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ABSTRACT

In natural language processing, language models have achieved remarkable success

over the last few years. The Transformers are at the core of most of these models.

Their success can be mainly attributed to an enormous amount of curated data

they are trained on. Even though such language models are trained on massive

curated data, they often need specific extracted knowledge to understand better

and reason. This is because often relevant knowledge may be implicit or missing,

which hampers machine reasoning. Apart from that, manual knowledge curation is

time-consuming and erroneous. Hence, finding fast and effective methods to extract

such knowledge from data is important for improving language models. This leads

to finding ideal ways to utilize such knowledge by incorporating them into language

models. Successful knowledge extraction and integration lead to an important question

of knowledge evaluation of such models by developing tools or introducing challenging

test suites to learn about their limitations and improve them further. So to improve the

transformer-based models, understanding the role of knowledge becomes important.

In the pursuit to improve language models with knowledge, in this dissertation I

study three broad research directions spanning across the natural language, biomedical

and cybersecurity domains: (1) Knowledge Extraction (KX) - How can transformer-

based language models be leveraged to extract knowledge from data? (2) Knowledge

Integration (KI) - How can such specific knowledge be used to improve such models?

(3) Knowledge Evaluation (KE) - How can language models be evaluated for specific

skills and understand their limitations?

I propose methods to extract explicit textual, implicit structural, missing textual,

and missing structural knowledge from natural language and binary programs using

transformer-based language models. I develop ways to improve the language model’s

multi-step and commonsense reasoning abilities using external knowledge. Finally,
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I develop challenging datasets which assess their numerical reasoning skills in both

in-domain and out-of-domain settings.
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Chapter 1

INTRODUCTION

1.1 Research Contributions

In Natural Language Processing, language models (LM) have achieved remarkable

success over the last few years. Most of these recent language models are inspired by

either of the transformer (Vaswani et al., 2017) families - Encoder-Only, Decoder-Only,

and Encoder-Decoder. The majority of their success can be attributed to the enormous

amount of curated data (Wikipedia, BookCorpus, etc) they are trained on.

Even though such language models are trained on massive curated data, they

need specific extracted knowledge (structured and unstructured) from such data to

understand better and reason. This is because often relevant knowledge may be

implicit or missing, which hampers machine reasoning. Apart from that, manual

knowledge curation is time-consuming and erroneous. Hence, finding effective methods

to extract knowledge from data is important for improving the language models.

Extraction of knowledge from data leads to the question of what is the best method

of utilizing such knowledge. More concretely, can we find ways to incorporate such

special knowledge into language models (other than only representation learning) that

can make them more effective?

Successful extraction of specific knowledge and their integration into language

models leads to an important question of effective evaluation of such models. Such

kind of model assessment by developing tools or curating challenging datasets can

help us learn their limitations and improve them even further.

So, to improve the currently existing transformer-based models three broad research
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directions become relevant which are the specific research contributions in this disser-

tation: (1) Knowledge Extraction (KX) - How can we leverage transformer-based

language models to extract knowledge from data? (2) Knowledge Integration (KI)

- How can we use such specific knowledge to improve these models? (3) Knowledge

Evaluation (KE) - How can we evaluate language models for specific skills? . In

this dissertation, I will present projects covering a set of diverse domains like natural

language, biomedical, and cybersecurity catering to these three research directions.

The overall dissertation structure is illustrated in the Figure below.

1.2 Knowledge Extraction (KX)

The amount of data generated annually is exponentially growing since 2010. In

fact, it is estimated that 90% of the world’s data was generated in the last two
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years alone and approximately 328.77 million terabytes of data are created each day

(Figure above). A large portion of data on the World Wide Web is encoded in natural

language form and therefore unstructured. An estimate shows that the data of a typical

corporation is in natural language and hence goes unutilized as Dark Data (Ritsko

and D.I., 2004). But this data, created each day, is nothing but an aggregation of

symbols, and characters collected and measured by various devices. They do not have

meaning unless they are related to their contexts and processed into information. The

understanding of the data becomes much more clear when this processed information

is interlinked based on the contexts into knowledge, which influences people to take

informed actions.

However, for humans, extracting essential knowledge from data is challenging

because (1) the form of data vary from texts, documents, codes, programs, images, to

videos, (2) the nature of knowledge we need can be explicit, implicit or contextual,

and (3) manual processing is inefficient : error-prone and time-consuming. Hence such

challenges demand efficient, effective, generic, error-minimizing automated systems to
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extract the most knowledge out of these under-utilized data. So, in this dissertation, I

show various ways in which we can use the latest transformer-based models to extract

knowledge from multiple forms of data.

Outline of Knowledge Extraction

In Chapter 2, I show how LMs can be used to extract explicit entity-specific knowledge

in the biomedical domain. Here, I show that by using entity-type definitions and a

few examples, a question-answering-based LM can effectively extract named entities

from 18 biomedical datasets comprising patient reports and healthcare documents.

This is perhaps the first work that explores the use of definitions and

examples in instructions. Later such instructions have been adopted

by various instruction-tuning works (Mishra et al., 2021a; Wang

et al., 2022c; Efrat and Levy, 2020) when the prompting literature

gained popularity.

In Chapter 3, I present a relatively harder task of extracting inherent structured

information from unstructured public forum cybersecurity documents. Here I demon-

strate that a modified LM along with Graph Neural Network (GNN) can be effectively

applied to generate a structured flow graph in three datasets in both cybersecurity

and natural language domains.

In Chapter 4, I show a much harder task of retrieving missing knowledge from

software binaries. The task is harder since binaries are human-unreadable. Here I

show that a customized LM, three times smaller than the BERT-base can be used

effectively to recover missing human-authored variable names from compiled source

code for two different state-of-the-art binary decompilers.
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1.3 Knowledge Integration (KI)

As we keep building tools to process knowledge from ever-growing unutilized data,

our understanding of the data, ability to gain important insights, and readability

improve. We now can take informed actions about the data or person toward a goal.

On the other hand, the automated NLP systems which assist humans in various tasks

have also developed and have shown tremendous performance.

One of the main reasons for the success of the NLP systems in recent times is the

large parameter space. The number of parameters is continuously growing making

the models heavier and difficult to train on smaller compute and resources. They

show extraordinary abilities to perform general tasks. But on multiple occasions, it

has been shown that they lack specific human-level skills, for example commonsense,

logical, or multi-hop reasoning skills.

Hence it is important to develop principled approaches to inject such special

skills into these general-purpose language models. Additionally, such approaches also

could help smaller models, which do not have large enough parameter space to learn

everything from huge data repositories into their parameters or to gain such specific

skills. Hence in this dissertation, I explore approaches to integrate specially curated

explicit instance-specific knowledge from various available sources to improve the

reasoning skills of transformer-based language models.

Outline of Knowledge Integration

In Chapter 5, I present an approach to incorporate external scientific knowledge

into language models from relevant sources which helps them to perform multi-step

reasoning with missing knowledge.

In Chapter 6, I show that we can retrieve instance-specific external knowledge
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from relevant knowledge sources, to assist smaller language models to understand how

humans interact with physical objects to achieve a goal. Here I used four knowledge

integration methods and three training approaches.

In Chapter 7, I show that training a generative LM on the diverse nature of

cybersecurity texts and tasks in a multi-task setting can help it to improve and also

adapt to unseen domains and tasks.

In Chapter 8, I demonstrate that by continued pre-training, logical reasoning skills

can be incorporated into language models. I also show that language models with such

skills can achieve good performance over vanilla language models on a logical MCQ

dataset.

1.4 Knowledge Evaluation (KE)

Developing an artificial general intelligence (AGI) agent has been an age-old goal of

researchers working in AI. Even though the term AGI was first introduced by Gubrud

(1997) way back in the year 1997, it has gained popularity only in recent times. This

is mostly because of the remarkable achievements of general-purpose LLMs like GPT3

(Brown et al., 2020a), ChatGPT (OpenAI, 2023), and GPT4 (OpenAI, 2023).

GPT3 has led to the development and public release of models in a similar line

of research like T5 (Raffel et al., 2020a), PaLM (Chowdhery et al., 2022), FLAN

(Wei et al., 2021), Chinchilla (Hoffmann et al., 2022), Jurrasic (Lieber et al., 2021),

LLAMA (Touvron et al., 2023), and many others. But as new models get released,

there is the need to assess their skills, their reasoning abilities, and the limitations

of their knowledge. Such kind of Knowledge Evaluation of models can help us figure

out opportunities for their improvements leading to the development of more general

artificial intelligence.

Hence, I consider Knowledge Evaluation (KE) of transformer-based language
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models as the third direction of my research in this dissertation. More specifically, my

goal is to test LMs on their reasoning skills especially numerical reasoning skills by

developing synthetic test suites in various experimental settings.

Outline of Knowledge Evaluation

In Chapter 9, I show the limits to which language models can understand various

numerical reasoning tasks both in interpolation and extrapolation settings through

synthetic and curated datasets. Here I demonstrate how far the three versions of T5

language models (small, base, and large) can reason for numeration tasks (number

form understanding), magnitude order prediction tasks (number value understanding),

and finding minimum-maximum (number comparison) or sorting numbers (number

comparison and manipulation) in a numerical series.

All these projects have led to the development of datasets, tools, and models which

have been open-sourced for the community for future researchers. The GitHub links

can be found within individual chapters.
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Chapter 2

BIOMEDICAL NAMED ENTITY RECOGNITION VIA KNOWLEDGE

GUIDANCE AND QUESTION ANSWERING

ABSTRACT

In this work, we formulated the named entity recognition (NER) task as a multi-answer

knowledge-guided question-answer task (KGQA) and showed that the knowledge

guidance helps to achieve state-of-the-art results for 11 out of 18 biomedical NER

datasets. We prepended five different knowledge contexts – entity types, questions,

definitions, and examples – to the input text and trained and tested BERT-based

neural models on such input sequences from a combined dataset of 18 different datasets.

This novel formulation of task (a) improved named entity recognition and illustrated

the impact of different knowledge contexts, (b) reduced system confusion by limiting

prediction to a single entity class for each input token (i.e., B, I, O only) compared

to multiple entity classes in traditional NER (i.e. B-entity1, B-entity2, I-entity1,

I-entity2, O), (c) made detection of nested entities easier (d) enabled the models to

jointly learn NER-specific features from a large number of datasets. We performed

extensive experiments of this KGQA formulation on biomedical datasets, and through

the experiments, we showed that knowledge improved named entity recognition. We

analyzed the effect of the task formulation, the impact of the different knowledge

contexts, the multi-task aspect of the generic format, and the generalization ability of

KGQA. We also probed the model to better understand the key contributors to these

improvements.
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2.1 Introduction

Named Entity Recognition (NER) is an essential step in biomedical natural language

processing, often serving as the first step on tasks such as relation extraction. Although

recent developments in transformer language models, such as BERT (Devlin et al.,

2019) have led to high (> 90 F1) NER F1 score in a few datasets (Krallinger et al., 2015;

Wei et al., 2015; Lee et al., 2020), in several other datasets, such as Ex-PTM (Pyysalo

et al., 2011), JNLPBA (Kim et al., 2004) and BIONLP13GE (Nédellec et al., 2013), the

state-of-the-art F1 is still below 85. Historically, NER has been considered a relatively

difficult task in the biomedical domain due to the stylized writing and domain-specific

terminology. Moreover, the target entities are usually proper nouns or unregistered

words, with new words for drugs, diseases, and chemicals being generated frequently.

The same phrases can also be recognized as different named entities depending on the

current context (Cohen and Hunter, 2004; Liu et al., 2006; Song et al., 2018). For

these reasons, external knowledge can help guide automated systems to identify the

entities in the biomedical domain.

In general natural language processing, extensive external knowledge has helped

systems in tasks such as commonsense question answering (Sap et al., 2019; Talmor

et al., 2019) and science question answering (Lai et al., 2017; Mihaylov et al., 2018).

In biomedical named entity recognition, external knowledge can be about entities

and their relations. Knowledge like entity types, their definition, and examples can

allow attention mechanisms to compare and learn to detect new entities, primarily

if the entity is newly generated and has infrequent mentions in standard biomedical

texts. Apart from the use of external knowledge, framing an NLP task as a question-

answering task can lead to better performance (McCann et al., 2018). Motivated

by this approach, we hypothesize that a Knowledge guided QA framework may help
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biomedical NER.

Thus, in this paper, we focus on NER in biomedical text and test our hypothesis

using different kinds of knowledge. The ways of expressing knowledge include asking

a question about the entity, giving the entity type, providing a definition of the entity

type, and mentioning some of its examples, as seen in Figure 2.1.

Figure 2.1 also shows how traditional NER systems formulate the problem as a

classification task. This traditional task formulation leads to the following challenges:

(a) labeling error, i.e., even though a system can identify the location of an entity

correctly, it fails to predict the correct type; (b) inability to leverage more information

for a particular entity type, since the conventional task formulation only allows to

predict all entity types jointly; and (c) lack of labeled data for each entity type,

especially in the biomedical domain. Challenges (a) and (b) are even more profound

in the presence of nested named entities.

We can avoid challenges (a) and (c) by modeling the task as a multi-answer

extraction task, where we predict only one type of entity at a time, given a context

determining which entity is being extracted at the current time. This formulation

allows us to avert the issue of nested named entities and learn from multiple biomedical

datasets with similar entities. We specifically address the challenge (b) by providing

five different knowledge contexts as shown in Figure 2.1. We perform an empirical

study of which knowledge type has the most significant impact on the NER task.

Our task formulation enables us to create a considerably large dataset with

knowledge context utilizing 18 biomedical datasets. The goal is to learn jointly from

multiple domains containing different target entities. We also propose a new NER

model over BERT using a re-contextualization layer, called BERT-CNN. This layer

uses token-local features to recompute token encoding to enable the model to better

understand the start and end locations of an entity. We use the BERT-base model
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Figure 2.1: The Top Block Shows the Traditional Way of NER. In Our Method, We

Predict Only B, I, and O Tags for a given Context, i.e., Only Red Tags Are Predicted

If the Context Is about an Entity Problem. O Tags Are Not Shown but Are Predicted

for Non-answer Words.
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and show our task formulation and model perform better than a strong baseline of

a BERT-large model pre-trained on the biomedical corpus and finetuned using the

traditional NER task. We perform extensive experiments to analyze the impact of

each of our contributions. We also study the transfer learning ability of our knowledge-

guided BERT-CNN model, as one of the significant challenges currently faced by

the biomedical community is the low ability of the models to transfer to real-life

applications (different writing styles and domains compared to training domain). The

code, along with the data, has been made publicly available for further research1.

To summarize our contributions:

• We reformulate the task of named entity recognition as a multi-answer question

answering task using knowledge as a context.

• We make available a significantly large, cleaned, and pre-processed dataset

with knowledge context utilizing 18 biomedical datasets having in total 398495

training, 148166 validation, and 502306 test samples.

• We propose a BIO tagging based model for the knowledge guided named entity

recognition task, with a re-contextualization layer.

• We perform extensive experiments to evaluate our models, including the model’s

ability to adapt to new domains.

• Finally, all our contributions together further push the state-of-the-art exact

match F1 scores by 1.78-12% for 11 publicly available biomedical NER datasets.

2.2 Related Work

External Knowledge: In the past, there have been several attempts to incorpo-

rate external knowledge through feature engineering and lexicons (Liu et al., 2019;

1https://github.com/kuntalkumarpal/KGQA
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Borthwick et al., 1998; Ciaramita and Altun, 2005; Kazama and Torisawa, 2007),

or incorporating knowledge in the feature extraction stage (Crichton et al., 2017;

Yadav and Bethard, 2018), or using document context (Devlin et al., 2019). Our work

incorporates simple textual knowledge sentences and shows how to integrate them

into named entity recognition tasks.

Multi-Task Learning : Multi-task learning has been used in the past to tackle

the labeling problem of NER. For example, multi-task learning with simple word

embedding and CNN (Crichton et al., 2017), cross-type NER with Bi-LSTM and CRF

(Wang et al., 2018), MTL with private and shared Bi-LSTM-CRF using character

and word2Vec word embeddings (Wang et al., 2019a). In our work, we do multi-task

learning by reducing all different NER tasks to the same generic format and use

transformer encoders. Our method uses a single encoder and span-prediction layer

used for all tasks compared to existing multi-task methods that share a common

encoder or layers and have different task-specific layers. The joint learning of multiple

different NER tasks using a generic format makes our task formulation multi-task

learning.

Language Models and Transfer Learning: There have been prior attempts to

reduce the labeling confusion by using a single model to predict each entity type

(Lee et al., 2020) and using transfer-learning (Lee et al., 2020; Beltagy et al., 2019;

Si et al., 2019). Our work is similar to theirs, which also uses pre-trained language

models (BERT) and predicts different types of entities separately, but differs in task

formulation and explicit external knowledge context. We show jointly learned single

model is better than a per entity-type model.

NER as a Question Answering Task: In the general domain, researchers have

formulated multiple NLP tasks as a question-answering format in DecaNLP (McCann

et al., 2018), semantic-role labeling as in QASRL (He et al., 2015) and others have
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argued that question-answering is a format, not a task (Gardner et al., 2019). We

also use QA format as a part of our task to address previously mentioned challenges.

A possibly concurrent work, BERT-MRC (Li et al., 2020) also attempts at NER as

a QA task in the general domain by span predictions for individual entity types in

a reading comprehension style approach. However, we differ in the task formulation

using the BIO tagging scheme, our model design, and our focus on Biomedical NER.

A detailed comparison is in Section 2.5.1.

BioMedical NER: In the Biomedical domain, CollaboNet (Yoon et al., 2019) uses

multiple expert models for each dataset collaborating to reduce the misclassification

error, and NER uses variational dropout (Giorgi and Bader, 2020). Dictionary-based

distantly supervised methods (Wang et al., 2019b) have been proposed to reduce

the need for human annotations but are still far from fully-supervised methods.

Other methods use more nuanced approaches of adding a word and character-level

features (Yadav et al., 2018). The most common approach of using BiLSTM-CRFs

(recurrent neural networks) for NER, has been applied to several biomedical or chemical

applications, such as Medline indexing (Savery et al., 2020), entity extraction for

fMRI (Abacha et al., 2017), postpartum depression detection (Chowdhuri et al.,

2019), and conversational agents (Amith et al., 2020). Recurrent neural networks

are prevalent for clinical and biomedical sequence labeling tasks such as NER (Wu

et al., 2020). A significant drawback to such approaches is the need for multiple

models for each dataset. We hope our work can motivate the adaptation of KGQA

and transformer encoders, which reduces the need for multiple models and improves

overall task performance.
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2.3 Method

2.3.1 Task Formulation

Traditional systems define named entity recognition as a multi-class classification

task. Given a context C = {c1, c2, ..., cn}, any token ci is classified as one of the three

tags B-ek, I-ek, O in the BIO-Tagging scheme, where ek ∈ E (the set of entity types

for a dataset). For example, from Figure 2.1 a traditional NER method will predict,

B −Test for token “A”, I −Test for all the tokens in span “CT scan with po contrast”,

B −Problem for “dilation” and I −Problem for all the tokens in span “of intrahepatic

common bile duct”. This formulation leads to labeling error. A token ci is classified

as B-ek or I-ek when the token is actually a B-ej or I-ej where j ≠ k. In the above

example, a labeling error will arise if instead of I −Test for all the tokens in span “CT

scan with po contrast”, even for one token the model predicts B − Problem, B − Test

or I −Problem. It means that even though a system could identify an entity’s location

correctly, it fails to identify the correct type.

In our approach, we tackle this issue by formulating the NER task in the following

way. Given a context C = {c1, c2, ..., cn}, any token ci is classified as B, I and O. To

identify which entity type the token belongs to, we provide external knowledge K

to the context, containing the entity type information. For example, if we want to

extract two entities e1 and e2 from context C, we first provide Ke1 and C as input

to our model to extract e1 entities, then provide Ke2 and C as input to extract e2

entities. For example, in Figure 2.1 our method defines a set of knowledge contexts.

Given the knowledge context “Question”, if the user wants to extract “Test” entities,

it provides an input “What are the Test mentioned in the text?” along with the

input sentence. The model then predicts the spans using BIO tagging, with an

expected output span of “dilation of intrahepatic common bile duct”. If the user

15



wants to extract the “Problem” entities, a different question is formulated “What

are the Problem mentioned in the text?”. Both the queries are given input to the

same model, and the model is guided by the knowledge context provided to infer

which type of entities to predict. This formulation decouples the classification and

the entity location tasks, enabling the model to learn from multiple datasets and

overcoming labeling error. Moreover, in comparison to other methods that learn

per-entity classification models (Lee et al., 2020), our task formulation trains only a

single model to extract all entities. Similarly, our knowledge-context guided entity

extraction is a single-step single model approach compared to a two-step method

of first identifying entity locations using the BIO tagging model and then using a

classification model to identify entity types for extracted spans (Yu et al., 2020).

Comparison to Machine Reading Comprehension There is a difference be-

tween the “context” we refer to in our task formulation and the traditional machine

reading comprehension task. In traditional machine reading comprehension, such as

SQuAD (Rajpurkar et al., 2016), the “context” refers to the paragraph text from

which the answers are extracted for a given question. In our task formulation, the

answers are extracted from the input text, whereas the “knowledge context” provides

the relevant context or guidance to extract the particular entities’ answers.

2.3.2 Knowledge Context Generation

We experiment with five types of knowledge context (K) to identify entities and

their types. These are: (a) Entity types (ek ∈ E) (b) separate Question (Qk) created

using each entity type, (c) Definition (Dk) of each entity type along with the entity

type itself (ek), (d) Examples (Egk) along with entity type (ek) and (e) All of the

above. If there are entities of n entity types in a text, we create a set of five knowledge
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contexts for each different entity type during training. Since the approach works

one entity type at a time, we make sure that the entity type is mentioned in each

of the five contexts. Only the best knowledge context is used during inference, i.e,

if Question performs best for a dataset, we use only that context. For the example

mentioned in Figure 2.1, E is {“Problem”, “Test”} , Q is {“What are the problem

mentioned in the text?”, “What are the test mentioned in the text?”}, D is the

definition text, {“Problem is a difficulty, disorder, or condition needing resolution”,

“Test is a procedure for critical evaluation”}, and Eg are the examples {“hypertension,

pain, afebrile, nausea, fever”, “blood, glucose, creatinine, hematocrit, blood-pressure”}.

We analyze the impact of the different knowledge context formulation in section 2.5.2,

including different question formats.

2.3.3 Datasets

We create the dataset for NER using fifteen publicly available biomedical datasets2

(Crichton et al., 2017) and three datasets from previous i2b2 challenges (Sun et al.,

2013; Uzuner et al., 2011, 2010, 2012). One of the samples is shown in Figure 2.1. Our

task formulation enables us to combine the datasets and create a significantly large

dataset that enables deep neural model learning. Moreover, the multi-task learning

for different entity types enables the model to generalize better. We also checked for

overlap between samples of training and testing data. We find that the i2b2 datasets

have a maximum overlap of 3.57%, whereas, among the remaining, the overlaps are

much less than 1%. We remove the overlapping samples from the training data.

Bionlp Shared Task and Workshop: Six of the datasets Bionlp09 (Kim et al., 2009),

Bionlp11ID (Nguyen et al., 2011), Bionlp11EPI (Nguyen et al., 2011), Bionlp13PC

(Nédellec et al., 2013), Bionlp13CG (Nédellec et al., 2013), Bionlp13GE (Nédellec

2https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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et al., 2013) are from the Biomedical Natural Language Processing Workshops. Some

of these datasets’ basic entities are gene or gene products, proteins, chemicals, and

organisms.

i2b2 Shared Task and Workshop: We use three datasets from the i2b2 shared

task and Workshop Challenges in Natural Language Processing for Clinical Data. We

only use training and testing data from the 2010 Relations Challenge (Uzuner et al.,

2011), 2011 Coreference Challenge (Uzuner et al., 2012), and 2012 Temporal Relations

Challenge (Sun et al., 2013). These datasets primarily contain entities like problems,

tests, and treatments.

Bio-Creative Challenge and Workshop: These workshops provide datasets for

information extraction tasks in the biological domain. We only use three datasets

namely BC4CHEMD (Chemical) (Krallinger et al., 2015), BC5CDR (Chemical and

disease) (Wei et al., 2015) and BC2GM (gene or protein) (Smith et al., 2008). We

consider these datasets since they are similar to biomedical texts and can be augmented

to be trained together to generalize on the extraction of some of the entities.

Others: Apart from these 12 datasets we also include CRAFT (Bada et al., 2012),

AnatEM (Pyysalo and Ananiadou, 2014), Linnaeus (Gerner et al., 2010), JNLPBA (Kim

et al., 2004), Ex-PTM (Pyysalo et al., 2011) and NCBI-Disease (Doğan et al., 2014)

to increase our training and evaluation set. They include entities such as anatomy,

species, diseases, cell-line, DNA, RNA, gene or protein and chemicals.

Entity Type Normalization: Since we intend to train together with 18 biomedical

datasets, we find that there are entity types like disease in BC5CDR, which are a

specific type of another entity problem in i2b2 datasets. However, we cannot map them

together into any particular group since some entities are problems but not diseases

for example numb right leg, bleeding or slow to awake. We cannot also separate them

altogether because of the subtle distinction between such entity types. So, to avoid
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confusion and also to compare our approach with the current state-of-the-art results

on each dataset, including single-task specific models, we do not normalize any entity

types. However, we want to reap the benefits of training with more data of similar

contexts (because of similar entity types), which we hypothesize will improve our model.

47 distinct entity types have been considered across all 18 datasets. Distribution of

the entity types for each dataset is present in Table 2.3 and 2.4 for reference.

Data Preprocessing: We have done the experiments on 18 biomedical datasets

available in different formats. We used the BIO annotated files for the 15 publicly

available datasets and automatically extracted the spans based on the tags. The three

i2b2 files have different format. They have individual biomedical reports containing

multiple sentences that may or may not contain the entities. We preprocessed them

by considering each statement as a sample without rejecting any sentence. Thus we

bring all the datasets into a common format. Each sample in our preprocessed data

contains the id(indicating the dataset: the sample origin), text, answers, span, number

of answers present in the text, entity type, question context, definition of entities, and

top ten frequently occurring examples with counts. We grouped similar entity types

to form entity groups and add entity group definitions that can be used for further

research.

2.3.4 Rule-based Template Creation

We use the following rules to create contexts for each knowledge type.

Entity: The first and the most specific context is the Entity type name (ek) itself.

We use this knowledge since it is the minimum text required to differentiate between

multiple entities present in each dataset.

Question: We create a knowledge context Question (Qk), using simple rules, like:

Qk = What are the [ek] mentioned in the text ?

19



We use this knowledge to see how much the query-guided format of knowledge with

entity type helps the recognition task. This format simulates the recognition task as a

question-answering task.

Definition: To get knowledge context (Dk), we find the corresponding scientific

definition of each entity type from UMLS Meta-thesaurus (Bodenreider, 2004) by

considering the entity type as a concept. Other sources include a definition of an

entity type in the challenge dataset and online resources (Wikipedia). Few entity

types are not directly available as concepts or have significantly vague or extensive

definitions. To be precise and be under the limit of the maximum sequence length of

512, we search for other sources such as Wikipedia.

Dk ∈ {UMLS ∣ Challenge ∣ Online Resource}

This knowledge context is used since the definition helps us understand each entity

type. We use definition as knowledge to help the NER model by instruction-based

guidance. We use definitions like:

A cell type is a classification used to distinguish between morphologically or pheno-

typically distinct cell forms within a species. Cancer is a group of diseases involving

abnormal cell growth with the potential to invade or spread to other parts of the body.

Proteins are large biomolecules, or macromolecules, consisting of one or more long

chains of amino acid residues.

Examples: To determine representative examples of an entity type, we find the top ten

most frequent entities for each type from the entire training dataset. We concatenate

the entity type ([ek]) with these ten entities to generate the final knowledge context

(Egk) and prepend this in front of the text.

We use this knowledge to provide an example-based guidance to the model.

All: is just the concatenation of all of the above knowledge contexts (ek, Qk, Dk, and

Egk).
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The motivation behind using the entity type and definition as knowledge context is

that the neural model can leverage the information present to attend to correct entities.

If we use the question as a context, the task becomes a multi-answer question-answering

task. We use examples as knowledge with the hypothesis that our model will choose

the entities that can belong to the same categories as the examples understanding its

associations. We combine them to see if we can leverage the benefit for each of the

four knowledge contexts together.

The distribution of each of the entities across each dataset for Training, Validation,

and Test splits (both positive and negative samples) and more details about the

dataset preparation can be found in Table 2.3 and 2.4.

We treat each sentence in a medical document or paragraph as an individual

sample. If a sentence has an entity corresponding to a context, we consider it a

positive sample for that context. Similarly, we treat a sentence that does not have an

entity for a corresponding context as a negative sample for that context. However,

these sentences can contain entities for other entity types. Since many datasets do

not provide a validation split, we randomly sample from the train split to create our

validation data. Overall, our dataset has 398495 train, 148166 dev, and 502306 test

samples.

2.3.5 Knowledge Guided NER Model

We choose the BERT-base cased version (Devlin et al., 2019) as our base model. In

our approach, given a text C, we create a knowledge context Ki for each context type.

We need to find the spans of entities Sstart and Send. So, we define the input to the

BERT model as follows, the knowledge context tokens Ki = {kij} are prepended to the

text tokens, C = {cj}. The sequence of tokens, {[CLS], ki1, ..kim, [SEP ], c1, ..cn, [SEP ]}

is given as input to the BERT model where m is the size of knowledge context Ki
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Figure 2.2: BERT-CNN for Multi-Answer KGQA

and n is the size of text C. For each token in our baseline model, we predict B, I,

and O using a feed-forward layer.

2.3.6 Re-contextualization

We modify the BERT-base model by adding a re-contextualization layer consisting

of a two-dimensional convolution layer. This layer aims to leverage information from

adjacent or local token embeddings and help in the better start and end tag prediction

of the entities. As BERT uses multiple layers of attention that jointly focus on all

the tokens, we add this CNN layer with a window of W < 5 to focus on neighbor

tokens only. We take the CNN layer’s outputs and feed them to the final feed-forward

layer to predict the start and end tags. Figure 2.2 represents our BERT-CNN model’s

end-to-end architecture.

2.3.7 Training and Testing

During training, the context, X (combination of knowledge, Ki and given text,

C) has gold annotations (yi) of B, I and O for each token (xi). We calculate the
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cross-entropy loss for each token xi as:

Ltoken = −
M

∑
c=1

yxi,clog(Pxi,c)

where M is the total number of classes (B, I, O), yxi,c is a binary indicator of

whether the label c is the correct classification of a token xi, Pxi,c is the predicted

probability of xi belonging to class c.

The model is trained end-to-end with the above loss. During inference, we consider

the tokens xi present only in the text C. Text chunks that start from label B and

continue till the last I tag are predicted as entities. We feed the text with a different

context and text input for each entity type. We train our model jointly on a processed,

combined dataset of 18 biomedical datasets and compare the performance when trained

individually.

2.4 Experiments

2.4.1 Experimental Setup and Training Parameters

We use a batch size of 256 and a learning rate of 5e-5 for all our experiments. The

maximum sequence length of 128/256 depends on the 99th percentile of the input

token lengths. We train using 4 NVIDIA V100 16GB GPUs, with a patience of 5

epochs. We report the mean F1 scores for three random seeds; the deviation is also

reported. We apply a two-dimensional convolution layer on top of BERT contextual

token embeddings for the BERT-CNN model. The convolution layer uses a 5 × 5 size

kernel. The stride size is (1,2), where one is across sentence dimension, and two is

across word embedding dimension. We also perform circular padding.

