89.57 -
Ours : RoBERTa + Step2 77.28 -
Ours : RoBERTa + Step2 + L2R 79.24 -
Ours : KS + Step2 + L2R 81.20 -

Table 8: Performance on the QA task on QASC set. Step 1 and 2 correspond to
different steps of Multi-step Knowledge Retrieval. L2R is Learning-to-rank model. KS
is our knowledge segregation model. ∆ refers to increase over the above row. Metric
is QA accuracy.

short sentences creates an incoherent context for the second step of retrieval. Prior

work (Khot, Sabharwal, and Clark 2019; Banerjee et al. 2019a) compute recall for

only the correct answer and hence are not directly comparable. On QASC, prior work

has a Recall@10 of 44.4% for the case when any of the facts, F1 and F2 are present.

On OpenBookQA, prior work has a Recall@10 of 80% for F1. We aim to increase

47



recall for all options to enable the model to be highly confident for the correct option

and disregard the incorrect ones.

Depth of Step 1: Figure 5 shows the impact at the recall of Fact 2 when we vary

the depth of Step 1, i.e., if we take the top five or top ten sentences in Step 1. We

can observe that increasing the depth increases the recall for Fact 2. We limit the

depth to ten as we are limited by the maximum number of tokens the transformer

encoder can take as input, which after tokenizing is 512.

3.5.2 Question Answering

OpenBookQA and QASC Results: Table 7 and 8 compares our best model to

the previous work on OpenBookQA and QASC. For QASC, we compare our stronger

RoBERTa baselines with our multi-step retrieval model. We observe that our retrieval

significantly boosts the performance and our knowledge segregation model improves

accuracy further. We observe Step 2 has a significant impact, so we evaluate both the

best RoBERTa baseline model with our retrieval model and our knowledge segregation

model on the hidden test set. We can observe our knowledge segregation model

achieves 3.92% improvement over just using Step 2 and RoBERTa on QASC and

5% improvement on OpenBookQA. The proposed cross-attention between answers

improves significantly over baselines like (X. Pan et al. 2019) and (Banerjee et

al. 2019b).

Figure 5 shows our knowledge segregation model’s validation set performance

versus the number of facts retrieved. As we can see, increasing the facts increases the

accuracy as more appropriate facts are seen by the model. State-of-the-art methods

use massive language models, such as T5 11 billion parameters (Raffel et al. 2020a;
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Khashabi et al. 2020) trained over multiple datasets. Our methods focus on reducing

the parameters and gap to super-large language models (T5 is 30 times larger than

RoBERTa) with a limited quantity of training data. A similar motivation is introduced

in the recent EfficientQA challenge (Roberts et al. 2020). With that perspective, our

method can be viewed as state-of-the-art in 300-400M parameter range and data

limited to the given train split and fact corpus.

When given the gold knowledge facts, BERT and RoBERTa models can reason

(90%+), hence validating our focus towards improving retrieval instead of building

larger models. The effect of knowledge segregation on large language models such as

T51 would be interesting future work.

Ablation Studies: Table 8 shows each of our components’ impact on the QASC

dataset’s accuracy. We add our modules over the base model of RoBERTA pre-trained

on RACE (Lai et al. 2017). We observe that the task of QASC needs external

knowledge, as the accuracy of the no-knowledge model is relatively low. Each of our

modules contributes to the overall increase in performance. The Learning-to-rank

model improves the accuracy of Step 1 by a large margin (4.3% and 5.7%). So does

Step-2 of the multi-step knowledge retrieval (7.9%). Both the techniques have the

same effect of an increase in Recall@10 of F1 and F2, bringing more relevant facts for

the model to answer correctly. Our knowledge segregation model further improves

accuracy, showing that it is more robust to distractions. Knowledge segregation is

beneficial when the facts are retrieved from Step 1 (8.1 % better than RoBERTa),

indicating that it is more impactful when the noise in retrieved facts is more.

Model Analysis: Figure 5 shows that our model is more confident when it predicts

1Experiments with T5-11B are restricted due to unavailable resources. T5 needs v3-8 TPUs with
128GB GPU RAM.
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the correct answer than when it predicts the wrong answer. QASC has eight answer

options, which increases distracting facts and confusion. Since our models use attention

and use statistical correlation, even though we retrieve relevant facts, the model

predicts the answer with the highest correlation. Our approach is to improve semantic

ranking and knowledge composition to push the quality of knowledge in each step,

leading to increased accuracy. Although using attention-based models for ranking

brings facts that attend to all question-answer pairs, our knowledge segregation

model can understand the appropriate knowledge. Our analysis shows that the input

creation algorithm for the model acts as another source for knowledge ranking, and

the “common input” enables the model to distinguish between answers.

Explanation Extraction: Our knowledge retrieval approach and knowledge-

augmented QA using transformer encoders enable us to extract explanations using

attention weights. These “explanations” are top facts the QA model attends to and

aligns with the explanation generation task (Jansen and Ustalov 2019), and might

not be explanations in the classical sense (Wiegreffe and Pinter 2019). We extract

attention scores from the top four attention layers between the predicted answer, the

“common input”, and the “unique input”. We take the average of each word’s attention

scores in the sentence and select five sentences with the highest mean attention scores.

On the manual evaluation of 100 such samples from the QASC dataset, we observe

52% of the time the correct F1 was present in the top five and 33%, the correct F2.

The other facts have a high word/semantic overlap with the question, answer, and

the correct F1 and F2, which is also true for the rest 48% of questions. Below is an

example. We can observe below; even if we do not retrieve the same F1 and F2, we

can retrieve the appropriate knowledge to answer the question.
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Question: What varies by altitude?

Predicted Correct Answer: temperature and moisture

Gold F1: Climate is generally described in terms of temperature and moisture. F2 Climate

varies according to altitude.

Top 5 Explanations: Height depends on moisture. Temperatures vary according to

altitude. Impact of temperature varies depending on altitude and latitude. Sensors activate

the system according to moisture content. Bird populations vary according to season and

moisture.

Errors in Ranking: The ranking model has comparatively high accuracy (91.56%).

Classification of question-wrong answer option and corresponding retrieved facts using

the wrong answer as relevant are the most frequent errors; these act as noise for the

downstream QA task. The question-only ranking model performs even worse.

Errors in QA: We analyzed the 100 errors made in OpenBookQA and the 137 errors

made in QASC. We can broadly classify the errors made in QA into four categories:

Answering needs Complex Reasoning; Confusing fact is Retrieved, Knowledge Retrieval

Failure, and Knowledge Composition Failure. There are few examples in OpenBookQA

where more complex reasoning such as Temporal, Qualitative, Conjunctive, and

Negation is required. An example of Conjunctive Reasoning:
Question: Which pair don’t reproduce the same?

Options: (A) rabbit and hare (B) mule and hinny

(C) cat and catfish (D) caterpillar and butterfly

Question: Astronomy can be used for what?

Options: (A) Communication (B) safe operation (C) vision (D) homeostasis (E) naviga-

tion (F) architecture

Fact Retrieved: what is radio astronomy. a radio is used for communication.

Above is an example from QASC, where a confusing fact is retrieved that is
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semantically related to the question but supporting the wrong answer; this leads to

incorrect multi-hop reasoning.

Knowledge Retrieval Failure corresponds to 72% of the total errors in OpenBookQA.

In QASC, out of 137 errors, 52 had correct F1, 40 had correct F2 and 25 had both

F1 and F2 in the top ten. These errors can be mitigated by better retrieval and

composition. Improving attention to perform better context-dependent similarity

should enable models to distinguish between relevant and irrelevant facts.

3.6 Related Work

External Knowledge: Closest to our work are the models that use external knowl-

edge, are systems that use sentences to create a knowledge paragraph, and change

the task to a reading comprehension task (Khot, Sabharwal, and Clark 2019; Khot

et al. 2019; Pirtoaca, Rebedea, and Ruseti 2019; Banerjee et al. 2019a). We compare

against a few of the appropriate ones which do not train using multiple datasets or

use multi-task learning in our baselines (Khot et al. 2019; Banerjee et al. 2019a).

Prior work uses BM25 retrieval and BERT as the QA model. We differ from these

with our knowledge ranking and knowledge segregation QA models. Other models

extract knowledge triples from knowledge graphs such as ConceptNet or DBPedia

and embed syntactic or semantic knowledge to create enriched knowledge embeddings

(Mihaylov and Frank 2018a; Q. Chen et al. 2018; An Yang et al. 2019a; Wang and Jiang

2019a). They do not use additional free-form sentences as knowledge. Sentences lack

a well-defined structure and possess many variables, making using factual sentences

as knowledge a challenging task.

Evidence Retrieval: The task of knowledge retrieval is very closely related to
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evidence retrieval. In contrast to prior work (Khot et al. 2019; Banerjee et al. 2019a)

we focus to improve recall on all answer options. Supervised evidence retrieval

involves identifying correct justification sentences given a query created from the

question, answer, or the optional context (Nie, Wang, and Bansal 2019; Tu et al. 2019;

Jansen and Ustalov 2019). Another approach is to generate noisy training data for

the retrieval task and use distant QA supervision (Lin, Ji, et al. 2018; H. Wang

et al. 2019). Some systems formulate the task as multi-task learning where systems

learn both question-answering and evidence retrieval (Karpukhin et al. 2020; Das

et al. 2019; Min et al. 2018). We differ from them in our query formulation, multi-step

retrieval, task formulation, and weak-label curation methods. Our approach combines

heuristics-driven and weakly-supervised retrieval from automatically constructed labels

specifically for the ranking.

3.7 Conclusion and Future Work

Openbook science question answering without a given context and using large, noisy

knowledge sources containing partial knowledge is a significant challenge to current

systems. This work studies a novel multi-staged openbook QA system that includes

multi-step retrieval, a weakly supervised learning-to-rank model, and a cross-attention

driven knowledge segregation QA model over a transformer encoder. Our methods

significantly improve over baselines by 2.2% and 8.05% on OpenBookQA and QASC,

respectively, and reduce the gap to the state-of-the-art super-large language models

20% to 6%. We also provide a learning-to-rank training dataset with weak labels using

the annotations present in QASC, OpenBookQA, and SciTail. Although designed for

such an openbook QA task, our approach can extend to other multi-hop reasoning
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datasets like HotpotQA (Zhilin Yang et al. 2018a), by splitting passages into sentences

and extracting possible answers from passages using entity recognition and applying

our retriever and QA models. We have analyzed the different components’ performance

in our QA system and the extracted explanations using attention weights. Our analysis

demonstrates the need to improve knowledge ranking, knowledge composition, and

the need for neuro-symbolic reasoning to address complex reasoning questions.
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Chapter 4

COMMONSENSE REASONING WITH IMPLICIT KNOWLEDGE IN NATURAL

LANGUAGE

4.1 Introduction

For an AI agent to reason about the everyday routine human activities, the agent

needs to possess commonsense. Consequently, commonsense acquisition and reasoning

are considered critical research challenges from the early days of AI (McCarthy 1959).

The need for commonsense reasoning is reemphasized recently (Sap, Le Bras, et

al. 2019; Marcus and Davis 2019), particularly in NL understanding and QA. Several

commonsense reasoning tasks have been proposed that study the different aspects of

commonsense reasoning, such as abductive commonsense (Bhagavatula et al. 2019),

physical commonsense (Bisk et al. 2019), and social commonsense (Sap, Rashkin,

Chen, LeBras, et al. 2019b). QA systems approach solving tasks using large-pretrained

transformers, such as BERT (Devlin et al. 2019a), or use complex knowledge fusion

methods to perform QA (B. Y. Lin et al. 2019; Lv et al. 2020).

In this chapter, focusing on low resource use, we evaluate the use of smaller

transformer language models and a few knowledge-rich natural language sentences,

where relevant knowledge may be implicitly expressed. To understand what we

mean by implicit knowledge, consider an example from (Winograd 1972): Given the

context “The city councilmen refused the demonstrators a permit because they feared

violence.”, and the question “Who is fearing violence? ”, the correct answer is “The

city councilmen“. An unstructured retrieved (through a web search engine) knowledge
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(Prakash et al. 2019) for this context-question pair that can help answer this question

correctly is: “He also refused to give his full name because he feared for his safety.”.

We can use this knowledge to reason that the person who is refusing, is the one who is

fearing. From this example, we can observe that the necessary commonsense knowledge

to reason may be present in text in many cases but in an implicit way. Moreover,

this knowledge is unstructured, and hence current state-of-the-art knowledge fusion

methods are unable to utilize this knowledge without a method to represent it in a

knowledge graph triple, as present in ConceptNet.

Using natural language sentences (as a source of knowledge) at first glance appears

similar to the application of evidence retrieval for open-domain question answer-

ing (Zhilin Yang et al. 2018a; P. Clark et al. 2018; Kwiatkowski, Palomaki, et al. 2019),

where systems retrieve supporting evidence to be able to answer an open-ended ques-

tion. However, there is a big difference as, unlike in evidence retrieval, the needed

commonsense knowledge may not be explicitly available in unstructured knowledge

corpora. Our approach is to reason-with-example, in contrast to reading comprehen-

sion with retrieved supporting paragraphs containing answers or explicit knowledge

that lead to answers. Moreover, a high lexical overlap with a retrieved knowledge

and context-question-answer does not mean it can be used to answer correctly. For

example, another retrieved knowledge for the above question is: “Demonstrators fear

the retaliatory police violence.”. An additional layer of complexity to commonsense

reasoning with natural language is added because of such high lexical overlap but

distracting sentences.

We limit our study to two pre-trained transformers, namely BERT and RoBERTa.

BERT and RoBERTa have been trained using 13GB and 160GB data, respectively.

RoBERTa has the same architecture and parameter count but is trained with extensive
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hyper-parameter tuning and has a larger vocabulary (25K v/s 50K). These allow

us to study the implicit commonsense reasoning ability with varying pre-training

and vocabulary size. Larger pre-trained transformers have been effectively shown

to improve performance on downstream tasks, but training such models is resource-

intensive. Hence we ask the following auxiliary question: To what extent can we

improve a smaller transformer encoder’s performance? Smaller in the sense of pre-

training data, vocabulary size, and parameter tuning space.

For addressing the above questions, we propose the following experimental frame-

work. We categorize different unstructured knowledge sources and define a knowledge

source preparation and retrieval component. We then propose three strategies of un-

structured knowledge infusion. In the Revision strategy, we fine-tune the transformer

on an unstructured knowledge source. In Openbook strategy, we choose a certain

number of knowledge statements from the unstructured knowledge source that are

textually similar to each of the dataset samples. Then we fine-tune the pre-trained

transformer for the question-answering task. In the final strategy, we combine both

the strategies mentioned above. We propose three strong baseline methods that utilize

knowledge, concat, max, simple-sum, and an explainable reasoning model weighted-sum

to combine and reason with multiple commonsense knowledge sentences. We evaluate

our proposed framework on three public commonsense question answering datasets:

AbductiveNLI (aNLI) (Bhagavatula et al. 2019), PIQA (Bisk et al. 2019) and Social

Interaction QA (SIQA) (Sap, Rashkin, Chen, LeBras, et al. 2019b).

Our key findings are as follows: (a) Transformers can reason with implicit com-

monsense knowledge to some extent. We observe that transformers fail to answer

questions through detailed error analysis even when sufficient knowledge is present

with minimal distractors 30-50% of the time. This observation shows the scope of
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Figure 6: Example of all three datasets along with retrieved knowledge.

future improvements. (b) Revision and Openbook Strategy improve commonsense

reasoning performance, but the Revision strategy’s impact depends on how well-formed

the unstructured knowledge corpus is. (c) Our knowledge retrieval and knowledge

infusion methods improve accuracy over pre-trained transformers by 2-9%. They

are significantly effective over the smaller transformer encoders and approach larger

pre-trained transformers, surpassing T5-11B (Raffel et al. 2019) by 4.14% in aNLI

and reducing the gap to 1.75% in SIQA using RoBERTa. These methods should act

as future baselines.

In summary, our contributions are: (a) a thorough analysis of transformers’

ability to perform commonsense reasoning with implicit knowledge on three different

commonsense QA tasks using two transformer models. (b) four models representing

four ways knowledge can be infused in transformer encoders. These methods apply

to multiple commonsense reasoning tasks and improve performance over pre-trained

transformers by 2-9% in accuracy. (c) a detailed study to bridge the gap between

smaller and larger pre-trained transformers. (d) an extensive investigation to study

the impact of different knowledge sources and pre-training on such knowledge sources

on commonsense QA tasks.
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4.2 MCQ Datasets

To study the extent of transformers’ commonsense reasoning ability, we choose

the following three datasets to evaluate our models, each with a different kind of

commonsense knowledge. Figure 6 shows examples from each of the datasets with our

retrieved commonsense knowledge sentences.

Abductive NLI (aNLI): This dataset (Bhagavatula et al. 2019) is intended to judge

the potential of an AI system to do abductive reasoning to form possible explanations

for a given set of observations. The task is to find which of the hypothesis options H1,

and H2 explains O2 where O1 should precede and O2 should succeed the hypothesis,

given a pair of observations O1 and O2. This task needs a commonsense understanding

of which order sequence of events occurs. There are 169,654 train and 1,532 validation

samples. The test set is blind. It has a generation task, but we restrict ourselves to

the multiple-choice task.

PIQA (Physical Interaction QA): This dataset is created to evaluate an AI

system’s physics reasoning capability. The dataset requires reasoning about physical

objects and how we use them in our daily lives. The task is to predict the most

appropriate choice to the goal G, given a goal G and a pair of choices C1 and C2.

There are 16,113 train and 1,838 validation samples. The test set is blind.

SIQA: This dataset is a collection of instances about social interaction reasoning and

the social implications of their statements. The task is to choose the correct answer

option AOi out of three choices when given a context C of a social situation and

a question Q about the situation. There are several question types in this dataset

derived from Atomic inference dimensions (Sap, Le Bras, et al. 2019). A few of

the Atomic inference dimensions are actor intention, actor motivation, effect on the
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actor,effect on others, etc. In total, there are 33,410 train and 1,954 validation samples.

The test set is blind.

4.3 Commonsense Knowledge Sources

4.3.1 Knowledge Categorization for Evaluation

Directly Derived: Here the commonsense QA task is directly derived from the

knowledge source, and hence using the same knowledge may make the task trivial. We

test this scenario on the aNLI task with the following knowledge sources, ROCStories

Corpus (Mostafazadeh et al. 2016b) and Story Cloze Test, that were used in creating

aNLI. Our motivation is to see how well the model can answer questions when given

the “same” or similar implicit/explicit commonsense knowledge.

Partially Derived: Here the commonsense QA task is not directly derived from an

external knowledge source, and considerable human knowledge was used to generate

the question-answers. In this case, we use SIQA as the task, which uses the Atomic

(Sap, Le Bras, et al. 2019) knowledge base as the source for social events, but has

undergone sufficient human intervention to make the task non-trivial. During dataset

creation, the human annotators were asked to turn Atomic events into sentences and

were asked to create question-answers.

Relevant: Here, the commonsense task is entirely created with human annotators’

help without using a specific knowledge source. However, we guess knowledge sources

that seem relevant through our QA pairs analysis. We evaluate this using PIQA as the

commonsense task and WikiHow dataset (Koupaee and Wang 2018) as the “relevant”

external knowledge source.
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4.3.2 Knowledge Source Preparation

aNLI: To test our first category of external knowledge, we use the entire Story Cloze

Test and ROCStories Corpus. We also prepare another source that contains knowledge

sentences retrieved for the train set of aNLI from the first source. This knowledge

source is created to ensure the task is not trivialized with knowledge leakage. We also

create a knowledge source from multiple datasets such as MCTest (Richardson, Burges,

and Renshaw 2013), COPA (Roemmele, Bejan, and Gordon 2011) and Atomic, but

not Story Cloze Test and ROCStories Corpus. These sources contain commonsense

knowledge, which might be useful for the aNLI task.

SIQA: We synthetically generate a knowledge source from the events and inference

dimensions provided by the Atomic dataset (Sap, Le Bras, et al. 2019). The Atomic

dataset contains events and eight types of if-then inferences 2. The total number

of events is 732,723. Some events are masked, which we fill by using a BERT and

masked language modeling (Devlin et al. 2019a). We extend the knowledge source,

and replace PersonX and PersonY, as present in the original Atomic dataset, using

gender-neutral names. These steps may approximate the steps taken by humans to

generate QA pairs.

PIQA: We use the Wikihow dataset for PIQA. It contains paragraphs (214,544) with

detailed steps or actions to complete a task. We extract the title of each paragraph

and split the paragraphs into sentences. The title is concatenated to each of the

sentences. This preprocessing ensures that the task’s goal is present in each of the

sentences.

2More details in Supplemental Materials.
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Figure 7: An end-to-end view of our approach. From query generation, knowledge
retrieval, the different types of knowledge retrieved along with keywords highlighted
in blue, the corresponding learned weights in the Weighted-Sum model and finally to
predicted logits.

A Combined Commonsense Corpus is created which combines the partially related

and relevant corpuses, for example, combining Wikihow, Atomic, MCTest.

4.3.3 Knowledge Retrieval

Query Generation: We concatenate the question, answer option, and the context if

present, and remove standard English stopwords for query generation. We use common

nouns, verbs, adjectives, and adverbs from the QA pairs. Explicit bias towards specific

names (John, Jane) is avoided.

Information Retrieval System: We use Elasticsearch to index all knowledge base

sentences. We retrieve the top 50 sentences for each QA pair with the default BM-25

ranking model (Robertson and Walker 1994). The retrieved sentences may contain

the key search words in any order.

Re-Ranking: We re-rank the retrieved knowledge sentences to remove redundant

sentences containing the same information. We use sentence similarity and knowledge

redundancy to perform the iterative re-ranking. We use Spacy, to compute cosine
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BERT RoBERTa

Dataset Strategy Concat Max Sim-Sum Wtd-Sum Concat Max Sim-Sum Wtd-Sum

aNLI
OPENBOOK 73.9± 0.8 73.7± 0.1 73.5± 0.7 73.3± 1.0 83.9± 0.5 80.8± 0.9 81.7± 0.6 84.4± 0.4
REVISION 72.7± 0.3 N/A N/A N/A 82.4 N/A N/A N/A

REVISION & OPENBOOK 74.4± 0.2 74.3± 0.1 74.0± 0.9 75.1±0.4 84.2± 0.7 81.4± 0.8 82.6± 0.6 86.7± 0.6

PIQA
OPENBOOK 67.8± 0.4 72.4± 0.6 72.6± 1.2 72.5± 0.1 74.8± 0.5 75.2± 0.9 75.6± 0.7 77.1± 0.2
REVISION 74.5± 0.3 N/A N/A N/A 75.2± 0.8 N/A N/A N/A

REVISION & OPENBOOK 67.7± 0.1 73.8± 0.8 76.8± 0.5 76.8± 0.3 75.4± 0.7 76.2± 0.8 76.8± 0.4 80.2± 0.6

SIQA
OPENBOOK 70.1± 0.8 67.8± 0.1 70.0± 0.7 70.2± 0.4 76.5± 0.7 77.2± 0.6 77.4± 0.2 78.3± 0.5
REVISION 69.5± 0.9 N/A N/A N/A 76.8± 0.3 N/A N/A N/A

REVISION & OPENBOOK 68.8± 0.4 66.6± 0.4 68.9± 0.1 69.3± 0.6 78.2± 0.3 77.4± 0.9 76.7± 0.5 79.5± 0.9

Table 9: Validation set accuracy (%) of each of the four models (Concat, Max, Simple
sum, Weighted sum). Revision only method has no retrieved passage, so only Q-A is
concatenated.

similarity between sentence Glove vector (Pennington, Socher, and Manning 2014)

representations; for knowledge redundancy, we find similarity with the already selected

sentences and discard a new sentence if it is > 0.9 similar to higher-ranked sentences.

After re-ranking, we select the top ten sentences.

We keep our Information Retrieval system generic as the tasks require varying

kinds of commonsense knowledge; for example, If-then rules in SIQA, Scripts or Stories

in aNLI, and understanding of Processes and Tools in PIQA.

4.4 Method

After extracting relevant knowledge from the respective KBs, we move onto the

task of Question-Answering. We perform our experiments on BERT encoders, with

340M and 355M parameters respectively, BERT-Large (Low vocab-size 25K and

pretraining data 13GB) BERT (Devlin et al. 2019a) and RoBERTa (high-vocab size

50K and pretraining data 160 GB ) RoBERTa (Y. Liu et al. 2019).

QA-Model: As a baseline, we use these pre-trained transformers for the question

answering task with an extra feed-forward layer for classification as a fine-tuning step.
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4.4.1 Modes of Knowledge Infusion

We experiment with four different models of using knowledge with the transformer

architecture for the open-book strategy. The first three, concat, max, and simple-

sum act as stronger baselines that use the same implicit knowledge as our proposed

weighted-sum model. Each of these modules takes as input a problem instance which

contains a question Q, n answer choices a1, ..., an and a list called premises of length

n, one for each answer. Each element in premises contains m number of knowledge

passages, which might be useful while answering the question Q. Let Kij denotes the

j th knowledge passage for the i th answer option. Each model computes a score of

score(i) for each of the n answer choices. The final answer is the answer choice that

receives the maximum score. We now describe how the different models compute the

scores differently.

Concat: In this model, all the m knowledge passages for the i-th choice are joined

together to make a single knowledge passage Ki. The sequence of tokens {[CLS] Ki

[S] Qai [S]} is then passed to BERT to pool the [CLS] embedding (z[CLS]) from the

last layer. This way we get n z[CLS] for n answer choices, each of which is projected

to a real number (score(i)) using a linear layer.

Parallel-Max: For each answer choice ai, Parallel-Max uses each of the knowledge

passage Kij to create the sequence {[CLS] Kij [S] Qai [S]} which is then passed to

the BERT model to obtain the z[CLS] from the last layer that is then projected to a

real number using a linear layer. score(i) is the max of the m scores obtained using

each of the m knowledge passage.

Simple Sum: In simple sum and the next model assumes that the information

is scattered over multiple knowledge passages and try to aggregate that scattered
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information. To do this, the simple sum model, for each answer choice ai and each of

the knowledge passage Kij creates the sequence {[CLS] Kij [S] Qai [S]} which it then

passes to the BERT model to obtain the z[CLS] from the last layer. All of these m

vectors are then summed to find the summary vector, projected to a scalar using a

linear layer to obtain the score(i).

Weighted Sum: The weighted sum model computes a weighted sum of the m z[CLS]

as some of the knowledge passage might be more useful than others. It computes the

z[CLS] in a similar way to that of the simple sum model. It computes a scalar weight

wij for each of the m z[CLS] using a linear projection layer which we will call as the

weight layer. The weights are then normalized through a softmax layer and used to

compute the weighted sum of the z[CLS]. It then uses (1) a linear layer or (2) reuses

the weight layer (tied version) to compute the final score score(i) for the option ai.

We experiment with both options.

Formally, given m z[CLS], we learn two projections w1 and w2, such that:

score(i) = w2(

n∑
j=1

w1(z
[CLS]) ∗ z[CLS]) (4.1)

This weighted-sum of vectors is similar to the attention weights learned to create

contextual word vectors (Vaswani et al. 2017) but we extend it to multiple sentences.

We minimize the cross-entropy loss between the score and the ground-truth answer.

We observe a single layer network achieves the best accuracy compared to multi-layer

feed-forward networks and highway networks for projection.
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Models/ Accuracy aNLI PIQA SIQA

Val Test Val Test Val Test

BERT 67.36 66.75 68.08 69.23 64.88 64.50
GPT-2 XL N/A N/A 70.20 69.50 47.50 45.30
RoBERTa 85.05 83.91 76.28 76.80 77.85 76.74
RoBERTa 5 Ensemble N/A 83.22 N/A 79.66 N/A 78.68
L2R2 2020 N/A 86.81 N/A N/A N/A N/A
KagNet 2019 N/A N/A N/A N/A 65.05 64.59
GBR 2020 N/A N/A N/A N/A 75.64 76.25
UnifiedQA T5 11B 2020 N/A 80.04 N/A 89.50 N/A 79.75

Ours: BERT + WS 74.60 74.96 76.82 72.28 70.21 67.22
Ours: RoBERTa + WS 85.90 84.18 80.20 78.24 79.53 78.00

Table 10: Performance of the Weighted-Sum model with Revision & Openbook strategy,
compared to current best methods. Underlined are methods that we beat statistically
significantly. Partially derived and related sources are used. Unavailable→N/A.
Best→Bold.

4.5 Experiments

Let D be an MCQ dataset, and T be a pre-trained transformer, KD be a knowledge

source (a set of paragraphs or sentences) which is useful for D and let K be a general

knowledge source where T was pre-trained, and K might or might not contain KD.

We consider three approaches to infuse knowledge.

Revision: In this strategy, T is fine-tuned on KD using Masked LM (both BERT

and RoBERTa) and the next sentence prediction task (BERT) and then fine-tuned on

the dataset D for the QA task.

Openbook: Here a subset of KD is assigned to each of the training samples in the

dataset D as a knowledge passage context, and the model T is fine-tuned on the

modified dataset D.

Revision with an Openbook: In this strategy, T is fine-tuned on KD using Masked

LM (both BERT and RoBERTa) and the next sentence prediction task (BERT) and
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Model Knowledge Source aNLI PIQA SIQA

BERT
Directly/Partially Derived 75.1± 0.4 N/A 70.2± 0.4
TrainOnly Directly/Partially 74.6± 0.8 N/A 69.8± 0.7
Related Knowledge 73.2± 0.5 76.8± 0.3 68.6± 0.5

RoBERTa
Directly/Partially Derived 86.7± 0.6 N/A 79.5± 0.9
TrainOnly Directly/Partially 85.9± 0.8 N/A 78.9± 1.2
Related Knowledge 85.0± 1.1 80.2± 0.6 77.4± 0.8

Table 11: Effect of different knowledge sources types on the Weighted-Sum knowledge
infused model. Related Knowledge source is the combination of all relevant knowledge
sources, referred to as the Combined Commonsense Corpus. Metric is Accuracy.

(a) ↑ Knowledge sentences. (b) ↑ Revision steps. (c) Wts. v/s Lex. Overlap

Figure 8: For (a), (b), and (c) the knowledge infusion model is Weighted-Sum with
knowledge retrieved from a relevant knowledge source. In Fig. (a), we observe the
effect of increasing number of implicit knowledge sentences. In Fig. (b) we observe
the effect of increasing number of Revision pre-training steps. Fig. (c) shows the
weights learned vs. normalized lexical overlap between knowledge and concatenated
QA pair for all samples of PIQA dev set.

also a subset of KD is assigned to each of the training samples on D. The model is

then fine-tuned for the modified dataset D.

We train the models on 4 Nvidia V100 16GB GPUs with learning rates in the

range [1e-6,5e-5] and batch sizes of [16,32,48,64]. We report the mean accuracy for

three random seed runs. We perform five hyper-parameter trials and param-selection

on the validation set.
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4.6 Results and Discussion

Tables 9, 10 and 11 summarize our results on three datasets. BERT and RoBERTa

baseline validation and hidden test scores are present in Table 10. Adding knowledge

in natural language form improves QA accuracy statistically significantly across all

datasets over the baseline BERT with p ≤ 0.05 based on Wilson score intervals (Wilson

1927). This includes retrieving knowledge from related knowledge sources, seen in

Tables 10 and 11. The concat mode of knowledge infusion improves over the baseline

BERT by 1-6%, and the Weighted-Sum model further improves it by 2-4%. In Table 10

we can observe the Weighted-Sum model is 4.1% better than T5 in aNLI and reduces

the gap to 1.75% in SIQA with 30 times less number of parameters (11B v/s 355M).

It also surpasses complex graph-based approaches like GBR and KagNet (B. Y. Lin

et al. 2019; Lv et al. 2020). Other prior work use directly derived knowledge sources

and model for specific tasks as in L2R (Y. Zhu et al. 2020). Moreover, UnifiedQA T5

11B (Khashabi et al. 2020) is trained on many datasets, whereas we train only on the

provided train dataset, making our approach more sample efficient. This observation

validates our hypothesis of using implicit knowledge expressed in natural language to

bridge the gap to super-large transformers. Our generic framework improves on all

three datasets with models trained only using the provided training dataset.

Effect of different strategies: Both the Openbook and the Revision strategies

perform well. Together the performance improves even further. The performance of

the Revision strategy is low for SIQA. The drop in performance may be attributed to

the sentences’ synthetic nature and the unavailability of next sentence prediction task

data, as the knowledge in the KB for SIQA is single sentences and not paragraphs.

PIQA and aNLI results are better due to natural and contiguous sentences. For
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Strategy Training Src. aNLI SIQA PIQA

OpenBook
aNLI N/A 63.2 65.5 51.2 57.8
SIQA 72.4 84.1 N/A 48.5 54.3
PIQA 62.5 74.2 49.6 54.2 N/A

Revision
aNLI N/A 65.3 66.2 56.2 65.8
SIQA 70.9 83.8 N/A 52.4 57.8
PIQA 66.1 78.0 57.4 67.6 N/A

OpenBook
+ Revision

aNLI N/A 65.8 68.2 55.4 62.8
SIQA 73.1 85.2 N/A 53.2 59.4
PIQA 63.8 75.6 52.8 63.1 N/A

Table 12: Effect of cross-dataset knowledge source accuracy on Weighted-Sum (when
a relevant source for a different task is used). BERT Left, RoBERTa Right.

PIQA, the BERT model improves with knowledge, whereas the RoBERTa model

underperforms, indicating RoBERTa gets distracted by the retrieved knowledge, and

the pre-training knowledge is more useful. BERT with implicit knowledge approaches

RoBERTa without knowledge, with the gap reduced by 4% on average. Similarly,

RoBERTa approaches T5 with Revision & Openbook strategy.

Effect of different knowledge sources: Table 11 shows the impact of different

knowledge sources on the downstream question answering task. Even a knowledge

source with somewhat related knowledge is impactful for the question answering task,

as seen in the case of Related Knowledge and TrainOnly Partially Derived for aNLI

and SIQA. In Directly and Partially derived knowledge categories, such as RoCStories

for aNLI and Atomic for SIQA, the model accuracy with knowledge is significantly

more than the baseline but does not reach near-human accuracy. However, the model

can still not answer all questions because the model fails to reason well even with

sufficient knowledge, and the annotators have modified the information present in

the source knowledge significantly. As a result, the knowledge does not overlap with

69



Knowledge aNLI SIQA PIQA

Explicitly Present 14% 11% 10%
Implicitly Present 55% 59% 51%
Fully Irrelevant 31% 30% 39%

Types of Error aNLI SIQA PIQA

Annotation 41% 38% 10%
Model Prediction 48% 27% 29%
Distracting Knowledge 11% 35% 61%

Table 13: Left: Percent of correct predictions where the implicit knowledge is cate-
gorized as above, for the RoBERTa Weighted-Sum model. Right: Different types of
errors observed in the QA pairs where the RoBERTa Weighted-Sum model failed to
answer correctly.

the gold answer, cause if it did, the model will use lexical overlap as a short-cut

and perform better. In Table 12, we can observe aNLI and SIQA require similar

commonsense knowledge, as training with the relevant knowledge source of aNLI has

a non-detrimental effect for SIQA and vice-versa. We also observe PIQA performance

decreases if we use a knowledge source of aNLI and PIQA, indicating it introduces a

significant amount of distraction such that even the implicit knowledge in pre-trained

transformers is ignored. 3

Comparisons between modes of knowledge fusion: The Weighted-Sum model

is observed to be consistent across datasets. The other strong baseline models

also improve over the no-knowledge models indicating even simple scoring methods

over implicit commonsense knowledge sentences can lead to improvements. The

Max, Simple-Sum, and Weighted-Sum models have an additional advantage of being

partially explainable by observing the weights associated with the knowledge sentences.

Weighted-Sum outperforms them as it has the flexibility to attend in varying degrees

to multiple sentences, in contrast to other models. Figure 2 shows the weight versus

overlap between knowledge and QA pair distribution for PIQA. There is an overall

low overlap, but the model learns to give high weights regardless of the overlap. It

3More details and the error analysis are in Supplemental Materials.
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indicates that the model captures the implicit knowledge and not just a simple word

overlap. We observe 61% of such low lexical overlap sentences have sufficient implicit

knowledge on manual analysis.

Why the impact of external knowledge is less for RoBERTa? RoBERTa

has been pre-trained using a gigantic corpus of 160 GB text. We assume for these

tasks that the model needs additional knowledge to answer, but we hypothesize that

the pre-training corpus of RoBERTa might contain the knowledge we are trying to

infuse, leading to the reduced impact. This observation calls for further analysis

of pre-training corpora to categorize such commonsense knowledge. The significant

improvement over BERT (3-14%) shows the ability for these methods to utilize implicit

knowledge, which is especially useful for low-resource languages, target domains where

we can pre-train using fewer data and use ad-hoc knowledge to solve a target task and

have smaller vocab and params. But, there is an assumption that atleast sufficient

data (∼10GB) to train a BERT model is necessary. Future work will explore the size

v/s knowledge impact for even smaller language models.

Error Analysis: We analyzed 200 correct predictions and error samples from each

of our best models, respectively. In Table 13, we can observe for around two-third of

the correct predictions, we have relevant knowledge present. The model also ignores

partial noise by reducing its weight and the entire knowledge passage if needed. In

those cases, we hypothesize that the knowledge acquired during the revision phase or

the original language model pre-training phase helps answer correctly. We divide the

errors into three categories, as seen in Table 13. Annotation Errors are when more

than one answer option is correct, or an incorrect answer option is labeled correctly.

The questions for which information is insufficient to select a specific answer option

also fall into this category. Distracting knowledge is where the retrieved knowledge
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is noisy and does not have sufficient relevant knowledge. Model prediction error is

where the relevant knowledge is present, though the knowledge is not wholly exact.

However, a human could have reasoned with the provided knowledge.

4.7 Related Work

Commonsense Reasoning: Several attempts were made to inject external knowl-

edge into neural networks to improve commonsense QA in recent years. A knowledge

selection algorithm to rank knowledge paths from ConceptNet via PMI and frequency-

based scoring was proposed by Bauer, Wang, and Bansal (2018a). Wang and Jiang

(2019a) improve word representations by integrating common word vectors between

document and question-answer options. A commonsense-based pre-training was pro-

posed by Zhong et al. (2019) to learn direct and indirect ConceptNet relations. B. Y.

Lin et al. (2019) proposed a knowledge-augmented graph-based reasoner and pruning

knowledge paths using a function adapted from a graph embedding algorithm. Lv

et al. (2020) is the closest work that utilizes both a structured knowledge base and

explicit unstructured plain text as a source to enhance contextual representations.

Our Revision strategy is similar to task adaptive pre-training, but we focus on com-

monsense knowledge infusion, whereas Gururangan et al. (2020a) focuses on textual

domain adaptation for text classification.

Transformers Reasoning Abilities: Recently, a few attempts were made to un-

derstand the different reasoning abilities of transformer models. Clark, Tafjord, and

Richardson (2020) observe that transformers can reason with explicit conjunctive

implication rules and observe a strong performance. Talmor et al. (2020) study to what

extent transformers can reason over explicit symbolic facts while retaining implicit
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pre-training knowledge. Richardson and Sabharwal (2020) study if the transformer

QA models know definitions and taxonomic reasonings and propose probing datasets.

Gontier et al. (2020) study the ability to generate proofs given knowledge encoded

in natural language. In contrast to the above studies, we study the ability to reason

with additional implicit commonsense knowledge 4.

External Knowledge in QA: Systems for evidence retrieval, such as Elasticsearch

(Gormley and Tong 2015), has been used in prior work of 2018; 2018; 2019; 2019; 2019;

2019; 2019; 2019 (Pirtoaca, Rebedea, and Ruseti 2019; Yadav, Bethard, and Surdeanu

2019; Banerjee et al. 2019b; An Yang et al. 2019a) . Other complex systems using

supervised and unsupervised retrieval neural models over structured and unstructured

knowledge sources are proposed for multihop reasoning and open-domain QA 2017;

2018; 2019; 2019; 2019; 2020 (Asai et al. 2019; Das et al. 2019; Lee, Chang, and

Toutanova 2019b; Lewis, Perez, et al. 2020) . We use Elasticsearch for retrieval in

our work, and we have an unsupervised re-ranking algorithm using Spacy (Honnibal

and Montani 2017). Gururangan et al. (2020a) has shown the need for task adaptive

pre-training to improve target task performance. Our Revision strategy is similar

to task adaptive pre-training, but we focus on commonsense knowledge infusion,

whereas Gururangan et al. (2020a) focuses on textual domain adaptation for text

classification.

4.8 Conclusion

In this work, we comprehensively study transformers’ ability to reason with implicit

knowledge expressed in natural language. We propose an experimental framework

4Detailed related work is in Supplemental Materials.
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with knowledge infusion methods and observe a considerable improvement of 2-9%

over strong baselines. We observe our methods, trained with fewer samples and

parameters, perform competitively with huge pre-trained language models and surpass

complex graph-based methods (B. Y. Lin et al. 2019; Lv et al. 2020). Moreover,

the approaches we studied are general enough to apply to other knowledge-intensive

tasks and languages. Our methods reduce the gap between smaller and large pre-

trained transformers. We critically analyze the different components and identify

that transformers are still unable to answer 30-50% of the time, even with sufficient

knowledge, identifying the need for better methods to perform reasoning with implicit

knowledge. We hope our findings will help design models that respond better to

instructions (Mishra et al. 2021) containing knowledge expressed in natural language.
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Chapter 5

SELF-SUPERVISED KNOWLEDGE TRIPLET LEARNING FOR ZERO-SHOT QA

5.1 Introduction

The ability to understand natural language and answer questions is one of the

core focuses in the field of natural language processing. To measure and study the

different aspects of question answering, several datasets are developed, such as SQuaD

(Rajpurkar, Jia, and Liang 2018), HotpotQA (Zhilin Yang et al. 2018a), and Natural

Questions (Kwiatkowski, Palomaki, et al. 2019) which require systems to perform

extractive question answering. On the other hand, datasets such as SocialIQA (Sap,

Rashkin, Chen, LeBras, et al. 2019b), CommonsenseQA (Talmor et al. 2018), Swag

(Zellers et al. 2018) and Winogrande (Sakaguchi et al. 2019) require systems to

choose the correct answer from a given set. These multiple-choice question answering

datasets are very challenging, but recent large pre-trained language models such as

BERT (Devlin et al. 2018), XLNET (Zhilin Yang et al. 2019) and RoBERTa (Y. Liu

et al. 2019) have shown very strong performance on them. Moreover, as shown in

Winogrande (Sakaguchi et al. 2019), acquiring unbiased labels requires a “carefully

designed crowdsourcing procedure”, which adds to the cost of data annotation. This

is also quantified in other natural language tasks such as Natural Language Inference

(Gururangan et al. 2018) and Argument Reasoning Comprehension (Niven and Kao

2019), where such annotation artifacts lead to “Clever Hans Effect” in the models

(Kaushik and Lipton 2018; Poliak et al. 2018). One way to resolve this is to design and

create datasets in a clever way, such as in Winogrande (Sakaguchi et al. 2019), another
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Figure 9: Knowledge Triplet Learning Framework, where given a triple (h,r,t) we
learn to generate one of the inputs given the other two.

way is to ignore the data annotations and to build systems to perform unsupervised

question answering (Teney and A. v. d. Hengel 2016; Patrick Lewis, Ludovic Denoyer,

and Sebastian Riedel 2019). In this chapter, we focus on building unsupervised

zero-shot multiple-choice QA systems.

Recent work (A. R. Fabbri et al. 2020; Patrick Lewis, Ludovic Denoyer, and

Sebastian Riedel 2019) try to generate a synthetic dataset using a text corpus such

as Wikipedia, to solve extractive QA. Other works (Bosselut, Bras, and Choi 2021;

Shwartz et al. 2020) use large pre-trained generative language models such as GPT-2

(Radford et al. 2019) to generate knowledge, questions, and answers and compare

against the given answer choices.

In this work, we utilize the information present in Knowledge Graphs such as

ATOMIC (Sap, Bras, et al. 2019). We define a new task of Knowledge Triplet Learning

(KTL) over these knowledge graphs. For tasks which do not have appropriate knowl-

edge graphs, we propose heuristics to create synthetic knowledge graphs. Knowledge
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Triplet Learning is like Knowledge Representation Learning and Knowledge Graph

Completion but not limited to it. Knowledge Representation Learning (Lin, Han,

et al. 2018) learns the low-dimensional projected and distributed representations of

entities and relations defined in a knowledge graph. Knowledge Graph Completion

(S. Ji et al. 2020) aims to identify new relations and entities to expand an incomplete

input knowledge graph.

In KTL, as shown in Figure 9, we define a triplet (h, r, t), and given any two

as input, we learn to generate the third. This tri-directional reasoning forces the

system to learn all the possible relations between the three inputs. We map the

question answering task to KTL, by mapping the context, question and answer to

(h, r, t) respectively. We define two different ways to perform self-supervised KTL.

This task can be designed as a representation generation task or a masked language

modeling task. We compare both the strategies in this work. We show how to use

models trained on this task to perform zero-shot question answering without any

additional supervision. We also show how models pre-trained on this task perform

considerably well compared to strong pre-trained language models on few-shot learning.

We evaluate our approach on the three commonsense and three science multiple-choice

QA datasets.

The contributions of this chapter are summarized as follows:

• We define the Knowledge Triplet Learning over Knowledge Graph and show

how to use it for zero-shot question answering.

• We compare two strategies for the above task.

• We propose heuristics to create synthetic knowledge graphs.

• We perform extensive experiments of our framework on three commonsense and

three science question-answering datasets.
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• We achieve state-of-the-art results for zero-shot and propose a strong baseline

for the few-shot question answering task.

5.2 Knowledge Triplet Learning

We define the task of Knowledge Triplet Learning (KTL) in this section. We define

G = (V,E) as a Knowledge Graph, where V is the set of vertices, E is the set of

edges. V consists of entities which can be phrases or named-entities depending on

the given input Knowledge Graph. Let S be a set of fact triples, S ⊆ V × E × V

with the format (h, r, t), where h and t belong to set of vertices V and r belongs to

set of edges. The h and t indicates the head and tail entities, whereas r indicates the

relation between them.

For example, from the ATOMIC knowledge graph, (PersonX puts PersonX’s trust

in PersonY, How is PersonX seen as?, faithful) is one such triple. Here the head

is PersonX puts PersonX’s trust in PersonY, relation is How is PersonX seen as?

and the tail is faithful. Do note V does not contain homogenous entities, i.e, both

faithful and PersonX puts PersonX’s trust in PersonY are in V .

We define the task of KTL as follows: Given input a triple (h, r, t), we learn the

following three functions.

ft(h, r)⇒ t, fh(r, t)⇒ h, fr(h, t)⇒ r (5.1)

That is, each function learns to generate one component of the triple given the other

two. The intuition behind learning these three functions is as follows. Let us take

the above example: (PersonX puts PersonX’s trust in PersonY, How is PersonX

seen as?, faithful). The first function ft(h, r) learns to generate the answer t given

the context and the question. The second function fh(r, t) learns to generate one
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context where the question and the answer may be valid. The final function fr(h, t) is

a Jeopardy-style generating the question which connects the context and the answer.

In Multiple-choice QA, given the context, two choices may be true for two different

questions. Similarly, given the question, two answer choices may be true for two

different contexts. For example, given the context: PersonX puts PersonX’s trust

in PersonY, the answers PersonX is considered trustworthy by others and PersonX

is polite are true for two different questions How does this affect others? and

How is PersonX seen as?. Learning these three functions enables us to score these

relations between the context, question, and answers.

5.2.1 Using KTL to perform QA

After learning this function in a self-supervised way, we can use them to perform

question answering. Given a triple (h, r, t), we define the following scoring function:

Dt = D(t, ft(h, r)), Dh = D(h, fh(r, t)),

Dr = D(r, fr(h, t))

score(h, r, t) = Dt ∗Dh ∗Dr

(5.2)

where h is the context, r is the question and t is one of the answer options. D is

a distance function which measures the distance between the generated output and

the ground-truth. The distance function varies depending on the instantiation of the

framework, which we will study in the following sections. The final answer is selected

as:

ans = argmint(score(h, r, t)) (5.3)

As the scores are the distance from the ground-truth we select the choice that has the

minimum score.
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We define the different ways we can implement this framework in the following

sections.

5.2.2 Knowledge Representation Learning

In this implementation, we use Knowledge representation learning to learn equation

(5.1). In contrast to triplet classification and graph completion, where systems try to

learn a score function fr(h, t), i.e, is the fact triple (h, r, t) true or false; in this method

we learn to generate the inputs vector representations, i.e, fr(h, t) ⇒ r. We can

view equation 5.1 as generator functions, which given the two input vector encodings

learns to generate a vector representation of the third. The vector encodings can be

pre-computed sentence vector representations or contextual vector representations.

As our triples (h, r, t) can have a many to many relations between each pair, we first

project the two inputs from input vector encoding space to a different space similar

to the work of TransD (G. Ji et al. 2015). We use a Transformer encoder Enc to

encode our triples to the vector encoding space. We learn two projection functions,

Mi1 and Mi2 to project the two inputs, and a third projection function Mo to project

the entity to be generated. We combine the two projected inputs using a function C.

These functions can be implemented using feedforward networks.

Ie1 = Enc(I1), Ie2 = Enc(I2), Oe = Enc(O)

Ie1 =Mi1(Ie1), Ie2 =Mi2(Ie2), Op =Mo(Oe)

Ô = C(Ie1, Ie2)

loss = LossF (Ô, Op)

where Ii is the input, Ô is the generated output vector and Op is the projected vector.

M and C functions are learned using fully connected networks. In our implementation,
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we use RoBERTa as the Enc transformer, with the output representation of the [cls]

token as the phrase representation.

We train this model using two types of loss functions, L2Loss where we try to

minimize the L2 norm between the generated and the projected ground-truth, and

Noise Contrastive Estimation (Gutmann and Hyvärinen 2010) where along with the

ground-truth we have k noise-samples. These noise samples are selected from other

(h, r, t) triples such that the target output is not another true fact triple, i.e, (h, r, tnoise)

is false. The NCELoss is defined as:

NCELoss(Ô, Op, [N0...Nk]) =

− log
exp sim(Ô, Op)

exp sim(Ô, Op) +
∑

k∈N exp sim(Ô,Nk)

where Nk are the projected noise samples, sim is the similarity function which can

be the L2 norm or Cosine similarity, Ô is the generated output vector and Op is the

projected vector.

The D distance function (5.2) for such a model is defined by the distance function

used in the loss function. For L2Loss, it is the L2 norm, and in the case of NCELoss,

we use 1− sim function.

5.2.3 Span Masked Language Modeling

In Span Masked Language Modeling (SMLM), we model the equation 5.1 as a

masked language modeling task. We tokenize and concatenate the triple (h, r, t)

with a separator token between them, i.e, [cls][h][sep][r][sep][t][sep]. For the function

fr(h, t) ⇒ r, we mask all the tokens present in r, i.e, [cls][h][sep][mask][sep][t][sep].

We feed these tokens to a Transformer encoder Enc and use a feed forward network

to unmask the sequence of tokens. Similarly, we mask h to learn fh and t to learn ft
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We train the same Transformer encoder to perform all the three functions. We

use the cross-entropy loss to train the model:

CELoss(h, r,mask(t), t) =

− 1

n

n∑
i=1

log2PMLM (ti|h, r, t1..ti..tn)

where PMLM is the masked language modeling probability of the token ti, given the

unmasked tokens h and r and other masked tokens in t. Do note we do not do

progressive unmasking, i.e, all the masked tokens are jointly predicted.

The D distance function (5.2) for this model is same as the loss function defined

above.

5.3 Synthetic Graph Construction

This section describes our method to create a synthetic knowledge graph from a

text corpus containing sentences. Not all types of knowledge are present in a structured

knowledge graph, such as ATOMIC, which might help answer questions. For example,

the questions in QASC dataset (Khot et al. 2019) require knowledge about scientific

concepts, such as, “Clouds regulate the global engine of atmosphere and ocean.“. The

QASC dataset contains a textual knowledge corpus containing science facts. Similarly,

the Open Mind Commonsense (OMCS) knowledge corpus contains knowledge about

different commonsense facts, such as, “You are likely to find a jellyfish in a book”.

Another kind of knowledge about social interactions and story progression is present

in several story understanding datasets, such as RoCStories and the Story Cloze Test

(Mostafazadeh et al. 2016b). To perform question answering using this knowledge

and KTL, we create the following two graphs: the Common Concept Graph and the

Directed Story Graph.
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Common Concept Graph To create the Common Concept Graph, we extract

noun-chunks and verb-chunks from each of the sentences using the Spacy Part-of-

Speech tagger (Honnibal and Montani 2017). We assign all the extracted chunks as

the graph’s vertices and the sentences as the graph’s edges. To generate training

samples for KTL, we assign triples (h,R, t) as (e1, e2, vi) where vi is the common

concept present in both the sentences e1 and e2. For example, in the sentence Clouds

regulate the global engine of atmosphere and ocean., the extracted concepts are clouds,

global engine, atmosphere, ocean and regulate. The triplet assignment will be, [Warm

moist air from the Pacific Ocean brings fog and low stratus clouds to the maritime

zone., Clouds regulate the global engine of atmosphere and ocean., clouds]. We create

two such synthetic graphs using the QASC science corpus and the OMCS concept

corpus. Our hypothesis is this graph, and the KTL framework will allow the model to

understand the concepts common in two facts, which allows question answering.

Directed Story Graph This graph is created using short stories from the RoCSto-

ries and Story Cloze Test datasets. This graph is different from the above graph as

this graph has a directional property, and each story graph is disconnected. To create

this graph, we take each short story with k sentences, [s1, s2, s3.., sk] and create a

directed graph such that all sentences are vertices and each sentence is connected with

a directed edge only to sentences that occur after it. For example, s1 is connected to

s2 with a directed edge but not vice versa. We generate triples (h,R, t) by sampling

vertices (si, sj, sk) such that there is a directed path between the sentences si and sk

through sj. This format captures a smaller story where the head is an event that

occurs before the relation and the tail. This graph is designed for story understanding

and abductive reasoning using the KTL framework.

83



ARC-Easy ARC-Chall QASC OpenBookQA CommonsenseQA aNLI SocialIQA

Train Size 2251 1119 8134 4957 9741 169654 33410
Val Size 570 299 926 500 1221 1532 1954
Test Size 2377 1172 920 500 1140 - -
C Length - - - - - 9 15
Q Length 19.4 22.3 13 12 14 9 6
A length 3.7 4.9 1.5 3 1.5 9 3
# of Option 4 4 8 4 5 2 3
KTL Graph QASC-CCG QASC-CCG QASC-CCG QASC-CCG OMCS-CCG DSG ATOMIC

Table 14: Dataset Statistics for the seven QA tasks. Context is not present in five
of the tasks. The KTL Graph refers to the graph over which we learn. CCG is the
Common Concept Graph. DSG is the Directed Story Graph. C, Q, A is the average
number of words in the context, question, and answer. aNLI and SocialIQA Test set
size is hidden.

Random Sampling There are around 17M sentences in the QASC text corpus;

similarly, there are 640K sentences in the OMCS text corpus. Our synthetic triple

generation leads to a significantly large set of triples in order of 1012 and more. To

restrict the train dataset size for our KTL framework, we randomly sample triples

and limit the train dataset size to be at max 1M samples; we refer to this as Random

Sampling.

Curriculum Filtering Here, we extract the noun and verb chunks from the context,

question, and answer options present in the question answering datasets. We filter

triples from the generated dataset and keep only those triples where at least one of

the entities is present in the extracted noun and verb chunks set. This filtering is

analogous to a real-life human examination setting where a teacher provides the set

of concepts upon which questions would be asked, and the students can learn the

concepts. We perform the sampling and filtering only on the huge Common Concept

Graphs generated from QASC and OMCS corpus.
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ATOMIC QASC-CCG OMCS-CCG DSG

Train Size 893393 1662308 914442 1019030
Val Size 10000 10000 10000 10000
H Length 11.2 10.5 9.6 10.3
R Length 6.5 10.3 9.4 10.2
T Length 2 1.5 2 10.4

Table 15: Dataset Statistics for the generated Triples. For QASC and OMCS, it is
after Curriculum Filtering. H, R, T length refers to the average number of words. For
CCG, we show for the [ei, ej, v] configuration.

5.4 Datasets

We evaluate our framework on the following six datasets: SocialIQA (Sap, Rashkin,

Chen, LeBras, et al. 2019b), aNLI (Bhagavatula et al. 2019), CommonsenseQA

(Talmor et al. 2018), QASC (Khot et al. 2019), OpenBookQA (Mihaylov et al. 2018c)

and ARC (P. Clark et al. 2018). SocialIQA, aNLI, and CommonsenseQA require

commonsense reasoning and external knowledge to answer the questions. Similarly,

QASC, OpenBookQA, and ARC require scientific knowledge. Table 14 shows the

dataset statistics and the corresponding knowledge graph used to train our KTL

model. Table 15 shows the statistics for the triples extracted from the graphs. From

the two tables we can observe our KTL triples have different number of words when

compared to the target question answering tasks. Especially where the context is

significantly larger and human annotated as in SocialIQA, increasing the challenge for

unsupervised learning.
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Models ARC-E ↑ ARC-C ↑ OBQA ↑ QASC ↑ ComQA ↑ aNLI ↑ SocIQA ↑

Random 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 12.5 12.5 20.0 20.0 50.0 51.0 33.3 33.3
GPT-2 L 30.5 29.1 29.4 23.5 25.1 25.0 32.0 26.6 27.8 12.3 13.2 36.4 37.2 50.8 51.3 41.2 40.8
RoB-MLM 29.8 29.6 29.0 24.8 25.0 25.0 24.8 24.4 25.0 12.8 17.6 23.6 24.8 51.6 52.2 35.6 34.5
RoB-FMLM 31.0 31.2 30.6 24.6 22.1 23.8 23.4 24.2 23.8 14.2 19.7 23.2 26.1 51.2 51.4 36.9 36.1
IR 29.4 30.4 30.2 18.4 20.3 21.2 31.4 29.4 28.8 18.6 19.4 24.6 24.4 53.4 54.8 35.8 36.0

KRL-L2 28.8 29.6 29.8 26.7 26.8 25.6 29.6 28.8 29.2 20.4 20.8 31.4 30.6 57.6 57.4 43.2 43.8
KRL-NCE-L2 32.4 31.8 30.6 27.2 27.5 26.8 33.2 31.6 32.8 22.6 23.1 33.4 33.8 59.3 60.5 46.4 46.2
KRL-NCE-Cos 32.8 32.0 31.8 27.4 27.9 27.8 35.6 34.8 34.4 23.2 24.4 36.8 37.1 60.4 60.2 46.6 46.4
SMLM 33.2 33.4 33.0 27.8 28.4 28.4 34.4 34.6 33.8 26.6 27.2 38.2 38.8 64.7 65.3 48.7 48.5

Self-Talk N/A N/A N/A N/A 32.4 N/A 46.2
BIDAF Sup. 50.1 49.8 20.6 21.2 49.2 48.8 31.8 32.0 67.8 51.2
RoBerta Sup. 85.0 67.2 72.0 61.8 72.1 83.2 76.9

Table 16: Results for the Unsupervised QA task. Mean accuracy on Train, Dev and
Test is reported. For Self-Talk and BIDAF Sup. we report the Dev and Test splits,
for Roberta Sup. we report Test split. Test is reported if labels are present. Bold:
Best scores, Second Best are underlined.