We use the HuggingFace (Wolf et al., 2019), and PyTorch Deep learning framework

(Paszke et al., 2019). We train the model with the following hyperparameters, learning

rates in the range [1e-6,5e-5], batch sizes of [16,32,48,64, 256], linear weight-decay
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DATASET
F-MEASURE

T Q D E A

ANATEM 88.49 ± 0.52 89.50 ± 0.91 88.44 ± 0.94 89.97 ± 0.41 90.94 ± 0.31
BC2GM 82.11 ± 0.32 83.01 ± 0.49 81.65 ± 0.77 82.25 ± 0.22 83.47 ± 0.27
BC4CHEMD 90.02 ± 0.56 91.84 ± 0.79 89.44 ± 0.79 90.43 ± 0.22 92.39 ± 0.13
BC5CDR 87.92 ± 0.54 90.02 ± 0.99 87.74 ± 0.84 88.42 ± 0.33 90.50 ± 0.24
BIONLP09 89.16 ± 0.29 91.51 ± 0.55 58.21 ± 0.42 89.39 ± 0.41 91.94 ± 0.32
BIONLP11EPI 85.82 ± 0.69 87.96 ± 1.03 80.84 ± 0.53 86.32 ± 0.45 88.66 ± 0.27
BIONLP11ID 83.93 ± 0.99 86.14 ± 1.63 83.09 ± 1.24 84.12 ± 0.69 87.36 ± 0.43
BIONLP13CG 85.32 ± 0.89 88.51 ± 0.57 84.90 ± 1.45 87.82 ± 0.79 90.16 ± 0.21
BIONLP13GE 82.05 ± 0.79 85.40 ± 0.82 74.86 ± 0.87 82.54 ± 0.70 85.81 ± 0.64
BIONLP13PC 89.36 ± 0.37 90.97 ± 0.54 88.63 ± 0.75 90.11 ± 0.25 91.65 ± 0.27
CRAFT 85.81 ± 0.43 88.27 ± 0.65 83.97 ± 0.87 88.94 ± 0.21 90.21 ± 0.19
EXPTM 84.19 ± 1.07 85.75 ± 1.07 78.76 ± 0.69 84.80 ± 0.77 87.08 ± 0.36
JNLPBA 74.06 ± 0.28 79.19 ± 0.64 67.87 ± 0.90 74.76 ± 0.34 78.88 ± 0.21
LINNAEUS 88.39 ± 0.69 89.71 ± 1.37 87.66 ± 1.13 90.70 ± 0.83 92.63 ± 0.33
NCBIDISEASE 88.76 ± 0.51 89.82 ± 1.08 88.67 ± 0.76 88.21 ± 0.56 89.72 ± 0.42
2010-i2b2 89.93 ± 0.11 92.63 ± 0.22 89.92 ± 0.29 90.22 ± 0.05 92.67 ± 0.06
2011-i2b2 90.37 ± 0.18 92.67 ± 0.29 90.40 ± 0.32 91.97 ± 0.07 93.68 ± 0.05
2012-i2b2 79.34 ± 0.86 83.98 ± 1.03 79.48 ± 1.32 78.11 ± 1.21 83.12 ± 0.25

Table 2.1: F-measure of BERT-CNN Model Using Different Knowledge Types: Entity

Type (T), Question (Q), Definition (D), Examples (E), and All of Them Together (A).

The Best Scores Are in Bold, Second Best Is Underlined. The Mean of Ten Random

Seed Runs Is Reported along with the Standard Deviations.

in the range [0.001,0.1] and warm-up steps in the range of [100,1000]. We use the

BERT-base-cased version for all our models. The BERT-base-cased model has nearly

110M parameters.

2.4.2 Entity Distribution in the Dataset

The number of samples present in Table 2.3 and 2.4 is created directly from the

train, validation, and test samples of 18 biomedical datasets. The i2b2 datasets do not

have separate validation data splits. We use 30% of the samples from training data as

validation data. The Entity Mentions represents the total number of entities present

for the datasets in all train, validation, and test samples. Since each sample data

24



DATASET
PRECISION RECALL

T Q D E A T Q D E A

ANATEM 88.70 ± 0.47 89.72 ± 0.77 88.90 ± 0.66 90.13 ± 0.42 91.15 ± 0.36 88.28 ± 0.82 89.28 ± 1.10 87.98 ± 1.27 89.80 ± 0.46 90.74 ± 0.31

BC2GM 81.78 ± 0.28 82.55 ± 0.36 81.55 ± 0.62 82.00 ± 0.26 83.12 ± 0.29 82.44 ± 0.56 83.48 ± 0.70 81.74 ± 0.95 82.49 ± 0.31 83.82 ± 0.41

BC4CHEMD 90.53 ± 0.41 92.23 ± 0.62 90.08 ± 0.39 91.05 ± 0.19 92.77 ± 0.18 89.52 ± 0.74 91.46 ± 0.99 88.80 ± 1.22 89.83 ± 0.26 92.02 ± 0.27

BC5CDR 88.22 ± 0.29 90.48 ± 1.01 88.18 ± 0.59 88.86 ± 0.19 90.96 ± 0.21 87.63 ± 0.87 89.57 ± 1.00 87.31 ± 1.14 87.99 ± 0.52 90.04 ± 0.30

BIONLP09 88.95 ± 0.33 90.83 ± 0.53 50.04 ± 0.66 89.78 ± 0.35 91.62 ± 0.25 89.36 ± 0.41 92.20 ± 0.64 69.58 ± 0.59 89.00 ± 0.64 92.26 ± 0.52

BIONLP11EPI 87.46 ± 0.46 88.79 ± 0.87 78.74 ± 0.65 87.77 ± 0.36 89.71 ± 0.35 84.25 ± 1.11 87.14 ± 1.22 83.06 ± 0.72 84.91 ± 0.80 87.64 ± 0.43

BIONLP11ID 84.88 ± 1.43 86.74 ± 1.47 83.79 ± 1.89 85.00 ± 0.90 87.91 ± 0.49 83.02 ± 1.16 85.56 ± 1.94 82.42 ± 1.33 83.26 ± 0.59 86.81 ± 0.57

BIONLP13CG 87.11 ± 2.21 89.92 ± 0.82 86.61 ± 3.07 88.91 ± 1.66 91.19 ± 0.19 83.64 ± 0.57 87.15 ± 0.59 83.31 ± 0.75 86.78 ± 0.37 89.15 ± 0.30

BIONLP13GE 79.45 ± 0.98 83.03 ± 0.78 70.27 ± 0.99 79.98 ± 0.92 83.33 ± 0.71 84.84 ± 1.23 87.91 ± 0.98 80.10 ± 1.29 85.28 ± 1.25 88.44 ± 0.74

BIONLP13PC 89.13 ± 0.52 90.37 ± 0.73 88.42 ± 0.97 90.21 ± 0.51 91.20 ± 0.31 89.60 ± 0.39 91.58 ± 0.55 88.84 ± 0.77 90.00 ± 0.35 92.11 ± 0.31

CRAFT 86.08 ± 0.55 88.29 ± 0.47 82.94 ± 0.93 89.02 ± 0.47 90.71 ± 0.16 85.55 ± 0.83 88.25 ± 0.95 85.03 ± 1.01 88.86 ± 0.39 89.71 ± 0.37

EXPTM 83.86 ± 0.93 84.97 ± 0.96 74.99 ± 0.73 84.59 ± 0.62 86.57 ± 0.36 84.53 ± 1.55 86.55 ± 1.34 82.93 ± 1.12 85.01 ± 1.15 87.59 ± 0.53

JNLPBA 71.11 ± 0.53 76.95 ± 0.66 66.36 ± 1.02 71.41 ± 0.83 76.87 ± 0.32 77.26 ± 0.35 81.57 ± 0.67 69.48 ± 1.84 78.46 ± 0.33 81.00 ± 0.19

LINNAEUS 90.17 ± 1.30 90.62 ± 1.72 89.27 ± 1.71 92.70 ± 1.72 93.51 ± 0.59 86.69 ± 0.63 88.75 ± 1.49 86.11 ± 1.04 88.80 ± 0.42 91.76 ± 0.31

NCBIDISEASE 87.21 ± 0.74 88.29 ± 1.17 87.18 ± 0.71 86.37 ± 0.70 87.98 ± 0.53 90.37 ± 0.37 91.42 ± 1.14 90.22 ± 1.05 90.13 ± 0.72 91.52 ± 0.44

2010-i2b2 88.88 ± 0.10 91.75 ± 0.25 88.76 ± 0.31 89.21 ± 0.10 91.90 ± 0.07 91.00 ± 0.21 91.52 ± 0.19 91.10 ± 0.35 91.24 ± 0.11 93.44 ± 0.06

2011-i2b2 90.12 ± 0.12 92.39 ± 0.36 90.04 ± 0.30 91.85 ± 0.13 93.45 ± 0.04 90.61 ± 0.28 92.96 ± 0.23 90.76 ± 0.39 92.10 ± 0.10 93.89 ± 0.07

2012-i2b2 78.38 ± 1.87 84.84 ± 1.48 78.69 ± 2.70 76.87 ± 2.69 83.74 ± 0.50 80.33 ± 0.29 82.41 ± 0.61 80.29 ± 0.45 79.41 ± 1.27 82.34 ± 0.17

Table 2.2: Precision and Recall of BERT-CNN model using different knowledge types:

Entity Type (T), Question (Q), Definition (D), Examples (E), and all of them together

(A). The best scores are in bold, second best is underlined. The mean of ten random

seed runs is reported along with the standard deviations.

can have multiple entities, the number is higher than the total positive and negative

samples for the dataset.

2.4.3 Baseline Models

We consider the following models as strong baselines for our work. The first set of

baselines is the BERT models pre-trained on biomedical text BioBERT (Lee et al., 2020)

and MimicBERT (Si et al., 2019) finetuned using traditional NER task. BioBERT

and MimicBERT are the current state-of-the-art (SOTA) models for NER on multiple

biomedical datasets. The second set of baselines is BioBERT, MimicBERT, and

BERT-MRC finetuned on the knowledge-guided NER task. BERT-MRC is initialized

with BioBERT base weights, the same as our BERT-CNN model. BERT-MRC model

is another concurrent query-driven NER model (Li et al., 2020), that models the task as

a machine reading comprehension task. It predicts all possible start and end positions

and predicts valid start-end spans through another feed-forward layer that takes

input from the predicted start-ends. This model shows considerable improvements in
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general domain query-based NER tasks. The above baselines are trained on individual

datasets as each dataset has a separate set of entities. Furthermore, we train another

baseline using BioBERT, TradBioBERT, to combine all the entities to utilize the joint

dataset but follow the traditional NER task. More details about this baseline are

present in section 2.5.2.

2.5 Results and Discussion

2.5.1 Biomedical NER

Table 2.5 compares our method with our baselines on the 18 biomedical NER

datasets. Our methods use the best knowledge context identified on the validation set

performance. Current state-of-the-art for AnatEM and Linnaeus use specific lexicons

and entity-specific rules that do not generalize and are not directly comparable to neural

models, although our methods approach their performance. On BC4CHEMD and

BC5CDR, the state-of-the-art methods are BERT-Base models fine-tuned specifically

on chemical and other science corpora, whereas our methods use BioBERT as the

backbone. Still, our models are within the 1% F1 score. 2011-i2b2 does not have a

task specific to NER. Therefore, it does not have current state-of-the-art methods but

still has annotations for the named entities we use for joint training. On the remaining

11 datasets, we achieve state-of-the-art using BERT-Base and beat methods that use

BERT-Large. The small difference in performance on JNLPBA and NCBI-Disease

datasets with the state-of-the-art is not statistically significant to be considered an

improvement. The state-of-the-art scores are F1 values from multiple works (Crichton

et al., 2017; Si et al., 2019; Lee et al., 2020; Beltagy et al., 2019).

Our task formulation gives a significant boost in performance, which is observed in

the improvements made by our BioBERT and MimicBERT base models compared to
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the baseline models following traditional NER formulation. Our BERT-CNN model

further improves performance over the BioBERT knowledge-guided QA model on 12

tasks with a margin of 0.5 to 2.2% (173 - 1934 samples). When it under-performs, it

is within a margin of 0.5% (less than 100 samples).

2.5.2 Ablation Studies and Analysis

DATASET
P ∆P R ∆R F ∆F

ANATEM 87.34 -2.38 89.31 0.03 88.31 -1.19
BC2GM 79.91 -2.64 81.63 -1.85 80.76 -2.25
BC4CHEMD 92.56 0.33 91.10 -0.36 91.82 -0.02
BC5CDR 87.67 -2.81 90.13 0.56 88.88 -1.14
BIONLP09 86.92 -3.91 84.91 -7.29 85.90 -5.61
BIONLP11EPI 84.57 -4.22 86.97 -0.17 85.75 -2.21
BIONLP11ID 87.98 1.24 84.64 -0.92 86.27 0.13
BIONLP13CG 84.01 -5.91 80.84 -6.31 82.39 -6.12
BIONLP13GE 72.33 -10.7 86.44 -1.47 78.76 -6.64
BIONLP13PC 86.40 -3.97 87.21 -4.37 86.8 -4.17
CRAFT 86.35 -1.94 85.65 -2.60 86.00 -2.27
EXPTM 75.28 -9.69 81.51 -5.04 78.27 -7.48
JNLPBA 76.85 -0.10 81.79 0.22 79.24 0.05
LINNAEUS 91.28 0.66 86.15 -2.60 88.64 -1.07
NCBIDISEASE 83.86 -4.43 87.25 -4.17 85.52 -4.30
2010-i2b2 89.87 -5.19 90.75 -5.06 90.31 -5.12
2011-i2b2 91.49 -2.64 92.25 -2.02 91.87 -2.33
2012-i2b2 82.05 -3.00 82.31 -3.35 82.18 -3.17

Table 2.6: Change in Performance When BERT-CNN Model Is Trained Individually

on Respective Datasets with Question Context. Negative ∆ for Precision (P), Recall

(R), and F-measure (F) Indicates Multi-task Is Better. ∆ < 1 (Significant Difference)

Are Marked Bold.

Effect of different knowledge contexts: Since we incorporate five different

knowledge contexts to help in the NER task, we identify which knowledge context

is better across all the 18 datasets. The BERT-CNN model’s performance with the

knowledge contexts across the test set is shown in Table 2.1 and 2.2. The values are
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Figure 2.3: Attention Scores of Our BERT-CNN Model Trained with Question Context

for Three Knowledge Context Probes, “What ?”, “problem” and a Context Where

We Remove the Entity Type. For the Last, the Model Attends to All Three Entities

Present pain (problem), PCA, and PO medication (treatment).

entity precision, recall, and exact match F1 scores. We observe Question and All

contexts perform consistently better on all the datasets. We believe this is because of

the “what” token that helps the model find entities much better than just a text. To

verify our hypothesis, we probe our BERT-CNN model trained with Question context

with multiple probes like “what problem?”, the complete question, and “problem” for

20 samples and observe the change in attention scores. As the model is trained with

a template, the best prediction is observed on the complete question, with the least

scores for only the entity type. Attention scores for “what” were consistently high.

Figure 2.3 shows examples of such probes. We can observe our model identifies all the
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Figure 2.4: Effect of Train Data Size on Validation Data Using BERT-CNN Model

Trained and Validated Individually with Five Contexts.

entities and the entity-type acts as a filter. Definition and Examples under-perform, we

believe the definition might be too generic for an entity type and examples, although

representative of class might not be comprehensive.

Contributions of Question words: To further understand the contributions of

“what”, we train the BERT-CNN model with different versions of Question context

like ”What <entity type> ?” and ”What <entity type>”. We observe that the F1

performance for these two variations is similar (within 1%), whereas they underperform

by 1% to 5% when compared to original question contexts. This experiment shows

that our well-formed question as knowledge context enhanced the model’s performance.

We also observe that certain words are repeated for each training sample only for

the question context, i.e., “What are the” and “in the text?”. In all other contexts,

including only entity type, the context words vary given a sample. For example,

the definition and examples have a different set of words unique to that entity. We

hypothesize the difference in performance might be related to the presence of such

common repeated words and the model is storing discriminative information between

different entity types in the embeddings of these repeated words, and given the

entity type can retrieve the relevant information from the weights leading to better

performance. This effect is similar to the [CLS] token effect observed in BERT-based
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transformer encoders (Devlin et al., 2019), where the discriminatory classification

features are stored in the [CLS] token. This can be observed with our experiments

with only “<entity type>”, “What <entity type>”, “What <entity type> ?” and the

full question with a pattern of overall increased performance. It can also be observed

in Figure 2.5 where all the common words attend strongly to the predicted entity

type, whereas the word “mentioned”, which is not used for the question template for

a few entities such as “Person” does not attend strongly to the entities but only to

the separator token.

Effect of Multi-task training: To analyze how much the multi-task training

strategy affects the performance, we define an experiment where we keep the model

(BERT-CNN) and the knowledge context Question the same, but train on each

individual dataset and compare with joint training. Table 2.6 shows the results of

our experiments. Individual dataset training improves F1 scores marginally (max

0.13%) on only two datasets, whereas joint training substantially improves performance

(0.02% - 7.48%) on the 16 remaining datasets. This result empirically validates our

hypothesis that training on combined huge biomedical datasets helps. The datasets

like Bionlp11ID and JNLPBA, with unique entities, do not show much difference on

further analysis. The datasets that improve significantly have common entity types

like Gene/Protein, Chemical, Disease, Problem, Treatment, and Test that helps the

model generalize well and learn better representations. We noticed that an entity’s

definition was consistent when it was present in multiple datasets. It ensured that the

model was not confused by different definitions. On the other hand, some identical

entities had different names in different datasets but cannot be normalized into the

same entity group. For example, the disease was called Problem in i2B2, Disease in

NCBI-Disease, and by a more specific name Cancer in Bionlp13CG, but some entities
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are problems but not specifically diseases.

Effect of Knowledge Context compared to Individual entity training: In

this experiment, we study the effect of knowledge context on our task formulation. We

compare our single BERT-CNN model trained with Question context to six different

BERT-CNN models, each trained only for one specific entity type detection without any

context. The entity types are selected such that they are present in multiple datasets

and have the most significant number of samples. Table 2.7 summarizes the results.

The results show that knowledge context and training jointly with multiple entity

types help improve all entity types’ performance compared to individual entity-specific

models. The performance improvement for Gene/Protein is the most significant.

ENTITY↓
PRECISION RECALL F-MEASURE
No-K K No-K K No-K K

Gene/Protein 67.33 84.19 74.01 86.73 70.51 85.44
Chemical 89.04 91.84 88.42 91.15 88.73 91.49
Disease 83.17 83.48 86.62 88.00 84.86 85.68
Problem 91.95 93.28 92.83 94.18 92.39 93.73
Treatment 91.78 92.91 91.98 93.47 91.88 93.19
Test 92.12 94.09 93.23 94.67 92.67 94.38

Table 2.7: Comparison of Entity Specific (No-K) BERT-CNN Model with Question

Context Provided Multi-entity BERT-CNN Model (K). Better Values Are in Bold.

Effect of Train Set Size: In this experiment, we study how the train set size affects

the model performance. We sample different percentages of training samples from

the total train dataset as seen in Figure 2.4. We ensure a balanced sampled train set

with an equal number of positive and negative samples and evaluate across all entities.

The training samples are chosen from each of the datasets to ensure the model is not

biased towards a dataset or entity type. We do not change any parameters of the
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model. It can be observed that the performance of the model increases rapidly and

then tapers down for each of the context types. We can infer that the model can

achieve quite a good performance (84%) with just 5% of training samples but needs

much more samples to achieve state-of-the-art performance. As training samples go

beyond 5%, the precision, recall, and the F1-scores for knowledge types Question and

All separate themselves from the other contexts.

Transfer Learning: We also examine our system’s transfer learning capability on

six entity groups: gene/protein, chemical, disease, problem, test, and treatment, since

they are present in multiple datasets. We map chemical and simple chemical to

generic chemical group and amino acid, gene, gene or gene product and protein to

generic protein group. For each group type, we select only those datasets where they

appear. Out of the selected dataset, we test our model on samples of one dataset

(target domain) for each of the six entity types while training and validating the

remaining selected datasets (source domain). We only keep samples for these entity

types in the train, dev, and test data. We choose the target domain for each entity to

be the dataset that produces the best overall F1 score on the entire data with the

BERT-CNN model. We consider Bionlp11ID, BC4CHEMD, and BC5CDR datasets as

the target domain for gene/protein, chemical, and disease, respectively, and 2010-i2b2

for the problem, treatment, and test. Table 2.8 summarizes the results.

The results show a varied degree of transfer learning, losing only 0.5% F1 in some

tasks and by as much as 20% in other tasks, which is in line with earlier observed

performance loss (Bethard et al., 2017).

The difference in source and target F1-scores is remarkably close for Problem,

Treatment, and Test entities. Although the two domains (text style and topics) are

close for these entities, they have different entities. Chemical shows a significant drop,
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but still, our model achieves 75% F1 despite the target domain containing many prior

unseen entities. For Gene/Protein, the source and target domain are nearly the same

set of entities.

Training in Traditional NER approach with Combined Training Data: We

also train Biobert (TradBioBERT in Table 2.5) in the traditional way of named entity

recognition on the entire training data and without any external knowledge context.

We use BEnt, IEnt tags for each of the 47 named entities present in the full dataset

along with the O tag (others), resulting in a total of 95 target classes. It is trained

as a multi-entity sequence classification task. The results are low as expected. We

find the maximum F1-score of 78.22 and 75.25 for BC4CHEMD and NCBIDisease,

respectively, followed by BIONLP11EPI, BC5CDR, ExPTM, BC2GM, 2010-i2b2, and

2011-i2b2 of 52.01 and below. The remaining datasets report a significantly lower

F1-value of 13.89 and below. This low performance can be attributed to significantly

increased confusion due to many target entity classes, leading to a rise in labeling

errors. The poor results validate our approach of using generic B-ANS, I-ANS, and O

instead of using BI tags for each entity type.

2.5.3 Nested Named Entity Recognition

We evaluate our KGQA model with a nested named entity dataset GENIA (Kim

et al., 2003). The results are present in Table 2.9. We can observe the All knowledge

context outperforms previous methods, including specific graph-based methods that

use state-of-the-art transformer encoders such as BERT. Moreover, our method uses

the BERT-base version with 110M parameters, whereas all the previous methods use

BERT-large with 340M parameters. This observation strongly supports our hypothesis

that a simpler task formulation reduces labeling error and confusion. Table 2.10 shows
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predictions of our model with “all” as knowledge context.

2.5.4 Model Explanation with Attention Probing

We study our BERT-CNN model using attention-value heatmaps and try to explain

how our model uses the knowledge contexts to extract specific entities from a given

dataset. To show this, we choose a sample “Patient was admited , pain was managed

with a PCA and later with PO medication.” where there are multiple entities pain

(problem), a PCA and PO medication (treatment), Patient (person) and admitted

(occurrence).

(a) Problem - Question (b) Treatment - Question

(c) Person - Question (d) Occurrence - Question

Figure 2.5: Attention Probes for Different Knowledge and Entity Types.
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(a) Problem - Entity Type (b) Problem - Definition

(c) Problem - Example (d) Problem - All Knowledge

Figure 2.6: Attention Probes for Different Knowledge and Entity Types.

Using Question as Knowledge Context

From the Figures 2.5a, 2.5b, 2.5c and 2.5d it can be observed that when the knowledge

context is in a question format then, each of the entity types present in the knowledge

context guide the model to choose the correct entities. It can be observed from the

higher attention values for those specific entities.

Using Entity Type, Definition, Example and “All” as Knowledge Context

We also probed our model to extract the attention weights for each of the other four

knowledge contexts. Here we show this only for the problem entity type. In Figure

2.6a it can be seen that attention weight between problem in the knowledge context
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and pain in the text is highest. Figure 2.6b shows keywords like disorder in the

definition representing the meaning of the entity type problem highly attends to the

entity pain. On using the example as knowledge, it can be seen from Figure 2.6c,

keywords like hypertension, pain, nausea, and fever highly attend to the entity pain

in the text. This observation is in line with our hypothesis that providing similar

entities belonging to the same entity group might help find the entity in a text. Finally,

in Figure 2.6d, it can be seen that the keywords from the question, definition, and

example all collectively help to predict the entity pain in the text.

2.5.5 Error Analysis

We also perform error analysis at a token level for each dataset for all knowl-

edge context across the datasets with the BERT-CNN model. We notice that

all the top five datasets where the model made maximum token prediction errors

BioNLP13GE(20.98%), BC2GM (17.79%), ExPTM (17.07%), BioNLP11EPI (15.54%)

and BioNLP09 (12.75%) have single entity type Gene or protein. It indicates the

difficulty in predicting all the tokens of protein entities. For Linnaeus, the model made

30.27% of the errors due to the misclassification of tags (B instead of I and vice-versa).

We found 54.41% of errors in BC4CHEMD are because of the model predicting more

tokens than actually present, and 59.79% of errors of NCBIDisease are caused by the

model predicting less number of tokens than actually present.

A few examples are shown in Table 2.11. In example 8, the model mistakenly

identified VP22 and tegument protein as separate protein entities. In example 9,

the model also considers the associated entities Lutz & Neiva. These errors indicate

that span location identification still poses a significant challenge in a few cases and

provides scope for further improvement.
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2.6 Miscellaneous Experiments

2.6.1 Performance Comparison on Test Data

Table 2.12 shows the performance comparison of our best model with the state-of-

the-art on test data of 18 datasets. The F-measures (bold) are the best performance on

each dataset. The state-of-the-art for Linnaeus and AnatEM datasets use dictionaries

developed without a clear train/test split; hence our scores are not directly compara-

ble. Also, 2011-i2b2 does not have state-of-the-art concept extraction performance.

Improvements in 10 datasets are significant as compared to the state-of-the-art.

Dataset Entities SOTA F1 KGQA P KGQA R KGQA F1 Significant KGQA ± Confidence Interval

ANATEM 4616 91.61 90.29 89.43 89.85 ± 0.48 No 0.82

BC2GM 6322 81.69 82.89 83.39 83.14 ± 0.54 Yes 0.91

BC4CHEMD 25331 92.36 92.56 91.10 91.82 ± 0.58 No 0.32

BC5CDR 9808 90.01 90.09 89.62 89.62 ± 0.71 No 0.58

BIONLP09 3589 84.20 91.55 92.95 92.25 ± 0.57 Yes 0.89

BIONLP11EPI 5730 78.86 88.58 87.40 87.99 ± 1.10 Yes 0.82

BIONLP11ID 3810 81.73 87.98 84.64 86.27 ± 1.80 Yes 1.05

BIONLP13CG 7861 78.90 90.62 88.56 89.58 ± 0.68 Yes 0.65

BIONLP13GE 4354 78.58 83.77 88.01 85.84 ± 0.93 Yes 1.03

BIONLP13PC 5306 81.92 90.14 92.09 91.11 ± 0.12 Yes 0.74

CRAFT 18770 79.56 90.54 89.19 89.86 ± 0.55 Yes 0.42

EXPTM 2308 74.90 85.97 85.30 85.64 ± 0.61 Yes 1.36

JNLPBA 8673 78.58 76.85 81.79 79.24 ± 0.45 No 0.85

LINNAEUS 1428 95.68 90.69 90.53 90.61 ± 0.28 No 1.35

NCBIDISEASE 956 89.36 87.89 91.56 89.69 ± 0.37 No 1.92

2010-i2b2 30140 90.25 95.27 95.91 95.59 ± 0.30 Yes 0.29

2011-i2b2 25271 - 94.70 94.94 94.82 ± 0.41 - 0.30

2012-i2b2 15301 80.91 84.83 85.25 85.04 ± 1.18 Yes 0.59

Table 2.12: Precision(P), Recall(R), and F-measure(F1) Scores for Our Best Model

Were Measured by Running with Ten Seed Values. The Significant Column Shows

Whether Our F1 Scores Are Statistically Significantly Better than State-of-the-art

F1 (95 % Confidence Interval Based on Wilson Score Intervals (Wilson, 1927)). Best

F-measures Are in Bold.
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2.6.2 Training with Balanced Dataset

We generated a sample for each text available in the source data. The text may or

may not contain a particular entity. So we generate negative samples for each text and

each available entity type of the dataset, making the datasets unbalanced. Table 2.13

shows that the negative samples do not impact our models’ performance. The results

are taken using the BERT-CNN model with Question as a context. Negative values in

∆P ,∆R, and ∆F means training on unbalanced data is better than on balanced data.

2.7 Conclusion

We reformulated the NER task as a knowledge-guided, context-driven QA task

and showed that it leads to better F scores. Our models using query-text attention are

more explainable and address some of the significant challenges faced by current NER

systems. Our approach has achieved the above state-of-the-art F measures for 11 of

the common public biomedical NER datasets. In the future, we plan to perform more

experiments, such as few-shot learning between different entity groups, and adding

specific loss functions and logical constraints for NER tasks.
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Dataset Entity Entity Mentions Train + Train - Dev + Dev - Test + Test -

AnatEM Anatomy 13701 3514 2169 1122 959 2308 1405

BC2GM Gene (Gene/Protein) 24516 6404 6071 1283 1214 2568 2424

BC4CHEMD Chemical 84249 14488 16002 14554 15909 12415 13738

BC5CDR
Chemical 14913 2951 1595 3017 1551 3090 1688

Disease 12852 2658 1888 2727 1841 2842 1936

BioNLP09 Protein (Gene/Protein) 14963 4711 2716 1014 433 1700 739

BioNLP11EPI Protein (Gene/Protein) 15881 3797 1896 1241 714 2836 1282

BioNLP11ID

Protein (Gene/Protein) 6551 1255 1193 446 265 955 977

Organism 3469 1120 1328 270 441 779 1153

Chemical 973 334 2114 77 634 151 1781

Regulon-Operon 87 9 2439 19 692 43 1889

BioNLP13CG

Gene or Gene Product (Gene/Protein) 7908 1956 1077 393 610 1185 721

Cell 4061 1388 1645 399 604 714 1192

Simple Chemical (Chemical) 2270 645 2388 274 729 431 1475

Cancer 2582 908 2125 324 679 665 1241

Organ 2517 919 2114 305 698 565 1341

Organism 2093 827 2206 267 736 486 1420

Tissue 587 259 2774 77 926 153 1753

Amino Acid 135 38 2995 17 986 34 1872

Cellular Component 569 247 2786 78 925 138 1768

Organism Substance 283 131 2902 33 970 81 1825

Pathological Formation 228 91 2952 35 968 73 1833

Anatomical System 41 16 3017 3 1000 17 1889

Immaterial Anatomical 102 47 2986 18 985 29 1877

Organism Subdivision 98 42 2991 12 991 35 1871

Multi-Tissue Structure 857 345 2688 114 889 236 1670

Developing Anatomical Structure 35 13 3020 5 998 17 1889

BioNLP13GE Protein (Gene/Protein) 12031 1499 901 1655 1010 1936 1376

BioNLP13PC

Gene or Gene Product (Gene/Protein) 10891 2153 346 723 134 1396 298

Complex 1502 542 1957 178 679 398 1296

Simple Chemical (Chemical) 2487 596 1903 244 613 450 1244

Cellular/ Component 1013 373 2126 144 713 263 1431

CRAFT

GGP (Gene/Protein) 16108 4458 5539 1358 2105 3140 3634

Taxon (Taxonomy) 6835 2511 7486 994 2469 1710 5064

CHEBI (Chemical) 6018 1908 8089 586 2877 1344 5430

CL (Cell Line) 5487 2058 7939 540 2923 1257 5517

SO (Sequence Ontology) 18856 4303 5694 1711 1752 3023 3751

GO (Gene Ontology) 4166 1499 8498 336 3127 1344 5430

EXPTM Protein (Gene/Protein) 4698 857 520 279 158 1160 679

Table 2.3: Data Distribution, with Counts of Entities, Number of Positive Samples

with at Least One Entity Mentions, and Negative Samples with No Target Entity.
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Dataset Entity Entity Mentions Train + Train - Dev + Dev - Test + Test -

JNLPBA

DNA 10550 4670 12146 553 1218 624 3226

RNA 1061 713 16103 89 1682 102 3748

Cell Line 4315 2591 14225 285 1486 378 3472

Cell Type 8584 4735 12081 415 1356 1403 2447

Protein (Gene/Protein) 35234 11840 4976 1137 634 2368 1482

Linnaeus Species 4242 1546 9173 520 3300 1029 5381

NCBI-Disease Disease 6871 2921 2473 489 434 538 398

2010-i2b2

Problem 18979 4213 4226 - - 5802 6590

Treatment 13809 3126 4226 - - 7234 6590

Test 13576 2426 4226 - - 4591 6590

2011-i2b2

Person 17744 7207 3990 - - 4715 2971

Problem 18869 7003 3990 - - 4384 2971

Treatment 17708 5300 3990 - - 3565 2971

Test 13514 4191 3990 - - 2786 2971

2012-i2b2

Problem 4754 2832 3597 - - 2326 2683

Treatment 7076 2341 4088 - - 1976 3033

Test 4754 1786 4643 - - 1465 3544

Occurrence 5126 2086 4343 - - 1677 3332

Clinical-Department Event 1716 852 5577 - - 655 4354

Evidential Event 1334 706 5723 - - 560 4449

Date 1201 1493 4936 - - 1076 3933

Frequency 249 207 6222 - - 159 4850

Duration 405 381 6048 - - 310 4699

Time 69 68 6361 - - 53 4956

Discharge 176 176 0 - - 109 4699

Admission 177 177 0 - - 116 4956

Table 2.4: Data Distribution, with Counts of Entities, Number of Positive Samples

with at Least One Entity Mentions, and Negative Samples with No Target Entity.
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ANATEM BC2GM BC4CHEMD BC5CDR BIONLP09 BIONLP11EPI
B
A
S
E

BioBERT 89.63 89.32 89.47 82.45 83.83 83.13 90.97 89.59 90.27 87.19 90.59 88.84 89.65 88.60 89.13 85.23 85.60 85.41

MimicBERT 86.23 85.72 85.98 79.04 80.32 79.68 88.77 85.41 87.06 84.01 86.86 85.39 87.71 84.15 85.89 79.37 77.78 78.57