5.4.1 Question to Hypothesis Conversion and Context Creation

We can observe the triples in our synthetic graphs, QASC-CCG and OMCS-CCG

contain factual statements, and our target question answering datasets have questions

that contain wh words or fill-in-the-blanks. We translate each question to a hypothesis

using the question and each answer option. To create hypothesis statements for

questions containing wh words, we use a rule-based model (Demszky, Guu, and Liang

2018). For fill-in-the-blank and cloze style questions, we replace the blank or concat

the question and the answer option.

For questions that do not have a context, such as in QASC or CommonsenseQA,

we retrieve the top five sentences using the question and answer options as query

and perform retrieval from respective source knowledge sentence corpus. For each

retrieved-context, we evaluate the answer option score using equation 5.2 and take

the mean score.
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5.5 Experiments

5.5.1 Baselines

We compare our models to the following baselines.

1. GPT-2 Large with language modeling cross-entropy loss as the scoring function.

We concatenate the context and question and find the cross-entropy loss for

each answer choices and choose the answer with minimum loss.

2. Pre-trained RoBerta-large used as is, without any fine-tuning or further

pre-training, with scoring the same as our defined SMLM model. We refer to it

as Rob-MLM.

3. RoBerta-large model further fine-tuned using the original Masked Language

Modeling task over our concatenated fact triples (h, r, t), with scoring same as

SMLM. We refer to it as Rob-FMLM.

4. IR Solver described in ARC (P. Clark et al. 2016), which sends the context,

question, and answer option as a query to Elasticsearch. The top retrieved

sentence, which has a non-stop-word overlap with both the question and the

answer, is used as a representative, and its corresponding IR ranking score is

used as confidence for the answer. The option with the highest score is chosen

as the answer.

5.5.2 KTL Training

We train the Knowledge Representation Learning (KRL) model using both L2Loss

and NCELoss. For NCELoss, we also train it with both L2 norm and Cosine similarity.
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Both the KRL model (365M) and the SMLM model (358M) uses RoBERTa-large

(355M) as the encoder. We train the model for three epochs with the following

hyper-parameters: batch sizes [512,1024] for SMLM and [32,64] for KRL; learning rate

in range: [1e-5,5e-5]; warm-up steps in range [0,0.1]; in 4 Nvidia V100s 16GB. We use

the transformers package (Wolf et al. 2019). All triplets from the training graphs are

positive samples. We learn using these triplets. For NCE, we choose k equal to ten,

i.e., ten negative samples. We perform three hyper-parameter trials using ten percent

of the training data for each model, and train models with three different seeds. We

report the mean accuracy of the three random seed runs for each of our experiments

and report the standard deviation if space permits. Code is available here.

5.6 Results and Discussion

5.6.1 Unsupervised Question Answering

Table 16 compares our different KTL methods with our four baselines for the

six question-answering datasets on the zero-shot question answering task. We use

Hypothesis Conversion, Curriculum Filtering, and Context Creation for ARC, QASC,

OBQA, and CommonsenseQA for both the baselines and our models. We compare

the models on the Train, Dev and Test split if labels are available, to capture the

statistical significance better.

We can observe that our KTL trained models perform statistically significantly

better than the baselines. When comparing the different KRL models, the NCELoss

with Cosine similarity performs the best. This observation might be due to the

additional supervision provided by the negative samples as the L2Loss model only
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Figure 10: Effect of Increasing KTL training samples on the target zero-shot question
answering Train split accuracy.

tries to minimize the distance between the generated and the target projections. When

comparing different KTL instantiations, we can see that the SMLM model performs

the best overall. SMLM and KRL differ in their core approaches. We hypothesize

that multi-layered attention in a transformer encoder enables the SMLM model to

distinguish between a true and false statement. In KRL, we are learning from both

positive and negative samples, but the model still under-performs. On analysis, we

observe the random negative samples may make the training task biased for KRL.

Our future work would be to utilize alternative negative sampling techniques, such as

selecting samples closer in contextual vector space.

The improvements in ARC-Challenge task are considerably less. It is observed

that the fact corpus for QASC, although it contains a vast number of science facts,

does not contain sufficient knowledge to answer ARC questions. There is a substantial

improvement in SocialIQA, aNLI, QASC, and CommonsenseQA as the respective

KTL knowledge corpus contains sufficient knowledge to answer the questions. It is

interesting to note that for QASC, we can reduce the problem from an eight-way

to a four-way classification, as our top-4 accuracy on QASC is above 92%. Our

unsupervised model outperforms previous approaches, such as Self-Talk (Shwartz

et al. 2020). It approaches prior supervised approaches like BIDAF (Seo et al. 2017),

and even surpasses it on two tasks.
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Model QASC ↑ OBQA ↑ aNLI ↑ ComQA ↑ SocIQA ↑

RoBerta 44.5 ± 1.2 47.8 ± 1.4 68.8 ± 1.3 46.4 ± 1.5 44.4 ± 1.2
RoB-MLM 43.6 ± 0.6 49.4 ± 0.8 67.1 ± 0.8 43.2 ± 0.8 46.8 ± 0.6
KRL-NCE-Cos 48.2 ± 0.9 51.2 ± 0.6 73.4 ± 0.9 49.5 ± 1.1 58.6 ± 0.8
SMLM 49.8 ± 0.6 55.8 ± 0.6 76.8 ± 0.6 51.2 ±0.7 69.1 ± 0.4
RoBerta-Sup 59.40 71.0 84.3 71.4 76.6

Table 17: Accuracy comparison of the KTL pre-trained RoBerta encoder when used
for Few-shot learning Question Answering task on the Validation split.

Model QASC ↑ OBQA ↑ ComQA ↑ aNLI ↑ SocIQA ↑

SMLM - A 23.4 ± 0.6 28.6 ± 0.7 33.6 ± 0.5 64.8 ± 0.9 46.2 ± 0.7
SMLM - Q 26.7 ± 0.8 33.8 ± 0.7 34.4 ± 0.8 65.1 ± 0.7 37.8 ± 0.5
SMLM - C 22.8 ± 1.1 29.8 ± 1.3 31.9 ± 0.9 64.9 ± 0.8 47.1 ± 0.8
SMLM - A*Q*C 27.2 ± 0.6 34.6 ± 0.8 38.8 ± 0.6 65.3 ± 0.7 48.5 ± 0.6

Table 18: Accuracy comparison of using only Answer (A), Question (Q) and Context
(C) distance scores.

5.6.2 Few-Shot Question Answering

Table 17 compares our KTL pre-trained transformer encoder in the few-shot

question answering task. We fine-tune the encoder with a simple feedforward network

for a n-way classification task, the standard question-answering approach using

RoBerta with n being the number of answer options during training with only 8% of

the training data. We train on three randomly sampled splits of training data and

report the mean. We can observe our KTL pre-trained encoders perform significantly

better than the baselines and approach the fully supervised model, with only 7.5%

percent behind the fully supervised model on SocialIQA. We also observe that our

pre-trained models have a lower deviation.
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5.6.3 Ablation studies and Analysis

Effect of Context, Question, Answer Distance In Table 18, we compare the

effect of the three different distance scores. It is interesting to observe, in OpenBookQA,

QASC, and CommonsenseQA, the three datasets which do not provide a context, the

model is more perplexed to predict the question when given a wrong answer option,

leading to higher accuracy for only Question distance score. On the other hand, in

aNLI all three distance scores have nearly equal performance. In SocialIQA, the

question has the least accuracy, whereas the model is more perplexed when predicting

the context given a wrong answer option. This observation confirms our hypothesis

that given a task predicting context and question can contain more information than

discriminating between options alone.

Effect of Hypothesis Conversion, Curriculum Filtering and Context Re-

trieval In Table 19, we observe the effect of hypothesis conversion, curriculum

filtering, and our context creation. Converting the question to a hypothesis provides a

slight improvement, but a significant improvement is observed when we filter our KTL

training samples and keep only those concepts that are present in the target question

answering task, compared to when the KTL model is trained with a random sample

of 1M. Curriculum filtering is impactful because there are many concepts present in

our source knowledge corpus, and the randomly sampled training corpus only contains

50% of the target question answering task concepts on an average. Another critical

thing to note in Table 19 is our KTL models can strongly perform like supervised

models, when the gold knowledge context is provided, which are available in QASC

and OpenBookQA. This observation indicates a better retrieval system for context

creation can further improve our models.
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Model QASC ↑ OBQA ↑ ComQA ↑

SMLM - Hypo + CF 27.2 ± 0.6 34.6 ± 0.8 38.8 ± 0.6
SMLM - Quesn + CF 26.5 ± 1.2 32.2 ± 1.1 35.4 ± 1.3
SMLM - Hypo + Rand Sample 22.6 ± 1.4 28.4 ± 1.5 32.2 ± 1.4
SMLM - Gold F+ Hypo + CF 72.4 ± 0.8 75.2 ± 0.7 -

Table 19: Effect of Question to Hypothesis Conversion (Hypo), Curriculum Filtering
(CF) and providing the Gold Fact context on the Validation split.

Effect of Sythetic Triple corpus size Figure 10 compares our two modeling

approaches when we train them with varying numbers of KTL training samples. NCE

refers to our KRL model trained with NCELoss and Cosine similarity. We can observe

that our KRL model learns faster due to additional supervision, but the SMLM model

performs the best when trained with more samples. The performance tapers after 105

samples, indicating the models are overfitting to the synthetic data.

Error Analysis We sampled 50 error cases from each of our question-answering

tasks. Our KTL framework allows learning from knowledge graphs, that includes

synthetic knowledge graphs. Both our instantiation, SMLM, and KRL function as a

knowledge base score generator, were given the inputs, and a target, the generator

yields a score, how improbable is the target to be present in the knowledge base. Most

of our errors are when all context, question, and answer-option have a large distance

score, and the model accuracy degenerates to that of a random model. This more

considerable distance indicates the model is highly perplexed to see the input text. For

aNLI and SocialIQA, we possess relevant context, and our performance is significantly

better in these datasets, but for other tasks, we have another source of error, i.e.,

context creation. In several cases, the context is irrelevant and acts as a noise. Other

errors include when the questions require complex reasoning such as understanding
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negation, conjunctions, and disjunctions; temporal reasoning such as “6 am” being

before “10 am”, and multi-hop reasoning. These complex reasoning tasks are required

to answer a significant number of questions in the science and commonsense QA tasks.

We also tried to utilize a text generation model, such as GPT-2, to generate and

compare with ground truth text using our KTL framework, but preliminary results

show the model is overfitting to the synthetic dataset and leads to significantly low

performance.

Other Instantiations Our KTL framework can be implemented using other meth-

ods, such as using a Generator/Discriminator pre-training proposed in Electra (K.

Clark et al. 2019), and sequence-to-sequence methods. The distance functions for

sequence-to-sequence models can be similar to our SMLM model, the cross-entropy loss

for the expected generated sequence. Discriminator based methods can adapt to the

negative class probabilities as the distance function. Studying different instantiations

and their implications are some of the fascinating future works.

5.7 Related Work

5.7.1 Unsupervised QA

Recent work on unsupervised question answering approach the problem in two

ways, a domain adaption or transfer learning problem (Chung, Lee, and Glass 2018b),

or a data augmentation problem (Zhilin Yang et al. 2017b; Dhingra, Danish, and

Rajagopal 2018; L. Wang et al. 2018; Alberti et al. 2019). The work of (Patrick Lewis,

Ludovic Denoyer, and Sebastian Riedel 2019; A. R. Fabbri et al. 2020; Puri, Spring,

Patwary, et al. 2020) use style transfer or template-based question, context and answer
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triple generation, and learn using these to perform unsupervised extractive question

answering. There is another approach to learning generative models, generating the

answer given a question or clarifying explanations and questions, such as GPT-2

(Radford et al. 2019) to perform unsupervised question answering (Shwartz et al. 2020;

Bosselut, Bras, and Choi 2021; Bosselut et al. 2019). In the visual domain, zero-shot

visual question answering is studied in (Teney and A. v. d. Hengel 2016), and a

self-supervised learning method for logical compositions of visual questions is proposed

in (Gokhale et al. 2020b).

In contrast, our work focuses on learning from knowledge graphs and generate

vector representations or sequences of tokens not restricted to the answer but including

the context and the question using the masked language modeling objective.

5.7.2 Use of External Knowledge for QA

There are several approaches to add external knowledge into models to improve

question answering. Broadly they can be classified into two, learning from unstructured

knowledge and structured knowledge. In learning from unstructured knowledge, recent

large pre-trained language models (M. Peters et al. 2018; Radford et al. 2019; Devlin et

al. 2018; Y. Liu et al. 2019; K. Clark et al. 2020; Lan et al. 2019; Joshi, Lee, et al. 2020;

Bosselut et al. 2019) learn general-purpose text encoders from a huge text corpus. On

the other hand, learning from structured knowledge includes learning from structured

knowledge bases (Yang and Mitchell 2017; Bauer, Wang, and Bansal 2018b; Mihaylov

and Frank 2018b; Wang and Jiang 2019b; Sun, Bedrax-Weiss, and Cohen 2019) by

learning knowledge enriched word embeddings. Using structured knowledge to refine

pre-trained contextualized representations learned from unstructured knowledge is

94



another approach (M. E. Peters et al. 2019; An Yang et al. 2019b; Z. Zhang et al. 2019;

W. Liu et al. 2019).

Another approach of using external knowledge includes retrieval of knowledge

sentences from a text corpora (Das et al. 2019; D. Chen et al. 2017; Lee, Chang, and

Toutanova 2019b; Banerjee et al. 2019a; Banerjee and Baral 2020a; Mitra et al. 2019a;

Banerjee 2019), or knowledge triples from knowledge bases (Min et al. 2019; Wang

et al. 2020) that are useful to answer a specific question. Another recent approach uses

language model as knowledge bases (Petroni et al. 2019), where they query a language

model to un-mask a token given an entity and a relation in a predefined template. We

use knowledge graphs to learn a self-supervised generative task to perform zero-shot

multiple-choice QA in our work.

5.7.3 Knowledge Representation Learning

Over the years there are several methods discovered to perform the task of knowl-

edge representation learning. Few of them are: TransE (Bordes et al. 2013) that views

relations as a translation vector between head and tail entities, TransH (Zhen Wang

et al. 2014) that overcomes TransE’s inability to model complex relations, and TransD

(G. Ji et al. 2015) that aims to reduce the parameters by proposing two different

mapping matrices for head and tail. KRL has been used in various ways to generate

natural answers (Yin et al. 2016; S. He et al. 2017) and generate factoid questions

(Serban et al. 2016). The task of Knowledge Graph Completion (Yao, Mao, and Luo

2019) is to either predict unseen relations r between two existing entities: (h, ?, t) or

predict the tail entity t given the head entity and the query relation: (h, r, ?). Whereas

we are learning to predict including the head, (?, r, t). In KTL, head and tail are
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not similar text phrases (context and answer) unlike Graph completion. We further

modify TransD and adapt it to our KTL framework to perform zero-shot QA.

5.8 Conclusion

This work proposes a new framework of Knowledge Triplet Learning over knowledge

graph entities and relations. We show learning all three possible functions, fr, fh, and

ft help the model perform zero-shot multiple-choice question answering, where we do

not use question-answering annotations. We learn from both human-annotated and

synthetic knowledge graphs and evaluate our framework on the six question-answering

datasets. Our framework achieves state-of-the-art in the zero-shot question answering

task achieving performance like prior supervised work and sets a strong baseline in

the few-shot question answering task.
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Chapter 6

SELF-SUPERVISED TEST-TIME LEARNING FOR READING

COMPREHENSION

6.1 Introduction

Reading comprehension is the task in which systems attempt to answer questions

about a passage of text. Answers are typically found in the passage as text-spans

or can be inferred through various forms of reasoning (Rajpurkar et al. 2016a). The

answer to the following question:

Who is the President of the United States?

depends on the timeframe and context of the passage provided, and will be different

for news articles written in 2001 vs. 2021. If the context is the script of the TV series

The West Wing, the answer is Jed Bartlet, and even in this fictional setting, it will

later change to Matt Santos.

Knowledge sources such as Wikipedia get updated when new events occur (such as

the outcome of elections), or new facts about the world are revealed (such as scientific

discoveries), with contributors adding new information and removing information that

is no longer valid (Almeida, Mozafari, and Cho 2007). With such context-dependent

answers and continual changes in knowledge, it is hard to justify training models over

fixed corpora for tasks such as question answering (QA). We would like models to

answer questions based on the given context and not to learn biases from datasets or

historical news articles.
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Moreover, supervised learning has been shown to perform poorly in QA tasks

with adversarial examples (Jia and Liang 2017), domain shift (Jia and Liang 2017;

Yogatama et al. 2019; Kamath, Jia, and Liang 2020), and biased or imbalanced

data (Agrawal et al. 2018a; McCoy, Pavlick, and Linzen 2019a). For example, QA

systems trained on Wikipedia fail to generalize to newer domains such as Natural

Questions (Rennie et al. 2020) or biomedical data (Wiese, Weissenborn, and Neves

2017a), and suffer a significant drop in accuracy. Even small semantics-preserving

changes to input sentences, such as the substitution of words by synonyms, have been

shown to degrade performance in NLP tasks (Alzantot et al. 2018; Jia et al. 2019).

Continual changes in text corpora are inevitable, thus calling for the development of

robust methods that can reliably perform inference without being subject to biases.

Supervised Question Answering faces challenges such as the need for large-scale

(usually human-authored) training corpora to train models. Such corpora typically

require significant post-processing and filtering to remove annotation artifacts (Sak-

aguchi et al. 2020). To address these challenges, some recent methods (Patrick Lewis,

Ludovic Denoyer, and Sebastian Riedel 2019; Z. Li et al. 2020) approach question

answering as an unsupervised learning task. A significant advantage of this approach

is that it can be extended to domains and languages for which collecting a large-sized

human-authored training corpus is challenging. Methods for unsupervised QA proce-

durally generate a large corpus of (context, question, answer) triples, and train large

neural language models, such as BERT (Devlin et al. 2019b).

In this work, we focus on unsupervised reading comprehension (RC) under evolving

contexts and present the “Test-Time Learning” paradigm for this task. RC – the

task of answering questions about a passage of text, acts as the perfect setting

for robust question-answering systems that do not overfit to training data. While
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large-scale language models trained on large datasets may contain global information,

the answer needs to be extracted from the given context. Thus, our work seeks

to learn unsupervised reading comprehension without access to human-authored

training data but instead operates independently on each test context. This makes

our method ‘distribution-blind’ where each new context is assumed to be a novel

distribution. The test-time learning (TTL) framework enables smaller models to

achieve improved performance with small procedurally generated question-answer

pairs, and is summarized below:

• a single context (text passage) ci is given, from which we procedurally generate

QA pairs;

• these QA pairs are used to train models to answer questions about ci;

• the inference is performed on previously unseen questions for ci.

This framework has a simple assumption that every context comes from a distinct

distribution. Hence, parameters learned for the previous context might not be useful

to generalize to other contexts. This assumption holds where the contexts evolve over

time, and rote memorization of answers might lead to wrong predictions. As such,

the above process is repeated for each new context ci.

For question-answer generation, we use simple methods such as cloze-

translation (Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel 2019), template-

based question-answer generation (A. Fabbri et al. 2020) and question-answer

semantic role labeling (QA-SRL) (He, Lewis, and Zettlemoyer 2015a). We use two

neural transformer-based language models, BERT-Large (Devlin et al. 2019b) and

DistilBert (Sanh et al. 2019), to study the efficacy of our framework with large and

small transformer models. We evaluate our method on two reading comprehension

datasets, SQuAD (Rajpurkar et al. 2016b) and NewsQA (Trischler et al. 2017b). We

99



Figure 11: Overview of our self-supervised test-time learning framework for reading
comprehension. Our method does not require a human-authored training dataset
but operates directly on each single test context and synthetically generates question-
answer pairs over which model parameters θ are optimized. The inference is performed
with trained parameters θ∗ on unseen human authored questions.

investigate test-time training under multiple learning settings: (1) single-context

learning – the “standard” setting, (2) K-neighbor learning – by retrieving top-K

multiple related contexts for each test context, (3) curriculum learning – progressively

learning on question-types of increasing order of complexity, (4) online learning –

sequentially finetuning models on each incoming test sample.

Our experimental findings are summarized below:

• Test-time learning methods are effective for the task of reading comprehension

and surpass current state-of-the-art on two benchmarks: SQuAD and NewsQA.

• Online TTL trained over K-neighboring contexts of the test context is the best

version with EM/F1 gains of 7.3%/7.8% on SQuAD 1.1 and 5.3%/6.9% on

NewsQA.

• DistilBERT – which has less than 1
5

th of the number of model parameters of

BERT-Large is competitive with current SOTA methods that use BERT-Large.
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6.2 Test-Time Reading Comprehension

Consider a reading comprehension test dataset Dtest={(ci, qi, ai)}ni=1 with context

text passages ci, human-authored questions qi and true answers ai. The QA model

g(·) is parameterized by θ = (θf , θh) where θf are parameters for the feature extractor,

and θh for the answering head. The answer is predicted as a text-span, given by the

start and stop positions [ystart, ystop]. Contemporary unsupervised RC models (Lewis

2019; Z. Li et al. 2020) are trained on a large dataset D̂train={(ci, q̂i, âi)}ni=1, where

the QA pairs are synthetically generated from the context.

In our setting, we do not use such large training datasets, but instead directly

operate on individual test contexts ci ∈ Dtest. Given ci, M synthetic question-answer

pairs {(q̂ji , â
j
i )}Mj=1 are procedurally generated as described in Section 6.3. The QA

model parameters θ are trained over the synthetic data to predict the span of the

answer [ŷstart, ŷstop] by optimizing the loss `ans:

minimize
θ

M∑
j=1

`ans(c
j
i , q̂

j
i , θ) (6.1)

`ans = `CE (ŷstart , âstart) + `CE (ŷstop , âstop) (6.2)

where `CE is cross-entropy loss. The inference is performed on human-authored

questions to predict the answer spans:

[ystart, ystop] = g(c, q). (6.3)

Next, we describe the variants of test-time reading comprehension.

Single-Context Test-Time RC. This is the standard formulation of test-time

learning in this chapter, with Equation 6.1 optimizing over θ, i.e. for each context ci,
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the feature extractor θf is re-initialized with pre-trained BERT, and the answering

head θh is randomly initialized.

K-neighbor Test-Time RC. In this version, K contexts similar to the test-context

ci are grouped together, and Equation 6.1 is optimized over each set of similar contexts

as opposed to single contexts in the standard setting. We index contexts in a Lucene-

based information retrieval system (Gormley and Tong 2015) and retrieve top-K

similar contexts given ci, which we call Context Expansion with IR described in

Section 6.3.

Curriculum Test-Time RC. In the curriculum learning version, questions are

ordered in increasing order of complexity. We generate different types of questions,

such as, semantic role labelling, cloze-completion, template-based and dependency tree-

based translation of cloze questions to natural questions. This provides an ordering

of complexity, and we study the effect of test-time training with such an increasing

complexity.

Online Test-Time RC. In the online test-time learning (TTLO), test samples are

considered to be encountered in sequence. As such, answering head parameters θh

are updated sequentially without being randomly re-initialized like in the standard

single-context setting. For each new test context ci, θh is initialized with the optimal

parameters from the previous test context ci−1 to optimize Equation 6.1.

6.3 Self-Supervised QA Generation

In this section, we detail our framework for procedurally generating QA pairs

from a given context. We use named-entity recognition from Spacy (Honnibal and

Montani 2017), dependency parsing from Berkeley Neural Parser (Stern, Andreas, and
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Klein 2017) and semantic role labeling (He, Lewis, and Zettlemoyer 2015a) as our core

methods to extract plausible answers and generate natural questions. As described in

our task formulation, we create a set of M question-answer pairs {(q̂ji , â
j
i )}Mj=1 for the

given context ci.

Cloze Generation. Statements in which the answer is replaced with a mask or

blank token are called cloze questions. We follow the steps provided in Patrick Lewis,

Ludovic Denoyer, and Sebastian Riedel (2019) in which answers are replaced with a

special token depending on the answer category. For example, in a sentence,

“They were descended from Norse raiders and pirates from Denmark”

the answer Denmark is replaced by [Location], resulting a cloze question:

“They were descended from Norse raiders and pirates from [Location]”.

Cloze Translation is utilized to rephrase cloze questions into more natural questions

by using rule-based methods from Patrick Lewis, Ludovic Denoyer, and Sebastian

Riedel (2019).

Template-based Question Generation utilizes simple template-based rules to

generate questions. Given a context of format:

[Fragment A][Answer][Fragment B]

a template of the format “Wh+B+A+?” replaces the answer with a Wh-word

(e.g., who,what,where) as described in A. Fabbri et al. (2020).

Dependency Parsing-based Question Generation. In this method, we use

dependency reconstruction to translate clozes to natural questions as described in Z.

Li et al. (2020), according to the following steps:
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1. Right child nodes of the answer are retained and left children are pruned.

2. For each node of the parse tree, if the child node’s subtree contains the answer, the

child node is moved to the first child node.

3. An in-order traversal is performed on the reconstructed tree. A rule-based mapping

is applied to replace the special mask token of the cloze with an appropriate

“Wh-word”.

QA-Semantic Role Labeling (QA-SRL) was proposed by He, Lewis, and Zettle-

moyer (2015a) as a method to annotate NLP data, by using QA pairs to specify

textual arguments and their roles. As seen in Figure 11, for the context sentences:

“They were descended from Norse raiders and pirates from Denmark.”,

“The distinct cultural and ethnic identity of the Normans emerged initially in the first

half of the 10th century and it continued to evolve.”

the following QA pairs were generated,

(“What was someone descended from?”, “Norse”),

(What evolved?, distinct cultural and ethnic diversity)

We can observe the questions are short and use generic descriptors and pronouns

such as “something” and “someone” instead of specific references calling for the model

to have greater semantic understanding of the given context.

Context Expansion using IR is used in the K-neighbor version of TTL. For

Context Expansion, we index all paragraphs present in a Wikipedia dump in Elastic-

Search. During test-time learning, we preprocess the context ci by removing the most

frequent stop-words, and use it as a seed query to search and retrieve top-K similar

contexts. This provides us with related paragraphs that describe similar topics, and

consequently more diverse and slightly larger number of QA pairs to train compared

to only ci. We then generate QA pairs using the above described methods. We study
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the effect of varying the number of most similar contexts (K) on the downstream QA

performance.

6.4 Experiments

Datasets. We evaluate our learning framework on two well-known reading com-

prehension datasets: SQuAD 1.1 (Rajpurkar et al. 2016b) and NewsQA (Trischler

et al. 2017b).

QA Model. We focus on training two transformer-encoder based models, BERT-

Large (Devlin et al. 2019b) trained with whole-word masking and DistilBERT (Sanh

et al. 2019). BERT-Large is used by current state-of-the-art methods on unsupervised

extractive QA tasks and has 345 million trainable parameters. On the other hand,

DistilBERT is a knowledge-distilled transformer-encoder based model and only has

66 million parameters (∼ 5× smaller than BERT-Large), allowing us to study the

efficacy of TTL with respect to model-size.

Metrics. We use the standard metrics for extractive QA – macro Exact Match,

where the predicted answer span is directly matched with the ground-truth, and macro

F1, which measures the overlap between the predicted and the ground-truth spans.

For comparisons with existing unsupervised methods, since TTL operates directly on

test instances, we report validation set performance only for SQuAD 1.1, as the test

set is hidden.