BERT-MRC 72.24 75.09 73.64 73.80 74.59 74.19 86.47 85.52 85.99 71.22 73.68 72.43 74.62 70.69 72.60 77.81 67.01 72.01

TradBioBERT 4.10 1.37 2.05 54.28 47.74 50.80 79.12 77.34 78.22 42.81 58.93 49.60 7.22 3.23 4.46 54.77 46.07 50.04

SOTA - - 91.61* - - 81.69* - - 92.36 - - 90.01 - - 84.20* - - 78.86*

K
G
Q
A

BioBERT 90.29 89.43 89.85 82.47 83.36 82.91 91.93 91.11 91.52 89.63 88.80 89.21 91.35 92.21 91.78 88.26 86.77 87.51

MimicBERT 87.05 86.50 86.80 81.22 81.40 81.31 89.47 88.86 89.16 88.25 86.78 87.51 89.19 91.41 90.29 88.01 82.19 85.00

BERT-CNN 91.15 90.74 90.94 83.12 83.82 83.47† 92.77 92.02 92.39 90.96 90.04 90.50 91.62 92.26 91.94† 89.71 87.64 88.66†

BIONLP11ID BIONLP13CG BIONLP13GE BIONLP13PC CRAFT EXPTM

B
A
S
E

BioBERT 84.23 85.77 84.70 84.82 86.42 85.56 72.92 85.42 78.68 87.64 90.56 89.06 84.92 86.56 85.70 76.12 79.81 77.92

MimicBERT 83.93 81.84 82.35 77.52 80.32 78.71 64.72 65.53 65.12 81.59 85.45 83.43 81.27 79.08 80.04 66.74 67.29 67.01

BERT-MRC 80.25 73.26 76.60 74.57 69.25 71.81 77.79 75.54 76.65 76.51 76.95 76.73 75.79 72.25 73.98 76.61 76.93 76.77

TradBioBERT 4.67 2.29 3.07 0.00 0.00 0.00 53.92 31.52 39.78 0.00 0.00 0.00 0.01 0.01 0.01 45.52 47.05 46.27

SOTA - - 81.73* - - 78.90* - - 78.58* - - 81.92* - - 79.56* - - 74.90*

K
G
Q
A

BioBERT 86.34 85.58 85.96 87.18 87.28 87.23 82.28 86.58 84.38 90.14 92.09 91.11 88.18 88.61 88.39 85.97 85.30 85.64

MimicBERT 83.12 81.78 82.45 85.08 85.37 85.23 81.61 86.28 83.88 87.62 89.63 88.61 85.01 87.14 86.06 84.09 81.34 82.69

BERT-CNN 87.91 86.81 87.36† 91.19 89.15 90.16† 83.33 88.44 85.81† 91.20 92.11 91.65† 90.71 89.71 90.21† 86.57 87.59 87.08†

JNLPBA LINNAEUS NCBIDISEASE 2010-i2b2 2011-i2b2 2012-i2b2

B
A
S
E

BioBERT 69.96 78.19 73.63 92.30 86.42 89.27 86.67 89.38 88.00 85.32 83.23 84.26 91.24 90.32 90.78 79.31 75.89 77.56

MimicBERT 67.99 76.32 71.66 91.69 81.81 86.46 84.04 88.23 86.08 90.37 88.29 89.32 92.83 91.22 92.02 79.78 81.01 80.39

BERT-MRC 70.52 69.38 69.95 74.13 73.56 73.84 77.25 73.23 75.19 75.32 73.23 74.26 81.24 80.32 80.78 69.31 65.89 67.56

TradBioBERT 2.63 1.51 1.92 12.3 15.95 13.89 75.05 75.44 75.25 58.24 46.98 52.01 64.9 34.39 44.95 6.73 22.13 10.32

SOTA - - 78.58* - - 95.68* - - 89.36 - - 90.25# - - - - - 80.91#

K
G
Q
A

BioBERT 76.12 82.15 79.02 90.32 89.88 90.10 87.50 90.67 89.05 91.19 92.63 91.82 92.32 91.88 92.12 73.53 83.21 78.07

MimicBERT 74.97 80.79 77.77 86.31 85.10 85.70 86.82 88.80 87.80 91.28 92.96 92.11 92.19 92.30 92.24 81.57 84.76 83.13

BERT-CNN 76.95 81.57 79.19 93.51 91.76 92.63 88.29 91.42 89.82 91.90 93.44 92.67† 93.45 93.89 93.68 84.84 82.41 83.98†

Table 2.5: Precision, Recall, and F-measure (in Order) for 18 Datasets Compared

with Multiple Models. * Tagged Scores Are Non-BERT Systems, # BERT-large, and

Rest Are BERT-base Systems. Our Models Use Knowledge Type All or Question,

Whichever Is Observed Best on Validation Accuracy. TradBioBERT Is the BioBERT

Model Trained Traditionally (B-ek, I-ek, O Tags for Each Entity) on Combined

Training Data. Biobert and BERT-CNN Models Use 110 Million Parameters, and

MimicBERT Uses 355 Million Parameters. Best F1 Scores Are in Bold. Underlined

Are Our Best Scores, Where Our Models Are Not State-of-the-art. † Tagged Scores

Are Statistically Significantly Better than State-of-the-art (Model Is Better Including

95% Confidence Intervals Based on Wilson Score Intervals (Wilson, 1927) over Strong

Baselines). JNLPBA, NCBIDisease, and 2012-i2b2 BERT-CNN Results Are with

”Question” Knowledge, and the Rest Are with ”All” Knowledge. Dataset Statistics

Are in 2.4. Confidence Interval Bounds Are in 2.12.

47



MODEL Ð→
ENTITY ↓

BIOBERT(KGQA) MimicBERT(KGQA) BERT-CNN(KGQA)

SRC F1 TGT F1 SRC F1 TGT F1 SRC F1 TGT F1

Gene/Protein 84.83 83.27 82.46 80.75 84.99 85.63

Chemical 91.35 76.13 85.60 66.63 89.83 75.92

Disease 86.46 68.01 84.13 60.54 88.74 70.00

Problem 94.42 90.29 93.72 89.67 94.43 90.90

Treatment 94.01 89.67 93.76 89.99 94.16 90.22

Test 94.99 91.36 94.85 90.91 94.85 91.11

Table 2.8: Transfer Learning Experiment Results (Trained and Tested with Question

Context). The Metric Is the Exact Match F1 for the Source (SRC) and Target (TGT)

Domain. Bold Across Each of the Entities Are the Best, and Underlined Are the

Second Best.

Method Precision Recall F-Measure

Hyper-Graph (Katiyar and Cardie, 2018) 70.60 70.40 71.50

ARN (Lin et al., 2019) 75.80 73.90 74.80

Path-BERT (Shibuya and Hovy, 2020) 78.07 76.45 77.25

DYGIE (Luan et al., 2019) - - 76.20

Seq2Seq-BERT (Straková et al., 2019) - - 78.31

KGQA+ENTITY TYPE 77.66 74.34 75.96

KGQA+QUESTION 77.48 74.08 75.74

KGQA+DEFINITION 73.86 64.64 68.94

KGQA+EXAMPLE 79.62 77.56 78.57

KGQA+ALL 81.91 78.80 80.32

Table 2.9: Performance of BERT-CNN with Five Knowledge Contexts for GENIA (Kim

et al., 2003) Dataset. The Best Results Are in Bold.
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TEXT NESTED ENTITY PAIRS

1. Tissue-specific regulation of the rabbit 15 - lipoxygenase gene
in erythroid cells by a transcriptional silencer .

15 - lipoxygenase (Protein),

rabbit 15 - lipoxygenase gene (DNA)
2. Here, we demonstrate that the human GM - CSF receptor alpha
promoter directs reporter gene activity in a tissue-specific fashion
in myelomonocytic cells, which correlates with its expression
pattern as analyzed by reverse transcription PCR.

GM - CSF (Protein),

human GM - CSF receptor alpha promoter (DNA)
3. In unstimulated cells which do not secrete IL - 2, only Sp1
binds to this region, while in stimulated IL - 2 secreting cells
the inducible EGR - 1 protein recognizes this element.

IL - 2 (Protein),

stimulated IL - 2 secreting cells (Cell Line)

Table 2.10: Nested Entity Predictions Using the All Knowledge Contexts

Text Gold Predictions

1. The position of the magnetic bead is measured using
an inverted microscope placed beneath the flow cell .

Anatomy: cell flow cell

2. Expression of the HI - viral structure proteins is driven by
a natural 5 ’ LTR promoter and a 3 ’ polyadenylation signal,
whereas the envelope expression out of the shuttle vector
is achieved by an IRES .

Anatomy: LTR, envelope 5 ’ LTR, envelope

3. SAP is upregulated in AD and protects amyloid fibrils
from proteolysis in vitro [ 140 , 141 ] .

Anatomy: amyloid fibril fibril

4. Serotonin is present in mammalian iris - ciliary body complex
( ICB ) at higher concentration that in non - mammalian
species [ 5 , 45 , 73 , 129 , 137 ] .

Anatomy: ICB, iris - ciliary
body complex

ICB, iris, ciliary body

5. He had a gastric pull up in 1992 of the stomach into the left
thorax and he has a transverse colostomy and a sinus
tract on the abdomen .

Problems: a gastric pull up,
a transverse colostomy

a gastric pull up,
a transverse colostomy,
a sinus

6. His gastrointestinal bleeding issues were investigated with
an upper endoscopy which revealed multiple superficial
gastric ulcerations consistent with an non-steroidal
anti-inflammatory drugs gastropathy .

Problems: his gastrointestinal
bleeding issues, gastric ulcerations,
an non-steroidal anti-inflammatory
drugs gastropathy;
Test: an upper endoscopy

All Predictions correct.

7. The functional effects of these interactions are that CBP
and p300 , but not P/CAF , enhance EKLF\’s transcriptional
activation of the beta-globin promoter in erythroid cells .

DNA: beta-globin, promoter;
Cell-Type: erythroid cells;
Proteins: P/CAF, CBP, EKLF, p300;

All Predictions correct.

8. Expression cloning with this region of DNA now shows
that tegument protein VP22 and the viral dUTPase, encoded
by genes UL49 and UL50 , respectively , are T-cell antigens .

Proteins: tegument protein VP22,
T-cell antigens, viral dUTPase

VP22, tegument protein,
T-cell antigens, viral

9. The Phlebotominae sand flies Lutzomyia intermedia Lutz
& Neiva 1912 and Lutzomyia whitmani Antunes & Coutinho
1912 are vectors of cutaneous leishmaniasis in Brazil .

Species: Lutzomyia whitmani,
Lutzomyia intermedia

Lutzomyia intermedia
Lutz & Neiva,
Lutzomyia whitmani

Table 2.11: Examples of Errors and Correct Predictions Made by Our KGQA BERT-

CNN with All Knowledge Context. Entity Types Are Mentioned in the Gold Targets.
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DATASET P ∆P R ∆R F ∆F

ANATEM 88.88 -0.07 88.23 +0.89 88.55 +0.41

BC2GM 82.93 -0.04 82.84 +0.55 82.88 +0.26

BC4CHEMD 91.64 +0.43 91.03 -0.02 91.33 +0.21

BC5CDR 89.61 +0.48 88.37 +0.79 88.98 +0.64

BIONLP09 90.76 -0.60 92.33 -0.81 91.54 -0.71

BIONLP11EPI 87.86 +0.72 86.29 +1.11 87.07 +0.92

BIONLP11ID 85.39 +1.21 85.19 +0.16 85.29 +0.68

BIONLP13CG 88.61 -0.63 87.54 -0.27 88.07 -0.45

BIONLP13GE 81.94 -0.12 88.77 -2.51 85.22 -1.24

BIONLP13PC 89.48 -0.45 90.73 +1.14 90.10 +0.33

CRAFT 87.43 +0.64 88.12 +0.07 87.78 +0.35

EXPTM 85.12 -1.40 85.99 -0.25 85.55 -0.84

JNLPBA 75.85 +0.19 82.37 -0.74 78.98 -0.25

LINNAEUS 88.16 +0.31 87.91 +0.56 88.03 +0.44

NCBI-DISEASE 88.00 -1.34 90.46 +0.42 89.22 -0.50

2010-i2b2 94.96 +0.31 95.71 +0.20 95.33 +0.26

2011-i2b2 94.01 +0.41 94.09 +0.28 94.05 +0.35

2012-i2b2 82.97 -1.64 86.65 -2.13 84.77 -1.88

Table 2.13: Precision (P), Recall (R) and F-measure (F) Using BERT-CNN Model

Trained on Balanced Dataset with Question as Knowledge. ∆p, ∆r, ∆f Represent

a Change in Performance Compared to Training Our Model on Full Datasets. A

Negative Value Indicates Training on the Unbalanced Dataset Is Better, While a

Positive Value Indicates Balanced Dataset Training Produces Better Performance.

Negative Values Are in Bold.
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Chapter 3

CONSTRUCTING FLOW GRAPHS FROM PROCEDURAL CYBERSECURITY

TEXTS

ABSTRACT

Following procedural texts written in natural languages is challenging. We must read

the whole text to identify the relevant information or identify the instruction flows to

complete a task, which is prone to failure. If such texts are structured, we can readily

visualize instruction flows, reason or infer a particular step, or even build automated

systems to help novice agents achieve a goal. However, this structure recovery task is a

challenge because of such texts’ diverse nature. This paper proposes to identify relevant

information from such texts and generate information flows between sentences. We

built a large annotated procedural text dataset (CTFW) in the cybersecurity domain

(3154 documents). This dataset contains valuable instructions regarding software

vulnerability analysis experiences. We performed extensive experiments on CTFW

with our LM-GNN model variants in multiple settings. To show the generalizability of

both this task and our method, we also experimented with procedural texts from two

other domains (Maintenance Manual and Cooking), which are substantially different

from cybersecurity. Our experiments show that Graph Convolution Network with

BERT sentence embeddings outperforms BERT in all three domains.
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3.1 Introduction

Many texts in the real world contain valuable instructions. These instructions

define individual steps of a process and help users achieve a goal (and corresponding

sub-goals). Documents including such instructions are called procedural texts, ranging

from simple cooking recipes to complex instruction manuals. Additionally, discussion

in a shared forum or social media platform, teaching books, medical notes, sets of

advice about social behavior, directions for use, do-it-yourself notices, itinerary guides

can all be considered as procedural texts (Delpech and Saint-Dizier, 2008). Most of

these texts are in the form of natural languages and thus, lack structures. We define

structure as sentence-level dependencies that lead to a goal. These dependencies

can vary based on the text domain. Some examples of such dependencies are action

traces, effects of an action, information leading to the action, and instruction order.

Constructing structured flow graphs out of procedural texts is the foundation for

natural language understanding and summarization, question-answering (QA) beyond

factoid QA, automated workflow visualization, and the recovery of causal relationships

between two statements. By flow-graph we mean both information and action flows

in a text. However, the lack of structures in such texts makes them challenging to

follow, visualize, extract inferences, or track the states of an object or a sub-task,

which ultimately makes constructing their flow graphs an insurmountable task.

Procedural texts are common in cybersecurity, where security analysts document

how to discover, exploit, and mitigate security vulnerabilities in articles, blog posts,

and technical reports, which are usually referred to as security write-ups. Practi-

tioners in cybersecurity often use write-ups as educational and research materials.

Constructing structured flow graphs from security write-ups may help with automated

vulnerability discovery and mitigation, exploit generation, and security education in
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Figure 3.1: An Example Flow Graph from the CTFW. Sentences in S2 Are Merged

into One Block for Clarity.

general. However, automatically analyzing and extracting information from security

write-ups are extremely difficult since they lack structure.

Figure 3.1 illustrates the core of a security write-up (broken into sentences) that

carries instructions for exploiting a vulnerability in an online shopping service. S1,

S3, and S4 are the author’s observations about the service’s nature. Based on this

information, S5 and S6 are two possible paths of action. The author chose S6 and ran

the Python code in S8 to exploit the service. S0 and S2 are irrelevant to the author’s

goal of exploiting this service.
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Here we propose a novel approach to extract action paths out of structure-less,

natural language texts by identifying actions and information flows embedded in and

between sentences and constructing action flow graphs. Specifically, our focus is on

procedural texts in the cybersecurity domain. We also show that constructing flow

graphs helps extract paths of actions in domains besides cybersecurity, such as cooking

and maintenance manuals.

Most previous works (Mori et al., 2014; Kiddon et al., 2015; Malmaud et al., 2014;

Maeta et al., 2015; Xu et al., 2020; Mysore et al., 2019; Song et al., 2011) focus on

fine-grained knowledge extraction from procedural texts in diverse domains. There

are also a handful of works (Delpech and Saint-Dizier, 2008; Fontan and Saint-Dizier,

2008; Jermsurawong and Habash, 2015) that study the structure of natural language

texts. Different from previous works, we extract structures and construct flow graphs

from natural texts at the sentence level. This is because fine-grained domain-entity

extraction tasks require a large amount of annotated data from people with specific

in-depth domain knowledge, whereas text structures can be generalized.

Dataset. We built a dataset from security write-ups that are generated from past

Capture The Flag competitions (CTFs). CTFs are computer security competitions

that are usually open to everyone in the world. Players are expected to find and exploit

security vulnerabilities in a given set of software services, and through exploiting

vulnerabilities, obtain a flag—a unique string indicating a successful attempt—for

each exploited service. Once the game is over, many players publish security write-

ups that detail how they exploited services during the game. While these write-ups

are a valuable educational resource for students and security professionals, they are

usually unstructured and lacking in clarity. We collected 3617 CTF write-ups from the

Internet, created a procedural text dataset, and invited domain experts to label each

sentence for the purpose of constructing flow graphs and identifying action paths. To
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the best of our knowledge, this is the first attempt to use the knowledge embedded in

security write-ups for automated analysis. The data and the code is publicly available

1 for future research.

This paper makes the following contributions:

• We built a new procedural text dataset, CTFW, in the cybersecurity domain.

To the best of our knowledge, CTFW is the first dataset that contains valuable

information regarding vulnerability analysis from CTF write-ups.

• We proposed a new NLU task of generating flow graphs from natural language

procedural texts at the sentence level without identifying fine-grained named

entities.

• We proposed four variations of a graph neural network-based model (LM-GNN)

to learn a neighbor-aware representation of each sentence in a procedural text

and predict the presence of edges between any pair of sentences.

• We evaluated our models on CTFW. To the best of our knowledge, this is the

first attempt in automated extraction of information from security write-ups.

We also evaluated our models across three datasets in different domains and

showed the generalizability of our approach.

3.2 Our Approach

We map each sentence of a procedural text as a node in a graph, and the action

or information flows as edges. The task is then simplified into an edge prediction

task: Given a pair of nodes, find if there is an edge between them. We learn feature

representations of nodes using language models like BERT/RoBERTa (Devlin et al.,

1https://github.com/kuntalkumarpal/FlowGraph
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Dataset Statistics COR MAM CTFW

# Documents 297 575 3154

Avg size of document 9.52 8.12 17.11

Avg length of sentence 65.46 34.81 92.87

# Edges (∣e+∣) 2670 5043 54539

∣e+∣ ∶ (∣e+∣ + ∣e−∣) 0.18 0.12 0.07

Avg degree of node 1.83 1.76 1.88

Table 3.1: Dataset Statistics. ∣e+∣ Is the Total Number of Actual Edges, and ∣e+∣ + ∣e−∣

Is the Total Number of Edges Possible. The In-degree of the Starting Node and

Out-degree of the End Node Are Both .

2019; Liu et al., 2019). Then, to make the nodes aware of their neighboring sentences,

we use Graph Neural Network (GNN) to update the node representations. We check

for the edge between every pair of nodes in a graph and reduce the task to a binary

classification during inference. This formulation enables us to predict any kind of

structure from a document.

3.3 Dataset Creation

In this section, we present how we created three datasets on which we evaluated

our approach. Table 3.1 shows the statistics for each dataset used.

3.3.1 CTF Write-ups Dataset (CTFW)

Each CTF competition has multiple challenges or tasks. Each task may have

multiple write-ups by different authors. We crawled 3617 such write-ups from GitHub

and CTFTime (CTFTime, 2021). Write-ups are unique and diverse but have common
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inherent principles. For each write-up, we provide two kinds of annotations: sentence

type and flow structure. The writing style is informal with embedded code snippets

and often contains irrelevant information.

Part of the annotations was provided as an optional, extra-credit assignment for

the Information Assurance course. These CTF write-ups were directly related to the

course content, where students were required to read existing CTF write-ups and

write write-ups for other security challenges they worked on during the course. Then

students were given the option of voluntarily annotating CTF write-ups they read

for extra credits in the course. For this task, we followed all the existing annotation

guidelines and practices. We also ensured that (1) The volunteers were aware of the

fact that their annotations would be used for a research project (2) They were aware

that no PII was involved or would be used in the research project (3) They were aware

that extra credits were entirely optional, and they could refrain from submitting at any

point of time without any consequences (4) Each volunteer was assigned only 10-15

write-ups based on a pilot study we did ahead of time, annotating an average-length

CTF write-up took about two minutes (maximum ten mins).

The remaining annotations were performed by the Teaching Assistants (TA) of

the course. These annotations were done as part of the course preparation process,

which was part of their work contract. All the TAs were paid bi-weekly compensation

by the university or by research funding. It was also ensured that the TAs knew

these annotations would be used for a research project, their PII was not involved

and annotations were to be anonymized before use. We verified the annotations by

randomly selecting write-ups from the set. Figure 3.1 shows a sample annotation.

Sentence Type Annotations. We split the documents into sentences using natural

language rules. We then ask the volunteers to annotate the type of each statement

as either Action (A), Information (I), Both (A/I), Codes (C), or irrelevant (None).
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Action sentences are those where the author specifies actions taken by them, whereas,

Information statements mention observations of the author, the reasons and effects of

their action. Sentences containing codes are assigned as C, and those which can be

considered as both information and actions are marked as Both (A/I).

Flow structure Annotations. The second level of annotations is regarding the

write-up structure. Each volunteer is given a CSV file for each document with a set

of sentence IDs and text for each write-up. They are asked to annotate the flow of

information in the document by annotating the sentence id of some next possible

sentences, which indicate the flow. We filter those write-ups which are irrelevant and

those which did not have much detail (single line of valuable information). We call a

write-up irrelevant if it has no action-information annotations or if it has direct codes

without any natural language description of steps to detect vulnerabilities. We only

keep write-ups written in the English language for this work. Finally, we have 3154

write-ups with sentence type and structure annotations.

CTFTime website states that the write-ups are copyrighted by the authors who

posted them and it is practically impossible to contact each author. Such data is also

allowed to use for academic research purposes(Copyright Office, 2016; European Union,

2020). Thus, we follow the previous work using data from CTFTime (Švábenskỳ

et al., 2021), and share only the URLs of those write-ups which we use. We do not

provide the scraper script since it would create a local copy of the write-up files

unauthorized by the users. Interested readers can replicate the simple scraper script

from the instructions provided and use it after reviewing the conditions under which

it is permissible to use it. We, however, share our annotations for those write-up files.
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3.3.2 Cooking Recipe Flow Corpus (COR)

This corpus (Yamakata et al., 2020) provides 300 recipes with annotated recipe

Named Entities and fine-grained interactions between each entity and their sequencing

steps. Since we attempt to generate action flow graphs without explicitly identifying

each named entity, we aggregate the fine-grained interactions between recipe Named

Entities to generate sentence-level flows for each recipe. We reject three single-sentence

recipes.

3.3.3 Maintenance Manuals Dataset (MAM)

This dataset (Qian et al., 2020) provides multi-grained process model extraction

corpora for the task of extracting process models from texts. It has over 160 Mainte-

nance Manuals. Each manual has fine-grained interactions between each entity and

its sequencing steps. We use the annotations from sentence-level classification data

and semantic recognition data for generating annotations of sentence-level flows for

each process. Here also, we reject single sentence processes.

3.3.4 Extraction and Processing of Write-ups:

The extraction of CTF Write-up involved the following three phases.

Writeup URL extraction : We loop through all the write-up pages on CTFTime

website from pages numbered 1 to 25500). We use a simple Python scraper to scrape

the content of each page using the Python requests (Reitz, 2020) library. We look for

the keyword “Original write-ups” and extracted the href component if present. These

URLs are stored for each writeup indexed with the page numbers.

Write-up Content extraction : We use these URLs and extract the contents of

the write-ups using Python libraries requests and BeautifulSoup (Richardson, 2007).
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We extract all the text lines ignoring contents in HTML tags like style, scripts, head,

and title. The contents are stored in a text file named with the same page ids as the

URLs.

Processing of Write-up : We processed and filter out sentences that do not have

any verb forms using spacy (spaCy, 2017) POS-Tagger. We cleaned and removed

unnecessary spaces and split them into sentences. The processing script is available in

the GitHub.

3.3.5 CTFW Data Statistics

In CTFW, there are write-ups for 2236 unique tasks. Only four out of those have

more than 5 write-ups each. 72% of the tasks have a single write-up. The write-ups are

from 311 unique competitions, ranging from years 2012-2019. A task having multiple

write-ups vary in content. In CTFW, only 3% of the tasks have more than three

write-ups, and 9% have more than two.

3.4 CTFW STC Label Statistics

Table 3.2 shows the label distributions of Sentence Type Classification data.

Label Train Val Test

A 11143 1499 3321

I 23279 3075 6882

A/I 2931 380 826

C 1386 185 338

NONE 82012 12192 22896

Table 3.2: CTFW Sentence Type Classification
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3.5 Model Description

Our goal is to find paths or traces of actions or information between texts. This

needs an understanding of each sentence’s interconnection. Hence, we modeled the

problem into an edge prediction task in a graph using GNNs. We represent each

sentence as a node and directed edges as information flows. Since this is procedural

text (unidirectional nature) of instructions, we consider only the directed edges from

one sentence Sn to any of its next sentences Sn+i. The node representations are learned

using language models (LM) and GNNs.

3.5.1 Document to Sentence Pre-processing

Given a natural language document, first, we split the document into sentences

based on simple rules and heuristics. COR and MAM datasets already have documents

split into separate sentences. In the flow graph creation task, we filter out irrelevant

sentences for the CTFW dataset based on the sentence type annotations. After this

pre-processing task, each document (Di) is converted into a series of sentences (Sj)

where n is the number of valid sentences in a document.

Di = {S0, S1, S2...Sn−1}

3.5.2 Document to Graph Representation

A graph (G = (V,E)) is formally represented as a set of nodes (V = {v0, v1, ..})

connected by edges (E = {e0, e1, ..} where ei = {vm, vn}). We consider the sentences

(Sj) of any document (Di) as nodes of a directed graph (Gi). We experiment with

two graph structure types for learning better node representation using GNN. First,

we form local windows (WN , where N = 3,4,5, all sentences) for each sentence and
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Figure 3.2: Node Representation Learning for a Document with Four Sentences in

Single-layer GNN. Left: Semi-Complete Structure, Right: Linear Structure. During

Training, the Sentence Representation (CLS i) Is Enriched Using Appropriate Message-

passing Techniques from the Connected 1-hop Neighbors.

allow the model to learn from all of the previous sentences in that window. We form

the document graph by connecting each sentence with every other sentence in that

window, with directed edges only from Si to Sj where i < j. We do this since procedural

languages are directional. We call this configuration Semi-Complete. Second, we

consider connecting the nodes linearly where every Si is connected to Si+1 except

the last node. We call this Linear setting. Figure 3.2 shows the settings. We use

LMs like BERT and RoBERTa to generate initial sentence representations. For each

sentence (Si), we extract the pooled sentence representation (CLSSi
) of contextual

BERT/RoBERTa embeddings (hSi
). We use CLSSi

as node features for the graph

(Gi).

hSi
= BERT ( [CLS ]s0s1...sn−1 [SEP] )
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3.5.3 Neighbor Aware Node Feature Learning

Since the LM sentence vectors are generated individually for each sentence in the

document, they are not aware of other local sentences. So, through the semi-complete

graph connection, the model can learn a global understanding of the document.

However, the linear connection helps it learn better node representation conditioned

selectively on its predecessor. We call the connected nodes the neighbor nodes. We use

Graph Convolutional Network (GCN) (Kipf and Welling, 2016) and Graph Attention

Network (GAT) (Veličković et al., 2017) to aggregate the neighbor information for

each node following the generic graph learning function (3.1)

Hl+1 = f(Hl,A) (3.1)

where A is the adjacency matrix of the graph, Hl and H(l+1) are the node represen-

tations at lth and (l + 1)th layer of the network and f is the message aggregation

function. In GCN, each node i, aggregates the representations of all of its neighbors

N(i) based on A and itself at layer l and computes the enriched representation hl+1
i

based on the weight matrix Θ of the layer normalized by degrees of source d(i) and

its connected node d(j) as per (3.2). In GAT, messages are aggregated based on

multi-headed attention weights (α) learned from the neighbor node representations hl
j

following (3.3).

hl+1
i =Θ ∑

j∈N(i)∪{i}

1√
d(i)d(j)

hl
j (3.2)

hl+1
i = αiiΘhl

i + ∑
j∈N(i)

αijΘhl
j (3.3)

3.5.4 Projection

We concatenate the neighbor-aware node representations of each pair of nodes

(hi;hj) from a graph and pass it through two projection layers with a GELU (Hendrycks
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and Gimpel, 2016) non-linearity in between. We use the same non-linearity functions

used by the BERT layers for consistency. We steadily decrease the parameters of

each projection layer by half. During testing, given a document, we are unaware of

which two sentences are connected. So, we compare each pair of nodes. This leads

to an unbalanced number of existing (1) and non-existing (0) edge labels. Hence, we

use the weighted cross-entropy loss function as in equation (3.4) and (3.5), where L

is the weighted cross-entropy loss, wc is the weight for class c, i is the data in each

mini-batch.

L(x, c) = wc( − xc + log(∑
j

exp(xj))) (3.4)

L = ∑
N
i=1L(i, ci)
∑N

i=1wci

(3.5)

3.5.5 Training and Inference

Our training data comprises a set of sentences and the connections as an adjacency

matrix for each document. Batching is done based on the number of graphs. GCN/GAT

updates the sentence representations. A pair of node representations are assigned a

label of 1 if there is an edge between them; otherwise, we assign them 0. Thus, we

model it as a binary classification task as in equation (3.6) where f is the projection

function, g is the softmax function, and y is the binary class output. Depending on

the weighted cross-entropy loss, the node representations get updated after each epoch.

During inference, the model generates node representations of each sentence in a test

document, and we predict whether an edge exists between any two nodes in a given

document graph.

yc = arg max
k

g(f(hi;hj), k) c ∈ {0,1} (3.6)

3.6 Experiments
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Models
CTFW COR MAM

PRAUC F1 PRAUC F1 PRAUC F1

Baselines

Random - 50.49 - 42.78 - 47.82

Weighted Random - 37.81 - 39.13 - 44.10

BERT-NS 0.5751 26.12 0.5638 43.14 0.5873 29.73

RoBERTa-NS 0.5968 32.44 0.5244 42.99 0.6236 39.65

Ours

BERT-GCN 0.7075 69.26 0.6312 58.13 0.6888 63.75

RoBERTa-GCN 0.7221 69.04 0.6233 61.44 0.6802 65.73

BERT-GAT 0.5585 61.93 0.4553 41.93 0.4568 62.18

RoBERTa-GAT 0.5692 64.51 0.4358 24.74 0.4585 59.55

Table 3.3: Comparison with Baselines on Best Test Area under Precision-recall Curve

(PRAUC) and Its Corresponding F1 for CTFW (CTFwrite-up), COR (Cooking),

MAM (Maintenance) Datasets. NS Is the next Sentence-based Prediction Approach.

Our Best Model Performance Is Bold, While the Maximum Baseline Performance Is

Underlined.

3.6.1 Datasets and Tasks

Each dataset is split into the train, validation, and test sets in a 70:10:20 ratio. The

first task is identifying relevant information from raw CTF write-ups by classifying

the type of each sentence. The second task is identifying information flows between

sentences by predicting edges between sentence pairs, if any.

3.6.2 Metrics

We use accuracy as the evaluation metric for the Sentence Type classification task

on CTFW. For the second task, because of the label imbalance, we compare based on

the area under Precision-Recall curve (PRAUC) and also report the corresponding

F1-score. Hence do not report the area under the ROC curve or accuracy.
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We consider four settings for this task. The no window setting (Wall) checks

whether there is an edge between any two statements in the given document. The

comparisons required in this setting are directly proportional to the document’s

size. In CTFW, the size of each write-up is quite large. So, to reduce unnecessary

comparisons, we apply simple heuristics that instructions in procedural text, in general,

do not have longer direct dependencies. Thus, using the windows, we can control

each sentence’s number of comparisons (node). To understand how the performances

change we evaluate with a sliding windows of N sentences (WN) where N = 3,4,5.

The comparisons are only made with the next N sentences from a given sentence.

For example, in case of W5, for first sentence (S1) we check for edges with S2, S3, S4,

S5, S6 and not S7 on-wards. However, to have a fair comparison, we keep labeled

out-of-window gold edges, if any. The ratios of existing and total edges in CTFW are

0.07 (Wall), 0.24 (W5), 0.29 (W4), and 0.38 (W3).