Training Setup. For all test-time learning variants, we limit the maximum number

of questions generated per context to 4000 and the maximum number of training steps

to 1500. The number of training steps is linearly dependent on the selected batch size

∈ [16, 64]. For our K-neighbor TTL setup that uses Context Expansion, we limit the
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number of retrieved contexts to 500. In Curriculum Test-Time RC, we ensure that all

variants have an equal number (1000) of generated QA-pairs per-context. We evaluate

multiple learning rates within the range 1e-5 to 5e-5. We use the Adam (Kingma and

Ba 2014) optimizer and truncate the paragraphs to a maximum sequence length of 384.

The number 384 was chosen by evaluating the 99th percentile of the combined length

of question and the contexts, to reduce training overhead and GPU memory size.

Long documents are split into multiple windows with a stride of 128. All experiments

were conducted on two Nvidia RTX-8000 GPUs. We use ten percent of the training

data to perform three hyper-parameter trials for each variant. We train models with

three random seeds, and report the mean F1 and EM scores.

Baselines. As we generate our own data using QA-SRL, we use the following

strong baselines. First, we train BERT-Large with generated data from previous

methods described in Section 6.3 and our method (which contains additional QA-SRL

samples). Second, we replicate the baselines using the low parameter-count model

DistilBERT (66 million vs 345 million for BERT-Large). Third, for a fair comparison

to Single-Context and K-neighbor test-time learning where we train models for each

context independently, we propose a baseline where we train on all the test contexts

together, referred to as “All test contexts”. We also evaluate all TTL variants on two

initializations of feature-extractor parameters –

1. “default” initialization of BERT-Large, i.e. θf pre-trained on masked language

modeling and next-sentence prediction tasks, and θh randomly initialized for

each context and trained from scratch, or

2. θf and θh further pre-trained on 100K synthetic QA pairs generated procedu-

rally using our methods described in Section 6.3 with contexts taken from the

Wikipedia corpus.
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SQuAD 1.1 NewsQA
Models Dev Test Dev Test

DCR 2016 62.5 / 71.2 62.5 / 71.0 - / - - / -
mLSTM 2016 64.1 / 73.9 64.7 / 73.7 34.4 / 49.6∗ 34.9 / 50.0∗
FastQAExt 2017 70.3 / 78.5 70.8 / 78.9 43.7 / 56.1 42.8 / 56.1
R-NET 2017 71.1 / 79.5 71.3 / 79.7 - / - - / -
BERT-Large 2019 84.2 / 91.1 85.1 / 91.8 - / - - / -
SpanBERT 2020 - / - 88.8 / 94.6 - / - - / 73.6
DistilBERT 2019 77.7 / 85.8 - / - 57.2 / 64.8 56.1 / 63.5

Table 20: Results (EM / F1) from supervised methods on SQuAD 1.1 and NewsQA.

6.5 Results and Discussion

6.5.1 Unsupervised Question Answering

We compare our results with current state-of-the-art supervised methods (Table 20)

and unsupervised methods (Table 22) on SQuAD 1.1 and NewsQA. The previous best

unsupervised method with both BERT-Large and DistilBERT is Z. Li et al. (2020).

Our best TTL method is the Online version (TTLO), with a pre-training phase

and a randomly-shuffled ordering of QA pairs with an average of 3000 QA pairs per

context, trained with only 100 steps. With this setup, we are able to improve the

state-of-the-art for the SQuAD benchmark with BERT-Large by 7.8% exact-match

accuracy and 7.3% F1 score. With DistilBERT, the best TTL method shows an

improvement of 15.5% EM and 20.6% F1 over DistilBERT-based baseline, as shown

in Table 2. In NewsQA, TTL improves BERT-Large performance by 5.3% EM and
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Default init. θf Pre-trained init. θf

TTL Models SQuAD 1.1 NewsQA SQuAD 1.1 NewsQA

BERT-Large
Single-Context 54.9 34.9 59.8 37.5
Single-Context Online 56.1 36.3 61.8 39.1
K-neighbor 66.2 41.6 78.3 50.7
K-neighbor Online 68.7 46.3 80.4 53.2
Curriculum 68.3 46.7 79.7 52.8
All test contexts 64.7 39.8 68.2 43.5

DistilBERT
Single-Context 37.2 23.2 49.4 34.6
Single-Context Online 38.5 25.3 55.6 39.8
K-neighbor 42.4 27.8 64.3 43.5
K-neighbor Online 49.7 29.1 68.9 46.4
Curriculum 49.3 28.7 68.7 45.8
All test contexts 42.4 28.2 47.4 38.7

Table 21: Comparison of Dev-set F1 scores for TTL variants, when θf are trained
from default initialization for each test instance, or pre-trained on our generated data.

6.9% F1 score, and with DistilBERT shows an improvement of 7.2% EM and 7.2% F1

score.

Training BERT-Large and DistilBERT with “our data” i.e. with a combined

synthetic corpus created via all four QA-pair generation methods, marginally improves

the F1 score. This shows that our QA generation methods lead to an improvement

over existing unsupervised QA generation methods as shown in Table 22. However,

the TTL framework leads to even larger gains (∼20% for SQuAD and ∼10% for

NewsQA), indicating the benefits of test-time learning. This result also points to the

limits of training with a large number of contexts compared to training on individual

contexts. This limitation is especially profound in lower parameter models, such as

DistilBERT. In Reading Comprehension, since the answer comes from the context,
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SQuAD 1.1 NewsQA
Models Dev Test Dev Test
BERT-Large
Dhingra, Danish, and Rajagopal 2018 28.4 / 35.8 - / - 18.6 / 27.6 18.6 / 27.2
Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel 2019 45.4 / 55.6 44.2 / 54.7 19.6 / 28.5 17.9 / 27.0
Z. Li et al. 2020 62.5 / 72.6 61.1 / 71.4 33.6 / 46.3 32.1 / 45.1
A. Fabbri et al. 2020 46.1 / 56.8 - / - 21.2 / 29.4 - / -
our data 49.4 / 59.1 - / - 28.2 / 37.6 27.3 / 36.4

DistilBERT
Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel 2019 data 23.4 / 29.5 - / - 14.1 / 21.6 14.7 / 20.6
Z. Li et al. 2020 data 42.6 / 48.3 - / - 25.4 / 36.2 27.1 / 35.4
A. Fabbri et al. 2020 data 37.5 / 45.6 - / - 16.3 / 22.3 16.1 / 22.9
our data 38.9 / 46.8 - / - 23.2 / 31.9 22.4 / 31.1

BERT-Large TTL 69.8 / 80.4 - / - 38.9 / 53.2 38.2 / 52.6
DistilBERT TTL 58.1 / 68.9 - / - 32.6 / 46.4 30.5 / 45.2

Table 22: Comparison with previous unsupervised methods on SQuAD 1.1 and
NewsQA. We show the best TTL model here. Metrics are EM / F1.

“understanding” the context is much more relevant. It has a higher inductive bias

than learning to comprehend a significantly large number of contexts during training.

For instance, there are multiple contexts about Normans in the SQuAD dataset,

one of which is shown in Figure 11. But each context may have different historical

persons referred to as the leaders or rulers of the Normans. Answers to questions

such as “Who was the leader of the Normans” are better learned for each context

separately than from all contexts. Pre-training on several contexts is indeed beneficial

to obtain better parameter initializations, as observed in Table 22, which can be

further independently finetuned for each context during TTL.

6.5.2 Few-Shot Question Answering

We evaluate our best method under the few-shot setting, i.e. when models are

trained with a limited number of human-authored QA pairs from the training datasets.

Figure 12 shows a comparison with an increasing number of labeled training samples
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Figure 12: Comparison of F1 scores of TTL models when trained with an increasing
number of labeled training samples on SQuAD. TTLO–Online TTL.

for SQuAD. TTL-Online is consistently better than existing methods and achieves

81.6% F1 score with just 100 labeled samples. This indicates that this learning

framework can reduce the number of in-domain human-authored samples required for

training. TTL-Online is also consistently better than (Z. Li et al. 2020) which the

previous best unsupervised method for SQuAD. All methods (which use BERT-Large

as backbone) converge to similar performance, with an increasing number of additional

human-authored samples. This indicates the saturation of the inductive bias that can

be incorporated into the architecture using current human-authored annotations.

110



Curriculum Order Default init. θf Pre-trained θf
(Left to Right) SQuAD NewsQA SQuAD NewsQA

BERT-Large
Random Shuffled 68.7 46.3 80.4 53.2
QA-SRL > T > DP 68.3 46.7 79.7 52.8
T > QA-SRL > DP 67.6 45.4 77.6 50.0
T > DP > QA-SRL 65.8 44.3 75.3 47.2

DistilBERT
Random Shuffled 49.7 29.1 68.9 46.4
QA-SRL > T > DP 49.3 28.7 68.7 45.8
T > QA-SRL > DP 48.8 28.1 67.2 43.9
T > DP > QA-SRL 47.1 26.5 65.3 39.2

Table 23: Dev-set F1 scores for K-neighbor Online test-time learning, for different
Curriculum Learning orderings of QA-SRL (He, Lewis, and Zettlemoyer 2015a), T
(template-based methods), DP (dependency parsing).

6.5.3 Analysis

We study the different variants of test-time learning and effects of hyperparameters,

such as the number of training steps and the number of contexts, on the validation

split for both datasets.

Single-Context vs K-neighbor Test-Time RC. In Table 21, we compare all

TTL variants. We observe that training with additional contexts has a significant

impact on F1 score, compared to training on only the given test context ci. This may

be simply explained as more synthetic training samples from similar contexts leading

to a better generalization to human-authored samples. Although similar work in image

classification (Sun, Wang, et al. 2020) and super-resolution (Shocher, Cohen, and
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Figure 13: Comparison of F1 scores of TTL models when trained with an increasing
number of contexts, on both SQuAD and NewsQA.

Irani 2018) show a substantial performance improvement in a single sample learning,

we observe that context expansion is beneficial for reading comprehension.

In Figure 13, we vary the number of retrieved neighbors contexts, K, and observe

that F1 scores continue to increase till a limit (∼ 500). This is consistent in both

BERT-Large and DistilBERT, as well as in the two datasets, SQuAD and NewsQA.

Our hypothesis is that there exists an optimal number of QA pairs that the model

benefits from, and a maximum threshold on the number of similar contexts after

which, the model starts to overfit to the synthetic nature of the QA pairs.

Randomly initialized v/s Pre-trained θf ,θh. We study the effect of re-

initializing the question answering head and further pre-training using a set of

procedurally generated QA-pairs on downstream test-time learning in Figure 14

and Table 21. While F1 scores achieved without pre-training are comparable to prior

methods, pre-training leads to improved performance and also faster convergence, as

shown in Figure 14. This can be attributed to better initial weights, which are further
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Figure 14: Effect of number of train steps on F1 scores of each TTL model on both
SQuAD and NewsQA. PT–Pre-Trained θf , θh, DEF–Default θf , θh.

finetuned during the test-time learning phase. We studied pre-training with 50k, 100k,

and 200k QA pairs and observed the best performance with 100k samples.

Curriculum Test-time learning. In Table 23 we study the effect of curriculum

TTL, compared to the baseline of the default random-shuffled QA pairs. Interestingly,

using a random ordering rather than a defined curriculum begets the best performance.

Among the three curriculum ordering that we utilized, [QA-SRL, Template-Based

(T), DP (Dependency- Parsing-based)] was effective but slightly lower than the

performance with random ordering. However, training with QA-SRL at the end has

a distinctly negative effect. We hypothesize that the model starts to overfit to the

shorter vague questions from QA-SRL and “forgets” more natural questions. Hence, it

loses generalizability to the human-authored questions.

Online-Test-time Learning. In online test-time learning, the model is continu-

ously self-supervised and evaluated on a continuous stream of contexts and QA-pairs.

From Table 21 and Figures 13, 14 and 15, we can observe that TTL-Online consistently

outperforms the single-context variant. One key observation is that the model achieves

113



Figure 15: Effect of number of questions on F1 scores of each TTL model on both
SQuAD and NewsQA. PT–Pre-Trained θf .

its best performance within 100 training steps (batch size of 48), whereas the base

version needs around 300 to 500 steps. This fast adaptation enables a faster inference

time, compared to θh being trained from scratch. We studied the effect of different

random orderings of the test samples and observed the deviation as ±1.6% in F1

scores, which indicates ordering of test samples has a minor effect.

Effect of Batch Size and Learning Rate. Batch-size and learning rate have

strong effects on online test-time learning. We observe that resuming with the learning

rate of the last epoch of the pre-training with synthetic QA pairs achieves the best F1

scores. We do not use any weight decay. A persistent optimizer state between contexts

is critical. Similarly, we hypothesize that the batch-layer normalization statistics

pre-computed in transformer encoder layers get updated in further pre-training with

QA pairs, leading to a better estimation during TTL. For the base variant of TTL,

a higher, fixed learning rate of 3e-5 with a batch size of 32-48 achieves the best F1

scores.

Effect of number of Training steps and QA pairs is studied in Figures 14

and 15. To limit inference time per test context, we observe TTL variants initialized
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with pre-trained θ achieve the top performance within 150 training steps, whereas

those trained with default initialization need 200−300 steps. In Figure 15, we can

observe the variants achieve their best F1 scores around 3k QA pairs. This appears

consistent with 100 train steps with a batch size of 24−32. Surprisingly, DistilBERT

with pre-trained θ performs equally well compared to BERT-Large with no pre-training

on synthetic question-answer pairs.

Effect of TTL on inference time. TTL and its variants all increase the inference

time as compared to traditional inference. For the best variant of TTL-Online with

BERT-Large, we train for 100 steps with a batch size of 48 samples, which leads

to an inference time of ∼5 minutes per context. Each context contains, on average

6−7 questions in SQuaD 1.1 and NewsQA. The best variant of DistilBERT, although

has a lower average inference time of 1.6 minutes per context, by employing several

engineering tricks, such as saving models on RAM instead of the disk by using

tmpfs (Snyder 1990), and using mixed-precision training (Micikevicius et al. 2018). In

comparison, non-TTL methods have inference times in the range ∼ 10K samples/sec

with a GPU hardware of Nvidia V100 16GB. TTL inference time is limited by the

current computation power of the GPUs but is potentially remediable. However, with

an increase in CUDA cores in GPUs and RAM size, we estimate the inference time

can be further improved. Moreover, with newer efficient transformer architectures

such as Linformer (Sinong Wang et al. 2020) and Big Bird (Zaheer et al. 2020), it is

possible for this inference time to be further reduced. It will be an interesting future

work to increase TTL’s efficiency further while retaining its strength of generalizing

to evolving distributions.

Error Analysis. We analyzed 100 wrongly answered samples from SQuAD val-

idation split and observed the model is biased towards answering named-entities.
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Question Predicted GT

What can block a legislation? parliament majority in parliament

Which TFEU article defines the ordinary legislative
procedure that applies for majority of EU acts?

294 TFEU article 294

Who was killed in Dafur ? Red Cross employee Red Cross employee dead

Who does the African National Congress say should
calm down ?

Archbishop Desmond Tutu Tutu

Table 24: Error Analysis: Illustration of alternate plausible answers predicted by our
models, but regarded as wrong predictions for SQuAD and NewsQA.

This is not unexpected as most of our QA-pair generation methods are focused on

named-entity answers. For example, for the question “Is it easier or harder to change

EU law than stay the same?”, the TTL DistilBERT model generates “EU”, whereas the

ground-truth answer is “harder”. Although QA-SRL generates more diverse answers,

the corresponding questions are vague and much more synthetic, leaving scope for

improving QA pair generation to include a variety of question and answer types in

the future. Another source of errors is the alternate plausible answers generated by

our models, shown in Table 24.

6.6 Related Work

Extractive QA. The goal for extractive question answering (EQA) is to predict a

span of text in a context document as the answer to a question. Various benchmarks

have been established to evaluate the capability of EQA models on corpuses from

different domains such as Wikipedia-based question answering in SQuAD (Rajpurkar

et al. 2016b), Natural Questions dataset (Kwiatkowski et al. 2019), as well as questions

requiring complex reasoning to extract answers in HotPotQA (Zhilin Yang et al. 2018b);

questions about news’ articles in NewsQA (Trischler et al. 2017b); and about trivia-

facts in TriviaQA (Joshi et al. 2017).
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Unsupervised QA. For many of the aforementioned extractive QA benchmarks,

“human-like” performance has been reached via supervised methods. Unfortunately,

these methods do not transfer well to new domains, and the collection of training

data in new domains and new languages may not always be feasible. To address this,

unsupervised EQA has been proposed as a challenge (Patrick Lewis, Ludovic Denoyer,

and Sebastian Riedel 2019), in which aligned ( context, question, answer) triplets are

not available. Self-supervised data-synthesis methods Patrick Lewis, Ludovic Denoyer,

and Sebastian Riedel (2019), Banerjee and Baral (2020c), Rennie et al. (2020), A.

Fabbri et al. (2020), Z. Li et al. (2020), and Banerjee et al. (2020) have been used for

question answering by procedurally generating QA pairs and training models on these

synthetic data.

Self-Supervised Learning. The key idea in self-supervision is to design auxiliary

tasks so as to and extract semantic features from unlabeled samples, for which input-

output data samples can be created from unlabeled datasets. Self-supervision has

been used to train large transformer-based language models such as BERT (Devlin

et al. 2019b) and T5 (Raffel et al. 2020b) for the auxiliary task of masked token

prediction, and XLNET (Zhilin Yang et al. 2019) for token prediction given any

combination of other tokens in the sequence. ELECTRA (K. Clark et al. 2019) instead

of masking tokens, jointly trains a generator to substitute input tokens with plausible

alternatives and a discriminator to predict the presence or absence of substitution.

MARGE (Lewis, Ghazvininejad, et al. 2020) is trained to retrieve a set of related

multi-lingual texts for a target document, and to reconstruct the target document

from the retrieved documents. The goal of self-supervised pretext task design is to

come up with tasks that are as close to the main task, to learn better representations.
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In NLP, QA format provides us such an opportunity where we can leverage NER,

SRL, Cloze Completion as auxiliary tasks for complex QA.

Learning at test-time. Our work is inspired by image processing methods such as

single-image super-resolution Glasner, Bagon, and Irani (2009), Freedman and Fattal

(2011), and Shocher, Cohen, and Irani (2018) that do not require access to external

training datasets but instead formulate a self-supervised task for upsampling natural

image patches recurring at different scales in the image. Test-time training (TTT) (Sun,

Wang, et al. 2020) for image classification makes use of rotation prediction Gidaris,

Singh, and Komodakis (2018) as an auxiliary task to implicitly learn image classification

at test-time and shows improved robustness. While we can directly synthesize main-

task data (QA pairs) from the context and do not require an auxiliary task, our work

is closely related to TTT.

Domain Adaptation. Pre-training for the tasks such as masked language modeling

or other synthetic tasks on unlabeled corpora for a new domain has been evaluated for

commonsense reasoning (Mitra et al. 2019b) and classification tasks (Gururangan et

al. 2020b). On the other hand, our work can be viewed as task-specific self-supervision

with each new context as a new domain.

6.7 Conclusion

In this work, we propose test-time learning (TTL) as a new framework for unsu-

pervised extractive question answering (EQA). We present four variants of TTL with

a simple but effective context expansion method. We utilize four question-answer pair

generation methods for EQA and propose using QA-SRL as an additional source of

QA pairs, to supplement prior methods. We show TTL enables “understanding” of
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contexts at test-time, without human-authored annotations, and significantly improves

EQA, including low parameter models.

We envision TTL as a framework that can direct work in reading comprehension

to be viewed as a problem of ever-evolving datasets instead of a static corpus. Natural

language itself undergoes continuous evolution (Gentner and France 1988; Traugott

and Dasher 2001; Hamilton, Leskovec, and Jurafsky 2016) via changes in preference

for syntactical structures; creation of new words and phrases; and changing usage

frequencies and semantics for existing words. TTL can potentially be applied to such

scenarios with semantic drift or domain shift. Further improvements w.r.t. selection

of similar contexts for K-neighbor TTL could be explored by leveraging hard sample

selection, hard negative mining, bootstrapping, and contrastive learning, along with

improved curriculum strategies.
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Chapter 7

MUTANT: A TRAINING PARADIGM FOR OUT-OF-DISTRIBUTION

GENERALIZATION IN VQA

Availability of large-scale datasets has enabled the use of statistical machine

learning in vision and language understanding, and has lead to significant advances.

However, the commonly used evaluation criterion is the performance of models on

test-samples drawn from the same distribution as the training dataset, which cannot

be a measure of generalization. Training under this “independent and identically

distributed” (i.i.d.) setting can drive decision making to be highly influenced by dataset

biases and spurious correlations as shown in both natural language inference (Kaushik

and Lipton 2018; Poliak et al. 2018; McCoy, Pavlick, and Linzen 2019b) and visual

question answering (Goyal et al. 2017; Agrawal et al. 2018b; Selvaraju et al. 2020).

As such, evaluation on out-of-distribution (OOD) samples has emerged as a metric

for generalization.

Visual question answering (VQA) (Antol et al. 2015) is a task at the crucial

intersection of vision and language. The aim of VQA models is to provide an answer,

given an input image and a question about it. Large datasets (Antol et al. 2015) have

been extensively used for developing VQA models. However over-reliance on datasets

can cause models to learn spurious correlations such as linguistic priors (Agrawal

et al. 2018b) that are specific to certain datasets and do not generalize to “Out-of-

Distribution” (OOD) samples, as shown in Figure 16. While learning patterns in

the data is important, learning dataset-specific spurious correlations is not a feature

of robust VQA models. Developing robust models has thus become a key pursuit
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What is the color 
of the frisbee?

What is the child 
doing?

GREEN → PINK

PLAYING → ACTION

IMAGE MUTATION

IMAGE MUTATION

QUESTION MUTATION

QUESTION MUTATION

How many bottles?

Is the meal not healthy?

How many bins?

Is the meal healthy?

TWO → NONE

YES → NO
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Figure 16: Illustration of the mutant samples. The input mutation, either by manipu-
lating the image or the question, results in a change in the answer.

for recent work in visual question answering through data augmentation (Goyal et

al. 2017), reorganization (Agrawal et al. 2018b).

Every dataset contains biases; indeed inductive bias is necessary for machine

learning algorithms to work. Mitchell (1980) states that an unbiased learner’s ability

to classify is no better than a look-up from memory. However this bias has a component
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which is useful for generalization (positive bias), and a component due to spurious

correlations (negative bias). We use the term “positive bias” to denote the correlations

that are necessary to perform a task — for instance, the answer to a “What sport is

. . . ” question is correlated to a name of a sport. The term “negative bias” is used

for spurious correlations tat may be learned from the data — for instance, always

predicting “tennis” as the answer to “What sport. . . ” questions. The goal of OOD

generalization is to mitigate negative bias while learning to perform the task. However

existing methods such as LMH (Clark, Yatskar, and Zettlemoyer 2019) try to remove

all biases between question-answer pairs, by penalizing examples that can be answered

without looking at the image; we believe this to be counter-productive. The analogy of

antibiotics which are designed to remove pathogen bacteria, but also end up removing

useful gut microbiome (Willing, Russell, and Finlay 2011) is useful to understand this

phenomenon.

We present a method that focuses on increasing positive bias and mitigating

negative bias, to address the problem of OOD generalization in visual question

answering. Our approach is to enable the mutation of inputs (questions and images)

in order to expose the VQA model to perceptually similar yet semantically dissimilar

samples. The intuition is to implicitly allow the model to understand the critical

changes in the input which lead to a change in the answer. This concept of mutations is

illustrated in Figure 16. If the color of the frisbee is changed, or the child removed, i.e.

when an image-mutation is performed, the answer to the question changes. Similarly, if

a word is substituted by an adversarial word (bins→bottles), an antonym, or negation

(healthy→not healthy), i.e. when a question-mutation is performed, the answer also

changes. Notice that both mutations do not significantly change the input, most

of the pixels in the image and words in the question are unchanged, and the type
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of reasoning required to answer the question is unchanged. However the mutation

significantly changes the answer.

In this work, we use this concept of mutations to enable models to focus on parts

of the input that are critical to the answering process, by training our models to

produce answers that are consistent with such mutations. We present a question-type

exposure framework which teaches the model that although such linguistic priors

may exist in training data (such as the dominant answer “tennis” to “What sport is

...” questions), other sports can also be answers to such questions, thus mitigating

negative bias. This is in contrast to L. Chen et al. (2020) who focus on using data

augmentation as a means for mitigating language bias.

Our method uses a pair-wise training protocol to ensure consistency between

answer predictions for the original sample and the mutant sample. Our model includes

a projection layer, which projects cross-modal features and true answers to a learned

manifold and uses Noise-Contrastive Estimation Loss (Gutmann and Hyvärinen 2010)

for minimizing the distance between these two vectors. Our results establish a new

state-of-the-art accuracy of 69.52% on the VQA-CP-v2 benchmark outperforming

the current best models by 10.57%. At the same time, our models achieves the best

accuracy (70.24%) on VQA-VQA-v2 among models designed for the VQA-CP task.

This work takes a step away from explicit de-biasing as a method for OOD gener-

alization and instead proposes amplification of positive bias and implicit attenuation

of spurious correlations as the objective. Our contributions are as follow.

• We introduce the Mutant paradigm for training VQA models and the sample-

generation mechanism which takes advantage of semantic transformations of the

input image or question, for the goal of OOD generalization.

• In addition to the conventional classification task, we formulate a novel training
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objective using Noise Contrastive Estimation over the projections of cross-modal

features and answer embeddings on a shared projection manifold, to predict the

correct answer.

• Our pairwise consistency loss acts as a regularization that seeks to bring the

distance between ground-truth answer vectors closer to the distance between

predicted answer vectors for a pair of original and mutant inputs.

• Extensive experiments and analyses demonstrate advantages of our method

on the VQA-CP dataset, and establish a new state-of-the-art of 69.52%, an

improvement of 10.57%.

7.1 MUTANT

We consider the open-ended VQA problem as a multi-class classification problem.

The VQA dataset D = {Qi, Ii, ai}Ni=1 consists of questions Qi ∈ Q and images Ii ∈ I,

and answers ai ∈ A. Many contemporary VQA models such as Up-Dn (Anderson

et al. 2018a) and LXMERT (Tan and Bansal 2019a) first extract cross-modal features

from the image and question using attention layers, and then use these features as

inputs to a neural network answering module which predicts the answer classes. In

this section we define our Mutant paradigm under this formulation of the VQA task.

7.1.1 Concept of Mutations

Let X = (Q, I) denote an input to the VQA system with true answer a. A

mutant input X∗ is created by a small transformation in the image (Q, I∗) or in the

question (Q∗, I) such that this transformation leads to a new answer a∗, as shown
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Figure 17: Overall architecture of the Mutant Method includes a cross-modal feature
extractor, answer projection layer, answering layer and type exposure model

in Figure 16. There are three categories of transformation T that create the mutant

input X∗ = T (X), addition, removal, or substitution. For image mutations, these

correspond to addition or removal of objects, and morphing the attributes of the

objects, such as color, texture, and lighting conditions. For instance addition or

removal of a person from the image in Figure 18 changes the answer to the question

“How many persons are pictured”. Question mutations can be performed by addition

of a negative word (“no”, “not”, etc.) to the question, masking critical words in the

question, and substituting an object-word with an antonym or adversarial word. Thus

for each sample in the VQA dataset, we can obtain a mutant sample and use it for

training.

7.1.2 Training with Mutants

Our method of training with mutant samples relies on three key concepts that

supplement the conventional VQA classification task.
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Answer Projection: The traditional learning strategy of VQA models optimizes

for a standard classification task using softmax cross-entropy:

LV QA =
−1

N

N∑
i=1

log(softmax
(
fVQA(Xi), ai)). (7.1)

QA as a classification task is popular since the answer vocabulary follows a long-tailed

distribution over the dataset. However this formulation is problematic since it does

not consider the meaning of the answer while making a decision, but instead learns a

correlation between the one-hot vector of the answer-class and input features. Thus

to answer the question “What is the color of the banana”, models learn a strong

correlation between the question features and the answer-class for “yellow”, but do

not encode the notion of yellowness or greenness of bananas. This key drawback

negatively impacts the generalizability of these models to raw green or over-ripe black

bananas at test-time.

To mitigate this, in addition to the classification task, we propose a training

objective that operates in the space of answer embeddings. The key idea is to map

inputs (image-question pairs) and outputs (answers) to a shared manifold in order

to establish a metric of similarity on that manifold. We train a projection layer that

learns to project features and answers to the manifold as shown in Figure 17. We then

use Noise Contrastive Estimation (Gutmann and Hyvärinen 2010) as a loss function to

minimize the distance between the projection of cross modal features z and projection

of glove vector v for ground-truth answer a, given by:

LNCE = −log
( ecos(zfeat, za)∑

ai∈A e
cos(zfeat, zia)

)
, (7.2)

where zfeat = fproj(z) and za = fproj(glove(a)), and A is the set of all possible answers

in our training dataset. It is important to note that this similarity metric is not

between the true answer and the predicted answer, but between the projection of
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input features and the projection of answers, to incorporate context in the answering

task.