3.6.3 Training Details

We use Pytorch Geometric (Fey and Lenssen, 2019) for GNN and transformers

(Wolf et al., 2020) for LM implementations. Training is done with AdamW (Loshchilov

and Hutter, 2017) optimizer along with linear warmup scheduler on 4 Tesla V100

16GB GPUs. We use BERT-base-uncased, BERT-large-uncased, RoBERTa-base, and

RoBERTa-large versions as the base model. We store the model with the best PRAUC

score. Batch size of {4,8,16} and learning rates of {1e-5,5e-6} are used. Maximum

sequence length varies between {64, 80, 128}. GNN depths are kept at 128 (layer 1)

and 64 (layer 2). We use a dropout of 0.4 in selected layers. For GAT, we keep four

attention heads in layer 1.

The correct set of hyperparameters is found by running three trials. We run for

{50, 100} epochs and store the model with the best PRAUC score. Each training
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with evaluation takes around 1-3 hours for the base version of models and around 6

hours for larger versions depending upon the dataset used. The model parameters are

directly proportional to the model parameters of language models since the GNN only

allows a few more parameters as compared to the LMs.

3.7 Results And Discussion

3.7.1 Sentence Type Classification (STC)

We use large and base versions of BERT and RoBERTa for this task to predict the

type of sentences in a given text to establish a baseline for this task. This task helps

to identify relevant and irrelevant sentences in a document. Each sentence is classified

into any of Action, Information, Both, Code, and None. These fine-grained annotations

can be used in later works for creating automated agents for vulnerability analysis.

The processed data consists of 120751 samples for training, 17331 for validation, and

34263 for testing. Table 3.4 shows that RoBERTa-large performs better than the rest.

Model Val Test

BERT-Base 78.48±0.25 77.42±0.10

BERT-Large 78.19±0.48 77.13±0.20

RoBERTa-Base 78.85±0.25 77.37±0.11

RoBERTa-Large 79.02±0.16 77.66±0.12

Table 3.4: Sentence Type Classification (Mean Accuracy from Three Seed Values).

Best Performance in Bold.

3.7.2 Flow Structure Prediction

Here we present the performance results for the flow structure prediction.
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Figure 3.3: Effect of GNN Layers (L0, L1, L2) on Performance (PRAUC) of the

Models for Wall, W5, W4, W3 Settings on the Three Datasets

Random Baseline:

In the Random baseline, for every pair of nodes in each document we randomly select

0 (no-edge) or 1 (edge). For Weighted Random baseline, we choose randomly, based

on the percentage of edge present in the train set. We only report F1 since there is no

probability calculation.

Next Sentence-based Prediction (NS) Baseline:

We use LMs like BERT and RoBERTa in a next-sentence prediction setting to get

the baselines. Each pair of sentences is concatenated using [SEP] token and passed

through these language models. Using the pooled LM representation, we classify

whether an edge exists between them or not. We show the maximum PRAUC and
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its corresponding F1 for each dataset from the results of each of our window settings

(W3, W4, W5, Wall).

Next Sentence-based Prediction With Weighted Cross-Entropy

Table 3.5 shows the PRAUC values when we use weighted cross-entropy with the

base version of BERT on unbalanced data during training. The results are not much

different than the Next-Sentence baseline shown previously.

Dataset W3 W4 W5 Wall

CTFW 0.4613 0.4397 0.2546 0.3681

COR 0.4724 0.4748 0.4837 0.4761

MAM 0.5318 0.2318 0.2297 0.4724

Table 3.5: BERT-base-uncased Performance with NS Prediction When Weighted

Cross-entropy Used with Unbalanced Training Data

Our Models

We compare four variants of our LM-GNN models both with baseline and among each

other in Table 3.3. The scores are overall best scores across single and double layers

GNN (GCN/GAT) and LM (BERT/RoBERTa) after experiments with both base and

large versions, trained with pre-trained and randomly initialized weights.

We see that the best LM-GCN models outperform the best baseline model by 0.12,

0.07, and 0.06 in PRAUC for CTFW, COR, and MAM datasets, respectively. However,

the best LM-GAT scores fall short of the baselines indicating that the graph attentions

on LM sentence representations cannot learn robust representation to perform this

edge prediction task. Another thing to notice here is that the best BERT-GCN models
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W3 W4 W5 Wall

CTFW-SC 0.6630 0.5985 0.5733 0.5590

CTFW-L 0.7221 0.6520 0.6150 0.3962

CTFW-EP 0.3700 0.2900 0.2400 0.0700

COR-SC 0.5639 0.5129 0.4731 0.5580

COR-L 0.6456 0.6012 0.5274 0.4034

COR-EP 0.3700 0.3100 0.2600 0.1700

MAM-SC 0.6528 0.6219 0.6091 0.6718

MAM-L 0.6888 0.6362 0.6137 0.4161

MAM-EP 0.4500 0.3700 0.3200 0.1500

Table 3.6: Effect of Semi-Complete(SC) and Linear(L) Graph Connection on 3 Datasets

in Area under Precision-Recall Curve (PRAUC). We Also Keep Edge Percent (EP) in

Four Window Settings for Comparison.

perform better than RoBERTa-GCN for COR and MAM datasets while performing

poorly in the CTFW dataset. We hypothesize that this is because, the CTFW dataset

has ten times more data than COR and six times more than MAM, which helps the

RoBERTa model correctly predict the edges.

3.7.3 Analysis

Effect of Graph Connection Type:

Table 3.6 shows how the models behave with semi-complete (SC) and linear (L) graph

connections. For each dataset, we compare the PRAUC results for each window to

draw more granular insight into the effect of neighbor-aware representation learning.

When we restrict graph learning by creating small windows (W3, W4, W5), the linear

model works better because of its selective learning conditioned on its predecessor.

On the other hand, the semi-complete connection helps to learn a global awareness
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and works best in the Wall setting. It is important to note that each model performs

better than the average PRAUC performance, which is the percentage of edges in the

data indicating that the model is able to learn using the graph connections.

Effect of Graph Layers:

We study how the depth of the GNNs affects the performance. We compare PRAUC

across all four variations of the model in No-Window (Wall), W5, W4, W3 settings in

Figure 3.3. We experimented with no (L0), single (L1), and double (L2) GNN layers.

In all three datasets, we find the performance improves when we use a single layer

and degrades beyond that for each of the windows with GCN-based models. We do

not go beyond two layers because of this observation and the graph connection types

we use. We believe the reason for this drop (0.03-0.08 PRAUC) is that information

from 2-hop neighbors might hinder the learning of the current node and confuse the

model to predict wrongly. The GAT-based models mostly remain unaffected with the

graph layers for both COR and MAM while showing some improvement in CTFW for

one layer setting.

Effect of Pre-trained LM Weights:

We study the impact of pre-trained weights of BERT and RoBERTa on the performance

in Figure 3.4. We notice, for the three datasets, the performance slightly decreases

when the pre-trained model weights are used. This observation may be because the

texts’ nature is quite different from the type of texts these LMs have been pre-trained

on. The CTFW data often contains code fragments embedded in sentences, emoticons,

or common conversational languages used in public forums.
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Figure 3.4: Performance for CTFW, COR, MAM Trained from scratch and Fine-tuned

With Pre-trained Weights.

Effect of LM Size:

We also experimented with the size of sentence embeddings to see if that makes any

difference to the performance. We use base and large versions of BERT and RoBERTa

for the experiments across three datasets. We present the impact on F1 and PRAUC

in Figure 3.5. The performance of the larger versions of the models drops in all three
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datasets. This drop, we believe, is because the sentences in these texts are relatively

short and help the smaller versions of the models with lesser parameters to learn

better.

Figure 3.5: Performance on CTFW, COR, MAM Trained with base and large Version

of the Model.
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Number of Comparisons Reduction Using Windows

We can control the total number of comparisons required to predict the edges in a

graph by using the windows (WN where N = 3,4,5, all). The number of comparisons

for each window is given by the equation 3.7. We can reduce the number of comparisons

considerably for large documents using shorter windows of 3, 4, and 5 sentences. The

number of comparison C is defined by

C =
⎧⎪⎪⎨⎪⎪⎩

max{(n − s),0}s + s(s−1)
2 n = 3,4,5

(n
2
) n = all

(3.7)

Other experiments: We also experimented with modifications of other parts of

the models like changing the number of projection layers, projection layer sizes, the

number of attention heads in the GAT model, or dropout percent in selected layers

and modes of message aggregation (add, max, mean). We do not report them since

they do not significantly change PRAUC values.

3.8 Related Work

Procedural knowledge extraction: There are attempts to extract structured

knowledge from cooking instructions in the form of named entities (Malmaud et al.,

2014), their sentence-level dependencies (Mori et al., 2014; Maeta et al., 2015; Xu

et al., 2020), and action-verb argument flow across sentences (Jermsurawong and

Habash, 2015; Kiddon et al., 2015; Pan et al., 2020). In other domains, extraction

of clinical steps from MEDLINE abstracts (Song et al., 2011), extraction of material

synthesis operations and its arguments in material science (Mysore et al., 2019),

providing structures to how-to procedures (Park and Motahari Nezhad, 2018), and

action-argument retrieval from web design tutorials (Yang et al., 2019) mostly focus

on fine-grained entity extractions rather than action or information traces. The goal

of our paper is to construct flow graphs from free-form, natural-language procedural
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texts without diverse domain knowledge. Hence, we refrain from training specialized

named-entity recognizers for each domain to find specific entities. Our work is related

to event or process discovery in process modeling tasks (Epure et al., 2015; Honkisz

et al., 2018; Qian et al., 2020; Hanga et al., 2020), but our goal is not finding specific

events or actions from procedural texts. In addition, recent research proposed a

method to create the forum structures from an unstructured forum based on the

contents of each post using BERT’s Next Sentence Prediction (Kashihara et al., 2020).

However, we focus on building flow graphs for procedural texts using GNNs.

Graph Neural Networks: GNNs are important in reasoning with graph-structured

data in three major tasks, node classification (Kipf and Welling, 2016; Hamilton

et al., 2017), link prediction (Schlichtkrull et al., 2018), and graph classification (Ying

et al., 2018; Pan et al., 2015, 2016; Zhang et al., 2018). GNNs help learn better node

representations in each task using neural message passing (Gilmer et al., 2017) among

connected neighbors. We consider two widely used GNNs, GCN (Graph Convolutional

Network) (Kipf and Welling, 2016) and GAT (Graph Attention Networks) (Veličković

et al., 2017) to learn sentence representation to provide a better edge prediction.

Edge Prediction Task: Edge or link prediction tasks (Li et al., 2018; Zhang and

Chen, 2018; Pandey et al., 2019; Haonan et al., 2019; Bacciu et al., 2019) work mainly

on pre-existing networks or social graphs as inputs and predict the existence of future

edges between nodes by extracting graph-specific features. Different from existing work,

we modeled the task of generating a graph structure from a given natural-language

text as an edge prediction task in a graph and learning representations of sentences

considered as nodes.

Combinations of BERT and GCN: Recent works have used concatenation of

BERT and GCN representations of texts or entities to improve the performance

of tasks like commonsense knowledge-base completion (Malaviya et al., 2019), text
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classification (Ye et al., 2020; Lu et al., 2020), multi-hop reasoning (Xiao et al., 2019),

citation recommendation (Jeong et al., 2019), medication recommendation (Shang

et al., 2019), relation extraction (Zhao et al., 2019). Graph-BERT (Zhang et al., 2020)

solely depends on the attention layers of BERT without using any message aggregation

techniques. However, we differ from each of the previous methods in terms of model

architecture, where we use BERT to learn initial sentence representations and GCN

or GAT to improve them by learning representations from its neighboring connected

sentences. BERT-GAT for MRC (Zheng et al., 2020) created the graph structure

from the well-structured Wikipedia data whereas we explore two predefined natures

of graph structures because of the free-formed text nature without such well-defined

text-sections, the presence of code-fragments, emoticons, and unrelated-token.

3.9 Conclusion and Future Work

We introduce a new procedural sentence flow extraction task from natural-language

texts. This task is important for procedural texts in every domain. We create a

sufficiently large procedural text dataset in the cybersecurity domain (CTFW) and

construct structures from the natural form. We empirically show that this task can

be generalized across multiple domains with different natures and styles of texts. In

this paper, we only focus on English security write-ups. As part of future work, we

plan to build automated agents in the cybersecurity domain to help and guide novices

in performing software vulnerability analysis. We also plan to include non-English

write-ups. We hope the CTFW dataset will facilitate other works in this research

area. More details are available in the published work (Pal et al., 2021).
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Impact Statement

The dataset introduced here consists of write-ups written in public forums by

students or security professionals from their personal experiences in the CTF challenges.

The aggregated knowledge of such experiences is immense. This in-depth knowledge

of the analysis tools and the approach to a problem is ideal for students working

in software vulnerability analysis to learn from. Automated tutors built using such

knowledge can reduce the efforts and time wasted in manually reading through a series

of lengthy write-up documents.

CTFTime website states that the write-ups are copyrighted by the authors who

posted them and it was practically impossible to contact each author. It is also allowed

to use the data for research purposes (Copyright Office, 2016; European Union, 2020)

Thus, we follow the previous work (Švábenskỳ et al., 2021) using data from CTFTime

and share only the URLs of those write-ups from the CTFTime website which we

use. We do not provide the scraper script since it would create a local copy of the

write-up files unauthorized by the users. Interested readers can replicate the simple

scraper script from the instructions provided and use it after reviewing the conditions

under which it is permissible to use it. We, however, share our annotations for those

write-up files.

Part of the annotations was provided as an optional, extra-credit assignment for

the Information Assurance course. These CTF write-ups were directly related to the

course content, where students were required to read existing CTF write-ups and
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write write-ups for other security challenges they worked on during the course. Then

students were given the option of voluntarily annotating CTF write-ups they read

for extra credits in the course. For this task, we followed all the existing annotation

guidelines and practices. We also ensured that

• The volunteers were aware of the fact that their annotations would be used for

a research project.

• They were aware that no PII was involved or would be used in the research

project.

• They were aware that extra credits were entirely optional, and they could refrain

from submitting at any point in time without any consequences.

• Each volunteer was assigned only 10-15 write-ups based on a pilot study we

did ahead of time, annotating an average-length CTF write-up took about two

minutes (maximum ten mins).

The remaining annotations were performed by the Teaching Assistants (TA) of

the course. These annotations were done as part of the course preparation process,

which was part of their work contract. All the TAs were paid bi-weekly compensation

by the university or by research funding. It was also ensured that the TAs knew these

annotations would be used for a research project, their PII was not involved and

annotations were to be anonymized before use.
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Chapter 4

“LEN OR INDEX OR COUNT, ANYTHING BUT V1”: PREDICTING VARIABLE

NAMES IN DECOMPILATION OUTPUT WITH TRANSFER LEARNING

4.1 Introduction

Code Compilation, which transforms high-level source code into low-level machine

code, is fundamentally a lossy procedure. Much semantic information, including

control flow structures, function names, variable locations, variable names, variable

types, and comments, is discarded during compilation because the target machine

does not need such information. For example, a CPU does not understand the notions

of variables, types, or loops (relying only on registers, memory, bytes, and branch

statements), so the compiled output does not need these concepts.

This phenomenon of compilation-induced information loss makes it more difficult

for human analysts to understand binary programs (“binaries”) than to understand

source code (Yakdan et al., 2016), despite the fact that a compiler-generated binary

encodes the same logic as the corresponding source code. To aid humans in such

understanding, and support a number of downstream security tasks, researchers

have developed a number of decompilation techniques, which take as input binary

code, recover the lost semantic information from the binary, and derive roughly

equivalent source code (or pseudocode, which generally is in an approximated version

of C). State-of-the-art decompilers, e.g., IDA Pro’s Hex-Rays decompiler (Hex-Rays,

2013), Ghidra (decompiler, 2022), and Binary Ninja (Ninja, 2022), are widely used

in academia and industry. Security applications for decompilation include malware

analysis (Ďurfina et al., 2011, 2013; Yakdan et al., 2016), vulnerability discovery in
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binary code (Mantovani et al., 2022b), patching software defects (Schwartz et al., 2013),

protocol reverse engineering (Kalle et al., 2019), and code reuse discovery (Mirzaei

et al., 2021).

However, decompilation is far from perfect, and significant problems continue to

be addressed by researchers, including the reconstruction of code structure (Yakdan

et al., 2015a), inferencing of variable types (Lee et al., 2011; Noonan et al., 2016;

Zhang et al., 2021b; Chen et al., 2022), and even the recovery of meaningful variable

names (Lacomis et al., 2019; Chen et al., 2022). Variable name recovery is important

because developers strive to properly name variables to embed semantic meaning

and to improve readability (and maintainability) of source code (Schankin et al.,

2018). Unfortunately, unless debug information is preserved during compilation,

these carefully-chosen variable names are lost, contributing to the difficulty of binary

code understanding. Preserving debug information would also not be a solution

since it would lead to increase in the size of the binaries. While malware analysis

techniques have advanced over the years, human analysts continue to play a vital role

in understanding binaries (Mantovani et al., 2022a). Hence inferring variable names

still remains an important task.

Contributions. We summarize our contributions as follows:

• We built a new neural-network model, VarBERT, to predict variable names and

variable origins in decompilation output using transfer learning from source code

samples.

• We identified issues in existing datasets DIRE and DIRT and built improved

versions, and re-evaluated DIRE and DIRTY on them.

• We used novel techniques to build a new data set, addressing the identified issues

of our predecessors. We also show various analyses to show the superiority of
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our dataset.

• We evaluated VarBERT on our new data set, VarCorpus and showed that

it achieves 59.33% and 59.84% prediction accuracy on our data set, for IDA

and Ghidra respectively. Our evaluation shows that VarBERT is applicable

to variable name and origin prediction on decompilation output of stripped,

real-world software.

In the spirit of open science, we will release our research artifacts, including all data

sets, the source code, and our models, upon the acceptance of our paper.

4.2 Cybersecurity Background

Predicting variable names is built atop many layers of foundations. In this section,

we provide the necessary background knowledge on these layers.

4.2.1 Binary Reverse Engineering

Binary reverse engineering usually refers to the process of analyzing binary programs

without or with only limited access to the original source code. The obscurity of binary

programs makes analyzing malware (Ďurfina et al., 2011, 2013; Yakdan et al., 2016),

finding software vulnerabilities (Mantovani et al., 2022b), and mitigating software

defects (Schwartz et al., 2013) extremely difficult, and the goal of binary reverse

engineering is to alleviate this problem.

4.2.2 Human Binary Reverse Engineering

Ethical human analysts use binary reverse engineering techniques in malware analy-

sis (Engineering, 2021), deobfuscation (Yadegari et al., 2015), binary diffing (Bourquin

et al., 2013; Duan et al., 2020), inferring data structures (Slowinska et al., 2011; Lee
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et al., 2011; Noonan et al., 2016; Zhang et al., 2021b), manually finding vulnerabili-

ties (Votipka et al., 2020), assisting automated vulnerability discovery (Shoshitaishvili

et al., 2015, 2017; Babić et al., 2019; Jung et al., 2021), and patching vulnerabilities in

binary code (Wang et al., 2017). Reverse engineering binary programs usually requires

significant expertise and the use of sophisticated, sometimes very expensive, tools.

Popular binary reverse engineering frameworks include IDA Pro (Hex-Rays, 2013),

Ghidra (decompiler, 2022), Binary Ninja (Ninja, 2022), Hopper (Hopper, 2022), and

angr (Shoshitaishvili et al., 2016).

4.2.3 Binary Decompilation

First, binary reverse engineering tools must disassemble the binary code (essentially

reversing the assembly process). Disassembling refers to the process of transforming

machine code in a binary program to their corresponding human-readable instructions,

and optionally recovers data, function boundaries, and control-flow graphs (CFGs).

Next, binary reverse engineering tools can attempt to decompile binary code

(usually in response to a user’s request). Decompilation is an intuitive solution for

making binary code less obscure by recovering high-level source code (such as C code)

from binary code (Schwartz et al., 2013). Since the publication of the first paper

on decompiling binary code (Cifuentes, 1994), modern decompilers have advanced

in regards to both completeness and soundness. Human analysts are now using

decompilation techniques to find bugs in software (Mantovani et al., 2022b), discover

reused code (Mirzaei et al., 2021), analyze malware behaviors (Ďurfina et al., 2011,

2013; Yakdan et al., 2016), and patch software bugs (Reiter et al., 2022). Due to the

lossyness inherent in the compilation process, binary decompilation must attempt

the task of recovering variables. Even this simple task can be complex and create

decompilation artifacts: With only one variable in the original code, the decompiler
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may infer many variables. These could be due to operations of the binary code (e.g.,

storing and retrieving the same variable from the stack), to compilation operations (e.g.,

creating temporary variables), or to compiler optimizations (e.g., duplicating code or

variables to improve performance). Therefore, the variables that exist in decompilation

can be either human-created (i.e., in the original source code) or extraneous (i.e., not

in the original source code).

Additionally, two supporting pillars for binary decompilation are (control-flow)

structural analysis (Yakdan et al., 2015b; Gussoni et al., 2020), which attempts to

identify high-level control-flow structures (e.g., if-else, for loops, and do-while loops),

and variable type inferencing (Noonan et al., 2016; Zhang et al., 2021b; Chen et al.,

2022), which infers high-level types of variables (e.g., int, char, enum, pointers, and

members of a struct). By enabling certain compilation flags (e.g., -g for GCC and

Clang), compilers may preserve debug information either in the binary or as a separate

file for debugging purposes.

4.2.4 Predicting Variable Names in Decompiled Code

The quality of decompilation output will be significantly lower than the original

source code due to information discarded during compilation. A critical category of

lost information is variable names. While modern decompilers attempt to infer some

variable names in decompilation output in a rule-based manner (e.g., arguments passed

to known library functions), they still leave a large portion of variables unnamed.

Human analysts must understand the decompilation output, which is tedious, and

rename unnamed variables one by one. Because variable names are critical in assisting

with understanding the source code, the lack of such information in decompilation

output severely hampers its readability.
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4.3 Corpora Generation

Building a good corpus that is diverse and also representative of the target task is

critical for training and evaluating any ML model.

4.3.1 Existing Datasets

Earlier researchers working in variable name inferencing have developed two

datasets DIRE (Lacomis et al., 2019) and DIRT (Chen et al., 2022) which are publicly

available. General statistics of these datasets are available in Table 4.1. These datasets

are curated from various GitHub libraries. However, while attempting to use the data

sets from DIRE (Lacomis et al., 2019) and DIRT (Chen et al., 2022), we identified

several issues that we believe necessitate a new data set.

4.3.2 Issues With Existing Datasets

While investigating these data sets, we noticed several issues that we believe make

them not suitable for future research in variable name prediction for decompiled code.

Significant Overlap Between Test and Training Sets: In DIRE and DIRT, the

test and training sets exhibit a significant overlap. Approximately 79.9% of functions

in DIRE’s test set exist in the training set. Therefore, the overall accuracy (74.3%)

that DIRE reported does not reflect the true performance of their model as a variable

name prediction solution. Instead, it only demonstrates how well DIRE identifies

functions that were known to their model during training.

DIRE authors were aware of this issue and reported an accuracy of 35.3% for a

body-not-in-train test set, where they eliminated from the test set all functions that

exist in the training set. Similar is the case for DIRTY: The overlap in their test and

train set is 65.5% (Chen et al., 2022, Table 11) with variable name prediction accuracy
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of 35.1% for body-not-in-train functions (DIRTY, 2022). These numbers reflect the

real performance for DIRE and DIRTY to generalize to new decompiled functions.

High number of duplicated functions. Another issue we discovered in DIRE and

DIRT is the high number of duplicated functions. 683K (68.6%) functions among

DIRE’s 1M functions that are used for training DIRE are duplicates. Similarly, 1M

(56.9%) out of 1.8M are duplicated in the training set of DIRTY.

The nature of neural network models will cause models trained on these data sets

to learn more from frequently appearing functions and ignore those less frequently

appearing functions. We do not believe the distribution in DIRE and DIRT reflect the

real distribution of functions for binaries that users will decompile in the real world.

High failure rate of variable matching. Another issue with DIRE and DIRT

is the high failure rates of variable matching. We understand that decompilers are

unable to recover all of the variable names from source code, however oftentimes the

variable matching algorithm of DIRE and DIRT’s corpus creation is unable to match

the original human-created variable to the decompiler-assigned variable. We performed

analysis on a sample of functions from each corpus in Section 4.3.6. Incorrect matching

or missing matches between human-created variable names and decompiler-generated

names impacts the ground truth of the data set.

Single Decompiler Generated Dataset: A minor issue that might hamper the

generalizability of models trained on DIRE and DIRT is that they are IDA-only

corpora. This is because of drawbacks to their corpora generation: DIRE requires

legitimate IDA-generated ASTs for training, while DIRT could not match variables in

Ghidra’s decompilation against DWARF information post-mortem. Also, decompiled

codes generated using each decompiler are drastically different. Therefore, future

techniques built on DIRE and DIRT might overfit to IDA’s decompilation output and

cannot demonstrate their applicability to other decompilers.
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In conclusion, we believe DIRE and DIRT are unsuitable for future research on

predicting variable names in decompiled code (but the data sets may still be useful

for other purposes). We built a new corpus for VarBERT with these weaknesses and

limitations in mind.

4.3.3 Improving Existing Datasets

To better understand the impact of duplicated functions on neural models, we

attempted to address the duplication problem in the DIRE and DIRT corpra by

fully de-duplicating functions to create fixed data sets that we call DIRE-dedup and

DIRT-dedup.

We deduplicated individually each of the training, validation, and test set of DIRE

and DIRT. As a result, the number of functions in the training data gets reduced from

1M to 327K approximately in DIRE-dedup and from 1.6M to 717K approximately in

DIRT-dedup. In Section 4.7.1, we will evaluate VarBERT on these two new corpora.

4.3.4 Building Our Human-Source-Code (HSC) Dataset

The first type of corpora comprises annotated source code functions that human

developers author and are used for pre-training. We collected C source code files from

the Debian APT repository, then parsed and pre-processed these files. The goal of

pre-processing is to make source code resemble decompilation output, as required by

transfer learning. Pre-processing includes comment removal, macro expansion, invalid

identifier removal, etc. Finally, we annotated these files to indicate the variables in

each function. This resulted in a total of 5,235,792 C functions. For the rest of the

paper, we refer to this corpus as the Human-Source-Code (HSC) corpus.
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4.3.5 Building Our VarCorpus Dataset

Compiling Packages: The second type of corpora is decompilation output which

is generated by decompilers and will be used as input for fine-tuning. We collected

C packages from the Gentoo package repository, and built them targeting x86-64

for three compiler optimizations: -O0 (no optimization), -O1, and -O2 with debug

symbols preserved (-g). We stopped at -O2 because we found that decompilers failed

a significant amount of time on -O3 binaries. We had a total number of 62,650

deduplicated binary executables or libraries prior to decompilation. This number

includes binary executables for all three compiler optimizations.

Decompiling Binaries & Matching Variable Names: We processed the debug

symbols for each binary, stripping their type information, and leaving only human-

created variable names. This is important because it eliminates the impact that

debug symbols (especially type information) have on decompilation output. Then,

we decompiled each binary with two decompilers, IDA and Ghidra, and collected the

decompilation output per function. We chose IDA and Ghidra because, out of all the

binary decompilers we tested, only IDA and Ghidra could generate C-style pseudocode

with acceptable quality. Other decompilers either failed to decompile many functions,

did not support debug information, or could not generate C-style pseudocode. We

decompiled the binaries (compiled keeping the debug symbols preserved) and binaries

without type or debug information. Then we were able to reliably map the decompiler-

generated variables to the human-created variables at function-level. This also helps us

to identify whether a variable is decompiler-generated (extraneous) or human-created

which we call variable origin. This way, we eliminate the need for variable matching

heuristics used by prior work (which was only about 59% accurate) (Jaffe et al., 2018;

Lacomis et al., 2019).
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Data set C.O. Unique Variables Functions Binaries

HSC N/A 3,561,537 5,235,792 N/A

VarCorpus (IDA)

O0 849,192 2,608,873 19,815

O1 239,312 655,376 14,015

O2 187,065 527,646 13,347

VarCorpus (Ghidra)

O0 445,332 1,994,190 18,008

O1 168,005 803,974 14,826

O2 158,701 731,666 15,325

DIRE (Lacomis et al., 2019, RQ4)∗ O0 92,082 1,259,935 164,632

DIRE-Dedup O0 92,082 463,238 N/A

DIRT (Chen et al., 2022, Table 11)∗ O0 237,928 2,075,762 75,656

DIRT-Dedup O0 237,928 995,418 N/A

Table 4.1: Summary of all data sets, including numbers of functions, unique variable

names, and numbers of binaries. “C.O.” means Compiler Optimization.

We also removed irrelevant functions (e.g., PLT and glibc stubs) from the collection,

then annotated the remaining functions to indicate the locations of variable names

in each function. We call this corpus VarCorpus. VarCorpus-O0 is a corpus created

from binaries compiled with -O0 compiler optimization and so on. We provide details

of VarCorpus in Table 4.1.

4.3.6 Evaluating VarCorpus Quality:

Here we show that VarCorpus is reasonable and improves over the state-of-the-art

corpora.

Binaries: An essential difference between VarCorpus and DIRT (also DIRE) is the

definition of “binaries.” DIRT and DIRE use compiled object files whereas VarCorpus

only includes binary executables or libraries. Since each executable may be linked
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C.O. Min Max Average

VarCorpus (IDA)

O0 4 11,142 36.09

O1 4 7,693 36.54

O2 4 8,999 36.48

VarCorpus (Ghidra)

O0 5 11,759 31.58

O1 5 186,22 29.92

O2 5 10,434 31.23

DIRE O0 5 1,295 24.12

DIRE-Dedup O0 5 1,285 27.56

Table 4.2: The Distribution of Function Lengths in VarCorpus And DIRE. “C.O.”

Means Compiler Optimization.

from tens, hundreds, or thousands of object files, the numbers of binaries in VarCorpus

are not comparable to the ones in DIRE and DIRT.

Corpora Sizes and Duplicated Functions: Table 4.1 shows the summary of all

data sets. DIRE and DIRT both contain a high number of duplicated functions in

their training sets (and test sets). VarCorpus has no duplicate functions. Additionally,

VarCorpus is more diverse. For O0 data sets, VarCorpus contains over 1.6x more

unique functions than DIRT-Dedup and 4.6x more unique functions than DIRE-Dedup.

Finally, the number of unique variables in VarCorpus-O0 is 3.57x of the number of

unique variables in DIRT.

Overlap Between Test and Training Sets: The test set of DIRE has an overlap

of 79.9% and the test set of DIRT has an overlap of 65.5% with their training sets.

Because there is no function duplication in VarCorpus, our test and training sets also

do not overlap.

Function Lengths: Table 4.2 shows the distribution of function lengths (lines of
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C.O. Entropy

Train Test

HSC NA 14.56 14.66

VarCorpus (IDA) O0 12.59 12.45

DIRE O0 11.00 10.74

DIRT O0 9.06 9.20

Table 4.3: Shannon’s Entropy of Variables on Four Corpora.

code) in VarCorpus and DIRE. We can see that while VarCorpus and DIRE have

similar minimum lines of code, VarCorpus includes roughly 10 times larger functions

than DIRE, showing better diversity. We cannot get the line count from DIRT because

only split tokens (without newlines) are provided in the data set.

Distribution of variable in terms of Shannon Entropy. To better understand the

variable diversity, we use Shannon’s entropy on variable names as in prior work (Dramko

et al., 2022). The higher Shannon’s entropy is, the higher diversity there is among all

variables in a corpus, and the less likely the trained model will skew towards common

variable names. Table 4.3 shows Shannon’s entropy.

Our HSC data set is the biggest corpus with the most number of unique variable

names. Naturally, the HSC data set has the highest entropy of 14.56 which seconds

the richness and diversity of variable names. Similarly, VarCorpus-O0 (IDA) has an

entropy of 12.59, much higher than DIRT (11.00) and DIRE (9.06).

Variable name matching. Finally, to understand the performance of variable

matching in DIRE, DIRT, and VarCorpus-O0 (IDA), we randomly sampled 5,000

functions in each corpus, and measured the ratio between developer-assigned variable

95



names and the total number of variable names. Assuming IDA injects on average

similar amount of extraneous variables during decompilation for binaries built with

the same optimization level, the ratios on both corpora should be similar. However,

through random sampling, we measured a ratio of 56% on DIRE, 59% on DIRT,

and 74% on VarCorpus (IDA). This shows that we correctly mapped more developer-

assigned variable names to variables in decompilation output than DIRE and DIRT.

Based on the above data, we believe that VarCorpus represents a significant

improvement over the prior variable name prediction data sets, and should serve as a

benchmark for future research in this area.

4.4 Our Approach

We draw intuition of our approach of variable name inferencing from the transfer

learning approach of modern AI systems. Researchers in NLP and computer vision

proposed (and demonstrated the success of) transfer learning (Conneau et al., 2017;

McCann et al., 2017; Deng et al., 2009; Yosinski et al., 2014), wherein parameter

values originally trained for Task A can be re-used as initial parameter values when

training a neural model for Task B if A and B are similar. Creating an initial model

for Task A is called pre-training, and the second training run on Task B is called

fine-tuning. The pre-training approach allows a system to tune it to he domain of

data by learning the initial representation.

Given the obvious similar nature between source code and decompilation output,

transfer learning (pre-training on source and fine-tuning on decompilation output)

becomes a natural choice. It also reduces the need for clean the large task-specific

data sets. Here, we use transfer learning to compensate for the difficulty of creating a

large corpus of clean decompilation output: We pre-train on easy-to-obtain source

code and then fine-tune on the decompilation task.

96



4.4.1 The VarBERT Model

We develop a variation of BERT model to customize for the task of learning the

code representation. As a transformer-based model, basic parameters of VarBERT are

the number of neural layers L, the number of self-attention heads A, and the hidden

dimension H. Training a huge transformer-based model is computationally heavy and

time-consuming. Limited by accessible computing resources, VarBERT has fewer layers

than the original BERT. We take initial hyper-parameters from RoBERTa (Liu et al.,

2019b), which demonstrated an empirically optimal hyper-parameter configuration for

BERT on NLP tasks. We hypothesized that for the task of variable name prediction

a model might perform well, and created a model with L = 6, A = 8, and H = 512.

Our model has 45 million trainable parameters, which is about 40% of the number of

trainable parameters of BERT-Base (Liu et al., 2019b).

4.4.2 Tokenization Scheme

The natural language BERT model is familiar with English word vocabulary.

However, English is quite different from source code and decompiled code in terms of

structure, syntax, and keywords. For the model to better understand these, we first

learn a new source vocabulary using a Byte-Pair Encoding (BPE) tokenizer. Following

the RoBERTa (an optimized version of the original BERT model) (Liu et al., 2019b)

tokenizer, we consider learning a source vocabulary of 50,265 most frequently occurring

tokens from the training dataset of our human source code (HSC) corpus. We add a

special mask token ⟨mask⟩, along with four usual tokens: start token⟨s⟩, pad token

⟨pad⟩, end token ⟨/s⟩, and unknown token ⟨unk⟩. While learning the vocabulary of

50K we keep those frequent pairs which occurs at least 2 times in the text.
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4.4.3 Pre-Training

We pretrain our VarBERT model on HSC corpus to learn the nature of text. In

this process the model learns contextual representation of each token of the input text

and gets ready for down-stream task of variable name prediction.

Masked Language Modeling: Here, our motivation is to make VarBERT familiar

with the nature of input data. We first tokenize each function of the HSC corpus

and generate a token stream using the learned vocabulary. Finally, we learn the

representation of the code-tokens using BERT from scratch by Masked Language

Modeling approach similar to the approach given in RoBERTa (Liu et al., 2019b).

We randomly mask tokens and ask the model to recover the masked token, and in

the process, learn rich representations for the code-tokens. For MLM we use the

Whole Word Masking (Devlin et al., 2019a) technique so as to keep the variable names

preserved and learn the correlation of each whole variables with the contexts.

Constrained Masked Language Modeling: Next, we formulate another pre-

training task, Constrained MLM (a variation of MLM), which was proposed in prior

work (Donahue et al., 2020; Gu et al., 2020), where tokens are not randomly masked.

The motivation is to teach the model the task of selectively recovering specific code

tokens. We define Constrained MLM as follows: Let W0, ....WN be a sequence of

tokens. Let C = {A0, ..Ac} be a set of tokens which we define as the constrained set

of tokens. Then, in Constrained MLM, all tokens in W0, ....WN which belong to C

are masked, and C is a subset of V . We then train the model to predict the masked

token with a cross-entropy loss:

L = −
N

∑
i=0

M

∑
c=1

ywi,vc log(pwi,vc) (4.1)

where M is the size of the vocabulary, wi is the current token, vc is the target token,
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y is an indicator variable which is 1 if the target is vc and 0 otherwise, and p is the

probability that wi is the same as vc. Here, we select a vocabulary of 50K most

frequently occurring human-authored variable names from the HSC corpus. Then, we

selectively mask the variable names and train the model to predict them based on the

vocabulary.

4.4.4 Fine-Tuning

After pre-training on general source code, we fine-tuned our pre-trained models

for the variable name prediction task and the variable origin prediction task. Here

we again use the Constrained MLM task by masking variables in the training corpus

for each decompiler. We first develop a target vocabulary of frequently occurring

variable names from the training data along with earlier chosen 50K human-authored

variable names. We optimized the model parameters by minimizing the overall joint

cross-entropy loss L(X,Y) by taking the mean loss of N mini-batches (4.2), where X

and Y are the input and labels respectively.

L(X,Y) = 1

N

N

∑
n=1

Ln (4.2)

For the variable name prediction task, each mini-batch loss (Ln) is the sum of all

variable-name prediction loss (ltv) in that mini-batch. For the joint prediction task,

each mini-batch loss is the sum of joint loss of the predicted name (ltv) and the predicted

origin (lto) for each variable (t) in that mini-batch (n). Equation (4.3) formalizes this,

where Tn is the total number of variables to predict in a particular mini-batch (n).

Ln =
Tn

∑
t=1
(ltv + lto) (4.3)

Our VarBERT approach is shown through the end-to-end diagram 4.1. We further
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int64 sub_412810(int64 <mask>)
{

int <mask>;
if (sendmsg(<mask>, 0) == 1)

<mask> = 1;
else

<mask> = 0;
return <mask>;

}

Masked decompiled function

668, 332, 292, 403, 332, ...,65, 
890, 403, 4, 11, 93, 668, 332, 292, 
403, 4, 29, 286, 10, 997, 292, 11, 
86, 65, 890, 65, 696, 10, 4, 16, ...

Token stream

VarBERT Neural Network Model

int64 sub_412810(int64 a0)
{

int v1;
if (sendmsg(a0, 0) == 1)

v1 = 1;
else

v1 = 0;
return v1;

}

Stripped decompiled function

VarBERT

Variable name 

prediction head

Variable origin 

prediction head

msg, human
result, dec
msg, human
result, dec
result, dec
ret, dec

Prediction result

Figure 4.1: The Prediction Pipeline of VarBERT. The decompiled Code is Variable-

masked And Tokenized Into a Token Stream, Which Is Used As Input To The Model

For Prediction. VarBERT Predicts Both Variable Name And Origin For Each Masked

Location

formalize both cross-entropy loss functions in Equations (4.4) and (4.5) where C1 and

C2 are vocabulary lengths of the variable name prediction task and the variable origin

prediction task, respectively.

ltv(x,y) = log
exp(xtyt)

∑C1−1
c=0 exp(xtc)

(4.4)

lto(x,y) = log
exp(xtyt)

∑C2−1
c=0 exp(xtc)

(4.5)

Handling Long Functions Although we increased the maximum input size of our

VarBERT to 800 tokens (from BERT’s 512), we still encounter many functions that

have more tokens. To predict variable names for functions with more than 800 tokens,

VarBERT splits these function bodies into 800-token chunks and considers them as

separate samples during prediction.
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4.5 Experiments:

4.6 Implementation

We implement VarBERT using Python. For decompilation when building the

fine-tuning corpora, we used the Hex-Rays decompiler (in IDA Pro 7.6) and Ghidra

10.1. For building and training the neural model, we used PyTorch (Paszke et al.,

2019) 1.9.0, HuggingFace Transformers (Wolf et al., 2020b) 4.10.0, and Facebook

FairSeq (Ott et al., 2019) 0.10.0.

4.6.1 Hyper Parameters

We optimized our models using BERTAdam (Devlin et al., 2019a; Kingma and Ba,

2014) with the following parameters: β1 = 0.9, β2 = 0.999, ϵ = 1e − 6, and L2 weight

decay of 0.01. We warmed up over the first 10,000 steps to a peak value of 1e − 4 and

then linearly decayed. We set the dropout to 0.1 on all layers and attention weights.

Our activation function was GELU (Hendrycks and Gimpel, 2016). We trained all

our models for 30 epochs, except for experiments about evaluating DIRE on DIRE

where we trained for 60 epochs (so that our results are comparable to the ones in the

DIRE paper, where models were trained for 60 epochs). We performed all training

and experiments on four 81GB Nvidia A100 GPUs with a training batch size of 16.

4.6.2 Training

4.7 Results And Analysis

Throughout this evaluation, we seek to measure the performance of variable name

prediction systems in predicting variable names in previously unforeseen functions.

Therefore, unlike prior research like DIRE and DIRTY, we will only present the results
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from data sets where there is no duplication of functions between the training and

testing sets. In almost all experiments, we only consider top-1 accuracy—that is,

does the model predict with the highest confidence the same variable name that the

developer used? This is to showcase the lower-bound usefulness of variable name

prediction systems, even “close” guesses such as buf for buffer would be considered

incorrect. We leave it to future research to address the problem of evaluating the

correctness and usefulness of variable name prediction results.

In this evaluation, we attempt to answer the following research questions:

RQ1. How Do VarBERT Compare With Prior Works On DIRE And DIRT?

RQ2. How Effective Is VarBERT On VarCorpus?

RQ3. How Do Different Aspects of VarBERT Impact Its Effectiveness?
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Data set Model Top-1 Accuracy (%)

DIRE

DIRE (Lacomis et al., 2019, Table 1)∗ 35.3

DIRTY (Chen et al., 2022, Table 4)∗ 42.8

DIRECT (Nitin et al., 2021, Table 1)∗ 42.8

VarBERT (no PT) 51.24

VarBERT 61.49

DIRE-dedup
DIRE 38.29

VarBERT 61.73

DIRT

DIRE (Lacomis et al., 2019, Table 1)∗ 31.8

DIRTY (Chen et al., 2022, Table 4)∗ 36.9

VarBERT (no PT) 47.11

VarBERT 51.28

DIRT-dedup
DIRTY 41.25

VarBERT 51.02

Table 4.4: Results of DIRE, DIRTY, DIRECT, and VarBERT on DIRE, the fixed

DIRE-dedup, DIRT, and the fixed DIRT-dedup. To understand the impact of pre-

training, we also ran VarBERT without pre-training on HSC, indicated as VarBERT

(no PT). To save computation resources we did not re-run experimental results for

directly comparable results, and results of models marked with an asterisk∗ are taken

from the indicated paper.

4.7.1 RQ1: How Do VarBERT Compare With Prior Works On DIRE And DIRT?

In this first experiment, we compare VarBERT, DIRE (Lacomis et al., 2019),

DIRECT (Nitin et al., 2021), and DIRTY (Chen et al., 2022)’s performance on the
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original DIRE, the fixed DIRE-dedup, original DIRT, and the fixed DIRT-dedup data

sets. In addition, we also evaluate VarBERT without pre-training on HSC, indicated

as VarBERT (no PT). The goal of this experiment is to demonstrate how much of

VarBERT’s performance gain is due to the transfer learning on HSC.

Result. Table 4.4 shows the result of this experiment. Note that to save computational

resources in cases where results from papers were directly comparable (on the same

dataset) we included the results from prior papers.

The results show that, on the original DIRE, VarBERT without pre-training

outperformed prior work: 35.3% top-1 accuracy for DIRE, 42.8% for DIRTY, 42.8%

for DIRECT, and 51.24% for VarBERT without pre-training. However, VarBERT

with pre-training increased the top-1 accuracy to 61.49%. This same result also held

for the original DIRT dataset: 31.8% top-1 accuracy for DIRE, 36.9% for DIRTY, and

47.11% for VarBERT without pre-training. And VarBERT with pre-training increased

the top-1 accuracy to 51.28%.

To measure the impact of duplication in the DIRE and DIRT datasets, we re-ran

DIRE and VarBERT on DIRE-dedup and DIRTY and VarBERT on DIRT-dedup.

The results in Table 4.4 show that DIRE’s accuracy improves on the fixed DIRE-dedup

from 35.3% to 38.29%, while VarBERT maintains a high accuracy of 61.49%. Likewise,

DIRTY’s accuracy improves from 36.9% to 41.25% on the fixed DIRT-dedup, while

VarBERT maintained a high accuracy of 51.02%.

In conclusion, VarBERT outperforms all prior models: even without any pre-

training VarBERT outperforms the state-of-the-art, DIRTY’s model, by 10.21%.

This means that VarBERT is a strict improvement over the state-of-the-art model.

Therefore, in the following evaluations, we focus only on evaluating VarBERT on our

improved data set VarCorpus.
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C.O. Split Variable Name Variable Origin

Top-1 Top-3 Top-5 Top-10 Accuracy F1

VarCorpus (IDA)

O0
Function 59.33 68.03 70.89 74.14 90.44 89.07

Binary 45.12 53.24 56.16 59.71 89.46 87.91

O1
Function 57.79 66.82 69.84 73.31 83.86 83.48

Binary 44.47 52.11 54.96 58.53 82.21 81.70

O2
Function 58.39 67.70 69.89 73.21 81.24 81.22

Binary 44.78 52.21 54.94 58.27 79.69 79.66

VarCorpus (Ghidra)

O0
Function 59.84 69.11 72.13 75.59 87.45 87.44

Binary 55.51 62.86 65.42 68.52 87.86 87.86

O1
Function 62.22 70.03 72.47 75.34 89.11 87.78

Binary 46.70 53.47 55.87 58.80 87.70 86.11

O2
Function 62.28 69.99 72.50 75.40 89.54 87.42

Binary 50.54 57.26 59.67 62.57 88.37 85.72

Table 4.5: Evaluation of VarBERT’s variable-name-prediction task fine-tuned on

VarCorpus for different corpus optimization levels (C.O.) and either a function-level

split or a binary-level split. Values in Top-N columns are accuracy rates of human-

created variable names in percentage: Top-N means the correctly predicted variable is

present among the first N predicted variable names.

4.7.2 RQ2: How Effective Is VarBERT On VarCorpus?

Given the performance of VarBERT on corpora from prior work, which we demon-

strated in Section 4.3.2 are flawed, and the quality of VarCorpus that we evaluated in

Section 4.3.6, we now focus on evaluating VarBERT on VarCorpus to answer RQ2:

How Effective Is VarBERT On VarCorpus?
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We took six corpora from VarCorpus, three for IDA (the IDA corpus), and another

three for Ghidra (the Ghidra corpus) across three different compiler optimizations:

-O0, -O1, and -O2. In a ratio of 80:20, we split each corpus into training and test sets.

We also experimented with two data splitting approaches: (a) randomly splitting

data by function (per-function) and (b) randomly splitting data by binary (per-binary).

Please note that, as discussed in Section 4.3.6, VarCorpus per-binary split (where

“binaries” are executables) is different from DIRT and DIRE (where “binaries” are

object files). This split is important because the per-function split might have functions

that are from the same source project in both testing and training (although not the

same functions in testing and training, as there is no duplication), while with the

per-binary split, this will not occur (although, it is possible for two binaries to be

from different projects and include similar library functions, even if not identical, such

as different versions of a library). In this sense, we expect it to be more difficult to

predict when using the per-binary split than the per-function split.

We pre-trained VarBERT on human source code (HSC) and then fine-tuned it

separately on each corpus: IDA corpus and the Ghidra corpus.

Finally, we evaluated VarBERT on two testing sets for two tasks: Predicting the

origin of each variable (extraneous versus human-created) and predicting the name

for each human-created variable.

Variable origins. The right two columns of Table 4.5 show the results of the variable-

origin-prediction task. VarBERT can predict whether a variable is human-created or

extraneous roughly 80% to 90% of the time. We believe that these results can help

decompilers to produce improved decompilation results that are closer to the source

code (an orthogonal benefit to variable name prediction).

Variable names. For the variable-name-prediction task, we only consider how well

VarBERT performs. Table 4.5 shows the results of the variable-name-prediction task
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on the IDA and Ghidra corpora.

Because both VarCorpus-O0 (IDA) and DIRTY are generated from O0 binaries,

we can compare their results. VarBERT achieved top-1 accuracy of 59.33% on IDA

corpus and 59.84% on Ghidra courpus, when split on a per-function basis. We believe

these numbers are comparable to DIRTY’s accuracy on DIRT’s not-in-train test set,

which was 36.9% as reported in their paper (Chen et al., 2022).

This result shows that VarBERT learns variables’ semantics better from their

context and generalizes better to functions on which the model was not trained

(because there is no function duplication in VarCorpus).

Variable names on optimized binaries. VarCorpus allows the evaluation of

VarBERT’s performance on binaries compiled with optimizations enabled. Much to

our surprise, we do not observe any significant drop in accuracy when predicting

variable names for O1 and O2 binaries using per-function splits, and this finding

is consistent across both decompilers. This result clearly shows the applicability of

VarBERT for predicting variable names in real-world binaries, which are often built

with optimizations enabled.

Variable names on per-binary splits. As we anticipated, the accuracy of VarBERT

when working on per-binary splits is decreased compared to its accuracy on per-function

splits. The difference with the same decompiler-optimization pair is usually between

10% and 15%. Through preliminary analysis, we believe the root problem is that our

vocabulary was created using development and training sets. In per-binary splits, due

to the obvious Out-Of-Distribution issue, any variable names that only appear in test

tests cannot be predicted. Because there are many more unique variables in IDA-O0

than in Ghidra-O0 (849k versus 445k), IDA-O0 suffered more heavily. We believe this

highlights an interesting research direction for future work to address.

Non-Exact Match Performance: In Tables 4.4 and 4.5, we evaluate VarBERT
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using the hardest metric: Exact-Match (EM), where we consider the model prediction

to be correct only if the prediction exactly matches the reference variable names. For

example, even if VarBERT predicts tmp or tmp2 in place of tmp0, we consider these

predictions incorrect even though they carry the same semantic meaning and can

assist humans in binary understanding. So we introduce two non-exact-match metrics

like Average Edit Distance (AED) and Average Character Error Rate (ACER) and

show the performance of VarBERT on VarCorpus, DIRE and DIRT in Table 4.6.

We find that, for both the compilers, with more optimization, the AED increase

indicating that VarBERT finds it difficult to learn and predict the accurate variable

names. The ACER, however, does not change significantly which we believe is because

the model was able to find similar names on most of the occasions irrespective of the

optimizations. Another observation is that both the metrics are higher in the binary-

level split than function-level split, which is because the variables in the binary-level

split are much more difficult to predict than function-level split simply because here

there is no opportunity of learning the commonalities of the nature of the intra-binary

functions.
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C.O. Split AED ACER

VarCorpus (IDA)

O0
Function 1.79 0.36

Binary 2.31 0.50

O1
Function 2.07 0.41

Binary 2.48 0.53

O2
Function 2.11 0.41

Binary 2.57 0.55

VarCorpus (Ghidra)

O0
Function 1.93 0.40

Binary 1.95 0.42

O1
Function 2.16 0.41

Binary 2.76 0.57

O2
Function 2.44 0.53

Binary 2.73 0.52

DIRE O0
Original 1.94 0.41

Dedup 1.68 0.36

DIRT O0
Original 1.88 0.44

Dedup 1.87 0.44

Table 4.6: Evaluation Of VarBERT’s Variable-Name-Prediction Task On Each Of

The Datasets: VarCorpus, DIRE And DIRT Using Two Non-Exact-Match Metrics:

Average Edit Distance (AED) and Average Character Error Rate (ACER).

Comparison With Simple Baselines: Since our formulation of Variable Name

Inference is a prediction task across a large number of variable classes (150K for

VarCorpus and DIRT and around 100K for DIRE), we show the Most Frequent (MF)

Baseline performance in Table 4.7. We choose the most frequently occurring variable

from the training data of each of the datasets and consider that as the model prediction.

It can be seen that for each of the datasets, the MF top-1 exact-match accuracy is less
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C.O. Split MF Top-1 Accuracy (%)

VarCorpus (IDA)

O0
Function 3.15

Binary 2.96

O1
Function 2.30

Binary 2.34

O2
Function 2.53

Binary 2.52

VarCorpus (Ghidra)

O0
Function 5.90

Binary 6.17

O1
Function 1.47

Binary 1.32

O2
Function 1.44

Binary 1.21

DIRE O0 Original 6.93

DIRT O0 Original 3.85

Table 4.7: Most Frequent (MF) Baseline: Selecting Most Frequently Occurring Variable

In The Training Data

than 7%. Apart from that, the Random Baseline selecting a random variable from

training data as model prediction is 0%. This shows that our model performance is

not biased on the training data variable names.

4.7.3 RQ3: How Do Different Aspects of VarBERT Impact Its Effectiveness? An

Ablation Study.

The Impact of Pre-training: As shown in Table 4.4, we measured the impact of pre-

training by evaluating VarBERT and VarBERT (no PT) on DIRE. The improvement

of 10 percentage points (61.49% versus 51.24%) shows the necessity of pre-training.
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Figure 4.2: The Impact Of Corpora Sizes On VarBERT’s Performance.

The Performance of VarBERT on CMLM pre-training Task: This constrained

MLM task tunes the model to the task of retrieving the missing variable for a masked-

out location on a source code. This task shows around 4% and 1% improvements in

DIRE and DIRT datasets. VarBERT shows 54.12%, 66.87%, 71.18% and 75.99% in

top-1, top-3, top-5, top-10 in HSC-Test dataset.

The Impact of Corpus Size: To study the impact of corpus size on the accuracy of

VarBERT, we train VarBERT separately on 20%, 40%, 60%, and 80% of VarCorpus-O2

(IDA). Figure 4.2 shows the result. With 40% training data, our model achieved

good performance on both the variable name prediction task (49.21%) and variable

origin prediction (82.83 F1 score). With more data, the accuracy of VarBERT on the

variable name prediction task increases steadily, which shows its potential to improve

further with more training data.
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Figure 4.3: Example Case Study On Function qemu clock enable From The DIRT

Dataset. Figure (a) Shows the Actual Source Code For Reference. (b) Shows DIRTY’s

Prediction (c) Shows VarBERT Prediction. Correctly Predicted Variables Are In Italic

Green While Incorrect Predictions Are In Styled Red. Variable v4 is Extraneous

Variable And Hence Not Predicted By Either Of The Systems

4.8 Case Studies

4.8.1 DIRTY and VarBERT Comparison on DIRT

We show an example of variable name prediction results to examine here as a

case study. We chose the function qemu clock enable from the DIRT data set and

compared the variable name prediction results of DIRTY and VarBERT on it.

To assist in the comparison, Listing 4.3(a) shows the original source code of the

qemu clock enable function (which we were able to find using the decompilation

output). Next to Listing 4.3(a), we show the decompilation output with the variable

name prediction results of DIRTY in Listing 4.3(b) and VarBERT in Listing 4.3(c).

In the decompilation output, we removed type casts (which is a keyboard shortcut in

IDA) for easier comparison between the outputs. In both the decompilation outputs,

variables that are predicted correctly are styled italic green while variables that are

predicted incorrectly are styled red.

The function in Listing 4.3(a) has three developer-intended variables: clock,
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enabled, and old. DIRTY in Listing 4.3(b) was able to correctly predict enabled,

but failed for the others, predicting clock as uc and old as status. However VarBERT

in Listing 4.3(c) correctly predicted clock and old but was incorrect in predicting

enable for enabled. Note that even though enable is very semantically similar to

enabled, the strict design of our evaluation counts this as a failure when considering

top-1 accuracy.

4.8.2 Mispredictions

VarBERT and DIRTY both consider a prediction correct if it is a strict match.

But some of these mispredictions are as valuable as predictions. We looked into

VarBERT’s prediction results when running on VarCorpus-O0 (IDA) to understand

its mispredictions. Table 4.8 shows examples of developer-intended variables, the

percentage of time that the correct variable was predicted along with the top-3 incorrect

predictions. For instance, the original variable name substring n was only predicted

correctly 50% of the time, and the other incorrect predictions were substring1 and

substring. For a human, the semantic meaning of these predictions is quite similar,

however, we count these predictions as mispredictions.

We also noticed that the model seemed to pick up on nuances of the English

language. For example the VarBERT prediction from Section 4.8.1 in Listing 4.3(c):

VarBERT predicted enabled as enable. These two words share the same root, but

this is not a correct prediction. We see a similar misprediction trend with the variable

buffer, where buf and buffer are essentially the same word.

4.9 Discussion

While VarBERT improves the feasibility of variable name prediction on real-world

decompiled code by a sizable margin, we envision that this research challenge will still
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Correct Predictions Top-3 Incorrect Predictions

buffer buffer (63.55%) buf (8.95%) UNK (5.35%) data (2.43%)

len len (73.57%) UNK (5.65%) size (2.80%) n (1.84%)

tmp1 tmp1 (48.56%) tmp2 (12.83%) tmp0 (11.55%) UNK (5.56%)

srcsize srcsize (42.86%) len (28.57%) length (14.29%) size (7.14%)

substring n substring n (50.00%) substring1 (25.00%) substring (25.00%) -

Table 4.8: Common variables and uncommon variables, their probabilities of getting

correctly predicted, and the probabilities of the top-3 incorrect predictions of VarBERT

on VarCorpus-O0 (IDA).

remain unsolved for some time. We discuss in this section the limitations of VarBERT

as well as potential future research directions that may lead to the ultimate solution

of readable and useful decompilation.

4.9.1 Threats to Validity

Insufficient Decompilation Quality: In the course of conducting this research, we

notice that modern binary code decompilers usually fail to generate satisfactory results

for C++ binaries, or C binaries that were compiled with optimizations enabled. This

is because binary decompilation is its own research area with many unsolved research

problems. Variable name prediction can only build upon the correct identification of

variables in decompilation output. When decompilers fail to yield sufficiently good

results, especially when many human-created variables are not identified, VarBERT

(and other solutions) cannot predict variable names for variables that do not exist in

decompiled code.

Unrepresentative Corpora: A key assumption underpinning statistical machine

learning is that the training set must be of an independent and identical distribution
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as real-world samples. As we showed in Section 4.3.2, the most obvious difference

between VarCorpus, DIRE and DIRT is the distribution of functions: DIRE and DIRT

contain much more duplicated functions.

Based on how we created our corpora (using binary executables instead of compiled

object files), we believe our distribution is closer to what a human reverse engineer

may encounter when decompiling binary programs. However, we built our corpora

by collecting C packages in package repositories of two major Linux distributions.

The corpora may not be representative for executables on other platforms, such as

Windows or MacOS. Additionally, most (if not all) of the variables in the corpus are

named in English, which means VarCorpus is not representative for binaries whose

variables were originally named in a non-English language.

4.9.2 Future Research

An obvious improvement for variable name prediction is considering the surrounding

functions and calling context during training and testing. This will be very helpful

for small utility functions that are called at different locations. Additionally, future

research may consider incorporating run-time values in variable name prediction,

which has been suggested by StateFormer (Pei et al., 2021a).

4.10 Related Work

Binary Decompilation: Decompilation was originally referred to as “reverse compi-

lation” by Cifuentes in a seminal thesis (Cifuentes, 1994). Two critical problems that

binary code decompilation must solve are (control-flow) structural analysis and variable

type inference. On structural analysis, Phoenix first proposed semantics-preserving

structural analysis (Schwartz et al., 2013). The Dream decompiler implemented a

goto-free structural recovery algorithm (Yakdan et al., 2015a). Recently, Gussoni et al.
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proposed an approach that structures binary-level control flow graphs with zero goto

statements (Gussoni et al., 2020). Regarding variable type inference, TIE (Lee et al.,

2011), retypd (Noonan et al., 2016), and Osprey (Zhang et al., 2021b) are recent work

for inferencing variable types on binary programs. Advances in binary decompilation

benefit VarBERT by providing higher-quality decompilation output that resembles

human-developed source code.

Neural Models in Binary Decompilation: Recently, researchers have been

applying deep learning in decompiling binary code or improving the decompilation

result. Katz et al. used recurrent neural networks to decompile binary code snippets

into C code (Katz et al., 2018). Coda is a recent end-to-end neural-based approach to

decompilation (Fu et al., 2019). While they have achieved promising results, it is still

too early to decompile reasonably sized binary programs purely with neural models.

More research projects aim to use neural networks to improve the quality of binary

reverse engineering results or decompilation output. Debin is the first attempt in using

machine learning to predict debug information for stripped binary code (He et al.,

2018). DIRE focuses on predicting variable names in decompilation output (Lacomis

et al., 2019). NFRE predicts function names on stripped binaries by learning from a

large corpus of stripped binaries (Gao et al., 2021). DIRECT improved upon DIRE by

not requiring an AST for the decompilation output and only relying on text tokens,

and it was evaluated on DIRE’s data set (Nitin et al., 2021). DIRTY advances the field

by predicting both variable names and types on decompiled code (Chen et al., 2022).

VarBERT directly improves on DIRE by first introducing a transfer-learning-based

model, which addresses the fundamental challenge in data set building. VarBERT

also proposes a new data set VarCorpus that alleviates many key issues in DIRE and

DIRTY’s original training and test corpus. Finally, VarBERT expands variable name

prediction to multiple decompilers (IDA and Ghidra), while DIRE and DIRTY only
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DIRE DIRECT DIRTY VarBERT

Dataset

New Datasets ✓ ✗ ✓(x1.65) ✓(x2.07, x4.16)

# New Datasets 1 ✗ 1 7

Optimization level O0 – O0 O0, O1, O2

Split Binary – Binary Function, Binary

Duplicates ✓(68.6%) – ✓(56.9%) ✗

Approach

Pretraining ✗ ✓(MLM) ✗ ✓(MLM, CMLM)

Extra inputs AST AST ✗ ✗

Origin Prediction ✗ ✗ ✗ ✓

Inference Generation Generation Generation Prediction

Table 4.9: Our Contributions Compared To Existing Approaches

support IDA.

4.11 Conclusion

We propose a new solution VarBERT for predicting meaningful variable names in

decompilation output. VarBERT is based on transfer learning, which learns knowledge

on a large corpus of human-developed source code and fine-tunes for the task of variable

name prediction and variable origin prediction on decompilation output from two

decompilers (IDA and Ghidra). During our research, we found major issues with the

state-of-the-art dataset and built a new data set that is, to the best of our knowledge,

free of these issues. We demonstrate that VarBERT outperforms both DIRE and

DIRTY on their original data set, even without pre-training on human source code

and achieves acceptable prediction accuracy on our new corpora VarCorpus. Our

contributions as compared to the existing approaches can be seen from the table 4.9.

Our research corrects the existing understanding of the research progress on the topic
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of variable name prediction in decompiled code, establishes new baselines, and, by

releasing our research artifacts to the public, will foster new research on this topic.

118



Chapter 5

CAREFUL SELECTION OF KNOWLEDGE TO SOLVE OPEN BOOK

QUESTION ANSWERING

ABSTRACT

Open book question answering is a type of natural language-based QA (NLQA)

where questions are expected to be answered with respect to a given set of open

book facts, and common knowledge about a topic. Recently a challenge involving

such QA, OpenBookQA, has been proposed. Unlike most other NLQA tasks that

focus on linguistic understanding, OpenBookQA requires deeper reasoning involving

linguistic understanding as well as reasoning with common knowledge. In this paper,

we address QA with respect to the OpenBookQA dataset and combine state-of-the-art

language models with abductive information retrieval (IR), information gain-based

re-ranking, passage selection, and weighted scoring to achieve 72.0% accuracy, an

11.6% improvement over the current state of the art.
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5.1 Introduction

Natural language-based question answering (NLQA) not only involves linguistic

understanding but often involves reasoning with various kinds of knowledge. In recent

years, many NLQA datasets and challenges have been proposed, for example, SQuAD

(Rajpurkar et al., 2016), TriviaQA (Joshi et al., 2017) and MultiRC (Khashabi et al.,

2018), and each of them have their own focus, sometimes by design and other times

by virtue of their development methodology. Many of these datasets and challenges

try to mimic human question-answering settings. One such setting is open book

question answering where humans are asked to answer questions in a setup where they

can refer to books and other materials related to their questions. In such a setting,

the focus is not on memorization but, as mentioned in (Mihaylov et al., 2018), on

“deeper understanding of the materials and its application to new situations (Jenkins,

1995; Landsberger, 1996).” In (Mihaylov et al., 2018), they propose the OpenBookQA

dataset mimicking this setting.
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Question: A tool used to identify the percent chance of a trait being

passed down has how many squares? (A) Two squares (B) Four

squares (C) Six squares (D) Eight squares

Extracted from OpenBook:

a punnett square is used to identify the percent chance of a trait

being passed down from a parent to its offspring.

Retrieved Missing Knowledge:

Two squares is four.

The Punnett square is made up of 4 squares and 2 of them are blue

and 2 of them are brown, this means you have a 50% chance of

having blue or brown eyes.

Table 5.1: An Example of Distracting Retrieved Knowledge

The OpenBookQA dataset has a collection of questions and four answer choices

for each question. The dataset comes with 1326 facts representing an open book.

It is expected that answering each question requires at least one of these facts. In

addition, it requires common knowledge. To obtain relevant common knowledge we

use an IR system (Clark et al., 2016) front end to a set of knowledge-rich sentences.