Type Exposure: Linguistic priors in datasets have led models to learn spurious

correlations between question and answers. For instance, in VQA, the most common

answer for “What sport ...” questions is “tennis”, and for “How many ...” questions is

“two”. Our aim is to remove this negative bias from the models. Instead of removing all

bias from these models, we teach models to identify the question type, and learn which

answers can be valid for a particular question type, irrespective of their frequency

of occurrence in the dataset. For instance, the answer to “How many ...” can be all

numbers, answers to “What color ...” can be all colors, and answers to questions such

as “Is the / Are there ...” questions is either yes or no. We call this Type Exposure

since it instructs the model that although a strong correlation may exist between a

question-answer pair, there are other answers which are also valid for the specific type

of question. Our Type Exposure model uses a feedforward network to predict question

type and to create a binary mask over answer candidates that correspond to this type.

Pairwise-Consistency: The final component of Mutant is pairwise consistency.

We jointly train our models with the original and mutant sample pair, with a loss

function that ensures that the distance between two predicted answer vectors is close

to the distance between two ground-truth answer vectors. The pairwise consistency

loss is given below, where za is the vector for answer a, m, GT denote mutant sample

and ground-truth respectively.

LPW = ||cos(zaGT
, zmaGT

)− cos(zapred , zmapred)||1.

This pairwise consistency is designed as a regularization that incorporates the

notion of semantic shift in answer space as a consequence of a mutation. For instance,

127



Figure 18: Figure illustrating our dataset creation pipeline for image mutations. m
object instances of “critical” object are identified from the question and image, and
mutation performed either by removal or color inversion. A represents the answer to
the question.

consider the image mutation in Figure 18 which changes the ground-truth answer

from ”two” to ”one”. This shift in answer-space should be reflected by the predictor.

7.2 Generating Input Mutations for VQA

In order to train VQA models under the mutant paradigm, we need a mechanism

to create mutant samples. Mutations are transformations that act on semantic entities

in either the image or the question, in ways that can reliably lead to a new answer.
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Mutation Type Question Answer

Original Is the lady holding the baby? Yes
Substitution (Negation) Is the lady not holding the baby? No
Substitution (Adversarial) Is the cat holding the baby? No

Original How many people are there? Three
Deletion (Masking) How many [MASK] are there? “Number”

Original What is the color of the man’s shirt? Blue
Substitution (Negation) What is not the color of the man’s shirt? Magenta

Deletion (Masking) Is the [MASK] holding the baby? Can’t say

Original What color is the umbrella ? Pink
Deletion (Masking) What color is the [MASK]? “color”

Table 25: Examples of our question mutation. The image is shown on the left, and
the original question is in the first row of the table. Examples of the two types of
mutation are shown in the table.

For the question, semantic entities are words, while for images, semantic entities are

objects. It is important to note that our mutation process is automated and does

not use the knowledge about the test set distribution in order to create new samples.

In this section, we delineate our automated generation process for both image and

question-mutation.

7.2.1 Image Mutations

For image mutation, we first identify critical objects from the image that results

in a change in the answer, and either remove instances of these objects (removal) or

morph their color (substitution).

Removing Object Instances: Removing an instance of an object class can be

either critical to the question (i.e. the answer to the question changes) or non-critical

(i.e. answer is unchanged). If an object (or it’s synonym or hypernym) is mentioned

in the question, we deem it to be critical to the question, otherwise it is deemed

non-critical. For each object with M instances in the image, we randomly remove

m instances from the image s.t. m ∈ {0, . . . ,M} using polygon annotations from

129



the COCO (T.-Y. Lin et al. 2014) dataset. Thus for each image, we get multiple

masked images, with pixels inside the instance bounding-box removed, as shown in

Figure 18. These masked images are fed to a GAN-based inpainting network (J. Yu

et al. 2018) that makes the mutant image photo-realistic, and also prevents the model

from getting cues from the shape of the mask. In the case of numeric questions, if m

critical objects are removed, the answer to for the mutant image changes from n to

n−m. For yes-no questions, removal of all critical objects (m = n) will flip the answer

from “yes” to “no”, while removing m < n critical objects will not. Note that m = 0

corresponds to the original image and does not result in a change in the answer.

Color Inversion: For mutations that involve a change in color, we use samples

with questions about the color of objects in the image, and change the color of critical

objects by pixel-level color inversion in RGB-space. The true answer is replaced with

the new color of the critical objects. To get objects with new colors, we do not use

the knowledge about colors of objects in the world. In some cases, the new colors of

the object may not correspond to real-world scenes, thus forcing the model to actually

identifying colors, and not answer from language priors, such as “bananas are yellow”.

7.2.2 Question Mutations

We use three types of question mutations as shown in the example in Table 25.

We first identify the critical object and then apply template-based question operators

similar to (Gokhale et al. 2020b). The first operator is negation for yes-no questions,

which is achieved by a template based procedure that negates the question by adding

a “no” or “not” before a verb, preposition or noun phrase. The second is the use of

antonyms or adversarial object-words to substitute critical words. The third mutation
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Mutation Category Number of Samples

Object Removal 159,899
Color Change 30,759

Negation 237,611
Adversarial Substitution 146,814

Word Masking 104,666

Table 26: Distribution of generated mutant samples by category of mutation

masks words in the question and thus introduces ambiguity in the question. Questions

for which the new answer cannot be deterministically identified are annotated with a

broad category label such as color, location, fruit instead of the exact answers such as

red, library, apple which the model cannot be expected to answer since some words

have been masked or replaced with adversarial words. Yet, we want the model to be

able to identify this broad category of answers even under partially occluded inputs.

The answer remains unchanged for mutations with non-critical objects or words.

7.2.3 Mutant Statistics:

We use the training set of VQA-CP-v2 (Agrawal et al. 2018b) to generate mutant

samples. For each original sample, we generate 1.5 mutant samples on average, thus

obtaining a total of 679k samples. Table 26 shows the distribution of our generated

mutations with respect to the type of mutation. Addition of mutant samples does not

change the distribution of samples per question-type.5

5More details about mutant samples are in Supp. material.
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Model VQA-CP v2 test (%) ↑ VQA-v2 val (%) ↑ Gap (%)
All Yes/No Num Other All Yes/No Num Other

GVQA (Agrawal et al. 2018a) 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65 16.94
AReg (Ramakrishnan, Agrawal, and Lee 2018) 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16 21.58
RUBi (Cadene et al. 2019) 47.11 68.65 20.28 43.18 63.10 - - - 14.05
SCR (Wu and Mooney 2019) 48.47 70.41 10.42 47.29 62.30 77.40 40.90 56.50 13.83
LMH (Clark, Yatskar, and Zettlemoyer 2019) 52.45 69.81 44.46 45.54 61.64 77.85 40.03 55.04 9.19
CSS (L. Chen et al. 2020) 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11 0.96

UpDn (Anderson et al. 2018a) 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66 23.74
UpDn + Ours 61.72 88.90 49.68 50.78 62.56 82.07 42.52 53.28 0.84

LXMERT (Tan and Bansal 2019a) 46.23 42.84 18.91 55.51 74.16 89.31 56.85 65.14 27.97
LXMERT + Ours 69.52 93.15 67.17 57.78 70.24 89.01 54.21 59.96 0.72

Table 27: Accuracies on VQA-CP v2 test and VQA-v2 validation set, along with
Percentage gap between overall accuracies on these two datasets. “Ours” represents
the final model with Answer Projection, Type Exposure and Pairwise Consistency.
Overall best scores are bold, our best are underlined.

7.3 Experiments

7.3.1 Setting

Datasets: We train and evaluate our models on VQA-CP-v2. This is a natural

choice for evaluating OOD generalization since VQA-CP is a non-i.i.d. reorganization of

the VQA dataset, and was created in order to evaluate VQA models in a setting where

language priors cannot be relied upon for a correct prediction. This is because for every

question type (65 types according to the question prefix), the prior distribution of

answers is different in train and test splits of VQA-CP. We also train and evaluate our

models on the VQA-v2 (Goyal et al. 2017) validation set, and compare the gap between

the imbalanced and non-i.i.d. setting of VQA-CP against the balanced i.i.d. setting of

VQA.

Hyperparameters: All of our models are trained on two NVIDIA Tesla V100 16GB

GPUs for 10 epochs with batch size of 32 and learning rate 1e–5. Each epoch takes

approximately three hours for UpDn and four hours for LXMERT.
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7.3.2 Baseline Models

We compare our method with GVQA (Agrawal et al. 2018a), RUBI (Cadene et

al. 2019), SCR (Wu and Mooney 2019), LMH (Clark, Yatskar, and Zettlemoyer 2019),

CSS (L. Chen et al. 2020) as our baselines. Since most of these methods are built with

UpDn (Anderson et al. 2018a) as the backbone, we investigate the efficacy of UpDn

under the mutant paradigm. On the other hand, LXMERT (Tan and Bansal 2019a)

has emerged as a powerful transformer-based cross-modal feature extractor, and is

pre-trained on tasks such as masked language modeling and cross-modality matching,

inspired by BERT (Devlin et al. 2018). LXMERT is a top performing single-model

on multiple vision-and-language tasks such as VQA, GQA (Drew A Hudson and

Christopher D Manning 2019a), ViZWiz (Bigham et al. 2010), and NLVR2 (Suhr

et al. 2019). We therefore use is as a strong baseline for our experiments. LXMERT

is representative of the recent trend towards using BERT-like pre-trained models (Lu

et al. 2019a; Su et al. 2019; G. Li et al. 2020; Y.-C. Chen et al. 2019) and fine-tuning

them on multiple downstream vision and language tasks. Note that we do not use

ensemble models for our experiments and focus only on single-model baselines.

7.3.3 Results on VQA-CP-v2 and VQA-v2

Performance on two benchmarks VQA-CP-v2 and VQA-v2 is shown in Table 27.

We compare existing models against UpDn and LXMERT incorporated into our

Mutant method. For the VQA-CP benchmark, our method improves the performance

of LXMERT by 23.29%, thus establishing a new state of the art on VQA-CP, beating

the previous best by 10.57%. Our method shows improvements across all categories,
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with 8.78% on the Yes-No category, 17.75% on Number-based questions, and 9.57%

on other questions. We use negation as one of the question mutation operators on

yes-no questions, but such questions are not present in the test set. However our

model takes advantage of this mutation and improves substantially on yes-no questions.

The Mutant method also consistently improves the performance of the UpDn model

by 21.98% overall. Note that baseline models AReg, RUBI, SCR, LMH, and CSS

all modify UpDn by adding de-biasing techniques. We show our de-biasing method

improves on two SOTA models and outperforms all of the above baselines, unlike

previous work which only modifies UpDn. This empirically shows Mutant to be

model-agnostic.

When trained and evaluated on the balanced i.i.d. VQA-v2 dataset, our method

achieves the best performance amongst methods designed specifically for OOD gener-

alization, with an accuracy of 70.24%. This is closest among baselines to the SOTA

established by LXMERT, which is trained explicitly for the balanced, i.i.d. setting.

To make this point clear, we report the gap between the overall scores for VQA-CP

and VQA-v2, following the protocol from L. Chen et al. (2020) in Table 27.

Results on VQA-v2 without re-training:

Additionally, we use our best model trained on VQA-CP and evaluate it on the

VQA test standard set without re-training on VQA-v2 data. The objective here

is to evaluate whether models trained on biased data (VQA-CP) and mutant data

is able to generalize to VQA-v2 which uses an i.i.d. train-test split. This gives us

an overall accuracy of 67.63% comprising with 88.56% on yes-no questions, 50.76%

on number-based questions, and 54.56% on other questions. This is better than all

existing VQA-CP models that are explicitly trained on VQA-v2 (reported in Table 27),

and thus demonstrates the generalizability of our approach.
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Model Data VQA-CP v2 test ↑ (%)

All Yes/No Num Other
UpDn VQA-CP 39.74 42.27 11.93 46.05
UpDn VQA-CP + Mutant 50.16 61.45 35.87 50.14

Increase in Accuracy 10.42 19.18 23.94 4.09
LXMERT VQA-CP 46.23 42.84 18.91 55.51
LXMERT VQA-CP + Mutant 59.69 73.19 32.85 59.29

Increase in Accuracy 13.46 30.35 13.94 3.78

LXM + Ours VQA-CP + Img. Mut. 64.85 85.68 66.44 53.80
LXM + Ours VQA-CP + Que. Mut. 67.92 91.64 65.73 56.09
LXM + Ours VQA-CP + Both Mut. 69.52 93.15 67.17 57.78

Table 28: Top section: Comparison of UpDn and LXMERT when trained on VQA-CP
and augmented with mutant samples, and the increase in accuracy due to mutant sam-
ples. Bottom section: Comparison of LXMERT when using image or text mutations,
or both.

7.3.4 Analysis

Effect of Training with Mutant Samples:

In this analysis we measure the effect of augmenting the training data with mutant

samples on UpDn and LXMERT without any architectural changes. The results are

reported in Table 28. Both models improve when exposed to the mutant samples,

UpDn by 10.42% and LXMERT by 13.46%. There is a markedly significant jump in

performance for both models for the yes-no and number categories. UpDn especially

benefits from Mutant samples in terms of the accuracy on numeric questions (a boost

of 23.94%).

We also compare our final model when trained only with image mutations and

only with question mutations in Table 28. While this is worse than training with
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Model VQA-CP v2 test ↑ (%)

All Yes/No Num Other
UpDn 50.16 61.45 35.87 50.14
UpDn + AP 54.51 88.35 41.01 32.89
UpDn + TE 56.32 80.56 46.14 46.41
UpDn + AP + TE 55.76 90.25 43.78 41.40
UpDn + AP + PW 57.54 91.59 49.17 41.93
UpDn + TE + PW 60.32 86.10 50.23 49.58
UpDn + AP + TE + PW 61.72 88.90 49.68 50.78

LXM 59.69 73.19 32.85 59.29
LXM + AP 60.45 88.46 43.24 50.49
LXM + TE 63.36 77.10 46.50 61.27
LXM + AP + TE 64.73 85.34 47.23 58.71
LXM + AP + PW 67.14 90.49 65.52 55.34
LXM + TE + PW 64.17 94.71 35.19 48.80
LXM + AP + TE + PW 69.52 93.15 67.17 57.78

Table 29: Ablation study to investigate the effect of each component of our method:
Answer Projection (AP), Type Exposure (TE), Pairwise Consistency (PW), and
independent effect of image and question mutations.

both types of mutations, it can be seen that question mutations are better than image

mutations in the case of yes-no and other questions, while image mutations are better

on numeric questions.

Ablation Study:

We conduct ablation studies to evaluate the efficacy of each component of our

method, namely Answer Projection, Type Exposure and Pairwise Consistency, on

both baselines, as shown in Table 29. Introduction of Answer Projection significantly

improves yes-no performance, while Type Exposure improves performance on other
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Model Method VQA-CP v2 test ↑ (%)

All Yes/No Num Other
UpDn + Ours Base 61.72 88.90 49.68 50.78
UpDn + Ours LMH 55.38 90.99 39.74 40.99

Drop in Accuracy 6.34 -2.09 9.95 9.80

LXMERT + Ours Base 69.52 93.16 67.17 57.78
LXMERT + Ours LMH 63.85 88.34 48.23 55.28

Drop in Accuracy 5.67 4.82 18.86 2.50

Table 30: Effect of combining LMH de-biasing with the Mutant paradigm, measured
as drop in accuracy (%)

questions. We also observe that the pairwise consistency loss significantly boosts

performance on numeric questions and yes-no questions. Note that there is a minor

difference between the original and the mutant sample, and the model needs to

understand this difference, which in turn can enable the model to reason about the

question and predict the new answer. For instance the pairwise consistency loss allows

the model to learn the correlation between one missing object and a change in answer

from “two” to “one” in Figure 18, resulting in an improvement in the counting ability

of our VQA model. Similarly, the pairwise consistency allows the model to improve

on yes-no questions for which the answer changes when a critical object is removed.

Effect of LMH Debiasing on Mutant:

We compare the results of our model when trained with or without the explicit

de-biasing method LMH (Clark, Yatskar, and Zettlemoyer 2019). LMH is an ensemble-

based method trained for avoiding dataset biases, and is the most effective among

all de-biasing strategies developed for the VQA-CP challenge. LMH implements a
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learned mixing strategy, by using the main model in combination with a bias-only

model trained only with the question, without the image. The learned mixing strategy

uses the bias-only model to remove biases from the main model. It can be seen

from Table 30 that LMH leads to a drop in performance when used in combination

with Mutant. This is potentially because in the process of debiasing, LMH ends

up attenuating positive bias introduced by Mutant that is useful for generalization.

Kervadec et al. (2020) have concurrently shown that de-biasing methods such as LMH

indeed result in a decrease in performance on out-of-distribution (OOD) test samples

in the GQA (Drew A Hudson and Christopher D Manning 2019a) dataset, mirroring

our analysis on VQA-CP shown in Table 30.

7.4 Related Work

De-biasing of VQA datasets: The VQA-v1 dataset (Antol et al. 2015) contained

imbalances and language priors between question- answer pairs. This was mitigated

by VQA-v2 (Goyal et al. 2017) which balanced the data by collecting complementary

images such that each question was associated with two images leading to two different

answers. Identifying that the distribution of answers in the VQA dataset led models

to learn superficial correlations, Agrawal et al. (2018b) proposed the VQA-CP dataset

by re-organizing the train and test splits such that the the distribution of answers per

question-type was significantly different for each split.

Robustness in VQA: Ongoing efforts seek to build robust VQA models for VQA

for various aspects of robustness. Shah et al. (2019) propose a model that uses

cycle-consistency to not only answer the question, but also generate a complimentary

question with the same answer, in order to increase the linguistic diversity of questions.
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In constrast, our work generates questions with a different answer. Selvaraju et

al. (2020) provide a dataset which contains perception-related sub-questions for each

VQA question. Antonym-consistency has been tackled in Ray et al. (2019). Inspired

by invariant risk minimization (Arjovsky et al. 2019) which links out-of-distribution

generalization to invariance and causality, Teney, Abbasnejad, and Hengel (2020)

provide a method to identify invariant correlations in the training set and train

models to ignore spurious correlations. Asai and Hajishirzi (2020b) and Gokhale

et al. (2020b) explore robustness to logical transformation of questions using first-

order logic connectives and (∧), or (∨), not (¬). Removal of bias has been a focus of

Ramakrishnan, Agrawal, and Lee (2018) and Clark, Yatskar, and Zettlemoyer (2019)

for the VQA-CP task. We distinguish our work from these by amplifying positive bias

and attenuating negative bias.

Data Augmentation: It is important to note that the above work on data de-

biasing and robust models focuses on the language priors in VQA, but not much

attention has been given to visual priors. Within the last year, there has been interest

in augmenting VQA training data with counterfactual images (Agarwal, Shetty, and

Fritz 2020; L. Chen et al. 2020). Independently, Teney, Abbasnedjad, and Hengel

(2020) have also demonstrated that counterfactual images obtained via minimal editing

such as masking or inpainting can lead to improved OOD generalization of VQA

models, when trained with a pairwise gradient-based regularization. Self-supervised

data augmentation has been explored in recent work (Patrick Lewis, Ludovic Denoyer,

and Sebastian Riedel 2019; A. R. Fabbri et al. 2020; Banerjee et al. 2020) in the

domain of text-based question answering. The mutant paradigm presented in this

work is one of the first enable the generation of VQA samples that result in different
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answers, coupled with a novel architecture and a consistency loss between original

and mutant samples as a training objective.

Answer Embeddings: In one of the early works on VQA, Teney and A. v. d.

Hengel (2016) use a combination of image and question representations and answer

embeddings to predict the final answer. Hu, Chao, and Sha (2018) learn two embedding

functions that transform image-question pair and answers to a shared latent space.

Our method is different from this since we use a combination of classification and NCE

Loss on the projection of answer vectors, as opposed to a single training objective.

This means that although the predicted answer is obtained as the most probable

answer from a set of candidate answers, the NCE Loss in the answer-space embeds

the notion of semantic similarity between the answer. Our Type Exposure model is

in principal similar to Kafle and Kanan (2016) who use the predicted answer-type

probabilities in a Bayesian framework, while we use it as an additional constraint, i.e.

as a regularization for a maximum likelihood objective.

7.5 Discussion and Conclusion

In this chapter, we present a method that uses input mutations to train VQA

models with the goal of Out-of-Distribution generalization. Our novel answer projec-

tion module trained for minimizing distance between answer and input projections

complements the canonical VQA classification task. Our Type Exposure model allows

our network to consider all valid answers per question type as equally probable answer

candidates, thus moving away from the negative question-answer linguistic priors.

Coupled with pairwise consistency, these modules achieve a new state-of-the-art accu-
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racy on the VQA-CP-v2 dataset and reduce the gap between model performance on

VQA-v2 data.

We differentiate our work from methods using random adversarial perturbations

for robust learning (Madry et al. 2018). Instead we view input mutations as structured

perturbations which lead to a semantic change in the input space and a deterministic

change in the output space. We envision that the concept of input mutations can

be extended to other vision and language tasks for robustness. Concurrent work

in the domain of image classification shows that carefully designed perturbations

or manipulations of the input can benefit generalization and lead to performance

improvements (T. Chen et al. 2020; Hendrycks et al. 2019). While perception is a

cornerstone of understanding, the ability to imagine changes in the scene or language

query, and predict outputs for that imagined input allows models to supplement “what”

decision making (based on observed inputs) with “what if” decision making (based

on imagined inputs). The Mutant paradigm is an effort towards “what if” decision

making. Code is available here.
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Chapter 8

WEAQA: WEAK SUPERVISION VIA CAPTIONS FOR VQA

8.1 Introduction

Since Visual Question Answering (VQA) was first proposed as a Turing test (Ma-

linowski and Fritz 2014), several human-annotated datasets (Mogadala, Kalimuthu,

and Klakow 2019) have been used to train and evaluate VQA models.

Unfortunately, heavy reliance on these datasets for training has the unwanted

side-effects of bias towards answer styles, question-types (Chao, Hu, and Sha 2018),

and spurious correlations with language priors (Agrawal et al. 2018a). Similar findings

have been reported for natural language tasks (Gururangan et al. 2018; Niven and

Kao 2019; Kaushik, Hovy, and Lipton 2020). Evaluating VQA models on test-sets

that are very similar to training sets is deceptive and inadequate and not an accurate

measure of robustness.

To address this, one line of work has focused on balancing, de-biasing, and

diversifying samples (Goyal et al. 2017; P. Zhang et al. 2016). However, crowd-sourcing

“unbiased” labels is difficult and costly; it requires a well-designed annotation interface

and a large-scale annotation effort with dedicated and able annotators (Sakaguchi

et al. 2020). The alternative (that this chapter aligns itself with) is to avoid the use

of explicit human annotations and instead to train models in an unsupervised manner

by synthesizing training data. These techniques, coined unsupervised (Lewis, Denoyer,

and Riedel 2019), come with many advantages – human bias and subjectivity are

reduced; the techniques are largely domain-agnostic and can be transferred from one
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language to another (low resource languages) or from one visual domain to another.

For instance, template-based Q-A generation developed for synthetic blocks-world

images in CLEVR (Johnson et al. 2017) can also be used to generate Q-A pairs for

natural complex scenes in GQA (Drew A Hudson and Christopher D Manning 2019a)

or the referring-expressions task (R. Liu et al. 2019).

In this work, we train VQA models without using human-annotated Q-A pairs.

Instead, we rely on weak supervision from image-captioning datasets, which provide

multi-perspective, concise, and less subjective descriptions of visible objects in an

image. We procedurally generate Q-A pairs from these captions and train models

using this synthetic data, and only evaluate them on established human-annotated

VQA benchmarks.

Why Captions? Image captioning, like VQA, has been a central area of vision-

and-language research. Datasets such as MS-COCO (T.-Y. Lin et al. 2014; X. Chen

et al. 2015) contain captions that describe objects and actions in images of everyday

scenes. During the construction of MS-COCO, human captioners were instructed to

refrain from describing past and future events or “what a person might say”. On the

other hand, annotators of VQA (Antol et al. 2015) were instructed to ask questions

that “a smart robot cannot answer, but a human can” and “interesting” questions that

may require “commonsense”. Different sets of annotators provided answers to these

questions and were allowed to speculate or even guess an answer that most people

would agree on. It has also been shown that multiple answers may exist for questions

in common VQA datasets (Bhattacharya, Li, and Gurari 2019).

In Figure 20, the first VQA-v2 question asks how many doors the car has. Although

commonsense (and linguistic priors) would suggest that “Most cars have four doors”,

only two doors can be seen in the image. What should the model predict, two or
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four? The second question is subjective and has multiple contradicting answers from

different annotators (where one should draw the line between opaque, transparent, or

reflective is not very clear). Similarly, the first GQA question is ambiguous and could

refer to either the skier or the photographer.

Thus the very nature of the data-collection procedure and instructions for VQA

brings in human subjectivity and linguistic bias as compared to caption annotations,

which are designed to be simple, precise, and non-speculative. Motivated by this,

we study the benefits of using captions to synthesize Q-A pairs, using three types of

methods:

1. template-based methods similar to (Ren, Kiros, and Zemel 2015; Gokhale et

al. 2020b),

2. paraphrasing and back-translation (Sennrich, Haddow, and Birch 2016) which

provide linguistic variation,

3. synthesis of questions about image semantics using the QA-SRL (He, Lewis,

and Zettlemoyer 2015b) approach.

Since our Q-A pairs are created synthetically, there does exist a domain shift as

well as label (answer) shift from evaluation datasets such as VQA-v2 and GQA as

shown in Figure 20, thus posing challenges to this weakly-supervised method.

We evaluate two models, UpDown (Anderson et al. 2018b) and a transformer-

encoder (Vaswani et al. 2017) based model pre-trained on synthetic Q-A pairs and

image-caption matching task. To remove the dependence on object bounding-boxes

and labels needed to extract object features, we propose spatial pyramids of image

patches as a simple and effective alternative.
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To the best of our knowledge, this is the first work on the unsupervised6 visual

question answering, with the following contributions:

• We introduce a framework for synthesizing (Question, Answer) pairs from

captions.

• Since synthetic samples (unlike popular benchmarks) include multi-word answer

phrases, we propose a sub-phrase weighted-answer loss to mitigate bias towards

such multi-word answers.

• We propose pre-training tasks that use spatial pyramids of image-patches in-

stead of object bounding-boxes, further removing the dependence on human

annotations.

• Extensive experiments and analyses under zero-shot transfer and fully-supervised

settings on VQA-v2, VQA-CP, and GQA show our model’s efficacy and establish

a strong baseline for future work on unsupervised visual question answering.

8.2 Related Work

Robustness in VQA can be defined as shown in Figure 19 under two situations:

domain shift and label shift. Under domain shift, generalization to a new input

domain (such as different styles of questions or novel scenes) is desired, characterized

by S ∩ T 6= T where S and T denote the train and test input domains. Under label

shift, generalization to novel answers is desired (predicting answers not seen during

training), characterized by AS ∩ AT 6= AT , where AS and AT are the set of answers

seen during training and test-time.

6adhering to the usage of this term in Lewis, Denoyer, and Riedel (2019).
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Figure 19: Aspects of generalization in VQA.

Figure 20: Examples of images and human-annotated Q-A pairs from VQA and GQA
and our synthetic Q-A pairs.

Performance under domain shift has been evaluated for new domains of test ques-

tions with unseen words and objects (Teney and A. v. d. Hengel 2016; Ramakrishnan

et al. 2017), novel compositions (Johnson et al. 2017; Agrawal et al. 2017), logical con-

nectives (Gokhale et al. 2020b), as well as questions that are implied (Ribeiro, Guestrin,

and Singh 2019), entailed (Ray et al. 2019) or sub-questions (Selvaraju et al. 2020); or

for datasets with varying linguistic styles (Chao, Hu, and Sha 2018; Y. Xu et al. 2020;

Shrestha, Kafle, and Kanan 2019) and different reasoning capabilities (Kafle and

Kanan 2017).

Label shift or Prior Probability Shift (Storkey 2009) has been implicitly explored

in VQA-CP (Agrawal et al. 2018a), where the conditional probabilities of answers

146



given the question type deviate at test-time. Teney et al. (2020) have identified several

pitfalls associated with the models and evaluation criteria for VQA-CP.

Unsupervised Extractive QA in which aligned ( context, question, answer)

triplets are not available, has been studied (Patrick Lewis, Ludovic Denoyer, and

Sebastian Riedel 2019; Banerjee and Baral 2020c; Rennie et al. 2020; A. Fabbri

et al. 2020; Z. Li et al. 2020; Banerjee, Gokhale, and Baral 2021) by training models

on procedurally generated Q-A pairs. Captions have been used to generate Q-

A pairs for logical understanding (Gokhale et al. 2020b) and commonsense video

understanding (Fang, Gokhale, et al. 2020). Y. Li et al. (2018) and Krishna, Bernstein,

and Fei-Fei (2019) have explored Visual Question Generation from an input image

and answer.

Weak supervision is an active area of research; for instance in action/object

localization (Song et al. 2014; Zhou et al. 2016) and semantic segmentation (Khoreva

et al. 2017; H. Zhang et al. 2017) without pixel-level annotations, but only class labels.

There is also interest growing in leveraging natural language captions or textual queries

as weak supervision for visual grounding tasks (Hendricks et al. 2017; Mithun, Paul,

and Roy-Chowdhury 2019; Fang, Kong, et al. 2020).

Visual Feature Extractors such as VGG (Simonyan and Zisserman 2015) and

ResNet (K. He et al. 2016) have been widely used for many computer vision tasks.

Object-based features such as RCNN (Girshick et al. 2014) and Faster-RCNN (Ren

et al. 2015) have become the standard for V& L tasks (Anderson et al. 2018b).
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Figure 21: Discrepancy between VQA-v2, GQA, and synthetic samples. t-SNE plot
of question embeddings.

8.3 Framework for Synthesizing Q-A Pairs

Problem Statement: Consider a dataset containing images and associated captions

as shown in Figure 20. Our work deals with learning VQA using these image-caption

data, without any labeled Q-A pairs, and answer questions about unseen images.
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Template-base Paraphrase &
Back-translate QA-SRL VQA-v2 GQA VQA-CP

# of Questions 600K 400K 2.5M 438K / 214K 943K / 132K 245K / 220K
# of Answers 5K 5K 90K 3.5K 1878 3.5K
Mean Question Length 7.9 8.1 4.8 6.4 10.6 6.4
Mean Answer Length 1.4 1.4 6.3 1.1 1.3 1.1
Image Source COCO COCO COCO COCO COCO,VG,Flickr COCO
Image Counts 120K 120K 120K 120K 113K 120K

Table 31: Dataset statistics for our generated Q-A pairs with Train/Val splits for
benchmark datasets.

8.3.1 Question Generation

Several studies (Du, Shao, and Cardie 2017; Lewis, Denoyer, and Riedel 2019)

have been dedicated to the complex domain of question generation. We approach

it conservatively, using template-based methods and semantic role labeling, with

paraphrasing and back-translation for improving the linguistic diversity of template-

based questions. We begin by extracting object words from the caption by using

simple heuristics such as extracting noun-phrases and using numerical quantifiers in

the caption as soft approximations of objects’ cardinality. If object-words are available

explicitly, we used them as is. Questions are categorized based on answer types;

Yes-No, Number, Color, Location, Object, and Phrases.

Template-based: To create Yes-No questions, modal verbs are removed from the

caption, and a randomly chosen question prefix such as “is there”, “is this” is attached.

For instance, the caption “A man is wearing a hat and sitting” is converted to “Is there

a man wearing a hat and sitting”, with the answer “Yes”. To create the corresponding

question with the answer “No”, we use either negation or replace the object-word

with an adversarial word or antonym, thus obtaining “Is there a dog wearing a hat

and sitting” for which the answer is “No”. An adversarial word refers to an object
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absent in the image but similar to objects in the image. To compute similarity, we

use Glove 2014 word-vectors.

For Object, Number, Location, and Color questions, we follow a procedure similar

to Ren, Kiros, and Zemel (2015). To create “what” questions for the Object type,

we extract objects and noun phrases from captions as potential answers and replace

them with what. The question is rephrased by splitting long sentences into shorter

ones and converting indefinite determiners to definite. A similar procedure is used for

Number questions; numeric quantifiers of noun phrases are extracted and replaced

by “how many” and “what is the count” to form the question. Color questions are

generated by locating the color adjective and the corresponding noun phrase and

replacing them in a templated question: “What is the color of the object?”. Location

questions are similar to Object questions, but we extract phrases with “in”, “within”

to extract locations, with places, scenes, and containers as answers.

Semantic Role Labeling: QA-SRL (He, Lewis, and Zettlemoyer 2015b) was pro-

posed as a paradigm to use natural language to annotate data by using Q-A pairs

to specify textual arguments and their roles. Consider the caption “A girl in a red

shirt holding an apple sitting in an empty open field”. Using QA-SRL with B-I-O span

detection and sequence-to-sequence models (FitzGerald et al. 2018b), for the “when”,

“what”, “where”, and “who” questions, we obtain Q-A pairs belonging to the Phrases

category such as:
(what is someone holding?, an apple)

(who is sitting?, girl in a red shirt holding an apple)

(where is someone sitting?, an empty open field)
These examples illustrate that QA-SRL questions are short and use generic de-

scriptors such as something and someone instead of elaborate references, while the
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expected answer phrases are longer and descriptive. Thus to answer these, better

semantic image understanding is required.

Paraphrasing and Back-Translation (P&B): We apply two natural language

data augmentation techniques, paraphrasing, and back-translation to increase the

linguistic variation in the questions. To paraphrase questions, we train a T5 (Raffel

et al. 2019) text generation model on the Quora Question Pairs Corpus 2017. For

back-translation, we train another T5 text generation model on the Opus corpus 2012,

translate the question to an intermediate language (Français, Deutsche, or Español),

and translate the question back to English. For example:
Is the girl who is to the left of the sailboats wearing a backpack?yEspañol

La chica que está a la izquierda de los veleros lleva mochila?yEnglish
Does the girl to the left of the sailboats carry a backpack?

8.3.2 Domain Shift w.r.t. VQA-v2 and GQA

Compared to current VQA benchmarks (which typically contain one-word answers),

answers to QA-SRL questions are more descriptive and contain adjectives, adverbs,

determiners, and quantifiers, as seen in Figure 20. On the other hand, synthetic

questions have less descriptive subjects due to the use of pronouns. Our synthetic

data contains 90k unique answer phrases, compared to 3.2k in VQA and 3k in GQA.

Around 200 answers from VQA are not present in our answer phrases, such as time

(11:00) and proper nouns (LA Clippers), both of which are not present in caption

descriptions.

Moreover, our training data contains Q-A pair such as ( “Where is the man
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SELF-SUPERVISED
DATA SYNTHESIS

Q: What is someone passing?

A:  a competition race marker

VISUAL
PROJECTION

LANGUAGE
EMBEDDER

CROSS
MODAL

ENCODER

BERT
TOKENIZER

[CLS] What is someone 
[MASK] ? 

[SEP] a [MASK] race marker 
[SEP]

Positional Encoding

Masked Language Modeling
passing

Image-Text Matching 
 YES

Masked Question Answering
competition

Sub-phrase Weighted 
Answer Loss
{race marker, race, marker, 
competition, competition race marker}

SPATIAL
PYRAMID

PATCH 
EXTRACTOR

Figure 22: Our model architecture makes the use of spatial pyramids of image patches
as inputs to the Encoder, which is trained for three pre-training tasks as shown.

standing?, “to the left of the table”), generated by QA-SRL with long phrases as

answers. However, the test set contains questions such as ( “Which side of the car

is the tree?”, “left”), which expects only ‘ ‘left” as the answer. So although the word

‘ ‘left” is seen as a sub-phrase of our training answers, it is not explicitly seen as an

only correct answer.

Some of our synthetic template-based questions about counting and object presence

are similar in style to those in VQA and GQA. However, QA-SRL questions require a

semantic understanding of the actions depicted in the image, which are rare in VQA

and GQA. We quantify this by plotting the t-SNE components of document vector

embeddings of the questions from VQA, GQA, and our synthetic data, in Figure

31, and observe that our synthetic questions are a distinct cluster, while VQA and

GQA overlap with each other. As such, a linguistic domain shift exists between these

synthetic source questions and human-annotated target questions. In this chapter,

we address the challenge of learning VQA on a synthetically generated dataset and

evaluating models on conventional benchmarks which have questions and answers that

deviate linguistically from synthetic training samples.
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8.4 Method

Recently, multiple deep transformer-based architectures have been proposed (Tan

and Bansal 2019a; Lu et al. 2019a; Y.-C. Chen et al. 2019), that are pretrained on

a combination of multiple VQA and image captioning datasets such as Conceptual

Captions (P. Sharma et al. 2018), SBU Captions (Ordonez, Kulkarni, and Berg 2011),

Visual Genome (Krishna et al. 2017), and MSCOCO (T.-Y. Lin et al. 2014). These

models are resource intensive as they are trained on a huge collection of data with 3

million images. We train our models only on MS-COCO captions and images (∼204k),

without access to any human-authored Q-A pairs or object bounding boxes.

8.4.1 Spatial Pyramid Patches

“Bottom-Up” object features (Anderson et al. 2018b) extracted from Faster R-

CNN (Ren et al. 2015) have become the de-facto features used in state-of-the-art

VQA models. These VQA models thus only use features of detected objects as input,

and ignore the rest of the image. Although object features are discriminative, dense

annotations are required for training and additional large deep networks for extraction.

Object detection can be imperfect for small and rare objects (Wang, Ramanan, and

Hebert 2019); for instance if an object detection model detects only four out of six

bananas in an image, features of the other two bananas will not be used by VQA

models. This creates a performance bottle-neck for questions about counting or rare

objects.

We take a step back and postulate that the use of features of the entire image in

context could reduce this bottleneck. Image features extracted from a ResNet (K. He
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et al. 2016) trained for the ImageNet (Russakovsky et al. 2015) classification task,

which is widely used for computer vision tasks, have been previously used for VQA

models (Goyal et al. 2017). Unfortunately, since ImageNet contains iconic (single-

object) images, using these features for non-iconic VQA images is restrictive since

many questions refer to multiple objects and backgrounds in the image. Inspired by

Spatial Pyramid Matching (Lazebnik, Schmid, and Ponce 2006) for image classification,

we propose spatial pyramid patch features to represent the input VQA image into a

sequence of features at different scales.

We divide each image I into a set of image patches {Ik1 , . . . , Ikn}, each Iki being a

ki × ki grid of patches, and extract ResNet features for each patch. Larger patches

encode global features and relations, while smaller patches encode local and low-level

features.

Encoder: Our Encoder model is similar to the UNITER single-stream transformer,

where the sequence of word tokens w = {w1, ..., wT} and the sequence of image

patch features v = {v1, ..., vK} are taken as input. We tokenize the text using a

WordPieces (Wu et al. 2016) tokenizer similar to BERT (Devlin et al. 2018), and

embed the text tokens through a text-embedder (Sanh et al. 2019). The visual features

are projected to a shared embedding space using a fully-connected layer. A projected

visual position encoding, indicating the patch region (top-right, bottom-left) is added

to the visual features. We concatenate both sequences of features and feed them to

L cross-modality attention layers. Parameters between the cross-modality attention

layers are shared to reduce parameter count and increase training stability (Lan et

al. 2019), and a residual connection and layer normalization is added after cross-modal

attention layer similar to Vaswani et al. (2017).
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8.4.2 Pre-training Tasks and Loss Functions

We train the Encoder model using three pre-training tasks: Masked Language

Modeling, Masked Question Answering, and Image-Text Matching.

Masked Language Modeling (MLM): We randomly mask 15% of the word

tokens from the caption and ask the model to predict them. For the caption “There

is a man wearing a hat”, the model gets the input “There is [MASK] wearing a hat”.

Without the image, there can be multiple plausible choices for the [MASK] token, such

as “woman”, “man”, “girl”, but given the image the model should predict “man”. This

task has been shown to effectively learn cross-modal features 2019.

Masked Question Answering (MQA): In this task, the answer tokens are

masked, and the model is trained to predict the answer tokens. For example in

Figure 20, for the input “ When is someone competing? [MASK] [MASK]”, the model

should predict, “at night”. To answer such questions, the model needs to interpret the

image.

Image-Text Matching (ITM): We use the five captions provided by MS-COCO

as positive samples for each image. To obtain negative samples, we randomly sample

captions from other images that contain a different set of objects. We train the model

on a binary classification task (matching / not matching) for each image-caption pair.

For VQA and ITM, we use the final layer representation z[CLS] of [CLS] token ,

followed by a feed-forward and softmax layer. For MLM and MQA we feed corre-

sponding token representations to a different feed-forward layer. We train the model

using cross-entropy loss for all three tasks.

Sub-phrase Weighted Answer Loss: As observed before, the questions generated

in QA-SRL have long answer phrases. For instance “What is parked?” has the
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answer “two black cars”. We extract all possible sub-phrases that can be alternate

answers, but assign them a lower weight than the complete phrase, computed as

Wsub = WordCount(sub)/WordCount(ans). Thus “two black cars” has a weight 1.0,

while the extracted sub-phrases and weights are: (two, 0.33), (2, 0.33), (black, 0.33),

(cars, 0.33), (two cars, 0.66), (2 cars, 0.66), (black cars, 0.66), (car, 0.33). This enforces

a distribution over the probable answer space instead of a strict “single true answer”

training. We train the model with this additional binary cross-entropy loss, where

the model predicts a weighted distribution ywa over the answer vocabulary. The

vocabulary is defined from the synthetic QA answer-space.

LSWA = LBCE(σ(z[CLS]), ywa). (8.1)

The total loss, with scalar coefficients α, β ∈ (0, 1] is given by:

L = LMLM + LMQA + α · LITM + β · LSWA. (8.2)

8.5 Experimental Setup

Datasets: We evaluate our methods on the three popular visual question answering

benchmarks: VQA-v2, VQA-CP-v2, and GQA. Answering questions in VQA-v2

and VQA-CP v2 requires image and question understanding, whereas GQA further

requires spatial understanding such as compositionality and relations between objects.

We evaluate our methods under zero-shot transfer (trained only on procedurally

generated samples), and fully-supervised (where we finetune our model using the

associated train annotations) settings. We use exact-match accuracies for GQA, and

use VQA-metric (Agrawal et al. 2017) for VQA.

Training: Our Encoder has 8 cross-modal layers with a hidden dimension of 768.

The weights are initialized using the standard definition as provided in the Huggingface
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repository (Wolf et al. 2019). Our models are pre-trained for 40 epochs with a learning

rate of 1e−5, batch size of 256, using Adam optimizer. For finetuning, we use a

learning rate of 1e−5 or 5e−5 and batch size of 32 for 10 epochs. We use a ResNet-50

pretrained on ImageNet to extract features from image patches with 50% overlap, and

Faster R-CNN pretrained on Visual Genome to extract object features. We evaluate

both frozen and finetuned ResNet, and observe finetuning the feature extractor to

perform better. All our models are trained using 4 Nvidia V100 16 GB GPUs. All

results in the fully supervised setting are reported for from-scratch trained final

classification layers.

Baselines: To measure the improvements due to our proposed image patch features

and SWA loss, we compare our methods to the UpDown model Anderson et al.,

which uses object bounding-box features. For the Zero-shot transfer setting, we

compare our Encoder with UpDown when trained with spatial features as well as

object features. Pre-trained transformers such as UNITER use large V&L corpora,

dense human annotations for objects and Q-A pairs and supervised loss functions over

these. Comparisons with such models are therefore not fair in a ZSL setting; instead,

we perform these comparisons in a fully-supervised (FSL) setting.

8.6 Results

Unsupervised Question Answering: Tables 32, 33 and 34 summarize our results

on the three benchmark datasets. We can observe that our method outperforms

specially designed supervised methods for bias removal in VQA-CP; our model with

UpDown is 1.1% better than the supervised UpDown. Under the ZSL setting for
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Model All Yes-No Num Others

SAN 2016 25.0 38.4 11.1 21.7
GVQA 2018 31.3 58.0 13.7 22.1
UpDown 2018 39.1 62.4 15.1 34.5
AReg2017 42.0 65.5 15.9 36.6
AdvReg 2019 42.3 59.7 14.8 40.8
RUBi 2019 47.1 68.7 20.3 43.2
Teney and A. v. d. Hengel (2019) 46.0 58.2 29.5 44.3
Unshuffling 2020 42.4 47.7 14.4 47.3
UpDn+CE+GS 2020 46.8 64.5 15.4 45.9
LXMERT 2019 46.2 42.8 18.9 55.5
SCR 2019 48.4 70.4 10.4 47.3
LMH 2019 52.4 69.8 44.5 45.5
CSS 2020* 58.9 84.4 49.4 48.2
MUTANT 2020* 69.5 93.2 67.2 57.8

ZSL+Objects+UpDown 40.8 67.4 28.6 30.2
ZSL+Patches+UpDown 41.2 68.5 29.8 30.0
ZSL+Patches+Encoder 47.3 73.4 39.8 35.6

Table 32: Unsupervised accuracy on VQA-CP-v2 test set. All baselines are supervised
methods trained on the train split. * use further additional supervised training samples.
ZSL refers to zero-shot transfer setting and FSL refers to our models further finetuned
on the respective train split. Underline is the unsupervised best, bold is the overall
best. Baselines are trained on train-split, our models on synthetic data.

VQA-CP, our Encoder model is 6.1% better than UpDown with patches, and 6.5%

better than UpDown with Object features, for VQA-v2: 6.2%, 5.4% respectively, and

for GQA: 2.2%, 3.0% respectively.

For VQA-CP, our procedurally generated Q-A pairs and patch-features when used

with either UpDown or Encoder are better than the baseline supervised UpDown

model, showing the improvements are model-agnostic. This also shows the merits of

using our Q-A generation methods when train and test-sets deviate linguistically.
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Model All Yes-No Num Others

GVQA 2018 48.2 72.0 31.1 34.7
UpDown 2018 65.3 81.8 44.2 56.1
RUBi 2019 63.1 * * *
MCAN 2019 70.4 85.8 53.7 60.7
VilBERT 2019 70.5 * * *
LXMERT 2019 72.5 88.2 54.2 63.1
UNITER 2019 72.7 * * *

ZSL + Objects + UpDown 41.4 68.1 27.6 29.4
ZSL + Patches + UpDown 40.6 67.8 28.4 29.2
ZSL + Patches + Encoder 46.8 72.1 34.4 34.1

FSL + Objects + UpDown 66.8** 82.4** 45.1** 56.4**
FSL + Patches + UpDown 63.4 80.2 45.2 52.1
FSL + Patches + Encoder 65.3 80.5 48.94 56.2

Table 33: VQA-v2 Test-standard accuracies. FSL models are pretrained on synthetic
samples, and further finetuned on VQA-v2 train split. * - Scores are not available, **
- Validation split scores.

Most GQA questions require understanding spatial relationships between objects.

Such questions are infrequent in our synthetic training data since captions do not

contain detailed spatial relationships among objects. Thus, the ZSL performance is

not as competitive for GQA when compared to our performance on VQA and VQA-CP.

Improving spatial and compositional question-answering with weak supervision is an

interesting future pursuit.

Fully Supervised Question Answering: In the FSL setting, our methods’ per-

formance is not far from SOTA methods, even though our method uses significantly

fewer annotations (no access to object bounding boxes). In GQA, the Encoder model

performs on par with MAC 2018 and BAN 2018, which unlike us, use object relation-
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Model All Binary Open

CNN + LSTM 2018 46.6 61.9 22.7
UpDown 2018 49.7 66.6 34.8
MAC 2018 54.1 71.2 38.9
BAN 2018 57.1 76.0 40.4
LXMERT 2019 60.3 77.8 45.0

ZSL + Objects + UpDown 30.7 50.8 17.6
ZSL + Patches + UpDown 31.1 52.3 16.8
ZSL + Patches + Encoder 33.7 55.5 21.2

FSL + Objects + UpDown 50.4 67.5 35.1
FSL + Patches + UpDown 46.4 64.3 31.4
FSL + Patches + Encoder 55.2 73.6 38.8

Table 34: GQA Validation split accuracies.

Question Generation VQA-v2 VQA-CP GQA

U
pd

n

Template 26.2 25.7 11.6
Template + Para&Back 28.5 27.1 14.8
QA-SRL 31.1 33.8 18.9
All 41.4 40.2 31.1

E
nc
od

er Template 32.5 31.3 18.5
Template + Para&Back 34.8 33.6 23.6
QA-SRL 40.3 39.8 21.4
All 47.1 46.8 33.7

Table 35: Effect of different pre-training data sources on ZSL Validation split accura-
cies.

ship annotations. This suggests that cross-modal transformer layers can learn spatial

relations from spatial pyramidal features.

Impact of each question-generation technique: In Table 35 we can observe

the effect of different question generation techniques. All models use spatial image
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Patch Resolutions VQA-v2 VQA-CP GQA
U
pD

n
{1} 18.8 19.7 11.3
{1, 3} 36.7 35.9 24.5
{1, 3, 5} 40.1 39.7 29.5
{1, 3, 5, 7} 41.4 40.2 31.1
{1, 3, 5, 7, 9} 39.8 38.4 29.3

E
nc
od

er

{1} 26.4 27.7 15.3
{1, 3} 42.6 43.1 28.8
{1, 3, 5} 44.3 45.2 30.9
{1, 3, 5, 7} 47.1 46.8 33.7
{1, 3, 5, 7, 9} 46.2 45.4 31.2

Table 36: Effect of the number of spatial patches on ZSL performance {3,5} implies
division of the image into a 3x3 and 5x5 grid of patches.

patch features. QA-SRL based questions and the SWA-Loss contribute the most

towards gains in performance, and the paraphrased questions provide larger linguistic

variation.

Effect of Spatial Pyramids: We study the effect of progressively increasing the

number of spatial image patches (i.e., decreasing the patch size). Table 36 shows that

an optimum exists at grid-size of 7× 7 after which the addition of smaller patches

is detrimental. Similarly, only using patches of large size does not allow models to

focus on specific image regions. Thus a trade-off exists between global context and

region-specific features. Changing the feature extractor from ResNet-50 to ResNet-101

only results in a minor improvement of 0.01% to 0.30%. Removing visual position

embeddings has a significant effect on performance, with a drop of 4.60% to 8.00% in

both ZSL and FSL settings.
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Pre-Training Task VQA-v2 VQA-CP GQA

SWA 39.1 38.3 25.4
MLM+SWA 42.4 41.5 27.8
MQA+SWA 42.0 41.2 26.6
MLM+MQA+SWA 45.6 44.9 29.7
MLM+ITM+SWA 44.7 43.6 28.9

All 46.2 45.4 31.2

Table 37: Effect of different pre-training tasks on the ZSL performance for the Encoder
model.

Figure 23: Learning Curve showing validation accuracy vs. number of synthetically
generated training samples.

Impact of Pre-training Tasks: Table 37 shows the effect of different pretraining

tasks on the downstream zero-shot transfer VQA task. We need the SWA task, as

it is used to perform the zero-shot QA task. The combination of MLM, MQA, and

ITM, all of which need image understanding, shows improved performance on the

downstream task, indicating better cross-modal representations.
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Effect of size of synthetic training set: Figure 19 shows our Encoder model’s

learning curve for the zero-shot transfer setting trained on our synthetic Q-A pairs.

The performance stagnates after a critical threshold of 106 samples is reached. Our

experiments also suggest that randomly sampling a set of questions for each image

per epoch leads to a 4% gain compared to training on the entire set.

Error Analysis: Our ZSL method is pretrained on longer phrases and hence tends

to generate more detailed answers, such as “red car” instead of “car”. Although the

SWA loss is designed to encourage a distribution over the shorter phrases, the bias is

not entirely removed. On automated evaluation, we observe that for 42% of questions,

the target answer is a sub-phrase of our predicted answer. Manual evaluation of 100

such samples shows that 87% of such detailed predicted answers are plausible. This

shows the relevance of learning from captions and quantifies the bias towards short

“true” answers in human-annotated benchmarks, calling for better evaluation metrics

that do not penalize VQA systems for producing descriptive or alternative accurate

answers.

In the FSL setting, we either finetune our pre-trained QA classifier with the SWA

Loss or train a separate feedforward layer from scratch for the task. The pre-trained

QA classifier predicts longer phrases as answers, leading to a drop in accuracy. The

feedforward layer performs better (+6%), indicating our Encoder captures relevant

features necessary to generalize to the benchmark answer-space. Note that we do not

use object annotations during training, unlike existing methods.

Our error analysis and Figure 31 show the shift in question-space and answer-space

between synthetic and human-authored Q-A pairs. These (along with inadequate

evaluation metrics) act as the primary sources explaining the performance-gap between

weakly-supervised methods and the fully-supervised setting. It remains to be seen
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whether more sophisticated question generation can be developed to reduce the

performance gap further and mitigate the heavy reliance on human annotations.

8.7 Discussion and Conclusion

Prior work (Y.-C. Chen et al. 2019; Jiang et al. 2020) has demonstrated that the

use of object bounding-boxes and region features leads to significant improvements

on downstream tasks such as captioning and VQA. However, little effort has been

dedicated to developing alternative methods that can approach similar performance

without relying on dense annotations. We argue that weakly supervised learning

coupled with data synthesis strategies could be the pathway for the V&L community

towards a “post-dataset era”.7 In this work, we take a step towards that goal. We

address the problem of weakly-supervised VQA with a framework for the procedural

synthesis of Q-A pairs from captions for training VQA models, where benchmark

datasets can be used only for evaluation. We use spatial pyramids of patch features to

increase the annotation efficiency of our methods. Our experiments and analyses show

the potential of patch-features and procedural data synthesis and reveal problems

with existing evaluation metrics.

7A. Efros, Imagining a post-dataset era, ICML’20 Talk.
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Chapter 9

WEASEL: WEAKLY SUPERVISED RELATIVE SPATIAL REASONING FOR VQA

9.1 Introduction

“Visual reasoning” is an umbrella term that is used for visual abilities beyond the

perception of appearances (objects and their sizes, shapes, colors, and textures). In

the V&L domain, tasks such as image-text matching (Suhr et al. 2017; Suhr et al. 2019;

Vu et al. 2018), visual grounding (Kazemzadeh et al. 2014; L. Yu et al. 2016), visual

question answering (VQA) (Goyal et al. 2017; Drew A Hudson and Christopher D

Manning 2019a), and commonsense reasoning (Zellers et al. 2019b) fall under this

category. One such ability is spatial reasoning – understanding the geometry of the

scene and spatial locations of objects in an image. Visual question answering (such as

the GQA challenge shown in Figure 24) is a task that can evaluate this ability via

questions that either refer to spatial locations of objects in the image, or questions

that require a compositional understanding of spatial relations between objects.

Transformer-based models (Tan and Bansal 2019a; Lu et al. 2019a; Y.-C. Chen

et al. 2020; Gan et al. 2020) have led to significant improvements in multiple V&L

tasks. However, the underlying training protocol for these models relies on learning

correspondences between visual and textual inputs, via pre-training tasks such as

image-text matching and cross-modal masked object prediction or feature regression,

and then finetuned on specific datasets such as GQA. As such, these models are not

trained to reason about the 3D geometry of the scene, even though the downstream
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Question Answer

Is that a giraffe or an elephant? Giraffe

Who is feeding the giraffe behind the 
man?

Lady

Is there a fence near the animal behind
the man? 

Yes

On which side of the image is the man? Right

Is the giraffe behind the man? Yes

Figure 24: GQA requires a compositional understanding of objects, their properties,
and spatial locations (underlined).

Image Plane
3D Scene
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(x 2
, y 2
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Figure 25: When a camera captures an image, points in the 3D scene are projected
onto a 2D image plane. In VQA, although this projected image is given as input, the
questions that require spatial reasoning are inherently about the 3D scene.

task evaluates spatial understanding. As a result, V&L models remain oblivious to

the mechanisms of image formation.

Real-world scenes are 3-dimensional, as illustrated by Figure 25, which shows

blocks in a scene. When a camera captures an image of this scene, points on the
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Figure 26: Common optical illusions occur because objects closer to the camera are
magnified. This illustrates the need to understand 3D scene geometry to perform
spatial reasoning on 2D images.

objects are projected onto the same image plane, i.e., all points get mapped to a

single depth value, and the z dimension (depth) is lost. This mapping depends on lens

equations and camera parameters and leads to optical illusions such as Figure 26, due

to the fact that the magnification of objects is inversely proportional to the depth and

depends on focal lengths (Willson 1994; Masahiro Watanabe and S. K. Nayar 1996).

Since the 3D scene is projected to a 2D image, the faraway person appears smaller,

and on top of the woman’s palm in the left image, and below the woman’s shoe in the

right image. Such relationships between object sizes, depths, camera calibration, and

scene geometries make spatial reasoning from images challenging.

If the 3D coordinates of objects (Xi, Yi, Zi) are known, it would be trivial to reason

about their relative locations, such as the questions in Figure 24. However, images in

V&L datasets (Drew A Hudson and Christopher D Manning 2019a; Goyal et al. 2017)

are crowd-sourced and taken from different monocular cameras with unknown and

varying camera parameters such as focal length and aperture size, making it difficult

to resolve the 3D coordinates (especially the depth) from the image coordinates. This
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leads to ambiguities in resolving scene geometry and makes answering questions that

require spatial reasoning, a severely ill-posed problem.

In this chapter, we consider the task of visual question answering with emphasis on

spatial reasoning (SR). We investigate if VQA models can resolve spatial relationships

between objects in images from the GQA challenge. Our findings suggest that although

models answer some (∼60%) of these questions correctly, they cannot faithfully resolve

spatial relationships such as relative locations (left, right, front, behind, above, below),

or distances between objects. This opens up a question:

Do VQA models actually understand scene geometry, or do they answer
spatial questions based on spurious correlations learned from data?

Towards this end, we design two additional tasks that take 3D geometry into

consideration, object centroid estimation and relative position estimation. These tasks

are weakly supervised by inferred depth-maps estimated by an off-the-shelf monocular

depth-estimation technique (Bhat, Alhashim, and Wonka 2020) and bounding box

annotations for objects. For object centroid estimation, the model is trained to predict

the centroids of the detected input objects in a unit-normalized 3D vector space. On

the other hand, for relative position estimation, the model is required to predict the

distance vectors between the detected input objects in the same vector space.