Compared to the reading comprehension-based QA (RCQA) setup where the answers

to a question are usually found in the given small paragraph, in the OpenBookQA

setup the open book part is much larger (than a small paragraph) and is not complete

as additional common knowledge may be required. This leads to multiple challenges.

First, finding the relevant facts in an open book (which is much bigger than the small

paragraphs in the RCQA setting) is a challenge. Then, finding the relevant common

knowledge using the IR front end is an even bigger challenge, especially since standard
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IR approaches can be misled by distractions. For example, Table 5.1 shows a sample

question from the OpenBookQA dataset. We can see the retrieved missing knowledge

contains words that overlap with both answer options A and B. Introduction of such

knowledge sentences increases confusion for the question answering model. Finally,

reasoning involving both facts from open book, and common knowledge leads to

multi-hop reasoning with respect to natural language text, which is also a challenge.

We address the first two challenges and make the following contributions in this

paper: (a) We improve on knowledge extraction from the OpenBook present in the

dataset. We use semantic textual similarity models that are trained with different

datasets for this task; (b) We propose natural language abduction to generate queries

for retrieving missing knowledge; (c) We show how to use Information Gain based

Re-ranking to reduce distractions and remove redundant information; (d) We provide

an analysis of the dataset and the limitations of BERT Large model for such a question

answering task.

The current best model on the leaderboard of OpenBookQA is the BERT Large

model (Devlin et al., 2019). It has an accuracy of 60.4% and does not use external

knowledge. Our knowledge selection and retrieval techniques achieve an accuracy

of 72%, with a margin of 11.6% on the current state of the art. We study how the

accuracy of the BERT Large model varies with varying numbers of knowledge facts

extracted from the OpenBook and through IR.

5.2 Related Work

In recent years, several datasets have been proposed for natural language question

answering (Rajpurkar et al., 2016; Joshi et al., 2017; Khashabi et al., 2018; Richardson

et al., 2013; Lai et al., 2017; Reddy et al., 2018; Choi et al., 2018; Tafjord et al., 2018;

Mitra et al., 2019) and many attempts have been made to solve these challenges
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(Devlin et al., 2019; Vaswani et al., 2017; Seo et al., 2016).

Among these, the closest to our work is the work in (Devlin et al., 2019) which

perform QA using fine-tuned language model, and the works of (Sun et al., 2018;

Zhang et al., 2018) which performs QA using external knowledge.

Related to our work for extracting missing knowledge are the works of (Ni et al.,

2018; Musa et al., 2018; Khashabi et al., 2017) which respectively generate a query

either by extracting key terms from a question and an answer option or by classifying

key terms or by Seq2Seq models to generate key terms. In comparison, we generate

queries using the question, an answer option, and an extracted fact using natural

language abduction.

The task of natural language abduction for natural language understanding has

been studied for a long time (Norvig, 1983, 1987; Hobbs, 2004; Hobbs et al., 1993;

Wilensky, 1983; Wilensky et al., 2000; Charniak and Goldman, 1988, 1989). However,

such works transform the natural language text to a logical form and then use formal

reasoning to perform the abduction. On the contrary, our system performs abduction

over natural language text without translating the texts to a logical form.

5.3 Approach

Our approach involves six main modules: Hypothesis Generation, OpenBook

Knowledge Extraction, Abductive Information Retrieval, Information Gain based Re-

ranking, Passage Selection and Question Answering. A key aspect of our approach

is to accurately hunt the needed knowledge facts from the OpenBook knowledge

corpus and hunt missing common knowledge using IR. We explain our approach in

the example given in Table 5.2.
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Question: A red-tailed hawk is searching for prey. It is most likely

to swoop down on what? (A) a gecko

Generated Hypothesis :

H : A red-tailed hawk is searching for prey. It is most likely to

swoop down on a gecko.

Retrieved Fact from OpenBook:

F : hawks eat lizards

Abduced Query to find missing knowledge:

K : gecko is lizard

Retrieved Missing Knowledge using IR:

K : Every gecko is a lizard.

Table 5.2: Our Approach with an Example for the Correct Option

In Hypothesis Generation, our system generates a hypothesis Hij for the ith question

and jth answer option, where j ∈ {1,2,3,4}. In OpenBook Knowledge Extraction,

our system retrieves appropriate knowledge Fij for a given hypothesis Hij using

semantic textual similarity, from the OpenBook knowledge corpus F. In Abductive

Information Retrieval, our system abduces missing knowledge from Hij and Fij. The

system formulates queries to perform IR to retrieve missing knowledge Kij. With

the retrieved Kij, Fij, Information Gain based Re-ranking and Passage Selection our

system creates a knowledge passage Pij. In Question Answering, our system uses Pij

to answer the questions using a BERT Large-based MCQ model, similar to its use in

solving SWAG (Zellers et al., 2018).
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Figure 5.1: Our Approach

5.3.1 Hypothesis Generation

Our system creates a hypothesis for each of the questions and candidate answer

options as part of the data preparation phase as shown in the example in Table 5.2.

The questions in the OpenBookQA dataset are either with wh word or are incomplete

statements. To create hypothesis statements for questions with wh words, we use

the rule-based model of (Demszky et al., 2018). For the rest of the questions, we

concatenate the questions with each of the answers to produce the four hypotheses.

This has been done for all the training, test, and validation sets.

5.3.2 OpenBook Knowledge Extraction

To retrieve a small set of relevant knowledge facts from the knowledge corpus F, a

textual similarity model is trained in a supervised fashion on two different datasets

and the results are compared. We use the large-cased BERT (Devlin et al., 2019)

(BERT Large) as the textual similarity model.
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BERT Model Trained On STS-B

We train it on the semantic textual similarity (STS-B) data from the GLUE dataset

(Wang et al., 2018). The trained model is then used to retrieve the top ten knowledge

facts from corpus F based on the STS-B scores. The STS-B scores range from 0 to

5.0, with 0 being the least similar.

BERT Model Trained On OpenBookQA

We generate the dataset using the gold OpenBookQA facts from F for the train and

validation set provided. To prepare the train set, we first find the similarity of the

OpenBook F facts with respect to each other using the BERT model trained on the

STS-B dataset. We assign a score of 5.0 for the gold F̂i fact for a hypothesis. We

then sample different facts from the OpenBook and assign the STS-B similarity scores

between the sampled fact and the gold fact F̂i as the target score for that fact Fij

and Hij. For example:

Hypothesis : Frilled sharks and angler fish live far beneath the surface of the

ocean, which is why they are known as Deep sea animals.

Gold Fact : deep sea animals live deep in the ocean : Score : 5.0

Sampled Facts :

coral lives in the ocean : Score : 3.4

a fish lives in water : Score : 2.8

We do this to ensure a balanced target score is present for each hypothesis and

fact. We use this trained model to retrieve the top ten relevant facts for each Hij from

the knowledge corpus F.
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5.3.3 Natural Language Abduction And IR

To search for the missing knowledge, we need to know what we are missing. We

use “abduction” to figure that out. Abduction is a long-studied task in AI, where

normally, both the observation (hypothesis) and the domain knowledge (known fact)

are represented in a formal language from which a logical solver abduces possible

explanations (missing knowledge). However, in our case, both the observation and the

domain knowledge are given as natural language sentences from which we want to

find out a possible missing knowledge, which we will then hunt using IR. For example,

one of the hypotheses Hij is “A red-tailed hawk is searching for prey. It is most likely

to swoop down on a gecko.”, and for which the known fact Fij is “hawks eats lizards”.

From this we expect the output of the natural language abduction system to be Kij

or “gecko is a lizard”. We will refer to this as “natural language abduction”.

For natural language abduction, we propose three models, compare them against

a baseline model and evaluate each on a downstream question-answering task. All the

models ignore stop words except the Seq2Seq model. We describe the three models

and a baseline model in the subsequent subsections.

Word Symmetric Difference Model

We design a simple heuristic-based model defined as below:

Kij = (Hij ∪ Fij) ∖ (Hij ∩ Fij) ∀j ∈ {1,2,3,4}

where i is the ith question, j is the jth option, Hij , Fij , Kij represents a set of unique

words of each instance of hypothesis, facts retrieved from knowledge corpus F and

abduced missing knowledge of validation and test data respectively.
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Supervised Bag Of Words Model

In the Supervised Bag of Words model, we select words that satisfy the following

condition:

P (wn ∈Kij) > θ

where wn ∈ {Hij ∪ Fij}. To elaborate, we learn the probability of a given word wn

from the set of words in Hij ∪ Fij belonging to the abduced missing knowledge Kij.

We select those words which are above the threshold θ.

To learn this probability, we create a training and validation dataset where the

words similar (cosine similarity using spaCy) (Honnibal and Montani, 2017) to the

words in the gold missing knowledge K̂i (provided in the dataset) are labeled as

positive class and all the other words not present in K̂i but in Hij ∪Fij are labeled as

negative class. Both classes are ensured to be balanced. Finally, we train a binary

classifier using BERT Large with one additional feed-forward network for classification.

We define the value for the threshold θ using the accuracy of the classifier on the

validation set. 0.4 was selected as the threshold.

Copynet Seq2Seq Model

In the final approach, we used the copynet sequence to sequence model (Gu et al.,

2016) to generate, instead of predict, the missing knowledge given, the hypothesis H

and knowledge fact from the corpus F. The intuition behind using copynet model

is to make use of the copy mechanism to generate essential yet precise (minimizing

distractors) information which can help in answering the question. We generate the

training and validation dataset using the gold K̂i as the target sentence, but we

replace out-of-vocabulary words from the target with words similar (cosine similarity

using spaCy) (Honnibal and Montani, 2017) to the words present in Hij ∪ Fij. Here,
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however, we did not remove the stopwords. We choose one, out of multiple generated

knowledge based on our model which provided maximum overlap score, given by

overlap score = ∑i count((Ĥi ∪ Fi) ∩Ki)
∑i count(K̂i)

where i is the ith question, Ĥi being the set of unique words of correct hypothesis,

Fi being the set of unique words from retrieved facts from knowledge corpus F, Ki

being the set of unique words of predicted missing knowledge and K̂i being the set of

unique words of the gold missing knowledge.

Word Union Model

To see if abduction helps, we compare the above models with a Word Union Model.

To extract the candidate words for missing knowledge, we used the set of unique

words from both the hypothesis and OpenBook knowledge as candidate keywords.

The model can be formally represented with the following:

Kij = (Hij ∪ Fij) ∀j ∈ {1,2,3,4}

5.3.4 Information Gain Based Re-ranking

In our experiments we observe that BERT QA model gives a higher score if

similar sentences are repeated, leading to the wrong classification. Thus, we introduce

Information Gain based Re-ranking to remove redundant information.

We use the same BERT Knowledge Extraction model Trained on OpenBookQA

data (section 5.3.2), which is used for extraction of knowledge facts from corpus F

to do an initial ranking of the retrieved missing knowledge K. The scores of this

knowledge extraction model are used as relevancy score, rel. To extract the top ten

missing knowledge K, we define a redundancy score, redij, as the maximum cosine

similarity, sim, between the previously selected missing knowledge, in the previous
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iterations till i, and the candidate missing knowledge Kj. If the last selected missing

knowledge is Ki, then

redij(Kj) =max(redi−1,j(Kj), sim(Ki,Kj))

rank score = (1 − redi,j(Kj)) ∗ rel(Kj)

For missing knowledge selection, we first take the missing knowledge with the

highest rel score. From the subsequent iteration, we compute the redundancy score

with the last selected missing knowledge for each of the candidates and then rank

them using the updated rank score. We select the top ten missing knowledge for each

Hij.

5.3.5 Question Answering

Once the OpenBook knowledge facts F and missing knowledge K have been

extracted, we move on to the task of answering the questions.

Question-Answering Model

We use BERT Large model for the question-answering task. For each question,

we create a passage using the extracted facts and missing knowledge and fine-tune

the BERT Large model for the QA task with one additional feed-forward layer for

classification. The passages for the training dataset were prepared using the knowledge

corpus facts, F. We create a passage using the top N facts, similar to the actual gold

fact F̂i, for the train set. The similarities were scored using the STS-B trained model

(section 5.3.2). The passages for the training dataset do not use the gold missing

knowledge K̂i provided in the dataset. For each of our experiments, we use the same

trained model, with passages from different IR models.
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F Any Passage Correct Passage Accuracy(%)

N TF-IDF Trained STS-B TF-IDF Trained STS-B TF-IDF Trained STS-B

1 228 258 288 196 229 234 52.6 63.6 59.2

2 294 324 347 264 293 304 57.4 66.2 60.6

3 324 358 368 290 328 337 59.2 65.0 60.2

5 350 391 398 319 370 366 61.6 65.4 62.8

7 356 411 411 328 390 384 59.4 65.2 61.8

10 373 423 420 354 405 396 60.4 65.2 59.4

Table 5.3: Compares (a) the Number of Correct Facts That Appears Across Any Four

Passages (b) the Number of Correct Facts That Appears in the Passage of the Correct

Hypothesis (C) the Accuracy for TF-IDF, Bert Model Trained on STS-B Dataset and

Bert Model Trained on Openbook Dataset. N Is the Number of Facts Considered.

The BERT Large model limits passage length to be lesser than or equal to 512.

This restricts the size of the passage. To be within the restrictions we create a passage

for each of the answer options and score for all answer options against each passage.

We refer to this scoring as sum score, defined as follows:

For each answer option, Aj, we create a passage Pj and score against each of

the answer options Ai. To compute the final score for the answer, we sum up each

individual score. If Q is the question, the score for the answer is defined as

Pr(Q,Ai) =
4

∑
j=1

score(Pj,Q,Ai)

where score is the classification score given by the BERT Large model. The final

answer is chosen based on,

A = arg max
A

Pr(Q,Ai)

Passage Selection And Weighted Scoring

In the first round, we score each of the answer options using a passage created from the

selected knowledge facts from corpus F. For each question, we ignore the passages of
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the answer options which are in the bottom two. We refer to this as Passage Selection.

In the second round, we score for only those passages which are selected after adding

the missing knowledge K.

We assume that the correct answer has the highest score in each round. Therefore

we multiply the scores obtained after both rounds. We refer to this as Weighted

Scoring. We define the combined passage selected scores and weighted scores as follows

:

Pr(F,Q,Ai) =
4

∑
j=1

score(Pj,Q,Ai)

where Pj is the passage created from extracted OpenBook knowledge, F. The top two

passages were selected based on the scores of Pr(F,Q,Ai).

Pr(F ∪K,Q,Ai) =
4

∑
k=1

δ ∗ score(Pk,Q,Ai)

where δ = 1 for the top two scores and δ = 0 for the rest. Pk is the passage created

using both the facts and missing knowledge. The final weighted score is :

wPr(Q,Ai) = Pr(F,Q,Ai) ∗ Pr(F ∪K,Q,Ai)

The answer is chosen based on the top-weighted scores as below:

A = arg max
A

wPr(Q,Ai)

5.4 Experiments

5.4.1 Dataset And Experimental Setup

The dataset of OpenBookQA contains 4957 questions in the train set and 500

multiple choice questions in validation and test respectively. We train a BERT Large-

based QA model using the top ten knowledge facts from the corpus F, as a passage

for both the training and validation set. We select the model which gives the best
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score for the validation set. The same model is used to score the validation and test

set with different passages derived from different methods of Abductive IR. In the

best Abductive IR model, the number of facts from F and K are selected from the

best validation scores for the QA task.

5.4.2 OpenBook Knowledge Extraction

Question: .. they decide the best way to save money is ? (A) to quit eating

lunch out (B) to make more phone calls (C) to buy less with monopoly money

(D) to have lunch with friends

Knowledge extraction trained with STS-B:

using less resources usually causes money to be saved

a disperser disperses

each season occurs once per year

Knowledge extraction trained with OpenBookQA:

using less resources usually causes money to be saved

decreasing something negative has a positive impact on a thing

conserving resources has a positive impact on the environment

Table 5.3 shows a comparative study of our three approaches for OpenBook

knowledge extraction. We show the number of correct OpenBook knowledge extracted

for all of the four answer options using the three approaches TF-IDF, BERT model

trained on STS-B data and BERT model Trained on OpenBook data. Apart from

that, we also show the count of the number of facts presents precisely across the

correct answer options. It can be seen that the Precision@N for the BERT model

trained on OpenBook data is better than the other models as N increases.

The above example presents the facts retrieved from BERT model trained on

OpenBook which are more relevant than the facts retrieved from BERT model trained
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on STS-B. Both the models were able to find the most relevant fact, but the other facts

for the STS-B model introduce more distractors and have lesser relevance. The impact

of this is visible from the accuracy scores for the QA task in Table 5.3. The best

performance of the BERT QA model can be seen to be 66.2% using only OpenBook

facts.

5.4.3 Abductive Information Retrieval

We evaluate the abductive IR techniques at different values for a number of facts

from F and the number of missing knowledge K extracted using IR. Figure 5.2 shows

the accuracy against different combinations of F and K, for all four techniques of IR

prior to Information gain-based Re-ranking. In general, we noticed that the trained

models performed poorly compared to the baselines. The Word Symmetric Difference

model performs better, indicating abductive IR helps. The poor performance of the

trained models can be attributed to the challenge of learning abductive inference.

For the above example it can be seen, the pre-reranking facts are relevant to

the question but contribute very less considering the knowledge facts retrieved from

the corpus F and the correct answer. Figure 5.3 shows the impact of Information

gain-based Re-ranking. Removal of redundant data allows the scope of more relevant

information to be present in the Top N retrieved missing knowledge K.
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Question: A red-tailed hawk is searching for prey. It is most likely to swoop

down on what? (A) an eagle (B) a cow (C) a gecko (D) a deer

Fact from F : hawks eats lizards

Pre-Reranking K :

red-tail hawk in their search for prey

Red-tailed hawks soar over the prairie and woodlands in search of prey.

Post-Reranking K:

Geckos - only vocal lizards.

Every gecko is a lizard.

Figure 5.2: Accuracy v/s Number of Facts from F - Number of Facts from K, Without

Information Gain Based Re-ranking for 3 Abductive IR Models and Word Union

Model (Without Passage Selection and Weighted Scoring).

135



Figure 5.3: Accuracy v/s Number of Facts from F - Number of Facts from K, with

Information Gain Based Re-ranking for 3 Abductive IR Models and Word Union

Model (Without Passage Selection and Weighted Scoring).

5.4.4 Question Answering

Table 5.4 shows the incremental improvement on the baselines after the inclusion

of carefully selected knowledge.

Passage Selection and Weighted Scoring are used to overcome the challenge of

boosted prediction scores due to cascading effect of errors in each stage.
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Solver Accuracy (%)

Leaderboard

Guess All (“random”) 25.0

Plausible Answer Detector 49.6

Odd-one-out Solver 50.2

Question Match 50.2

Reading Strategies 55.8

Model - BERT-Large (SOTA)

Only Question (No KB) 60.4

Model - BERT-Large (Our)

F - TF-IDF 61.6

F - Trained KE 66.2

F ∪K 70.0

F ∪K with Weighted Scoring 70.4

F ∪K with Passage Selection 70.8

F ∪K with Both 72.0

Oracle - BERT-Large

F gold 74.4

F ∪K gold 92.0

Table 5.4: Test Set Comparison of Different Components. The Current State-of-the-art

(SOTA) Is the Only Question Model. K Is Retrieved from the Symmetric Difference

Model. KE Refers to Knowledge Extraction.

Question: What eat plants? (A) leopards (B) eagles (C) owls (D) robin

Appropriate extracted Fact from F :

some birds eat plants

Wrong Extracted Fact from F :

a salamander eats insects

Wrong Retrieved Missing Knowledge:

Leopard geckos eat mostly insects

For the example shown above, the wrong answer leopards had a very low score

with only the facts extracted from knowledge corpus F. But the introduction of

missing knowledge from the wrong fact from F boosts its scores, leading to the wrong

prediction. Passage selection helps in the removal of such options and Weighted

137



Scoring gives preference to those answer options whose scores are relatively high before

and after the inclusion of missing knowledge.

5.5 Analysis & Discussion

5.5.1 Model Analysis

BERT Question Answering model: BERT performs well on this task but is prone

to distractions. Repetition of information leads to boosted prediction scores. BERT

performs well for lookup-based QA, as in RCQA tasks like SQuAD. But this poses a

challenge for Open Domain QA, as the extracted knowledge enables lookup for all

answer options, leading to an adversarial setting for lookup-based QA. This model is

able to find the correct answer, even under the adversarial setting, which is shown by

the performance of the sum score to select the answer after passage selection.

Symmetric Difference Model This model improves on the baseline Word Union

model by 1-2%. The improvement is dwarfed because of inappropriate domain

knowledge from F being used for abduction. The intersection between the inappropriate

domain knowledge and the answer hypothesis is ∅, which leads to queries that are

exactly the same as the Word Union model.

Supervised learned models The supervised learned models for abduction under-

perform. The Bag of Words and the Seq2Seq models fail to extract keywords for many

F −H pairs, sometimes missing the keywords from the answers. The Seq2Seq model

sometimes extracts the exact missing knowledge, for example, it generates “some birds

is robin” or “lizard is gecko”. This shows there is promise in this approach and the

poor performance can be attributed to insufficient train data size, which was 4957

only. A fact verification model might improve the accuracy of the supervised learned

models. But, for many questions, it fails to extract proper keywords, copying just a
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part of the question or the knowledge fact.

5.5.2 Error Analysis

Other than errors due to distractions and failed IR, which were around 85% of the

total errors, the errors seen are of four broad categories.

Temporal Reasoning: In the example 1 shown below, even though both the options

can be considered as night, the fact that 2:00 AM is more suitable for the bats than

6:00 PM makes it difficult to reason. Such issues accounted for 5% of the errors.

Question: Owls are likely to hunt at?

(A) 3:00 PM (B) 2:00 AM (C) 6:00 PM (D) 7:00 AM

Negation: In the example shown below, a model is needed which handles negations

specifically to reject incorrect options. Such issues accounted for 1% of the errors.

Question: Which of the following is not an input in photosynthesis?

(A) sunlight (B) oxygen (C) water (D) carbon dioxide

Conjunctive Reasoning: In the example as shown below, each answer options are

partially correct as the word “ bear” is present. Thus a model has to learn whether all

parts of the answer are true or not, i.e. Conjunctive Reasoning. Logically, all answers

are correct, as we can see an “or”, but option (A) makes more sense. Such issues

accounted for 1% of the errors.

Question: Some berries may be eaten by

(A) a bear or person (B) a bear or shark (C) a bear or lion (D) a bear or wolf

Qualitative Reasoning: In the example shown below, each answer option would

stop a car but option (D) is more suitable since it will stop the car quicker. Deeper

qualitative reasoning is needed to reject incorrect options. Such issues accounted for

8% of the errors.

1Predictions are in italics, Correct answers are in Bold.
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Question: Which of these would stop a car quicker?

(A) a wheel with wet brake pads (B) a wheel without brake pads (C) a wheel

with worn brake pads (D) a wheel with dry brake pads

5.6 Conclusion

In this work, we have pushed the current state of the art for the OpenBookQA task

using simple techniques and careful selection of knowledge. We have provided two new

ways of performing knowledge extraction over a knowledge base for QA and evaluated

three ways to perform abductive inference over natural language. All techniques are

shown to improve on the performance of the final task of QA, but there is still a long

way to reach human performance.

We analyzed the performance of various components of our QA system. For natural

language abduction, the heuristic technique performs better than the supervised

techniques. Our analysis also shows the limitations of BERT-based MCQ models, the

challenge of learning natural language abductive inference, and the multiple types

of reasoning required for an OpenBookQA task. Nevertheless, our overall system

improves on the state of the art by 11.6%.
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Chapter 6

COMMONSENSE REASONING WITH IMPLICIT KNOWLEDGE IN NATURAL

LANGUAGE

ABSTRACT

Commonsense Reasoning is a research challenge studied from the early days of

AI. In recent years, several natural language QA tasks have been proposed where

commonsense reasoning is important. Two common approaches to this are (i) the

Use of well-structured commonsense present in knowledge graphs, and (ii) the Use of

progressively larger transformer language models. While acquiring and representing

commonsense in a formal representation is challenging in approach (i), approach (ii)

gets more and more resource-intensive. In this work, we take a middle ground where

we use smaller language models together with a relatively smaller but targeted natural

language text corpora. The advantages of such an approach are that it is less resource

intensive and yet at the same time it can use unstructured text corpora. We define

different unstructured commonsense knowledge sources, explore three strategies for

knowledge incorporation, and propose four methods competitive to state-of-the-art

methods to reason with implicit commonsense.
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6.1 Introduction

For an AI agent to reason about the everyday routine human activities, the agent

needs to possess commonsense. Consequently, commonsense acquisition and reasoning

are considered critical research challenges from the early days of AI (McCarthy,

1959). The need for commonsense reasoning is reemphasized recently (Sap et al.,

2019a; Marcus and Davis, 2019), particularly in NL understanding and QA. Several

commonsense reasoning tasks have been proposed that study the different aspects

of commonsense reasoning, such as abductive commonsense (Bhagavatula et al.,

2019), physical commonsense (Bisk et al., 2019), and social commonsense (Sap et al.,

2019b). QA systems approach solving tasks using large-pretrained transformers, such

as BERT (Devlin et al., 2019), or use complex knowledge fusion methods to perform

QA (Lin et al., 2019; Lv et al., 2020).

In this paper, focusing on low resource use, we evaluate the use of smaller trans-

former language models and a small number of knowledge-rich natural language

sentences, where relevant knowledge may be implicitly expressed. To understand what

we mean by implicit knowledge, consider an example from (Winograd, 1972): Given

the context “The city councilmen refused the demonstrators a permit because they

feared violence.”, and the question “Who is fearing violence?”, the correct answer

is “The city councilmen”. An unstructured retrieved (through a web search engine)

knowledge (Prakash et al., 2019) for this context-question pair that can help answer

this question correctly is: “He also refused to give his full name because he feared for

his safety.”. We can use this knowledge to reason that the person who is refusing, is

the one who is fearing. From this example, we can observe that the necessary com-

monsense knowledge to reason may be present in text in many cases but in an implicit

way. Moreover, this knowledge is unstructured, and hence current state-of-the-art
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knowledge fusion methods are unable to utilize this knowledge without a method to

represent it in a knowledge graph triple, as present in ConceptNet.

Using natural language sentences (as a source of knowledge) at first glance appears

similar to the application of evidence retrieval for open-domain question answer-

ing (Yang et al., 2018; Clark et al., 2018; Kwiatkowski et al., 2019), where systems

retrieve supporting evidence to be able to answer an open-ended question. However,

there is a big difference as, unlike in evidence retrieval, the needed commonsense

knowledge may not be explicitly available in unstructured knowledge corpora. Our ap-

proach is to reason-with-example, in contrast to reading comprehension with retrieved

supporting paragraphs containing answers or explicit knowledge that leads to answers.

Moreover, a high lexical overlap with retrieved knowledge and context-question-answer

does not mean it can be used to answer correctly. For example, another retrieved

knowledge for the above question is: “Demonstrators fear the retaliatory police vio-

lence.”. An additional layer of complexity to commonsense reasoning with natural

language is added because of such high lexical overlap but distracting sentences.

We limit our study to two pre-trained transformers, namely BERT and RoBERTa.

BERT and RoBERTa have been trained using 13GB and 160GB data, respectively.

RoBERTa has the same architecture and parameter count but is trained with extensive

hyper-parameter tuning and has a larger vocabulary (25K v/s 50K). These allow us

to study the implicit commonsense reasoning ability with varying pre-training and

vocabulary size. Larger pre-trained transformers have been effectively shown to improve

performance on downstream tasks, but training such models is resource-intensive.

Hence we ask the following auxiliary question: To what extent can we improve a

smaller transformer encoder’s performance? Smaller in the sense of pre-training data,

vocabulary size, and parameter tuning space.

For addressing the above questions, we propose the following experimental frame-
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work. We categorize different unstructured knowledge sources and define a knowledge

source preparation and retrieval component. We then propose three strategies for un-

structured knowledge infusion. In the Revision strategy, we fine-tune the transformer

on an unstructured knowledge source. In Openbook strategy, we choose a certain

number of knowledge statements from the unstructured knowledge source that are

textually similar to each of the dataset samples. Then we fine-tune the pre-trained

transformer for the question-answering task. In the final strategy, we combine both

the strategies mentioned above. We propose three strong baseline methods that utilize

knowledge, concat, max, simple-sum, and an explainable reasoning model weighted-sum

to combine and reason with multiple commonsense knowledge sentences. We evaluate

our proposed framework on three public commonsense question-answering datasets:

AbductiveNLI (aNLI) (Bhagavatula et al., 2019), PIQA (Bisk et al., 2019) and Social

Interaction QA (SIQA) (Sap et al., 2019b).

Our key findings are as follows: (a) Transformers can reason with implicit com-

monsense knowledge to some extent. We observe that transformers fail to answer

questions through detailed error analysis even when sufficient knowledge is present

with minimal distractors 30-50% of the time. This observation shows the scope of

future improvements. (b) Revision and OpenBook Strategy improve commonsense

reasoning performance, but the Revision strategy’s impact depends on how well-formed

the unstructured knowledge corpus is. (c) Our knowledge retrieval and knowledge

infusion methods improve accuracy over pre-trained transformers by 2-9%. They

are significantly effective over the smaller transformer encoders and approach larger

pre-trained transformers, surpassing T5-11B (Raffel et al., 2019) by 4.14% in aNLI

and reducing the gap to 1.75% in SIQA using RoBERTa. These methods should act

as future baselines.

In summary, our contributions are: (a) a thorough analysis of transformers’
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Figure 6.1: Example of All Three Datasets along with Retrieved Knowledge.

ability to perform commonsense reasoning with implicit knowledge on three different

commonsense QA tasks using two transformer models. (b) four models representing

four ways knowledge can be infused in transformer encoders. These methods apply

to multiple commonsense reasoning tasks and improve performance over pre-trained

transformers by 2-9% in accuracy. (c) a detailed study to bridge the gap between

smaller and larger pre-trained transformers. (d) an extensive investigation to study

the impact of different knowledge sources and pre-training on such knowledge sources

on commonsense QA tasks.

6.2 MCQ Datasets

To study the extent of transformers’ commonsense reasoning ability, we choose

the following three datasets to evaluate our models, each with a different kind of

commonsense knowledge. Figure 6.1 shows examples from each of the datasets with

our retrieved commonsense knowledge sentences.

Abductive NLI (aNLI): This dataset (Bhagavatula et al., 2019) is intended to judge

the potential of an AI system to do abductive reasoning to form possible explanations

for a given set of observations. The task is to find which of the hypothesis options H1,

and H2 explains O2 where O1 should precede and O2 should succeed the hypothesis,

given a pair of observations O1 and O2. This task needs a commonsense understanding

of which order sequence of events occurs. There are 169,654 training and 1,532

148



validation samples. The test set is blind. It has a generation task, but we restrict

ourselves to the multiple-choice task.

PIQA (Physical Interaction QA): This dataset is created to evaluate an AI

system’s physics reasoning capability. The dataset requires reasoning about physical

objects and how we use them in our daily lives. The task is to predict the most

appropriate choice for the goal G, given a goal G and a pair of choices C1 and C2.

There are 16,113 training and 1,838 validation samples. The test set is blind.

SIQA: This dataset is a collection of instances of social interaction reasoning and

the social implications of their statements. The task is to choose the correct answer

option AOi out of three choices when given a context C of a social situation and

a question Q about the situation. There are several question types in this dataset

derived from Atomic inference dimensions (Sap et al., 2019a). A few of the Atomic

inference dimensions are actor intention, actor motivation, effect on the actor,effect

on others, etc. In total, there are 33,410 training and 1,954 validation samples. The

test set is blind.

6.3 Commonsense Knowledge Sources

6.3.1 Knowledge Categorization for Evaluation

Directly Derived: Here the commonsense QA task is directly derived from the

knowledge source, and hence using the same knowledge may make the task trivial. We

test this scenario on the aNLI task with the following knowledge sources, ROCStories

Corpus (Mostafazadeh et al., 2016) and Story Cloze Test, that were used in creating

aNLI. Our motivation is to see how well the model can answer questions when given

the “same” or similar implicit/explicit commonsense knowledge.

Partially Derived: Here the commonsense QA task is not directly derived from an
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external knowledge source, and considerable human knowledge was used to generate

the question-answers. In this case, we use SIQA as the task, which uses the Atomic

(Sap et al., 2019a) knowledge base as the source for social events, but has undergone

sufficient human intervention to make the task non-trivial. During dataset creation,

the human annotators were asked to turn Atomic events into sentences and were asked

to create question-answers.

Relevant: Here, the commonsense task is entirely created with human annotators’

help without using a specific knowledge source. However, we guess knowledge sources

that seem relevant through our QA pairs analysis. We evaluate this using PIQA as the

commonsense task and WikiHow dataset (Koupaee and Wang, 2018) as the “relevant”

external knowledge source.

6.3.2 Knowledge Source Preparation

aNLI: To test our first category of external knowledge, we use the entire Story Cloze

Test and ROCStories Corpus. We also prepare another source that contains knowledge

sentences retrieved for the train set of aNLI from the first source. This knowledge

source is created to ensure the task is not trivialized by knowledge leakage. We also

create a knowledge source from multiple datasets such as MCTest (Richardson et al.,

2013), COPA (Roemmele et al., 2011) and Atomic, but not Story Cloze Test and

ROCStories Corpus. These sources contain commonsense knowledge, which might be

useful for the aNLI task.

SIQA: We synthetically generate a knowledge source from the events and inference

dimensions provided by the Atomic dataset (Sap et al., 2019a). The Atomic dataset

contains events and eight types of if-then inferences. The total number of events is

732,723. Some events are masked, which we fill by using a BERT and masked language

modeling (Devlin et al., 2019). We extend the knowledge source and replace PersonX
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Figure 6.2: An End-to-end View of Our Approach. From Query Generation, Knowl-

edge Retrieval, the Different Types of Knowledge Retrieved along with Keywords

Highlighted in Blue, the Corresponding Learned Weights in the Weighted-sum Model,

and Finally to Predicted Logits.

and PersonY, as present in the original Atomic dataset, using gender-neutral names.

These steps may approximate the steps taken by humans to generate QA pairs.

PIQA: We use the Wikihow dataset for PIQA. It contains paragraphs (214,544) with

detailed steps or actions to complete a task. We extract the title of each paragraph

and split the paragraphs into sentences. The title is concatenated to each of the

sentences. This preprocessing ensures that the task’s goal is present in each of the

sentences.

A Combined Commonsense Corpus is created which combines the partially related

and relevant corpora, for example, combining Wikihow, Atomic, MCTest.

6.3.3 Knowledge Retrieval

Query Generation: We concatenate the question, answer option, and the context if

present, and remove standard English stopwords for query generation. We use common

nouns, verbs, adjectives, and adverbs from the QA pairs. Explicit bias towards specific

names (John, Jane) is avoided.
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Information Retrieval System: We use Elasticsearch to index all knowledge base

sentences. We retrieve the top 50 sentences for each QA pair with the default BM-25

ranking model (Robertson and Walker, 1994). The retrieved sentences may contain

the key search words in any order.

Re-Ranking: We re-rank the retrieved knowledge sentences to remove redundant

sentences containing the same information. We use sentence similarity and knowledge

redundancy to perform the iterative re-ranking. We use Spacy, to compute the cosine

similarity between sentence Glove vector (Pennington et al., 2014) representations;

for knowledge redundancy, we find similarity with the already selected sentences

and discard a new sentence if it is > 0.9 similar to higher-ranked sentences. After

re-ranking, we select the top ten sentences.

We keep our Information Retrieval system generic as the tasks require varying

kinds of commonsense knowledge; for example, If-then rules in SIQA, Scripts or Stories

in aNLI, and an understanding of Processes and Tools in PIQA.

6.4 Method

After extracting relevant knowledge from the respective KBs, we move onto the task

of Question-Answering. We perform our experiments on BERT encoders, with 340M

and 355M parameters respectively, BERT-Large (Low vocab-size 25K and pretraining

data 13GB) BERT (Devlin et al., 2019) and RoBERTa (high-vocab size 50K and

pretraining data 160 GB ) RoBERTa (Liu et al., 2019).

QA-Model: As a baseline, we use these pre-trained transformers for the question-

answering task with an extra feed-forward layer for classification as a fine-tuning

step.
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BERT RoBERTa

Dataset Strategy Concat Max Sim-Sum Wtd-Sum Concat Max Sim-Sum Wtd-Sum

aNLI

OPENBOOK 73.9± 0.8 73.7± 0.1 73.5± 0.7 73.3± 1.0 83.9± 0.5 80.8± 0.9 81.7± 0.6 84.4± 0.4
REVISION 72.7± 0.3 N/A N/A N/A 82.4 N/A N/A N/A

REVISION & OPENBOOK 74.4± 0.2 74.3± 0.1 74.0± 0.9 75.1±0.4 84.2± 0.7 81.4± 0.8 82.6± 0.6 86.7± 0.6

PIQA

OPENBOOK 67.8± 0.4 72.4± 0.6 72.6± 1.2 72.5± 0.1 74.8± 0.5 75.2± 0.9 75.6± 0.7 77.1± 0.2
REVISION 74.5± 0.3 N/A N/A N/A 75.2± 0.8 N/A N/A N/A

REVISION & OPENBOOK 67.7± 0.1 73.8± 0.8 76.8± 0.5 76.8± 0.3 75.4± 0.7 76.2± 0.8 76.8± 0.4 80.2± 0.6

SIQA

OPENBOOK 70.1± 0.8 67.8± 0.1 70.0± 0.7 70.2± 0.4 76.5± 0.7 77.2± 0.6 77.4± 0.2 78.3± 0.5
REVISION 69.5± 0.9 N/A N/A N/A 76.8± 0.3 N/A N/A N/A

REVISION & OPENBOOK 68.8± 0.4 66.6± 0.4 68.9± 0.1 69.3± 0.6 78.2± 0.3 77.4± 0.9 76.7± 0.5 79.5± 0.9

Table 6.1: Validation Set Accuracy (%) of Each of the Four Models (Concat, Max,

Simple Sum, Weighted Sum). Revision Only Method Has No Retrieved Passage, so

Only Q-A Is Concatenated.

6.4.1 Modes of Knowledge Infusion

We experiment with four different models of using knowledge with the transformer

architecture for the open-book strategy. The first three, concat, max, and simple-

sum act as stronger baselines that use the same implicit knowledge as our proposed

weighted-sum model. Each of these modules takes as input a problem instance which

contains a question Q, n answer choices a1, ..., an, and a list called premises of length

n, one for each answer. Each element in premises contains m number of knowledge

passages, which might be useful while answering the question Q. Let Kij denote the

j th knowledge passage for the i th answer option. Each model computes a score of

score(i) for each of the n answer choices. The final answer is the answer choice that

receives the maximum score. We now describe how the different models compute the

scores differently.

Concat: In this model, all the m knowledge passages for the i-th choice are joined

together to make a single knowledge passage Ki. The sequence of tokens {[CLS] Ki

[S] Qai [S]} is then passed to BERT to pool the [CLS] embedding (z[CLS]) from the

last layer. This way we get n z[CLS] for n answer choices, each of which is projected
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to a real number (score(i)) using a linear layer.

Parallel-Max: For each answer choice ai, Parallel-Max uses each of the knowledge

passage Kij to create the sequence {[CLS] Kij [S] Qai [S]} which is then passed to

the BERT model to obtain the z[CLS] from the last layer that is then projected to a

real number using a linear layer. score(i) is the max of the m scores obtained using

each of the m knowledge passage.

Simple Sum: In simple sum and the next model assumes that the information

is scattered over multiple knowledge passages and tries to aggregate that scattered

information. To do this, the simple sum model, for each answer choice ai and each

of the knowledge passage Kij creates the sequence {[CLS] Kij [S] Qai [S]} which it

then passes to the BERT model to obtain the z[CLS] from the last layer. All of these

m vectors are then summed to find the summary vector, projected to a scalar using a

linear layer to obtain the score(i).

Weighted Sum: The weighted sum model computes a weighted sum of the m z[CLS]

as some of the knowledge passages might be more useful than others. It computes the

z[CLS] in a similar way to that of the simple sum model. It computes a scalar weight

wij for each of the m z[CLS] using a linear projection layer which we will call as the

weight layer. The weights are then normalized through a softmax layer and used to

compute the weighted sum of the z[CLS]. It then uses (1) a linear layer or (2) reuses

the weight layer (tied version) to compute the final score score(i) for the option ai.

We experiment with both options.

Formally, given m z[CLS], we learn two projections w1 and w2, such that:

score(i) = w2(
n

∑
j=1

w1(z[CLS]) ∗ z[CLS]) (6.1)

This weighted sum of vectors is similar to the attention weights learned to create

contextual word vectors (Vaswani et al., 2017) but we extend it to multiple sentences.
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Models/ Accuracy aNLI PIQA SIQA

Val Test Val Test Val Test

BERT 67.36 66.75 68.08 69.23 64.88 64.50
GPT-2 XL N/A N/A 70.20 69.50 47.50 45.30
RoBERTa 85.05 83.91 76.28 76.80 77.85 76.74
RoBERTa 5 Ensemble N/A 83.22 N/A 79.66 N/A 78.68
L2R2 (Zhu et al., 2020) N/A 86.81 N/A N/A N/A N/A
KagNet (Lin et al., 2019) N/A N/A N/A N/A 65.05 64.59
GBR (Lv et al., 2020) N/A N/A N/A N/A 75.64 76.25
UnifiedQA T5 11B (Khashabi et al., 2020) N/A 80.04 N/A 89.50 N/A 79.75

Ours: BERT + WS 74.60 74.96 76.82 72.28 70.21 67.22
Ours: RoBERTa + WS 85.90 84.18 80.20 78.24 79.53 78.00

Table 6.2: Performance of the Weighted-sum Model with Revision & Openbook

Strategy, Compared to Current Best Methods. Underlined Are Methods That We

Beat Statistically Significantly. Partially Derived and Related Sources Are Used.

Unavailable→N/A. Best→bold.

We minimize the cross-entropy loss between the score and the ground-truth answer.

We observe a single-layer network achieves the best accuracy compared to multi-layer

feed-forward networks and highway networks for projection.

6.5 Experiments

Let D be an MCQ dataset, T be a pre-trained transformer, KD be a knowledge

source (a set of paragraphs or sentences) that is useful for D and let K be a general

knowledge source where T was pre-trained, and K might or might not contain KD.

We consider three approaches to infusing knowledge.

Revision: In this strategy, T is fine-tuned on KD using Masked LM (both BERT

and RoBERTa) and the next sentence prediction task (BERT) and then fine-tuned on

the dataset D for the QA task.

Openbook: Here a subset of KD is assigned to each of the training samples in the

dataset D as a knowledge passage context, and the model T is fine-tuned on the
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Model Knowledge Source aNLI PIQA SIQA

BERT

Directly/Partially Derived 75.1± 0.4 N/A 70.2± 0.4
TrainOnly Directly/Partially 74.6± 0.8 N/A 69.8± 0.7
Related Knowledge 73.2± 0.5 76.8± 0.3 68.6± 0.5

RoBERTa

Directly/Partially Derived 86.7± 0.6 N/A 79.5± 0.9
TrainOnly Directly/Partially 85.9± 0.8 N/A 78.9± 1.2
Related Knowledge 85.0± 1.1 80.2± 0.6 77.4± 0.8

Table 6.3: Effect of Different Knowledge Source Types on the Weighted-sum Knowl-

edge Infused Model. Related Knowledge Source Is the Combination of All Relevant

Knowledge Sources, Referred to as the Combined Commonsense Corpus. Metric Is

Accuracy.

modified dataset D.

Revision with an Openbook: In this strategy, T is fine-tuned on KD using Masked

LM (both BERT and RoBERTa), and the next sentence prediction task (BERT) and

also a subset of KD is assigned to each of the training samples on D. The model is

then fine-tuned for the modified dataset D.

We train the models on 4 Nvidia V100 16GB GPUs with learning rates in the

range [1e-6,5e-5] and batch sizes of [16,32,48,64]. We report the mean accuracy for

three random seed runs. We perform five hyper-parameter trials and param-selection

on the validation set.

6.6 Results and Discussion

Tables 6.1, 6.2, and 6.3 summarize our results on three datasets. BERT and

RoBERTa baseline validation and hidden test scores are present in Table 6.2. Adding

knowledge in natural language form improves QA accuracy statistically significantly

across all datasets over the baseline BERT with p ≤ 0.05 based on Wilson score

intervals (Wilson, 1927). This includes retrieving knowledge from related knowledge
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(a) ↑ Knowledge Sentences. (b) ↑ Revision Steps. (c) Wts. v/s Lex. Overlap

Figure 6.3: For a, b, and c the Knowledge Infusion Model Is Weighted-Sum with

Knowledge Retrieved from a Relevant Knowledge Source. In Fig. a, We Observe

the Effect of an Increasing Number of Implicit Knowledge Sentences. In Fig. b We

Observe the Effect of Increasing the Number of Revision Pre-training Steps. Fig. c

Shows the Weights Learned Vs. Normalized Lexical Overlap Between Knowledge and

Concatenated QA Pair for All Samples of the PIQA Dev Set.

sources, seen in Tables 6.2 and 6.3. The concat mode of knowledge infusion improves

over the baseline BERT by 1-6%, and the Weighted-Sum model further improves it by

2-4%. In Table 6.2 we can observe the Weighted-Sum model is 4.1% better than T5 in

aNLI and reduces the gap to 1.75% in SIQA with 30 times less number of parameters

(11B v/s 355M). It also surpasses complex graph-based approaches like GBR and

KagNet (Lin et al., 2019; Lv et al., 2020). Other prior work use directly derived

knowledge sources and model for specific tasks as in L2R (Zhu et al., 2020). Moreover,

UnifiedQA T5 11B (Khashabi et al., 2020) is trained on many datasets, whereas we

train only on the provided train dataset, making our approach more sample efficient.

This observation validates our hypothesis of using implicit knowledge expressed in

natural language to bridge the gap to super-large transformers. Our generic framework

improves on all three datasets with models trained only using the provided training

dataset.
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Strategy Training Src. aNLI SIQA PIQA

OpenBook

aNLI N/A 63.2 65.5 51.2 57.8
SIQA 72.4 84.1 N/A 48.5 54.3
PIQA 62.5 74.2 49.6 54.2 N/A

Revision

aNLI N/A 65.3 66.2 56.2 65.8
SIQA 70.9 83.8 N/A 52.4 57.8
PIQA 66.1 78.0 57.4 67.6 N/A

OpenBook
+ Revision

aNLI N/A 65.8 68.2 55.4 62.8
SIQA 73.1 85.2 N/A 53.2 59.4
PIQA 63.8 75.6 52.8 63.1 N/A

Table 6.4: Effect of Cross-dataset Knowledge Source Accuracy on Weighted-Sum

(When a Relevant Source for a Different Task Is Used). BERT Left, RoBERTa Right.

Effect of different strategies: Both the Openbook and the Revision strategies

perform well. Together the performance improves even further. The performance of

the Revision strategy is low for SIQA. The drop in performance may be attributed to

the sentences’ synthetic nature and the unavailability of next-sentence prediction task

data, as the knowledge in the KB for SIQA is single sentences and not paragraphs.

PIQA and aNLI results are better due to natural and contiguous sentences. For

PIQA, the BERT model improves with knowledge, whereas the RoBERTa model

underperforms, indicating RoBERTa gets distracted by the retrieved knowledge, and

the pre-training knowledge is more useful. BERT with implicit knowledge approaches

RoBERTa without knowledge, with the gap reduced by 4% on average. Similarly,

RoBERTa approaches T5 with Revision & Openbook strategy.

Effect of different knowledge sources: Table 6.3 shows the impact of different

knowledge sources on the downstream question-answering task. Even a knowledge

source with somewhat related knowledge is impactful for the question-answering task,

as seen in the case of Related Knowledge and TrainOnly Partially Derived for aNLI

and SIQA. In Directly and Partially derived knowledge categories, such as RoCStories

for aNLI and Atomic for SIQA, the model accuracy with knowledge is significantly
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Knowledge aNLI SIQA PIQA

Explicitly Present 14% 11% 10%

Implicitly Present 55% 59% 51%

Fully Irrelevant 31% 30% 39%

Types of Error aNLI SIQA PIQA

Annotation 41% 38% 10%

Model Prediction 48% 27% 29%

Distracting Knowledge 11% 35% 61%

Table 6.5: Left: Percent of Correct Predictions Where the Implicit Knowledge Is

Categorized as above, for the RoBERTa Weighted-sum Model. Right: Different Types

of Errors Were Observed in the QA Pairs Where the RoBERTa Weighted-Sum Model

Failed to Answer Correctly.

more than the baseline but does not reach near-human accuracy. However, the model

can still not answer all questions because the model fails to reason well even with

sufficient knowledge, and the annotators have modified the information present in

the source knowledge significantly. As a result, the knowledge does not overlap with

the gold answer, cause if it did, the model will use lexical overlap as a shortcut

and perform better. In Table 6.4, we can observe aNLI and SIQA require similar

commonsense knowledge, as training with the relevant knowledge source of aNLI has

a non-detrimental effect for SIQA and vice-versa. We also observe PIQA performance

decreases if we use a knowledge source of aNLI and PIQA, indicating it introduces a

significant amount of distraction such that even the implicit knowledge in pre-trained

transformers is ignored.

Comparisons between modes of knowledge fusion: The Weighted-Sum model

is observed to be consistent across datasets. The other strong baseline models also

improve over the no-knowledge models indicating even simple scoring methods over

implicit commonsense knowledge sentences can lead to improvements. The Max,

Simple-Sum, and Weighted-Sum models have the additional advantage of being

partially explainable by observing the weights associated with the knowledge sentences.
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Weighted-Sum outperforms them as it has the flexibility to attend in varying degrees

to multiple sentences, in contrast to other models. Figure 2 shows the weight versus

overlap between knowledge and QA pair distribution for PIQA. There is an overall

low overlap, but the model learns to give high weights regardless of the overlap. It

indicates that the model captures the implicit knowledge and not just a simple word

overlap. We observe that 61% of such low lexical overlap sentences have sufficient

implicit knowledge on manual analysis.

Why the impact of external knowledge is less for RoBERTa? RoBERTa has

been pre-trained using a gigantic corpus of 160 GB of text. We assume for these tasks

that the model needs additional knowledge to answer, but we hypothesize that the

pre-training corpus of RoBERTa might contain the knowledge we are trying to infuse,

leading to a reduced impact. This observation calls for further analysis of pre-training

corpora to categorize such commonsense knowledge. The significant improvement over

BERT (3-14%) shows the ability of these methods to utilize implicit knowledge, which

is especially useful for low-resource languages, target domains where we can pre-train

using fewer data and use ad-hoc knowledge to solve a target task and have smaller

vocab and params. But, there is an assumption that at least sufficient data (∼10GB)

to train a BERT model is necessary. Future work will explore the size v/s knowledge

impact for even smaller language models.

Error Analysis: We analyzed 200 correct predictions and error samples from each of

our best models, respectively. In Table 6.5, we can observe for around two-thirds of

the correct predictions, we have relevant knowledge present. The model also ignores

partial noise by reducing its weight and the entire knowledge passage if needed. In

those cases, we hypothesize that the knowledge acquired during the revision phase or

the original language model pre-training phase helps answer correctly. We divide the

errors into three categories, as seen in Table 6.5. Annotation Errors are when more
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than one answer option is correct, or an incorrect answer option is labeled correctly.

The questions for which information is insufficient to select a specific answer option

also fall into this category. Distracting knowledge is where the retrieved knowledge is

noisy and does not have sufficient relevant knowledge. Model prediction error is where

the relevant knowledge is present, though the knowledge is not wholly exact. However,

a human could have reasoned with the provided knowledge.

6.7 Related Work

Commonsense Reasoning: Several attempts were made to inject external knowledge

into neural networks to improve commonsense QA in recent years. A knowledge

selection algorithm to rank knowledge paths from ConceptNet via PMI and frequency-

based scoring was proposed by (Bauer et al., 2018). (Wang and Jiang, 2019) improve

word representations by integrating common word vectors between document and

question-answer options. A commonsense-based pre-training was proposed by (Zhong

et al., 2019) to learn direct and indirect ConceptNet relations. (Lin et al., 2019)

proposed a knowledge-augmented graph-based reasoner and pruning knowledge paths

using a function adapted from a graph embedding algorithm. (Lv et al., 2020) is the

closest work that utilizes both a structured knowledge base and explicit unstructured

plain text as a source to enhance contextual representations. Our Revision strategy

is similar to task adaptive pre-training, but we focus on commonsense knowledge

infusion, whereas (Gururangan et al., 2020) focuses on textual domain adaptation for

text classification.

Transformers Reasoning Abilities: Recently, a few attempts were made to un-

derstand the different reasoning abilities of transformer models. (Clark et al., 2020)

observe that transformers can reason with explicit conjunctive implication rules and

observe a strong performance. (Talmor et al., 2020) study to what extent transformers
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can reason over explicit symbolic facts while retaining implicit pre-training knowledge.

(Richardson and Sabharwal, 2020) study if the transformer QA models know defini-

tions and taxonomic reasonings and propose probing datasets. (Gontier et al., 2020)

study the ability to generate proofs given knowledge encoded in natural language. In

contrast to the above studies, we study the ability to reason with additional implicit

commonsense knowledge.

6.8 Conclusion

In this work, we comprehensively study transformers’ ability to reason with implicit

knowledge expressed in natural language. We propose an experimental framework with

knowledge infusion methods and observe a considerable improvement of 2-9% over

strong baselines. We observe our methods, trained with fewer samples and parameters,

perform competitively with huge pre-trained language models, and surpass complex

graph-based methods (Lin et al., 2019; Lv et al., 2020). Moreover, the approaches we

studied are general enough to apply to other knowledge-intensive tasks and languages.

Our methods reduce the gap between smaller and large pre-trained transformers. We

critically analyze the different components and identify that transformers are still

unable to answer 30-50% of the time, even with sufficient knowledge, identifying the

need for better methods to perform reasoning with implicit knowledge. We hope our

findings will help design models that respond better to instructions (Mishra et al.,

2021) containing knowledge expressed in natural language.
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Chapter 7

AN UNIFIED MODELING APPROACH IN THE CYBERSECURITY DOMAIN

ABSTRACT

With the increase in cybersecurity vulnerabilities of software systems, the ways to

exploit them are also increasing. Besides these, malware threats, irregular network

interactions, and discussions about exploits in public forums are also on the rise. To

identify these threats faster, to detect potentially relevant entities from any texts,

and to be aware of software vulnerabilities, automated approaches are necessary.

Application of natural language processing (NLP) techniques in the Cybersecurity

domain can help in achieving this. However, there are challenges such as the diverse

nature of texts involved in the cybersecurity domain, the unavailability of large-scale

publicly available datasets, and the significant cost of hiring subject matter experts for

annotations. One of the solutions is building multi-task models that can be trained

jointly with limited data. In this work, we introduce a generative multi-task model,

Unified Text-to-Text Cybersecurity (UTS), trained on malware reports, phishing site

URLs, programming code constructs, social media data, blogs, news articles, and

public forum posts. We show UTS improves the performance of some cybersecurity

datasets. We also show that with a few examples, UTS can be adapted to novel unseen

tasks and the nature of data.
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7.1 Introduction

In recent times, increasing cybersecurity risks, malware threats, and ransomware

attacks are getting more dangerous and common. There are often discussions about

them in public forums (Li et al., 2021; Almukaynizi et al., 2018, 2017b) and social

media (Shu et al., 2018; Huang and Wu, 2020) both before and after attacks. Private

companies also release detailed malware reports such as Symantec (DiMaggio, 2015)

and Cylance (Gross and team, 2016). In addition, government agencies (NIST) and

other non-profit organizations keep reports of software vulnerabilities through NVD1

and MITRE2 respectively to prevent exploitations. Natural language processing (NLP)

methods can help in reducing the potential threats by identifying texts mentioning

cybersecurity vulnerabilities or malicious exploits (text-classification), extracting

mentions of relevant entities of threats in public discussions (named entity recognition)

or identifying the relation of threats with other entities (relation classification). It

can be used to extract a threat or an event from a text (event detection) along with

its arguments (event argument extraction) to find its source or estimate its damage.

Natural language (NL) domains have seen significant improvements in all the

natural language understanding (NLU) tasks with many powerful transformer-based

models such as BERT (Devlin et al., 2019a), RoBERTa (Liu et al., 2019b), and

XLNet (Yang et al., 2019b) in recent times. With improvements in the NL domain,

these models have been adapted and shown to improve performance in other domains

such as BioBERT (Lee et al., 2020b), mimicBERT (Singh et al., 2020), Clinical-

BERT (Huang et al., 2019), blueBERT (Peng et al., 2019) in the biomedical domain,

sciBERT (Beltagy et al., 2019) in the scientific domain (computer science and biomedi-

cal), LegalBERT (Chalkidis et al., 2020) in the legal domain and FinBERT (Liu et al.,

1https://nvd.nist.gov/
2https://cve.mitre.org/
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2020b) in the financial service domain. Motivated by these approaches, we introduce

a unified model in the cybersecurity domain capable of performing multiple NL tasks.

Unlike other domains, in Cybersecurity domain the nature of texts is quite diverse

(natural language text, URLs, malware reports, system calls, source code, binaries,

decompiled code, network traffic, software logs (Phandi et al., 2018; Kirillov et al.,

2011; Queiroz et al., 2019; Marchal et al., 2014; Satyapanich et al., 2020; Bridges

et al., 2013; Chua et al., 2017; Zhang et al., 2021a; Pei et al., 2021b)). This led

to the introduction of specific models capable of performing individual tasks like

cyber-bullying detection CyberBERT (McDonnell et al., 2021) and cybersecurity claim

classification CyBERT (Ameri et al., 2021). Apart from this, there is a scarcity of

large-scale publicly available annotated datasets. These challenges demand the need of

developing robust models capable of performing multiple tasks by learning from many

datasets together and can perform unseen tasks or known tasks on unseen datasets.

Hence, we introduce an Unified, Text-to-Text CyberSecurity (UTS) model.

In this work, a transformer-based generative model, T5 (Brown et al., 2020b), is

trained in a multi-task setting on eight fine-grained NLP tasks involving 13 datasets

in the cybersecurity domain. We used task-based prompt prefixes to help the model

to learn the task instead of learning specific datasets. Our goal is to make the model

more robust by training on a variety of texts. We show the model’s applicability on

unseen tasks (task transfer) and on unseen datasets (domain transfer) in three few-shot

settings. In the spirit of open science, we will release our research artifacts, including

all processed datasets, the source code, and our trained models, upon acceptance.

We summarize our contributions as follows. We

• Propose a unified text-to-text transformer model (UTS) in the cybersecurity

domain which is capable of performing four fundamental NLP tasks and their

sub-tasks. To the best of our knowledge, this is the first attempt to unify varied
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text nature in this domain.

• Establish a benchmark of 13 existing cybersecurity datasets processed in text-

to-text format involving eight NLP tasks for future models to compare with.

• Perform extensive experiments with UTS to assess its ability to adapt to novel

tasks and the nature of texts in three few-shot settings.

Dataset Nature Cybersecurity Task Mapped NLP Task Dataset Identifier #Samples #Class

MalwareTextDB-V2 (Phandi et al., 2018) APT Reports Malware Text Detection Text Classification MDB-SENTCLS 12,736 2

MalwareTextDB-V2 (Phandi et al., 2018) APT Reports Malware Entity Relation Identification Relation Classification MDB-RELCLS 10,802 4

CyberThreatDetection (Queiroz et al., 2019) Public Forum Posts Hacker’s Threat Detection Text Classification CTD 12,575 2

SMS Spam (Almeida et al., 2011) Text Messages Spam Message Detection Text Classification SMS-SPAM 5,574 2

Phishstorm (Marchal et al., 2014) URLs Phishing URL Detection Text Classification URL 95,911 2

Soft-Flaw CLS (Saganowski, 2020)) Social Media (Twitter) Vulnerable Tweet Detection Text Classification Soft-Flaw CLS 1,000 2

CASIE (Satyapanich et al., 2020) CS News Articles Event Argument Role Identification Token Classification CASIE-ARGROLE 11,222 13

Stucco Auto-labelled (Bridges et al., 2013) NVD-CVE Descriptions Information Security Entities Extraction Named Entity Recognition SAL 15,192 15

Soft-Flaw NER (Saganowski, 2020) Social Media (Twitter) Cybersecurity entity Detection Named Entity Recognition Soft-Flaw NER 826 1

SOFTNER (Tabassum et al., 2020) Text with Source Codes Computer Programming Entity Extraction Named Entity Recognition SOFTNER 24,092 20

CASIE (Satyapanich et al., 2020) CS News Articles Event nuggets(keywords) Extraction Event Extraction CASIE-EVTDET 16,230 5

CASIE (Satyapanich et al., 2020) CS News Articles Detect arguments of event from sentence Event Argument Extraction CASIE-ARGDET 17,956 21

CVSS (Shahid and Debar, 2021) CVE Description Vulnerability Impact Score Estimation Score Generation CVE-IMPACT 48,827 -

Table 7.1: Dataset Descriptions With Eight Fine-Grained NLP Tasks. #Samples

Represent Full Dataset Samples

7.2 Approach

We develop a generative transformer-based model (UTS) trained on various natures

of texts in multi-task settings to perform fundamental NLP tasks like text classification

(CLS), named entity recognition (NER), event detection (ED), and Score Generation

(GEN) together. We assign task-based control codes (prompts) to teach the model

different tasks. Our approach can be seen in Figure 7.1.

Generative approach: We consider T5-base as the underlying model of UTS. This

generative text-to-text approach helps us to formulate various NLP tasks into a

uniform input-output format and train together with multiple tasks. For CLS tasks,
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we train the model to generate the exact class names for the given input. For NER

and ED tasks, the model needs to extract the entities in a given text along with their

types. So, we train the models to generate a concatenation (using ‘—’) of the entity

name along with its type (separated by ‘*’). The model is trained to generate the

exact Score Generation scores for GEN task.

Multi-Task Training: All the training datasets of these four fundamental NLP

tasks - CLS, NER, ED, and GEN - are grouped together for joint training with the

hypothesis that in this way the model can learn from more examples of the same task

and similar examples of multiple tasks. Under CLS task, there are four fine-grained

classification tasks: Text, Sentence, Relation, and Token Classification. We parse the

textual output generated by the model and evaluate UTS on the test data of each of

the corresponding datasets. To avoid confusion in the model in identifying similar yet

textually different categories, we use unique mapping of the entity types across all

extraction tasks.

Prompt-Based Approach: We use task-based control codes as prompt-prefix for

training the models in a multi-task setting so that it learns to perform each task

instead of learning from any particular dataset. We prepend task acronyms CLS,

NER, EVNT, and GEN with the input for classification, named entity recognition,

event detection, and Score Generation tasks respectively.

Problem Formulation: The problem formulation is defined here. Given an input

text I = {i1, i2, ..., in} and a task T , the model should generate a stream of output

tokens O = {o1∣o2∣...∣on} defined by the task. For CLS and GEN tasks, O = {o1}, which

represents the class name and floating-point value respectively. For NER and ED

tasks, each oi represents an entity and entity type separated by a pre-defined marker

i.e. oi = {ei ∗ ti}. The task (T) is formulated as an instruction to help the models

learn individual tasks in this setting.
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Figure 7.1: Illustration Of UTS (Unified Text-to-Text CyberSecurtiy) Model

7.3 Dataset Preparation

We prepare 13 datasets involved in eight NLP tasks. The summary of the datasets

is presented in Table 7.1. There are four fundamental tasks in the collected datasets;

Classification, Event Detection, Named Entity Recognition, and Score Generation

respectively. For each of the datasets, we used the original test splits if mentioned in

the paper. Otherwise, we consider 20% of the data chosen randomly as the test split.

The details of each dataset are as follows.

7.3.1 Classification

MalwareTextDB-V2: This dataset (Phandi et al., 2018) is constructed from 83

APT reports. Each report contains multiple paragraphs regarding various activities of

malware. We consider two tasks from this dataset for UTC. They are : (1) Sentence

Classification - classifying whether individual sentences are relevant to cybersecurity

applications, and (2) Relation Classification - classifying the relation between two
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given entities.We take 68 documents as a train and 15 documents as test datasets.

Each document has multiple sentences which we pre-process as each input sample.

SMS-SPAM: Another classification subtask is to classify spam messages. This

benchmark dataset (Almeida et al., 2011) is for detecting SMS spam messages. The

SMS-SPAM dataset is a combination of several publicly available SMS corpora and

websites.

CyberThreatDetection: This dataset (Queiroz et al., 2019) was constructed from

various hacker forums. Posts were collected and labeled by humans into 3 categories.

Yes, for posts that appear as malicious posts. No, for posts not related to hacker

activity. Undecided, for posts where the annotator did not have enough information.

The original authors counted the Undecided labels as Yes labels.

PhishStorm: This dataset (Marchal et al., 2014) includes around 96k URLs. These

URLs are labeled as normal or phishing and were collected through PhishTank,3

which is a crowd-sourced project where people submit phishing URLs and were later

confirmed by several people.

7.3.2 Event Detection

CASIE: This is the first cybersecurity Event Detection dataset (Satyapanich

et al., 2020) with five main types of events. We consider three tasks from this dataset:

(1) Event Extraction (2) Event Argument Detection and (3) Event Argument Role

Detection. Event Extraction is a task to extract event nuggets which are words or

phrases that best express the event occurrence clearly. Event Argument Detection

is a task to detect event arguments that are event participants or property values.

They can be tangible entities involved in the event such as a person or organization,

or attributes that specify important information such as time or amount. Event

3http://www.phishtank.com
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Argument Role Detection is a task to find roles between given event nuggets and event

arguments. A role is a semantic relation between an event nugget and an argument.