Our work can be summarized as follows:

1. Our approach combined existing training protocosl for transformer-based lan-

guage models with novel weakly-supervised SR tasks based on the 3D geometry

of the scene – namely, object centroid estimation (OCE) and relative position

estimation (RPE).

2. This approach, significantly improves the correlation between GQA performance

and SR tasks.
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3. We show that our approach leads to an improvement of 2.21% on open-ended

questions and 1.77% overall, over existing baselines on the GQA challenge.

4. Our approach also improves the generalization ability to out-of-distribution

samples (GQA-OOD (Kervadec et al. 2020)) and is significantly better than

baselines in the few-shot setting achieving state-of-the-art performance with just

10% of labeled GQA samples.

9.2 Related Work

Visual Question Answering is a task at the intersection of vision and language

in which systems are expected to answer questions about an image as shown in

Figure 24. VQA is an active area of research with multiple datasets (Bigham et

al. 2010; Antol et al. 2015; Goyal et al. 2017; Drew A Hudson and Christopher D

Manning 2019a) that encompass a wide variety of questions, such as questions about

the existence of objects and their properties, object counting, questions that require

commonsense knowledge (Zellers et al. 2019b), external facts or knowledge (P. Wang

et al. 2017; Marino et al. 2019) and spatial reasoning (described below).

Spatial Reasoning in VQA has been specifically addressed for synthetic blocks-

world images and questions in CLEVR (Johnson et al. 2017) and real-world scenes

and human-authored questions in GQA (Drew A Hudson and Christopher D Manning

2019a). Both datasets feature questions that require a compositional understanding

of spatial relations of objects and their properties. However, the synthetic nature and

limited complexity of questions and images in CLEVR make it an easier task; models

for CLEVR have reached very high (99.80%) test accuracies (Yi et al. 2018). On the

other hand, GQA poses significant challenges owing to the diversity of objects and
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contexts in real-world scenes and visual ambiguities. GQA also brings about linguistic

difficulties since questions are crowd-sourced via human annotators. For the GQA

task, neuro-symbolic methods have been proposed, such as NSM (Drew A. Hudson

and Christopher D. Manning 2018, 2019b) and TRRNet (X. Yang et al. 2020) which

try to model question-answering as instruction-following by converting questions into

symbolic programs.

3D scene reconstruction is a fundamental to computer vision and has a long

history. Depth estimation from multiple observations such as stereo images (Scharstein

and Szeliski 2002), multiple frames or video (Shroff et al. 2012; Ranftl et al. 2016),

coded apertures (Zhou, Lin, and Nayar 2011), variable lighting (Basri, Jacobs, and

Kemelmacher 2007), and defocus (M. Watanabe and S. Nayar 1998; Tang et al. 2017)

has seen significant progress. However monocular (single-image) depth estimation

remains a challenging problem, with learning-based methods pushing the envelope (Sax-

ena, Chung, Ng, et al. 2005; Eigen, Puhrsch, and Fergus 2014; Li, Klein, and Yao 2017).

In this work, we utilize AdaBins (Bhat, Alhashim, and Wonka 2020) which uses a

transformer-based architecture that adaptively divides depth ranges into variable-sized

bins and estimates depth as a linear combination of these depth bins. AdaBins is

a state-of-the-art monocular depth estimation model for both outdoor and indoor

scenes, and we use it as weak supervision to guide VQA models for spatial reasoning

tasks.

Weak Supervision in V&L. Weak supervision is an active area of research in

vision tasks such as action/object localization (Song et al. 2014; Zhou et al. 2016)

and semantic segmentation (Khoreva et al. 2017; H. Zhang et al. 2017). While weak

supervision from V&L datasets has been used to aid image classification (Ganju,

Russakovsky, and Gupta 2017; Sariyildiz, Perez, and Larlus 2020), the use of weak
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supervision for V&L and especially for VQA, remains under-explored. While existing

methodologies have focused on learning cross-modal features from large-scale data,

annotations other than objects, questions, and answers have not been extensively

used in VQA. Kervadec et al. (2019) use weak supervision in the form of object-word

alignment as a pre-training task, Trott, Xiong, and Socher (2018) use the counts of

objects in an image as weak supervision to guide VQA for counting-based questions,

Gokhale et al. (2020b) use rules about logical connectives to augment training datasets

for yes-no questions, and Zhao et al. (2018) use word-embeddings (Mikolov, Sutskever,

et al. 2013) to design an additional weak-supervision objective. Weak supervision

from captions has also been recently used for visual grounding tasks (Hendricks et

al. 2017; Mithun, Paul, and Roy-Chowdhury 2019; Fang, Kong, et al. 2020; Banerjee

et al. 2021).

9.3 Relative Spatial Reasoning

In V&L understanding tasks such as image-based VQA, captioning, and visual

dialog, systems need to reason about objects present in an image. Current V&L

systems, such as (Anderson et al. 2018b; Tan and Bansal 2019a; Y.-C. Chen et al. 2019;

Lu et al. 2019a) extract FasterRCNN (Ren et al. 2015) object features to represent

the image. These systems incorporate positional information by projecting 2D object

bounding-box co-ordinates and adding them to the extracted object features. While

V&L models are pre-trained with tasks such as image-caption matching, masked

object prediction, and masked-language modeling, to capture object–word contextual

knowledge, none of these tasks explicitly train the system to learn spatial relationships

between objects.
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In the VQA domain, spatial understanding is evaluated indirectly, by posing

questions as shown in Figure 24. However, this does not objectively capture if

the model can infer locations of objects, spatial relations, and distances. Previous

work (Agrawal et al. 2018a) has shown that VQA models learn to answer questions

by defaulting to spurious linguistic priors between question-answer pairs from the

training dataset, which doesn’t generalize when the test set undergoes a change in

these linguistic priors. In a similar vein, our work seeks to disentangle spatial reasoning

(SR) from the linguistic priors of the dataset, by introducing two new geometry-based

training objectives – object centroid estimation (OCE) and relative position estimation

(RPE).

In this section, we describe these SR tasks.

9.3.1 Pre-Processing

Pixel Coordinate Normalization. We normalize pixel coordinates to the range

[0, 1] for both dimensions. For example, for an image of size H ×W , coordinates of a

pixel (x, y) are normalized to ( x
H
, y
W

).

Depth Extraction. Although object bounding boxes are available with images in

VQA datasets, they lack depth annotations. To extract depth-maps from images, we

utilize an open-source monocular depth estimation method, AdaBins (Bhat, Alhashim,

and Wonka 2020), which is the state-of-the-art on both outdoor (Geiger et al. 2013)

and indoor scene datasets (Silberman et al. 2012). AdaBins utilizes a transformer that

divides an image’s depth range into bins whose center value is estimated adaptively

per image. The final depth values are linear combinations of the bin centers. As

depth values for images lie on vastly different scales for indoor and outdoor images, we
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normalize depth to the [0, 1] range, using the maximum depth value across all indoor

and outdoor images. We thus obtain depth-values d(i, j) for each pixel (i, j), i ∈

{1, H}, j ∈ {1,W} in the image.

Representing Objects using Centroids. Given the bounding boxes for each

object in the image, [(x1, y1), (x2, y2)] we can compute (xc, yc, zc) coordinates of the

object’s centroid. xc and yc are calculated as the mean of the top-left corner (x1, y1)

and bottom-right corner (x2, y2) of the bounding box, and zc is calculated as the mean

depth of all points in the bounding box:

xc =
x1 + x2

2
, yc =

y1 + y2
2

zc =
∑

i∈[x1,x2],j∈[y1,y2].

d(i, j).
(9.1)

Thus every object Vk in object features can be represented with 3D coordinates of

its centroid. These coordinates act as weak supervision for our spatial reasoning tasks

below.

9.3.2 Object Centroid Estimation (OCE)

Our first spatial reasoning task trains models to predict centroids of each object

in the image.

In 2D OCE, we model the task as prediction of the 2D centroid co-ordinates

(xc, yc) of the input objects. Let V denote the features of the input image and let Q

be the textual input. Then the 2D estimation task requires the system to predict the

centroid co-ordinates, (xck , yck), for all objects k ∈ {1 . . . N} present in object-features

V .

In 3D OCE, we also predict the depth co-ordinate of the object. Hence the
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task requires the system to predict the 3D centroid co-ordinates, (xck , yck , zck), for all

objects k ∈ {1 . . . N} present in object-features V .

9.3.3 Relative Position Estimation (RPE)

The model is trained to predict the distance vector between each pair of distinct

objects in the projected unit-normalized vector space. These distance vectors real-

valued vectors ∈ R3
[−1,1]. Therefore, for a pair of centroids (x1, y1, z1) and (x2, y2, z2)

for two distinct objects, given V and Q, the model is trained to predict the vector

[x1 − x2, y1 − y2, z1 − z2]. RPE is not symmetric and for any two distinct points A,B,

dist(A,B) = −dist(B,A).

Regression vs. Bin Classification. In both tasks above, predictions are real-

valued vectors. Hence, we evaluate two variants of these tasks: (1) a regression task,

where models predict real-valued vectors in R3
[−1,1], and (2) bin classification, for which

we divide the range of real values across all three dimensions into C log-scale bins.

Bin-width for the cth bin is given by (with hyperparameter λ = 1.5):

bc =
1

λC−|c−
C
2
|+1
− 1

λC−|c−
C
2
|+2
∀c ∈ {0..C-1}. (9.2)

Log-scale bins lead to a higher resolution (more bins) for closer distances and lower

resolution (fewer bins) for farther distances, giving us fine-grained classes for close

objects. Models are trained to predict the bin classes as outputs for all 3 dimensions,

given a pair of objects. We evaluate different values for the number of bins: C ∈

{3, 7, 15, 30}, to study the extent of V&L model’s ability to differentiate at a higher

resolution of spatial distances. For example, the simplest form of bin classification is

a three-class classification task with bin-intervals [−1, 0), [0] , (0, 1].
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Figure 27: Overall architecture for our approach shows conventional modules for
object feature extraction, cross-modal encoding, and answering head, with our novel
weak supervision from depthmaps, patch extraction, fusion mechanisms, and spatial
prediction head.

9.4 Method

We adopt LXMERT (Tan and Bansal 2019a), a state-of-the-art vision and language

model, as the backbone for our experiments. LXMERT and other popular transformer-

based V&L models methods (Lu et al. 2019a; Y.-C. Chen et al. 2019), are pre-trained

on a combination of multiple VQA and image captioning datasets such as Conceptual

Captions (P. Sharma et al. 2018), SBU Captions (Ordonez, Kulkarni, and Berg

2011), Visual Genome (Krishna et al. 2017), and MSCOCO (T.-Y. Lin et al. 2014).

These models use object features of the top 36 objects extracted by the FasterRCNN

object detector (Ren et al. 2015) as visual representations for input images. A

transformer encoder takes these object features along with textual features as inputs,

and outputs cross-modal [CLS] tokens. The model is pre-trained by optimizing

for masked language modeling, image-text matching, masked-object prediction and

image-question answering.
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9.4.1 Weak Supervision for SR

Let v ∈ R36×H be the visual features, x ∈ R1×H be the cross-modal features, and

t ∈ RL×H be the text features, produced by the cross-modality attention layer of

the LXMERT encoder. Here H is the hidden dimension, and L is the number of

tokens. These outputs are used for fine-tuning the model for two tasks: VQA using x

as input, and the spatial reasoning tasks using v as input. Let D be the number of

coordinate dimensions (2 or 3) that we use in spatial reasoning. For the SR-regression

task, we use a two-layer feed-forward network freg to project v to a real-valued vector

with dimensions 36×D, and compute the loss using mean-squared error (MSE) with

respect to the ground-truth object coordinates yreg .

LSR-reg = LMSE(freg(v), yreg). (9.3)

For the bin-classification task, we train a two-layer feed-forward network fbin to

predict 36× C ×D bin classes for each object along each dimension, where C is the

number of classes, trained using cross-entropy loss:

LSR-bin = LCE(fbin(V ), ybin), (9.4)

where ybin are the ground-truth object location bins.

The total loss is given by:

L = α · LV QA + β · LSR, where α, β ∈ (0, 1]. (9.5)

yreg and ybin are obtained from the object centroids computed during preprocessing

(Sec. 9.3.1) from depth estimation networks and object bounding boxes. Since the
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real 3D coordinates of objects in the scene are unknown, these yreg and ybin act as

proxies and therefore can weakly supervise our spatial reasoning tasks.

9.4.2 Spatial Pyramid Patches

As LXMERT only takes as input the distinct object and the 2D bounding box

features, it inherently lacks the depth information required for 3D spatial reasoning

task. This is confirmed by our evaluation on the 2D and 3D spatial reasoning tasks,

where the model has strong performance in 2D tasks, but lacks on 3D tasks, as shown

in Table 38. In order to incorporate spatial features from the original image to capture

relative object locations as well as depth information, we propose the use of spatial

pyramid patch features (Banerjee et al. 2021) to represent the given image into a

sequence of features at different scales. The image I is divided into a set of patches:

pn = {Ii1 , . . . , Iin}, each Iij being a ij × ij grid of patches, and ResNet features are

extracted for each patch. Larger patches encode global object relationships, while

smaller patches contain local relationships.

9.4.3 Fusion Transformer

In order to combine the spatial pyramid patch features and features extracted

from LXMERT, we propose a fusion transformer with e-layers of transformer encoders,

containing self-attention, a residual connection and layer normalization after each

sub-layer. We concatenate the pn patch features with v visual, x cross-modal and

t textual hidden vector output representations from LXMERT, to create the fused
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vector h, which is fed into the fusion transformer. Let M be the length of the sequence

after concatenating all hidden vectors, then for any hidden vector m in the sequence:

h0 = [X, V, T, Pn].

ĥem = Self-Att(he−1m , [he−11 , . . . , he−1M ]); ∀e.
(9.6)

The output of fusion transformer ĥe = [x̂, v̂, t̂, p̂n] is then separated into its

components, of which, x̂, v̂ are used as inputs for VQA and SR task, on the same

lines as Section 9.4.1.

9.4.4 Relative Position Vectors as Inputs

The final set of features that we utilize are the pair-wise relative distance vectors

between objects as described in section 9.3.3. In this case, the pairwise distances are

used as inputs, in addition to visual, textual, cross-modal and patch features, and

the model is trained to reconstruct the pairwise distances. This makes our model

an auto-encoder for the regression task. For each input visual object feature vk, we

create a relative position feature rk using the pair-wise distance vectors projected from

the input dimensions of 36× 3 to 36×H using a feed-forward layer, where H is the

size of the hidden vector representations. We evaluate two-modes of fusion of these

features. In Early Fusion, rk is added to vk the output of the LXMERT encoder.

In Late Fusion, rk is added to v̂k the output of the fusion transformer. Figure 27

shows the architecture for the final model that utilizes both the patch features and

relative positions as input.
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Model GQA-Val↑ 2D-Reg↓ 2D Bin Classification GQA-Val↑ 3D-Reg↓ 3D Bin Classification

2D-3w↑ 2D-15w↑ 2D-30w↑ 3D-3w↑ 3D-15w↑ 3D-30w↑

LXMERT + SR 59.85 0.64 88.20 76.75 55.12 60.05 0.44 55.66 52.80 48.15
+ Late Fusion 59.90 0.47 92.60 81.24 60.42 60.18 0.29 71.20 69.45 52.84
+ Early Fusion 60.10 0.36 96.40 82.48 64.85 61.32 0.24 78.67 74.20 54.73
+ Patches 60.52 0.41 89.60 79.56 59.40 60.64 0.28 73.21 71.74 50.94
+ Late Fusion + Patches 60.80 0.33 95.20 82.10 67.38 61.80 0.21 85.35 79.60 65.45
+ Early Fusion + Patches 60.95 0.29 97.40 84.60 71.46 62.32 0.17 89.58 81.47 68.20

Table 38: Results for the LXMERT model trained for the spatial reasoning task
(LXMERT + SR), on 2D and 3D Relative Position Estimation (RPE), for regression
as well as C-way bin classification tasks. A comparison with the same model weakly
supervised with additional features (image patches) and weak supervision with relative
position vectors extracted from depth-maps is shown. GQA-Val scores are for the
best performing weak-supervision task, which are 2D-15w and 3D-15w respectively.
Regression scores are in terms of mean-squared error, and classification scores are
percentage accuracy. 15w: 15-way bin-classification.

9.5 Experiments

Datasets. We evaluate our methods on two popular benchmarks, GQA (Drew A

Hudson and Christopher D Manning 2019a) and GQA-OOD (Kervadec et al. 2020),

both of which contain spatial reasoning visual questions requiring compositionality

and relations between objects present in natural non-iconic images. Both datasets

have a common training set, but differ in the test set: GQA uses an i.i.d. split, while

GQA-OOD contains a distribution shift. There are 2000 unique answers in these

datasets, and questions can be categorized based on the type of answer: binary (yes/no

answers) and open-ended (all other answers).

Evaluation Metrics. For evaluating performance in fully-supervised, few-shot, as

well as O.O.D. settings for the GQA task, we use metrics defined in (Drew A Hudson

and Christopher D Manning 2019a). These include exact match accuracy, accuracy

on the most frequent head answer-distribution, infrequent tail answer-distribution,
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consistency to paraphrased questions, validity, and plausibility of spatial relations8. We

evaluate SR tasks using mean-squared error (MSE) for SR-Regression and classification

accuracy for SR bin-classification.

Model Architectures. LXMERT contains 9 language transformer encoder layers,

5 visual layers, and 5 cross-modal layers. This feature extractor can be replaced by

any other transformer-based V&L model. Our Fusion transformer has 5 cross-modal

layers with a hidden dimension of H = 512. For visual feature extraction, we use

ResNet-50 (K. He et al. 2016) pre-trained on ImageNet (Russakovsky et al. 2015) to

extract image patch features, with 50% overlap, and Faster RCNN pre-trained on

Visual Genome (Krishna et al. 2017) to extract the top 36 object features. We use

3× 3, 5× 5, 7× 7 patches, and the entire image as the spatial image patch features.

The image is uniformly divided into a set of overlapping patches at multiple scales.

Training Protocol and Hyperparameters. Our Fusion transformer has 5 cross-

modal layers with a hidden dimension of H = 512. All models are trained for 20

epochs with a learning rate of 1e−5, batch size of 64, using Adam (Kingma and Ba

2014) optimizer, on a single NVIDIA A100 40 GB GPU. The values of coefficients

(α, β) in Equation 9.5 were chosen to be (0.9, 0.1) for regression and (0.7, 0.3) for

classification.

Baselines. We use LXMERT jointly trained SR and GQA tasks as a strong baseline

for our experiments. In addition, we also compare performance with existing non-

ensemble (single model) methods on the GQA challenge, that directly learn from

question-answer pairs without using external program supervision, or additional visual

features. Although NSM (Drew A Hudson and Christopher D Manning 2019b) reports

8Detailed definitions of these metrics can be found in Section 4.4. of Drew A Hudson and
Christopher D Manning (2019a) or accessed on the GQA Challenge webpage
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Model GQA-Val↑

LXMERT + SR 59.40

+ 2D OCE (Regression) 57.33
+ 3D OCE (Regression) 58.28
+ 2D RPE (Regression) 59.85
+ 3D RPE (Regression) 59.54

+ 2D OCE (15-bin Classification) 58.64
+ 3D OCE (15-bin Classification) 59.90
+ 2D RPE (15-bin Classification) 60.95
+ 3D RPE (15-bin Classification) 62.32

Table 39: Comparison of different weakly supervised spatial reasoning tasks on the
GQA validation split.

a strong performance on the GQA challenge, it uses stronger object detectors and

top-50 object features (as opposed to top-36 used by all other baselines), rendering

comparison with NSM unfair.

9.5.1 Results on Spatial Reasoning

We begin by evaluating the model on different spatial reasoning tasks, using

various weak-supervision training methods. Table 38 and 39 summarize the results for

these experiments. It can be seen that the LXMERT+SR baseline (trained without

supervision from depthmaps) performs poorly for all spatial reasoning tasks. This

conforms with our hypothesis, since depth information is not explicitly captured by

the inputs of the current V&L methods that utilize bounding box information which

contains only 2D spatial information. On average, improvements across SR tasks are

correlated with improvements across the GQA task.

In some cases, we observe that the method predicts the correct answer for the
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Model Acc↑ Bin↑ Open↑ Con↑ Val↑ Pla↑ Dis↓

Human 2019 89.30 91.20 87.40 98.40 98.90 97.20 –
Global Prior 2019 28.90 42.94 16.62 51.69 88.86 74.81 93.08
Local Prior 2019 31.24 47.90 16.66 54.04 84.33 84.31 13.98
BottomUp 2018 49.74 66.64 34.83 78.71 96.18 84.57 5.98
MAC 2018 54.06 71.23 38.91 81.59 96.16 84.48 5.34
GRN 2019 59.37 77.53 43.35 88.63 96.18 84.71 6.06
Dream 2019 59.72 77.84 43.72 91.71 96.38 85.48 8.40
LXMERT 2019 60.34 77.76 44.97 92.84 96.30 85.19 8.31
This Work 62.11 78.20 47.18 93.13 96.92 85.27 1.10

Table 40: Comparitive evaluation of our model with respect to existing baselines, on
the GQA test-standard set, along all evaluation metrics. Acc: Accuracy, Bin: Binary,
Con: Consistency, Val: Validity, Pla : Plausibility, Dis : Distribution.

spatial relationship questions on the GQA task, even when it fails to correctly predict

the bin-classes or object positions in the SR task. This phenomenon is observed for

18% of the correct GQA predictions. For example, the model predicts ‘left’ as the

GQA answer and a contradictory SR output corresponding to ‘right’.

Comparison of different SR Tasks. Centroid Estimation requires the model to

predict the object centroid location in the unit-normalized vector space, whereas the

Relative Position Estimation requires the model to determine the pair-wise distance

vector between the centroids. Both the tasks provide weak-supervision for spatial

understanding, but we observe in Table 39 that bin-classification for the 3D RPE

transfers best to the GQA accuracy.

Regression v/s Bin-Classification. Similarly, the regression version of the task

poses a significant challenge for V&L models to accurately determine the polarity

and the magnitude of distance between the object. The range of distances in indoor

and outdoor scenes has a large variation, and poses a challenge for the model to

exactly predict distances in the regression task. The classification version of the

task appears to be less challenging, with the 3-way 2D relative position estimation
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achieving significantly high scores (∼90%). The number of bins (3/15/30) also impacts

performance; a larger number of bins implies that the model should possess a fine-

grained understanding of distances, which is harder. We find the optimal number of

bins (for both RPE and GQA) is 15.

Comparison of different methods. The Early Fusion with Image Patches method,

which uses both the relative position distance vectors and the pyramidal patch features

with the fusion transformer, achieves the best performance across all spatial tasks

and the GQA task. It can be observed from Table 38 that both of these additional

inputs improve performance in 3D RPE. These performance improvements can be

attributed to the direct relation between the distance-vector features and prediction

targets. On the other hand, patch features implicitly possess this spatial relationship

information, and utilizing both the features together results in the best performance.

However, even with a direct correlation between the input and output, the model is

far from achieving perfect performance on the harder 15/30-way bin-classification or

regression tasks, pointing to a scope for further improvements.

Early v/s Late Fusion. We can empirically conclude that Early fusion performs

better than Late fusion through our experiment results in Table 38. We hypothesize

that the Fusion Transformer layers are more efficient than Late Fusion at extracting

the spatial relationship information from the projected relative position distance

vectors.

Effect of Patch Sizes. We study the effect of different image patches’ grid sizes,

such as 3 × 3, 5 × 5, 7 × 7, and 9 × 9 and several combinations of such sets of

patch-features. We observe the best performing feature combination to be the entire

image and a set of patches with grids in 3× 3, 5× 5 and 7× 7. Adding smaller patches
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Model Uses Image Acc-All↑ Acc-Tail↑ Acc-Head↑

Question Prior (Kervadec et al. 2020) No 21.6 17.8 24.1
LSTM (Antol et al. 2015) No 30.7 24.0 34.8
BottomUp (Anderson et al. 2018b) Yes 46.4 42.1 49.1
MCAN (Z. Yu et al. 2019) Yes 50.8 46.5 53.4
BAN4 (Kim, Jun, and Zhang 2018) Yes 50.2 47.2 51.9
MMN (W. Chen et al. 2021) Yes 52.7 48.0 55.5
LXMERT (Tan and Bansal 2019a) Yes 54.6 49.8 57.7
This Work Yes 55.9 50.3 59.4

Table 41: Comparison of several VQA methods on the GQA-OOD test-dev splits.
Acc-tail: OOD settings, Acc-head: accuracy on most probable answers (given context),
scores in %.

such as 9 × 9 grid did not lead to an increase in performance. Extracting features

from ResNet101 also leads to minor gains (+0.05%).

9.5.2 Results on GQA

Tables 40 and 41 summarize our results on the GQA and GQA-OOD visual question

answering tasks. Our best method, LXMERT with Early Fusion and Image Patches,

jointly trained with weak-supervision on 15-way bin-classification Relative Position

Estimation task improves over the baseline LXMERT, by 1.77% and 1.3% respectively

on GQA and GQA-OOD, achieving a new state-of-the-art. It performs slightly better

than LXMERT (72.9%) on VQA-v2. The most significant improvement is observed

on the open-ended questions (2.21%). We can observe that weak-supervision and joint

end-to-end training of SR and question answering using the transformer architecture

can train systems to be consistent in spatial reasoning tasks and to better generalize

in spatial VQA tasks.
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OOD Generalization. We also study generalization to distribution shifts for GQA,

where the linguistic priors seen during training, undergo a shift at test-time. We

evaluate our best method on the GQA-OOD benchmark and observe that we improve

on the most frequent head distribution of answers by 1.7% and also the infrequent

out-of-distribution (OOD) tail answer by 0.5%. This leads us to believe that training

on SR tasks with weak-supervision might allows the model to reduce the reliance on

spurious linguistic correlations, enabling better generalization abilities.

Few-Shot Learning. We study the effect of the weakly supervised RPE task in the

few-shot setting on open-ended questions, with results shown in Figure 28. We can

observe that even with as low as 1% and 5% of samples, joint training with relative

position estimation improves over LXMERT trained with same data by 2.5% and 5.5%,

respectively, and is consistently better than LXMERT at all other fractions. More

importantly, with only 10% of the training dataset our method achieves a performance

close to that of the baseline LXMERT trained with the entire (100%) dataset. Most

spatial questions are answered by relative spatial words, such as “left”, “right”, “up”,

“down” or object names. Object names are learned during the V&L pre-training tasks,

whereas learning about spatial words can be done with few spatial VQA samples and

a proper supervision signal that contains spatial information.

9.5.3 Error Analysis

We perform three sets of error analyses to understand the different aspects of the

weakly-supervised SR task, the consistency between the relative SR task and the VQA

task, and the errors made in the VQA task.
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Figure 28: Performance of our best method, when trained in the few-shot setting
and evaluated on open-ended questions from the GQA-testdev split, compared to
LXMERT.

Spatial Reasoning Tasks. SR-Regression appears to be the most challenging

version, as the system needs to reconstruct the relative object distances from the input

image to a 3D unit-normalized vector space. The classification variant has a higher

recall and better polarity, i.e., an object to the “right” is classified correctly in the

‘right’ direction regardless of magnitude, i.e. the correct distance bin-class, compared

to the regression task. The majority of errors (∼ 60%) are due to the inability to

distinguish between close objects.

Consistency between SR and VQA. The baseline LXMERT trained only on

weak-supervision tasks without patch features or relative position distance vectors

predicts 18% of correct predictions with wrong spatial relative positions. This error

decreases to 3% for the best method that uses early fusion with image patches,

increasing the faithfulness or consistency between the two tasks. We manually analyze

186



50 inconsistent questions and observe 23 questions contain ambiguity, i.e., multiple

objects can be referred by the question and lead to different answers.

Manual Analysis. We analyze 100 cases of errors from the GQA test-dev split and

broadly categorize them as follows, with percentage of error in parentheses:

1. predictions are synonyms or hypernyms of ground-truth; for example,

“curtains–drapes”, “cellphone–phone”, “man–person”, etc. (8%)

2. predictions are singular/plural versions of the gold answer, such as, “curtain-

curtains”, “shelf-shelves”. (2%)

3. Ambiguous questions can refer to multiple objects leading to different answers;

for example, in an image with two persons having black and brown hair standing

in front of a mirror, a question is asked: “Does the person in front of the mirror

have black hair?”. (5%)

4. Errors in answer annotations. (5%)

5. Wrong predictions. Examples of this include predicting “right” when the true

answer is “left” or the prediction of similar object classes as the answer, such as

“cellphone–remote control”, “traffic-sign–stop sign”. In many cases, the model is

able to detect an object, but unable to resolve its relative location with respect

to another object; this could be attributed to either spurious linguistic biases or

the model’s lack of spatial reasoning. (80%)

This small-scale study concludes that 20% of the wrong predictions could be

mitigated by improved evaluation of subjective, ambiguous, or alternative answers.

Luo et al. (2021b) share this observation and suggest methods for a more robust

evaluation of VQA models.
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9.6 Discussion

The paradigm of pre-trained models that learn the correspondence between images

and text has resulted in improvements across a wide range of V&L tasks. Spatial

reasoning poses the unique challenge of understanding not only the semantics of the

scene, but the physical and geometric properties of the scene. One stream of work has

approached this task from the perspective of sequential instruction-following using

program supervision. In contrast, our work is the first to jointly model geometric

understanding and V&L in the same training pipeline, via weak supervision from depth

estimators. We show that this increases the faithfulness between spatial reasoning and

visual question answering, and improves performance on the GQA dataset in both

fully supervised and few-shot settings. While in this work, we have used depthmaps

as weak supervision, many other concepts from physics-based vision could further

come to the aid of V&L reasoning. Future work could also consider spatial reasoning

in V&L settings without access to bounding boxes or reliable object detectors (for

instance in bad weather and/or low-light settings). Challenges such as these could

potentially reveal the role that geometric and physics-based visual signals could play

in robust visual reasoning.
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Chapter 10

UNSUPERVISED NATURAL LANGUAGE INFERENCE USING PHL TRIPLET

GENERATION

10.1 Introduction

Natural Language Inference (NLI) is the task of determining whether a “hypothesis”

is true (Entailment), false (Contradiction), or undetermined (Neutral) given a “premise”.

State-of-the-art models have matched human performance on several NLI benchmarks,

such as SNLI (Bowman et al. 2015), Multi-NLI (Williams, Nangia, and Bowman

2018), and Dialogue NLI (Welleck et al. 2019). This high performance can be partially

attributed to the availability of large training datasets; SNLI (570k), Multi-NLI

(392k), and Dialogue-NLI (310k). For new domains, collecting such training data is

time-consuming and can require significant resources. What if no training data was

available at all?

In this work, we address the above question and explore Unsupervised NLI, a

paradigm in which no human-annotated training data is provided for learning the

task. We study three different unsupervised settings: PH, P, and NPH that differ in

the extent of unlabeled data available for learning. In PH-setting, unlabeled premise-

hypothesis pairs are available i.e. data without ground-truth labels. In P-setting, only

a set of premises are available i.e. unlabeled partial inputs. The third setting NPH

does not provide access to any training dataset, and thus it is the hardest among the

three unsupervised settings considered in this work.

We propose to solve these unsupervised settings using a procedural data generation
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Figure 29: Illustrating our procedural data generation approach for unsupervised
NLI. A sentence is treated as premise, and multiple hypotheses conditioned on each
label (Entailment- E, Contradiction- C, and Neutral- N) are generated using a set of
sentence transformations.
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Figure 30: Comparing supervised NLI with our three unsupervised settings. For
unsupervised settings, we procedurally generate PHL triplets to train the NLI model.
In NPH setting, a premise pool is collected from raw text corpora such as Wikipedia
and then used for generating PHL triplets. In P setting, we directly apply these
transformations on the available premises. In PH setting, we leverage the P-setting
model to pseudo-label and filter the provided unlabeled PH pairs and then train the
NLI model using this pseudo-labeled dataset.

approach. Given a sentence, our approach treats it as a premise (P) and generates

multiple hypotheses (H) corresponding to each label (L = Entailment, Contradiction,

and Neutral) using a set of sentence transformations (refer to Figure 29). This

results in creation of Premise-Hypothesis-Label (PHL) triplets that can be used for

training the NLI model. In the P and PH settings, we directly apply our sentence

transformations over the available premises to generate PHL triplets. However, in the

NPH setting, premises are not available. We tackle this challenge by incorporating a

premise generation step that extracts sentences from various raw text corpora such as

Wikipedia and short stories. We use these extracted sentences as premises to generate

PHL triplets. In Figure 30, we compare the four settings (one supervised and three

unsupervised) and show our approach to develop an NLI model for each setting.

To evaluate the efficacy of the proposed approach, we conduct comprehensive

experiments with several NLI datasets. We show that our approach results in

accuracies of 66.75%, 65.9%, and 65.39% on SNLI dataset in PH, P, and NPH settings
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respectively, outperforming all existing unsupervised methods by ∼13%. We also

conduct experiments in low-data regimes where a few human-annotated labeled

instances are provided and show that further fine-tuning our models with these

instances consistently achieves higher performance than the models fine-tuned from

scratch. For example, with just 500 labeled instances, our models achieve 8.4% and

10.4% higher accuracy on SNLI and MNLI datasets respectively. Finally, we show that

fine-tuning with ‘adversarial’ instances instead of randomly selected human-annotated

instances further improves the performance of our models; it leads to 12.2% and

10.41% higher accuracy on SNLI and MNLI respectively.

In summary, our contributions are as follows:

1. We explore three unsupervised settings for NLI and propose a procedural data

generation approach that outperforms the existing approaches by ∼13% and

raises the state-of-the-art unsupervised performance on SNLI to 66.75%.

2. We also conduct experiments in low-data regimes and demonstrate that further

fine-tuning our models with the provided instances achieves 8.4% and 10.4%

higher accuracy on SNLI and MNLI datasets respectively.

3. Finally, we show that using ‘adversarial’ instances for fine-tuning instead of

randomly selected instances further improves the accuracy. It leads to 12.2%

and 10.41% higher accuracy on SNLI and MNLI respectively. Supported by

this superior performance, we conclude with a recommendation for collecting

high-quality task-specific data.

We release the implementation9 of our procedural data generation approach and hope

9https://github.com/nrjvarshney/unsupervised_NLI
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that our work will encourage research in developing techniques that reduce reliance

on expensive human-annotated data for training task-specific models.

10.2 Related Work

Unsupervised Question-Answering: The unsupervised paradigm where no

human-annotated training data is provided for learning has mostly been explored for

the Question Answering (QA) task in NLP. The prominent approach involves synthe-

sizing QA pairs and training a model on the synthetically generated data. Patrick

Lewis, Ludovic Denoyer, and Sebastian Riedel (2019), Dhingra, Danish, and Rajagopal

(2018), and A. Fabbri et al. (2020) propose a template-based approach, while Puri,

Spring, Shoeybi, et al. (2020) leverage generative models such as GPT-2 (Radford

et al. 2019) to synthesize QA pairs. Banerjee and Baral (2020c) create synthetic

graphs for commonsense knowledge and propose knowledge triplet learning. Zirui

Wang et al. (2021) leverage few-shot inference capability of GPT-3 (Brown et al. 2020)

to synthesize training data for SuperGLUE (A. Wang et al. 2019) tasks. For visual

question answering, Gokhale et al. (2020b) use template-based data augmentation

methods for negation, conjunction, and Banerjee et al. (2021) utilize image captions

to generate training data. Gokhale et al. (2021) use linguistic transformations in a

distributed robust optimization setting for vision-and-language inference models.

Unsupervised NLI: In NLI, Cui, Zheng, and Wang (2020) propose a multimodal

aligned contrastive decoupled learning method (MACD) and train a BERT-based

text encoder. They assign a label (E, C, N) based on the cosine similarity between

representations of premise and hypothesis learned by their text encoder. Our approach

differs from MACD as we leverage a procedural data generation step based on a set
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of sentence transformations and do not leverage data from other modalities. We use

MACD as one of the baselines in our experiments.

10.3 Unsupervised NLI

In NLI, a premise-hypothesis pair (P,H) is provided as input and the system needs

to determine the relationship L∈{Entailment,Contradiction,Neutral} between P and

H. In the supervised setting, a labeled dataset Dtrain={(Pi, Hi), Li}Mi=1 consisting

of M instances which are usually human-annotated is available for training. However

in the unsupervised setting, labels Li are not available, thus posing a significant

challenge for training NLI systems. Along with this standard unsupervised setting

(referred to as PH), we consider two novel unsupervised settings (P and NPH) that

differ in the extent of unlabeled data available for learning:

PH-setting: It corresponds to the standard unsupervised setting where an unlabeled

dataset of PH pairs ({(Pi, Hi)}Mi=1) is provided.

P-setting: In this setting, only premises from Dtrain i.e ({(Pi)}Mi=1) are provided. It

is an interesting setting as the large-scale NLI datasets such as SNLI (Bowman et

al. 2015) and MultiNLI (Williams, Nangia, and Bowman 2018) have been collected by

presenting only the premises to crowd-workers and asking them to write a hypothesis

corresponding to each label. Furthermore, this setting presents a harder challenge for

training NLI systems than the PH-setting as only partial inputs are provided.

NPH-setting: Here, no datasets (even with partial inputs) are provided. Thus, it

corresponds to the hardest unsupervised NLI setting considered in this work. This

setting is of interest in scenarios where we need to make inferences on a test dataset

but its corresponding training dataset is not available in any form.
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From the above formulation, it can be inferred that the hardness of the task

increases with each successive setting (PH→P→NPH) as lesser and lesser information

is made available. In order to address the challenges of each setting, we propose a

two-step approach that includes a pipeline for procedurally generating PHL triplets

from the limited information provided in each setting (Section 10.4), followed by

training an NLI model using this procedurally generated data (Section 10.5). Figure

30 highlights the differences between four NLI settings (one supervised and three

unsupervised) and summarizes our approach to develop an NLI model for each setting.

10.4 PHL Triplet Generation

To compensate for the absence of labeled training data, we leverage a set of

sentence transformations and procedurally generate PHL triplets that can be used for

training the NLI model. In P and PH settings, we apply these transformations on the

provided premise sentences. In the NPH setting where premises are not provided, we

extract sentences from various raw text corpora and apply these transformations on

them to generate PHL triplets.

10.4.1 P: Premise Generation

We extract sentences from raw text sources, namely, COCO captions (T.-Y. Lin

et al. 2014), ROC stories (Mostafazadeh et al. 2016a), and Wikipedia to compile a set

of premises for the NPH setting. We use these text sources as they are easily available

and contain numerous diverse sentences from multiple domains.

ROC Stories is a collection of short stories consisting of five sentences each. We
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Trans. Original Sentence (Premise) Hypothesis Label

PA Fruit and cheese sitting on a black
plate

There is fruit and cheese on a black
plate

E

PA + ES +
HS

A large elephant is very close to the
camera

Elephant is close to the photographic
equipment

E

CW-noun Two horses that are pulling a car-
riage in the street

Two dogs that are pulling a carriage
in the street

C

CV A young man sitting in front of a
TV

A man in green jersey jumping on
baseball field

C

PA + CW A woman holding a baby while a
man takes a picture of them

A kid is taking a picture of a male
and a baby

C

FCon A food plate on a glass table A food plate made of plastic on a
glass table

N

PA + AM Two dogs running through the snow The big dogs are outside N

Table 42: Illustrative examples of PHL triplets generated from our proposed transfor-
mations. E,C, and N correspond to the NLI labels Entailment, Contradiction, and
Neutral respectively.

include all these sentences in our premise pool. MS-COCO is a dataset consisting

of images with five captions each. We add all captions to our premise pool. From

Wikipedia, we segment the paragraphs into individual sentences and add them to

our premise pool.

We do not perform any sentence filtration during the premise collection process.

However, each transformation (described in subsection 10.4.2) has its pre-conditions

such as presence of verbs/adjectives/nouns that automatically filter out sentences

from the premise pool that can not be used for PHL triplet generation.

10.4.2 T : Transformations

Now, we present our sentence transformations for each NLI label. Table 42

illustrates examples of PHL triplets generated from these transformations. A detailed

list of transformations and their definitions are available in the published work. We
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provide a comprehensive data validation study to ensure the quality of the generated

data in the published version.

10.5 Training NLI Model

In this section, we describe our approach to develop NLI models for each unsuper-

vised setting. Appendix of the published work has detailed statistics on generated

data.

10.5.1 NPH-Setting

We use the Premise Generation function (P) over raw-text sources, namely, COCO

captions, ROC stories, and Wikipedia i.e., P(COCO), P(ROC), and P(Wiki) to

compile a set of premises and apply the transformations (T ) over them to generate

PHL triplets. We then train a transformer-based 3-class classification model (Section

10.6.1) using the generated PHL triplets for the NLI task.

10.5.2 P-Setting

In this slightly relaxed unsupervised setting, premises of the training dataset are

provided. We directly apply the transformation functions (T ) on the given premises

and generate PHL triplets. Similar to the NPH setting, a 3-class classification model

is trained using the generated PHL triplets.
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10.5.3 PH-Setting

In this setting, unlabeled training data is provided. We present a 2-step approach

to develop a model for this setting. In the first step, we create PHL triplets from the

premises and train a model using the generated PHL triplets (same as the P-setting).

In the second step, we pseudo-label the unlabeled PH pairs using the model trained

in Step 1.

Here, a naive approach to develop NLI model would be to train using this pseudo-

labeled dataset. This approach is limited by confirmation bias i.e overfitting to

incorrect pseudo-labels predicted by the model (Arazo et al. 2020). We address

this by filtering instances from the pseudo-labeled dataset based on the model’s

prediction confidence. We use the maximum softmax probability (maxProb) as the

confidence measure and select only the instances that have high prediction confidence

for training the final NLI model. This approach is based on prior work (Hendrycks

and Gimpel 2017) showing that correctly classified examples tend to have greater

maximum softmax probabilities than erroneously classified examples. Furthermore,

we investigate two ways of training the final NLI model:

Augmenting with T (P ): Train using the selected pseudo-labeled dataset and the

PHL triplets generated in Step 1.

Further Fine-tune P-Model: Further fine-tune the model obtained in Step 1 with

the selected pseudo-labeled dataset instead of fine-tuning one from scratch.
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10.6 Experiments

In this section, we provide the experimental details and show the efficacy of

our approach in all the unsupervised NLI settings. In this section, we first provide

experimental details (10.6.1). Then, we demonstrate efficacy of our proposed approach

in the three unsupervised settings (10.6.2). Next, we show the benefits it provides in

Few-Shot regimes (10.6.3). Finally, we analyze the performance of our approach via

ablation study (10.6.4), bias evaluation (10.6.4), and error analysis (10.6.4).

10.6.1 Experimental Setup

Datasets: We conduct comprehensive experiments with a diverse set of NLI datasets:

SNLI (Bowman et al. 2015) (sentence derived from only a single text genre), Multi-

NLI (Williams, Nangia, and Bowman 2018) (sentence derived from multiple text

genres), Dialogue NLI (Welleck et al. 2019) (sentences from context of dialogues), and

Breaking NLI (Glockner, Shwartz, and Goldberg 2018) (adversarial instances). SNLI

is a dataset of 570K crowdsourced instances covering a single domain. Mutli-NLI is

another crowdsourced dataset consisting of 392k instances covering multiple domains.

Dialogue-NLI has 310K instances and grounds consistency checking task of dialogues

in NLI. Breaking NLI is an evaluation dataset used for testing robustness of NLI

models.

Model: We use BERT-BASE model (Devlin et al. 2019b) with a linear layer on top

of [CLS] token representation for training the 3-class classification model. We trained

models for 5 epochs with a batch sizes of 32 and a learning rate ranging in {1−5}e−5.

All experiments are done with Nvidia V100 16GB GPUs.
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Model SNLI MNLI mat. MNLI mis. DNLI BNLI

BERT* 35.09 - - - -
LXMERT* 39.03 - - - -
VilBert* 43.13 - - - -

T (P(C)) 64.8 49.01 50.0 50.26 74.73
T (P(R)) 58.51 45.44 45.93 47.4 67.9
T (P(W)) 55.06 44.15 44.25 48.48 62.58
T (P(C+R)) 65.39 46.83 46.92 47.95 77.37
T (P(C+R+W)) 65.09 46.63 46.83 44.74 56.11

Table 43: Comparing accuracy of models in the NPH-setting. C, R, and W correspond
to the premise sources COCO, ROC, and Wikipedia respectively. Results marked
with * have been taken from (Cui et al., 2020).

Baseline Methods: We compare our approach with Multimodal Aligned Con-

trastive Decoupled learning (MACD) (Cui, Zheng, and Wang 2020) , Single-modal

pre-training model BERT (Devlin et al. 2019b), Multi-modal pre-training model

LXMERT (Tan and Bansal 2019b), and VilBert (Lu et al. 2019b). Note that

MACD method uses an additional learning signal from image-modality to train the

NLI model.

10.6.2 Results

NPH-Setting: We utilize three raw text sources: COCO, ROC, and Wikipedia

to compile a premise pool and then generate PHL triplets from those premises.

Table 43 shows the accuracy of models in this setting. We use equal number of

PHL triplets (150k class-balanced) for training the NLI models. We find that the

model trained on PHL triplets generated from COCO captions as premises

200



Approach SNLI MNLI mat. MNLI mis. DNLI BNLI

BERT* 35.09 - - - -
LXMERT* 39.03 - - - -
VilBert* 43.13 - - - -
MACD* 52.63 - - - -

T (SNLI) 65.72 49.56 50.00 43.27 67.78
+T (P(C)) 65.36 49.91 49.24 46.25 70.07
+T (P(R)) 65.90 48.53 48.36 44.97 66.43

Table 44: Comparing accuracy of various approaches in the P-Setting. Results marked
with * have been taken from (Cui et al., 2020). Note that we utilize the premises of
the SNLI training dataset only but evaluate on SNLI (in-domain), and MNLI, DNLI,
BNLI (out-of-domain).

Method Data SNLI MNLI mat. MNLI mis.

From Scratch MaxProbFilt 66.67 53.37 55.17
From Scratch MaxProbFilt+T (P ) 66.75 50.22 50.37
Finetune P-model MaxProbFilt 65.60 52.97 53.44

Table 45: Comparing accuracy of our proposed approaches in the PH-Setting. Note
that the models are trained using PH pairs only from the SNLI train-set but evaluated
on MNLI (out-of-domain dataset) also.

outperforms ROC and Wikipedia models on all datasets. We attribute this

superior performance to the short, simple, and diverse sentences present in COCO

that resemble the premises of SNLI that were collected from Flickr30K (Plummer

et al. 2015) dataset. In contrast, Wikipedia contains lengthy and compositional

sentences resulting in premises that differ from those present in SNLI, MNLI, etc.

Furthermore, we find that combining the PHL triplets of COCO and ROC

leads to a slight improvement in performance on SNLI (65.39%), and BNLI

(77.37%) datasets.

P-Setting: Cui, Zheng, and Wang (2020) presented MACD that performs multi-

modal pretraining using COCO and Flick30K caption data for the unsupervised
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Training Method 100 200 500 1000 2000
Dataset SNLI MNLI SNLI MNLI SNLI MNLI SNLI MNLI SNLI MNLI

SNLI
BERT 44.62 37.36 48.97 34.71 58.54 44.01 65.36 37.24 72.51 45.59
NPH (Random) 64.82 49.72 65.06 50.48 66.97 52.33 70.61 56.75 73.7 59.0
NPH (Adv.) 68.21 51.93 69.23 56.55 70.85 58.46 73.62 59.47 74.31 60.43

MNLI BERT 35.12 36.01 35.14 36.58 46.16 47.1 47.64 56.21 53.68 63.3
NPH (Random) 63.87 52.85 63.87 53.61 64.23 57.47 65.62 60.42 66.87 62.89

Table 46: Comparing performance of various methods on in-domain and out-of-
domain datasets in low-data regimes (100-2000 training instances). ‘BERT’ method
corresponds to fine-tuning BERT over the provided instances from SNLI/MNLI, ‘NPH
(Random)’ corresponds to further fine-tuning our NPH model with the randomly
sampled instances from SNLI/MNLI, ‘NPH (Adv.)’ corresponds to further fine-tuning
our NPH model with the adversarially selected instances from SNLI/MNLI.

NLI task. It achieves 52.63% on the SNLI dataset. Our approach outperforms

MACD and other single-modal and multi-modal baselines by ∼13% on SNLI

as shown in Table 44. We also experiment by adding PHL triplets generated from

COCO and ROC to the training dataset that further improves the accuracy to 65.90%

and establish a new state-of-the-art performance in this setting.

PH-Setting: In this setting, we first train an NLI model following the P-Setting

approach and then pseudo-label the given unlabeled PH pairs using that model. From

this pseudo-labeled dataset, we select instances based on the maximum softmax

probability as described in section 10.5.3. This approach results in accuracy of 66.67%

on the SNLI dataset as shown in Table 45. We evaluate two approaches whose details

are present in the published work. The first apporach improves the accuracy to 66.75%

and the performance in OOD datasets are 53.37% and 55.17% on MNLI matched and

mismatched datasets respectively.
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10.6.3 Low-Data Regimes

We also conduct experiments in low-data regimes where a few labeled instances

are provided. We select these instances from the training dataset of SNLI/MNLI

using the following two strategies:

Random: Here, we randomly select instances from the corresponding training

dataset. Further fine-tuning our NPH model with the selected instances consistently

achieves higher performance than the models fine-tuned from scratch as shown in

Table 46. With just 500 SNLI instances i.e. ∼ 0.1% of training dataset, our

models achieve 8.4% and 8.32% higher accuracy on SNLI (in-domain) and

MNLI (out-of-domain) respectively. Furthermore, with 500 MNLI instances, our

models achieve 10.37% and 18.07% higher accuracy on MNLI (in-domain) and SNLI

(out-of-domain) respectively.

Adversarial: Here, we select those instances from the training dataset on which

the NPH model makes incorrect prediction. This is similar to the adversarial data

collection strategy (Nie et al. 2020; Kiela et al. 2021) where instances that fool

the model are collected. Here, we do not simply fine-tune our NPH model with

the adversarial examples as it would lead to catastrophic forgetting (Carpenter and

Grossberg 1988). We tackle this by including 20000 randomly sampled instances from

the generated PHL triplets and fine-tune on the combined dataset. It further takes

the performance to 70.85%, 58.46% on SNLI and MNLI respectively with

500 instances.
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Approach ∆ Accuracy

NPH model 64.8%
- CV −5.88%
- CW −3.07%
- SSNCV −2.63%
- Neg. −0.70%
- IrH −0.50%
- PS −0.00%

Table 47: Ablation Study of transformations: in the NPH-Setting. Each row corre-
sponds to the drop in performance on the SNLI dataset when trained without PHL
triplets created using that transformation.

10.6.4 Analysis

Ablation Study: We conduct ablation study to understand the contribution of

individual transformations on NLI performance. Table 47 shows the performance

drop observed on removing PHL triplets created using a single transformation in the

NPH-Setting. We find that Contradictory Words (CW) and Contradictory

Verbs (CV) lead to the maximum drop in performance, 5.88% and 3.07%

respectively. In contrast, Pronoun Substitution (PS) transformation doesn’t impact

the performance significantly. Note that this does not imply that this transformation

is not effective, it means that the evaluation dataset (SNLI) does not contain instances

requiring this transformation.

NC and RS Evaluation: We evaluate our model on NER-Changed (NC) and Roles-

Switched (RS) datasets presented in (Mitra, Shrivastava, and Baral 2020) that test the

ability to distinguish entities and roles. Our model achieves high performance
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Setting Metric Label

C E N

NPH Precision 0.65 0.71 0.6
Recall 0.68 0.77 0.51

P Precision 0.66 0.72 0.58
Recall 0.67 0.78 0.52

PH Precision 0.64 0.74 0.60
Recall 0.73 0.77 0.50

Table 48: Precision and Recall values: achieved by our models under each unsupervised
setting.

NC RS SNLI-RS SNLI-NC

84.22 50.07 58.59 75.39

Table 49: Performance of our NPH model on Names-Changed (NC) and Roles-Switched
(RS) adversarial test sets.

on these datasets. Specifically, 84.22% on NC and 75.39% on SNLI-NC as shown

in Table 49.

Label-Specific Analysis: Table 48 shows the precision and recall values achieved

by our models. We observe that our models perform better on Entailment and

Contradiction than Neutral examples. This suggests that neutral examples are

relatively more difficult. We provide examples of instances where our model makes

incorrect predictions and conduct error analysis in Appendix.

10.7 Conclusion and Discussion

We explored three different settings in unsupervised NLI and proposed a procedural

data generation approach that outperformed the existing unsupervised methods by

∼13%. Then, we showed that fine-tuning our models with a few human-authored
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instances leads to a considerable improvement in performance. We also experimented

using adversarial instances for this fine-tuning step instead of randomly selected

instances and showed that it further improves the performance. Specifically, in

presence of just 500 adversarial instances, the proposed method achieved 70.85%

accuracy on SNLI, 12.2% higher than the model trained from scratch on the same 500

instances.

This improvement in performance suggests possibility of an alternative data

collection strategy that not only results in high-quality data instances but is also

resource efficient. Using a model-in-the-loop technique has been shown to be effective

for adversarial data collection (Nie et al. 2020; Kiela et al. 2021; L. Li et al. 2021;

Sheng et al. 2021; Arunkumar et al. 2020). In these techniques, a model is first trained

on a large dataset and then humans are instructed to create adversarial samples that

fool the model into making incorrect predictions. Thus, requiring the crowd-sourcing

effort twice. However, in our method, a dataset designer can develop a set of simple

functions (or transformations) to procedurally generate training data for the model

and can directly instruct humans to create adversarial samples to fool the trained

model. This is resource efficient and allows dataset designers to control the quality of

their dataset.
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Chapter 11

CONCLUSIONS

Since the 1960s, question answering has been one of the earliest tasks for NLP

systems. Several systems ranging from symbolic, rule-based to more recent large-scale

pretrained transformer language models have been proposed for the task. Similarly,

several datasets focussing on different aspects of reasoning and question answering

ability have been proposed. However, the challenges discussed before in Chapter 1

still exist in current systems. In this dissertation, I have attempted to resolve some

challenges and have observed significant improvements in unsupervised question an-

swering and few-shot question answering. In text-based and visual question answering,

implicit supervision has been shown to improve significantly. Hence, implicit super-

vision is empirically feasible by utilizing external knowledge sources and designing

learning methods with relevant inductive bias. Implicit supervision has been shown to

work, other than question-answering in other natural language tasks, such as natural

language inference in Chapter 10, and pronoun resolution (Shen, Banerjee, and Baral

2021). The following section will discuss the key learnings, insights, and challenging

future work.

11.1 Key Takeaways and Future Work

The following are the major insights we can draw from our different experiments

on implicit supervision:

• Implicitly-supervised systems provide an initial parameter initialization that
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leads to superior few-shot performance with fewer human-annotation samples.

It has been consistently observed in all text-based and visual question answering,

NLI, and pronoun resolution. This Task-Oriented Implicit Supervision may

be helpful for pre-training compared to generic pre-training such as masked-

language modeling and next sentence prediction. Designing such pre-training

methods for other natural language and multi-modal tasks to provide better

inductive bias would be interesting future work.

• Test-Time Adaptation with implicit supervision might be helpful and may lead

to smaller parameter models and better performance. If we can define an implicit

supervision task, test-time adaptation using samples generated from the implicit

supervision task adapts the model better for the evolving test-time distribution.

Moreover, as the model is slightly overfitting for a particular test instance, it

performs well even with fewer parameters. However, test-time training increases

inference time significantly; hence improving test-time training efficiency is an

interesting future work.

• The question all task modeling researchers worry about is, “Are we learning

the task or learning the annotation bias?” However, Unsupervised methods

do not see the final evaluation task data during training and hence might be

learning the task better than fully supervised methods. However, they also

utilize some procedural generation methods that possess their own bias. The

upside of these methods is that the bias is under the researcher’s control and

hence be quantified, reduced, and mitigated. On the other hand, bias in the

large-scale human-annotated datasets is hard to quantify and needs thorough

studies. Developing implicit supervision methods that do not exacerbate negative

bias would be interesting future work.
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• Evaluation metrics for open-ended question answering systems are still under-

developed. Semantic-based evaluation metrics are the need of the hour, as

QA systems developed with implicit supervision learn answer phrases from the

knowledge acquired from different knowledge sources and hence can generate

free-form answers that differ from the ground-truth answer provided in the eval-

uation datasets. Exact Match metrics severely penalize such methods. Future

work should focus on improving evaluation metrics for open-ended QA systems.

• Model-in-the-loop methods to curate data perform a two-stage strategy to train

a weaker model with first stage data collection and then curate new adversarial

samples to fool the weak model (Arunkumar et al. 2020). It is an inefficient

method, as humans are needed in both stages. Implicit supervision tasks can

be used to train the weaker model, and then humans can be asked to provide

adversarial samples only in the second stage.

• Representation of an image for a visual question answering task is still an unsolved

problem. We propose 3D geometrical representation and image-patch-based

representation in two models and show they improve downstream visual question

answering task performance considerably. However, both have drawbacks, such

as failure in object detection in 3D geometrical representation and the inability

to differentiate minute objects in image patches. Resolving these drawbacks

will be challenging and exciting for future work. Furthermore, utilizing 3D

geometrical and low-level vision features for high-level vision-and-language tasks

requiring semantic understanding is an interesting future direction.

Future task model engineers and researchers should choose to define a task and aim

to reutilize data and annotations available in sister tasks as much as possible. Defining

an implicit supervision task might be equivalent to thousands of human-annotated
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samples and provide a solid baseline for future models. This dissertation may be

helpful to provide a guideline to future engineers to design such a task in a data and

model parameter efficient manner.
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