Thus, each event type specifies the roles it can have and constraints on the arguments

that can fill them.

7.3.3 Named Entity Recognition

Stucco-Autolabeled: This dataset (Bridges et al., 2013) is constructed from

Common Vulnerabilities and Exposure (CVE) databases containing descriptions of

information security issues from Jan 2010 to Mar 2013. In the Stucco-Autolabeled

dataset, each word in the corpus is auto-annotated with an entity type. This dataset

has 15 entity types.

SOFTNER: This dataset (Tabassum et al., 2020) has 20 annotated entity types from

1237 StackOverflow QA pairs. The text is embedded with source code constructs from

many programming languages.

Soft-Flaw NER: Cybersecurity NER corpus 2019 corpus (Saganowski, 2020) con-

sists of 1000 annotated tweets. The entities marked are usually the name of the

software/system/device/company with a security-related issue or the name of malware.

There is a corresponding classification dataset as well (Soft-Flaw CLS).

7.3.4 Score Generation

NVD CVE metrics: The NIST National Vulnerability Dataset uses vulnerabili-

ties found through the CVE (Common Vulnerabilities and Exposure) system. Human

security experts assign a corresponding CVSS (Common Vulnerability Scoring System)

vector, and from that, the exploitability and impact score for the vulnerability is

calculated. We split the data from 2002 onward into train and test in a 1:1 proportion

as per the previous work (Shahid and Debar, 2021) and directly generate the scores
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from the descriptions.

We describe our Unified Model datasets and Transfer Learning datasets in the

next subsection.

7.3.5 Unified Model Datasets

Out of 13 datasets in Table 7.1, we jointly train UTS on 10 datasets: MDB-

SENTCLS, MDB-RELCLS, URL, CTD, SMS-SPAM, and CASIE-ARGROLE for

classification, CASIE-EVTDET for event detection, SOFTNER and SAL for named

entity recognition and CVSS-IMPACT for Score Generation task. We consider the

full volume of each of these datasets for unified training.

7.3.6 Transfer Learning Datasets

Task Transfer: We prepare Entity Extraction (EE) and Entity Typing (ET) tasks

from two NER datasets; SAL, and SOFTNER. We also prepare event argument

extraction (EAE) and event argument typing (EAT) tasks from CASIE-ARGDET

dataset. From the Soft-Flaw NER dataset, we only prepare a dataset for the EE task

since there is only one entity type ‘Malicious’. We do not consider Soft-Flaw during

unified training since the dataset volume is small. To prepare the few-shot datasets,

we randomly pick at least one sample per type from EE and EAE tasks (if the number

of types is more than the size of the few-shot dataset, we randomly pick a subset) to

make label-balanced data.

Domain Transfer: We only consider the Soft-Flaw dataset for this experiment since

the nature of texts is unique as compared to other datasets. This dataset is prepared

from social media (Twitter) texts and can be used to see the adaptability of UTS on

different natures of texts. To prepare the few-shot datasets, we make sure that the

positive and negative samples are balanced.
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7.4 Experiments

7.4.1 Unified Experiments

First, we pre-process the training data of each of these 10 datasets into the text-to-

text format as mentioned in subsection 7.3.5. Then, we train T5-base in a multi-task

setting with the prepared training data. After the training, we evaluate the trained

model (UTS) on individual test datasets. In addition, we compare the performance

with existing best models and T5-base trained individually with each dataset.

7.4.2 Few-shot Experiments

We consider three few-shot settings (FS-20, FS-50, and FS-100) based on the

number of examples (20, 50, 100) on which UTS is trained on.

Task Transfer: We experiment to see whether UTS can adapt to novel tasks from

another known task on 3 few-shot settings and compare with T5-base trained on the

full dataset. To understand the extent of task transfer by UTS, we consider three

few-shot sub-categories: (1) Domain Known Task Related (DKTR): trained model has

knowledge of the data and NER task but has not learned entity extraction (EE) and

entity typing (ET) tasks (2) Domain Known Task Unrelated (DKTU): trained model

knows the data and how to perform event detection (ED) task and event argument

role classification task but does not know event argument extraction (EAE) and event

argument typing (EAT) tasks. Here, Argument Role and Argument Types classes

are different and (3) Domain Unknown Task Related (DUTR) - trained model knows

NER task but neither knows EE task nor has seen the data.

Domain Transfer: We experiment with whether UTS can adapt to a different

textual nature input for a known task. We consider the social media (Twitter) dataset,

Soft-Flaw (both CLS and NER tasks), for this experiment in three few-shot settings
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where we train UTS with 20, 50, and 100 training samples and evaluate on full test

data. In addition, we compare UTS with T5 trained on full training data. For the

Soft-Flaw CLS dataset, the zero-shot experiment is done to see if UTS can adapt to a

different text nature without training on any examples.

7.4.3 Metrics

The generated output string is parsed and evaluated based on the task. For all

variations of classification and Score Generation, we consider an exact match between

the generated and original gold output. For extraction tasks, we parse generated

outputs based on the predefined markers to get the entity sets (entity name and entity

type). We report weighted F1 scores for all the tasks except the Score Generation

tasks where we consider exact-match accuracy as the metric for evaluation.

7.4.4 Experimental Setup

We use T5-base (220M parameters) for UTS. We set a predefined training budget

of 30 epochs and hyperparameter tuning for our experiments. We train with a 5e-5

learning rate and 0.01 warm-up ratio. We perform the experiments with four 81GB

Nvidia A100 GPUs with a training batch size of 12. We consider a beam size of 4.

The average training time is ∼24hrs.

7.4.5 Implementation

For building and training UTS, we use publicly available packages : PyTorch

(Paszke et al., 2019) 1.9.1, HuggingFace Transformers (Wolf et al., 2020b) 4.15.0,

HuggingFace Datasets (Lhoest et al., 2021) 1.16.1, seqeval (Nakayama, 2018) 1.2.2,

sklearn (Pedregosa et al., 2011) 1.0 and pandas 1.3.4.
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Dataset Previous Best T5 UTS

MDB-SENTCLS 57.00◊ 84.04 84.44

MDB-RELCLS 85.70◊ 99.79 99.69

CTD‡ 93.00⧫ 92.17 92.00

SMS-SPAM† 91.90☀ 99.45 98.54

URL† 94.70♣ 98.99 99.01

SAL 93.40♡ 98.46 97.60

SOFTNER 79.10△ 72.90 77.02

CASIE-EVTDET 79.90♠ 81.43 83.53

CASIE-ARGROLE† 82.90♠ 91.67 92.50

CVE-IMPACT NA 76.58 76.95

Table 7.2: Performance (Wtd F1 Score) Of UTS Compared To T5-base Trained On

Individual Datasets And Previous Best. ‡ Represents The Performance Is Compared

With Positive Recall. † Represents The Performance Is Compared With Macro-F1

Score While Weighted-F1 Score For The Rest. The Previous Best Scores Are From

The Following Works Respectively; ◊ (Phandi et al., 2018),⧫ (Queiroz et al., 2019),

☀ (Mohasseb et al., 2020), ♣ (Marchal et al., 2014), ♠ (Satyapanich et al., 2020),

♡ (Simran et al., 2019), And △ (Tabassum et al., 2020).

7.5 Results and Discussion

We first try to understand the impact of the multi-task training approach on each

dataset by comparing it with a fully supervised T5 model on individual datasets.

Then we test the adaptability of the model on an unknown domain and unknown

tasks in few-shot and zero-shot settings.

R1: How much does the multi-task training help UTS?
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Multi-task training helps UTS to gain an understanding of multiple text-nature

in the Cybersecurity domain. Most importantly, it helps the model to be tuned to

fundamental NLP tasks. Table 7.2 shows the performance of T5 trained on individual

training data compared to UTS trained on all 10 datasets in a multi-task setting.

We find that SOFTNER and CASIE-EVTDET show 4% and 2% improvements

respectively. For the rest of the tasks, the performance change is marginal and most

importantly it does not drop significantly. Thus, the trained UTS model has the

understanding of four fundamental NLP tasks controlled by task-specific control codes.

In addition, we show how UTS performs as compared to the previous best ap-

proaches in Table 7.2. We can see there is an improvement of ∼3% up to ∼27% in

eight datasets. The Previous Best scores and their methods from the following works

respectively; ◊ (Phandi et al., 2018): BiLSTM for MDB-SENTCLS and Rule-Based

method for MDB-RELCLS,⧫ (Queiroz et al., 2019): CNN + Word Embedding method,

☀ (Mohasseb et al., 2020): Random Forest classifier with SMOTE algorithm, ♣ (Mar-

chal et al., 2014): Random Forest, ♠ (Satyapanich et al., 2020): pure-built BERT

method for EVTDET and Noe Event Specific system for ARGROLE, ♡ (Simran

et al., 2019): Bidirectional GRU+CNN-CRF model, and △ (Tabassum et al., 2020):

SOFTNER (BERTOverflow). The performance, however, drops by 2% for SOFTNER

because of the use of domain-specific embeddings and hence lack of generalization of

text nature.

R2: To what extent Task Transfer is possible with UTS in few-shot settings?

The motivation of UTS is to develop a unified model tuned to multiple tasks Table

7.3 shows the performance of various settings of Entity Extraction (EE) task transfer.

We can see for both DKTR and DKTU settings, even with only 20 samples, UTS can

achieve performance very close (within ∼2%) to T5-base trained on full data. This

shows even though the model is not explicitly trained for a task it has learned to
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Dataset FS-20 FS-50 FS-100 T5-FL

CASIE-EVTARG (DKTU) 65.90 66.23 67.64 69.89

SAL (DKTR) 89.31 89.63 89.73 90.42

SOFT-NER (DKTR) 78.60 78.22 80.45 80.85

Soft-Flaw NER (DUTR) 50.10 53.16 54.95 76.71

Table 7.3: Entity Extraction (EE) Task Transfer - FS: Few-shot UTS On 20, 50, 100

Samples, T5-FL: T5 On Full

Dataset FS-20 FS-50 FS-100 T5-FL

CASIE-EVTARG (DKTU) 86.26 94.61 96.09 97.94

SAL (DKTR) 1.06 3.46 85.86 99.44

SOFT-NER (DKTR) 28.65 33.97 42.67 76.69

Table 7.4: Entity Typing (ET) Task Transfer - FS: Few-shot UTS On 20, 50, 100

Samples, T5-FL: T5 On Full

generalize well on similar tasks with very few examples. However, for DUTR, the

model achieves (∼50 F1 points) for FS-20 but falls quite short (∼12 F1 points) of the

T5-FL setting. This shows that task transfer becomes challenging when the data

nature significantly changes.

Table 7.4 shows the performance of various settings of Entity Typing (ET) task

transfer. This task is harder for the models since the model has to generate the types

not present in the text provided. Hence it can be seen that the FS-20 performance is

poor as compared to T5-FL for DKTR categories. For the DKTU category, the model
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has the knowledge from two unrelated tasks of assigning roles to event arguments and

detecting events. Even though the role categories do not overlap with arguments, the

model still has some understanding of the argument type from these two unrelated

tasks.

For both the tasks, EE and ET, UTS’s performance increased with more samples

in all settings. We also notice that T5-base performed poorly for each few-shot setting

(Tables 7.5 and 7.6) and often was not able to correct a single sample.

Dataset FS-20 FS-50 FS-100 T5-FL

CASIE-EVTARG (DKTU) 0.00 0.00 11.44 69.89

SAL (DKTR) 0.00 0.04 71.34 90.42

SOFT-NER (DKTR) 46.2 20.85 38.35 80.85

Soft-Flaw-NER (DUTR) 0.00 0.00 53.73 76.71

Table 7.5: Entity Extraction (EE) Task Transfer - FS: Few-shot T5 Base Model On

20, 50, 100 Samples, T5-FL: T5 On Full

Dataset FS-20 FS-50 FS-100 T5-FL

CASIE-EVTARG (DKTU) 23.65 33.50 71.52 97.94

SAL (DKTR) 0.20 0.07 72.89 99.44

SOFT-NER (DKTR) 21.64 16.96 22.53 76.69

Table 7.6: Entity Typing (ET) Task Transfer - FS: Few-shot T5 Base Model On 20,

50, 100 Samples, T5-FL: T5 On Full

R3: To what extent Domain Transfer is possible with UTS in few-shot
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Soft-Flaw (CLS) Soft-Flaw (NER)

FS-20 (UTS) 82.14 50.00

FS-50 (UTS) 82.17 61.54

FS-100 (UTS) 82.21 65.67

Supervised (T5-FL) 83.63 76.71

Table 7.7: Domain Transfer On Twitter Dataset, Supervised: Trained With T5-Base

on Full Dataset, Fewshot(FS) With 20, 50, 100 Samples.

settings ?

Table 7.7 shows how much domain transfer can UTS perform with Twitter texts. For

the Soft-Flaw CLS dataset, FS-20 performance is within ∼1.5% F1 of T5-FL while

Soft-Flaw NER dataset the model falls quite short of the T5 full dataset trained model.

This, we believe, is because classification is an easier task than NER for generative

models and can be learned with only a few examples.

R4: Is it possible to perform Zero-shot Domain Transfer with UTS ? We

explore if UTS can be adapted to another domain for the same task or the same

domain for some other tasks in a zero-shot setting. We find that for the classification

task (CLS), UTS can predict whether a text is ‘malicious’ or not with 82.92% F1 which

is less than 1% short of T5-FL. This is marginally greater than FS-100 performance.

A possible explanation can be that these few-shot datasets are label balanced and the

model learns well for the positive labels and not so well for the negative labels.

7.6 Case Studies

We analyze the prediction output of UTS for each dataset. Here we present a few

of them.
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Classification: Figure 7.2 shows one example from each classification dataset where

our model fails. Here, the first example (CASIE Event Role) is interesting since the

classification decision is quite close. The model understood that the ‘their system’

argument is a vulnerable system but failed to understand that it is not the owner.

In the MDB-RELCLS example the relation between the two entities ‘using’ and ‘the

ShellExecute() API’ should be Action Object rather than Modifier Object.

Figure 7.2: CLS Example Predictions: MDB And CASIE

Figure 7.3: Event Detection: CASIE

Event Detection: Figure 7.3 shows some examples of successful and incorrect

prediction cases of the CASIE Event Detection dataset. In the first example, two

events are detected out of which one is correct but the other is difficult to understand by

the model. Here “was hacked * Databreach” is not in the gold label since ransomware

attacks do not always link to databreach. In addition, CASIE only has five event
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types (Databreach, Phishing, Ransom, Vulnerability (discover), and Vulnerability

(patch). These five types do not cover the whole cybersecurity event such as Malware,

Viruses, Trojans, and Spyware. Thus, we suspect that our model detected a potential

event phrase “was hacked” and assigned one of the five event types even if there is no

suitable type in the candidates.

Figure 7.4: Named Entity Recognition

Named Entity Recognition: Figure 7.4 shows four examples of NER tasks. The

first three examples are from the SOFTNER dataset and the last one is from the SAL

dataset. The first example shows that our model predicted words and entity types

correctly. However, the special character “/” is missing from the prediction. Since we

use exact-match metrics for evaluation this category of incorrect prediction penalizes

the models. We also find similar examples where our models could not generate full

entities with other characters like ‘{’ and ‘}’. The second example has two issues; the

first one is split ‘SQL server’ into ‘SQL’ and ‘server’ and assigned different entities to

the ‘SQL’ part, the second one is that the word/phrase is predicted correctly, however,

the entity type is incorrect. We also find cases in the last example, where UTS has
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correctly predicted more than three entities and their types.

Score Generation: Figure 7.5 shows successful and unsuccessful predictions of the

Score Generation task. While the original Impact Scores are calculated based on

several features in the vulnerability, our model predicts these scores based on only

the textual description of the vulnerability (CVE descriptions). The second example

shows that UTS missed predicting the actual impact score by a close margin.

Figure 7.5: Score Generation: Impact Score

7.7 Other Case Studies

NER Task Error Analysis:

SAL Dataset:
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Text:

The embedded HTTP server in multiple Lexmark laser and inkjet printers

and MarkNet devices, including X94x, W840, T656, N4000, E462, C935dn,

25xxN, and other models, allows remote attackers to cause a denial of service

(operating system halt) via a malformed HTTP Authorization header.

Gold:

Lexmark * N — X94x * F — W840 * F — T656 * F — N4000 * F — E462

* F — C935dn * F — 25xxN * F — allows * L — remote attackers * L —

denial of service * L — Authorization * L

Predicted:

Lexmark * N — inkjet * O — MarkNet * A — X94x * O — W840 * O —

T656 * O — N4000 * O — E462 * O — C935dn * O — 25xxN * O — allows

* L — remote attackers * L — denial of service * L — Authorization * L

Text:

Certain patch-installation scripts in Oracle Solaris allow local users to append

data to arbitrary files via a symlink attack on the /tmp/CLEANUP temporary

file , related to use of Update Manager.

Gold:

Solaris * I — local users * L — arbitrary files * L — symlink attack * L

Predicted:

Oracle * N — Solaris * A — local users * L — arbitrary files * L — symlink

attack * L

ED Task Error Analysis:

CASIE Event Detection dataset:
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Text:

It was reported that their computer was hacked and a demand was made for

£120,000 a Dorset Police spokeswoman said

Gold:

a demand was made * Ransom

Predicted:

a demand was made * Ransom — was hacked * Databreach

Text:

EVNT : The group never stated where their cache of data came from until

today when they contacted TNW in response to Apple Gold:

None * None

Predicted:

None * None

Text:

Launched in 2016 the No More Ransom scheme brings law enforcement and

private industry together in the fight against cybercrime and has helped

thousands of ransomware victims retrieve their encrypted files without lining

the pockets of crooks

Gold:

Ransom * Ransom

Predicted:

The No More Ransom scheme * Ransom

CASIE Event Arguments dataset:
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Text:

The attack disabled servers early Tuesday morning, and city officials say it

was contained by 5:30 PM Wednesday.

Gold:

servers * System — early Tuesday morning * Time — 5:30 PM Wednesday *

Time

Predicted:

disabled servers early Tuesday morning * Capabilities

Text:

In some cases, a generic password is required, although security researchers

have discovered that in many cases, FTP servers can be accessed without a

password.

Gold:

FTP servers * System — can be accessed without a password * Capabilities

— security researchers * Person

Predicted:

security researchers * Person — FTP servers can be accessed without a

password * Capabilities

Classification Task Error Analysis

MalwareTextDB v2: Sentence Classification
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Text:

The Skelky ( from skeleton key ) tool is deployed when an attacker gains

access to a victims network ; the attackers may also utilize other tools and

elements in their attack.

Gold:

False

Predicted:

True

Text:

The attackers focused on obtaining access to specific systems of interest in

all of the compromised organizations.

Gold: True

Predicted: False

MalwareTextDB v2: Relation Classification

Text:

a tool — allows — <doc>.

Gold: SubjAction

Predicted: CoRefer

MalwareTextDB v2: Attribute Classification
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Text:

executing — After the C&C reply, Moose continues with infection, executing

commands on the victim device.

Gold:

Capability TacticalObjectives StrategicObjectives

Predicted:

Capability ActionName StrategicObjectives TacticalObjectives

Text:

obtaining — The attackers focused on obtaining access to specific systems of

interest in all of the compromised.

Gold:

Capability StrategicObjectives

Predicted:

Capability

Text:

allows — On January 12, 2015, Dell Secureworks blogged about a tool

(Trojan.Skelky) that allows attackers to...

Gold:

Capability StrategicObjectives

Predicted:

ActionName

Score Generation Task Error Analysis
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NVD CVE metrics: Impact score

Text:

An issue was discovered in B&R Industrial Automation APROL before R4.2

V7.08. Some web scripts in the web interface allowed injection and execution

of arbitrary unintended commands on the web server, a different vulnerability

than CVE-2019-16364.

Gold: 5.9

Predicted: 3.6

NVD CVE metrics: Exploitability score

Text:

Libspiro through 20190731 has a stack-based buffer overflow in the

spiro to bpath0() function in spiro.c.

Gold: 2.2

Predicted: 2.8

7.8 Related Work

Multitask Learning in Diverse domains: In the natural language domain, De-

caNLP (McCann et al., 2018) introduced the approach of converting multiple tasks

into a single QA format to train and evaluate ten tasks. With the gradual introduction

of stronger generative NLP models like GPT, T5, and BART, the text-to-text unified

models gained prominence. The multi-task approach has been shown to perform

well in various domains like SciFive (Phan et al., 2021) in the biomedical domain,
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CodeT5 (Wang et al., 2021) in the source code domain, LEGAL-BERT (Chalkidis

et al., 2020) in the legal domain and FinBERT (Liu et al., 2020b) in the financial

service domain. Using “teacher forcing” for all tasks for training with a maximum like-

lihood objective, SciFive enables multitask learning. CodeT5 is a unified pre-trained

encoder-decoder Transformer model and it can handle various tasks across various

directions between program languages and natural languages.

Task-Based Unified Models: Apart from these, there are individual task-based

unified models like InstructionNER which expands the existing methods for sentence-

level tasks to an instruction-based generative framework for low-resource named entity

recognition (Wang et al., 2022a). In the biomedical domain, KGNER (Banerjee et al.,

2021) formulated the NER task as a multi-answer knowledge-guided question-answer

task and experimented with 18 datasets. UnifiedNER (Yan et al., 2021) works on

unifying span-based, nested, and discontinuous NER tasks. UnifiedQA (Khashabi

et al., 2020) showed that a unified training of QA tasks helps in the improvement

of other QA tasks. Similar results are shown in common-sense reasoning tasks by

Unicorn (Lourie et al., 2021).

NLP Approaches on Cybersecurity: NLP approaches have been applied in the

cybersecurity domain on various natures of texts involving function-calls, software

binaries, and network traffics (Chua et al., 2017; Zhang et al., 2021a; Pei et al., 2021b).

There are approaches that apply to specific cybersecurity tasks like lexical analysis of

domain name (Kidmose et al., 2018), a syntactic analysis (parsing) (Perera et al., 2018),

keyword extraction for phishing classification (L’Huillier et al., 2010), NER based

automated system to diagnose cybersecurity situations in Internet of Thing (IoT) net-

works (Georgescu et al., 2019). There are many systems using social media, blog posts,

and discussion forums for analyzing and extracting CTI(Cyber Threat Intelligence)

information as well as measuring the risk of vulnerability exploitation (Zhao et al.,
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2020; Zenebe et al., 2019; Deliu et al., 2018, 2017; Sabottke et al., 2015; Portnoff et al.,

2017; Almukaynizi et al., 2017a, 2019, 2020; Suciu et al., 2021). In addition, there

have been works in extracting flow structure from unstructured software vulnerability

analysis discussions in public forums (Pal et al., 2021b). However, our focus here is to

unify the varied nature of texts and introduce a unified approach in this domain.

7.9 Conclusion and Future Work

In this work, we introduce a multi-nature, multi-task approach, UTS, in the

cybersecurity domain. We experiment with T5-base, a transformer-based generative

model, and show that the unified approach shows significant improvements on two

datasets when compared with individual training. Also, it improves over most of the

previous best performances. We show that task transfer is possible when the UTS

model is trained with fewer samples of training data. This indicates that UTS can be

adapted to new tasks and only a few training samples are necessary. We believe this

will reduce the annotation costs for new tasks. We also show that UTS is robust to the

new nature of texts and also requires a few samples to adapt. In the future, apart from

the four fundamental NLP tasks, we would like to add more tasks such as multi-label

classification or relation extraction. We believe the approach and the benchmarks we

establish can be used as a baseline for future studies in the cybersecurity domain. The

experiments we perform with this UTS approach, are limited to using either natural

language texts or text with embedded source code constructs as input. There is a

potential to include system calls or binary codes in these unified cybersecurity models.

More details are available in the pre-print Pal et al. (2023).
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7.10 Limitations

We presented a multitask model trained jointly with limited data in the cybersecu-

rity domain. There are some limitations to our work. First, we work with multiple

natures of texts aggregating which is a challenge. In this research, our focus is on

unifying mostly variations of textual nature along with some embedded software code

constructs. We do not include other natures of cybersecurity texts like source code,

binaries, decompiled code, or network traffic. Second, we have not included datasets

from other languages (NER datasets in Russian texts) which also pose challenges to

training in a multi-task setting and might require multi-lingual approaches. Third, for

the few-shot experiments we randomly chose some examples from each category to

make the dataset label-balanced. Selecting the few-shot examples might lead to minor

variations in performance. Fourth, a few of the older datasets have no explicit test set

mentioned in their paper. For adapting them to our approach, we randomly chose

20% as a test set leading to a difference in comparison. Hence, we include individual

T5-trained baselines as a comparison.

7.11 Ethics Statement

All our experiments are performed with the well-known publicly released model

transformer-based model T5. We work on 13 different datasets published in notable

peer-reviewed works. We do not create, collect or process these datasets in any way

such that they can be considered unethical. Our trained model checkpoints will be

able to perform common natural language processing tasks similar to a general natural

language processing domain.
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Chapter 8

INCORPORATING LOGICAL REASONING SKILLS INTO

TRANSFORMERS-BASED LANGUAGE MODELS

8.1 Introduction

The transformer-based models have made tremendous progress in NLP in the

last few years. Even though they have achieved remarkable performance in general

NLP tasks, they fall short when it comes to reasoning tasks. Reasoning has been a

long-time goal for the Artificial Intelligence community.

Since these models are trained to perform general-purpose NLP tasks, they are

pre-trained on a massive collection of texts. The encoder-based transformer models

are all training by mask language modeling pre-training (MLM) objective. No special

training task or specific attention is provided to the logical words which control the

meaning of a sentence. For example, the word “no” reverses the meaning of the

contextual situation. It is expected that such models can learn the representation of

such keywords automatically learning from a huge pre-training corpus.

So in this project, we make sure that the logical words are identified and masked

first. Then the model tries to predict these words and in the process learns a rich

representation of such words and their co-relation with other words in the context.

Apart from that we also mask the non-logical words as well to learn better co-relations

with self-attention.

We find that such a continued logical masked pre-training approach improves the

performance of the general RoBERTa model by a significant margin.
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Figure 8.1: LMLM Approach

8.2 Approach

We demonstrate our overall approach through Figure 8.1. The whole approach

can be broken down into three phases: Logical Word Selection, Logical Pre-training

and Fine-Tuning.

8.2.1 Logical Word Selection

We locate words that can indicate logical actions. These words can be single

words (SLW) or a group of words (MLW). We first create a dictionary of single logical

words which has the potential to control the understanding of a statement. These

SLW are ’because’, ’since’, ’if ’, ’for’, ’why’, ’assuming’, ’therefore’, ’thus’, ’then’, ’so’,

’consequently’, ’argue’, ’conclude’, ’imply’, ’infer’, ’suggest’, ’accordingly’, ’hence’,

’thence’, ’inconsequence’, ’whence’, ’wherefore’, ’not’, ’either’, ’neither’, ’nor’, ’de-

spite’, ’notwithstanding’, ’challenge’, ’object’, ’counter’, ’critique’, ’criticize’, ’conflict’,

’doubt’, ’problem’, ’weakness’, ’some’, ’all’,’few’,’most’,’many’,’each’,’every’,’none’,

’much’, ’someone’,’nobody’,’everybody’.
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8.2.2 Continued Logical Pre-Training

We choose a Transformer-Encoder based language model and continued its pre-

training with a different pre-training objective. We consider the large version of

RoBERTa (Liu et al., 2019b) called RoBERTa-large. We start our pre-training on

Huggingface version of Wikipedia (Merity et al., 2016). We first select statements

where such logical words appear. Then we select only 10K samples to start the

continued pre-training.

Unlike the random mask language modeling pre-training objective, we make sure

that the logical keywords (SLW) are masked and predicted by the model during the

pre-training. We believe doing this will force the model to understand the correlation

of these logical words with other tokens in a paragraph.

However, only predicting the SLWs would deviate from the model’s objective of

learning rich tokens for each token. So along with SLWs we also select randomly some

percentage of tokens and ask the model to predict. We consider doubling the number

of masking that is done in BERT (Devlin et al., 2019b). We believe increasing the

number of tokens to be predicted helps the model to correlate the representation of

SLWs with many non-logical words (NOL). We consider this pre-training approach as

Logical Mask Language Modeling (LMLM).

8.2.3 Fine-Tuning

We took the best performing LMLM model and train on the LogiQA training

dataset with an additional layer on top of it for the task of multiple choice Question

Answering. During training and inference, we append the dataset name in the prefix

and concatenate it with the context and each of the answer options. We then use the

fine-tuned model for inference.
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Figure 8.2: LogiQA Datasets - Two Examples (Liu et al., 2020a)

8.3 Datasets

For this project, we worked on a logical reasoning dataset LogiQA (Liu et al.,

2020a). LogiQA is a multiple choice question answering (MCQ) dataset where a

context of a situation is provided and a question is asked. The task is to choose the

correct answer for four answer options. Two examples can be seen in Figure 8.2. This

dataset has around 7K training data, and 651 testing examples and is built on Civil

Servants Examination Questions. This dataset is specially introduced to test the

language model’s ability to perform logical reasoning.

8.4 Experimental Results

8.4.1 Settings

We consider RoBERTa-Large as the base model for our project. We pre-train the

model for 50 epochs with a per GPU batch size of 16 and block size of 512 on 4 GPUs.
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During fine-tuning, we train the LMLM RoBERTa model for 50 epochs as well, with

a batch size of 8. All our experiments ran on 4 x NVIDIA A-100 GPUs in Pytorch

version 1.9 and CUDA 11.3. We use Huggingface transformers repository for the base

version of our codes.

8.4.2 Metrics

We use the exact match accuracy metric in percentage (%) for the evaluation.

8.4.3 Baselines

The Random Baseline is created by selecting randomly one choice among the

four for each of the questions in the testing set. We consider the RoBERTa-large

model as our baseline. We also keep another baseline DAGN (Huang et al., 2021). In

this approach, the authors use discourse-aware graph networks for logical reasoning.

They improved this model using augmented graph features in DAGN (Aug).

8.4.4 Results

The experimental results are presented in Table 8.1. It can be seen that our

approach along with RoBERTa-large significantly improves over the vanilla RoBERTa

models by around 4.8%. It outperformed all other baseline approaches using continued

pre-training on additional 10K paragraphs from Wikipedia.

8.4.5 Ablation Studies & Discussions

Table 8.2 shows an ablation study on varying the number of non-logical tokens

that we masked during the pre-training. We pre-trained the RoBERTa model using

just 10K Wikipedia samples. We see from the table that using only logical words

(SLW) reduces (by ∼3%) the performance of RoBERTa model. We hypothesize that
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Model Accuracy (%)

Random Baseline 25.0
RoBERTa 35.3
DAGN 38.7
DAGN (Aug) 39.3
DeBERTa-v3 40.1
RoBERTa + LMLM (Ours) 40.1 ∆+4.8
RoBERTa + LMLM + RACE-Middle (FT) 40.9 ∆+5.6
RoBERTa + LMLM + RACE-All (FT) 42.4 ∆+7.1

Table 8.1: LogiQA Performance (Accuracy). Performance Improvement Shown is over

the RoBERTa Model

Model Accuracy (%)

RoBERTa 35.3
RoBERTa + SLW 32.4 ∆ -2.9
RoBERTa + SLW + 15% NOL 37.2 ∆+1.9
RoBERTa + SLW + 30% NOL 40.1 ∆+4.8
RoBERTa + MLM (30% RANDOM) 37.2 ∆+1.9

Table 8.2: LogiQA Performance (Accuracy) with our LMLM approach

when we do not mask other tokens for the LMLM, the model learns only to learn

the prediction of these tokens and not how much this token affects other tokens. We

also find that when we doubled the number of non-logical tokens masking then the

performance improvement is significant (∼5%). This shows that the representations

are built for all those tokens considering the co-relation with the SLW tokens.

8.5 Related Works

The recent large language models like GPT-3 (Brown et al., 2020a), PaLM (Chowd-

hery et al., 2022), and UnifiedQA (Khashabi et al., 2020) has shown remarkable

performance on a diverse set of general natural language understanding tasks. There

have been efforts on studying various kinds of reasoning skills like linguistic reasoning

(Kumar et al., 2019), multi-hop reasoning (Yang et al., 2018b; Yu et al., 2020b),
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numerical reasoning (Amini et al., 2019; Dua et al., 2019a; Ran et al., 2019; Pal and

Baral, 2021) and commonsense reasoning (Bhagavatula et al., 2019; Lin et al., 2019b;

Sakaguchi et al., 2021). While all these types of reasoning have been extensively

studied, logical reasoning with transformer-based models has been understudied at

present times.

Logical reasoning is an important reasoning skill because it plays a crucial role in

many domains such as math, science, and law. The earliest effort of logical reasoning

mainly focused on designing formal logic languages to represent rules and knowledge

and develop automated theorem provers (Lifschitz, 2019). However, such approaches

require expert knowledge (e.g. syntax and semantics of the formal logic) to compose

the rules manually. As a result, recent efforts gradually shifted to tackling logical

reasoning tasks (Tian et al., 2021; Han et al., 2022; Clark et al., 2020) with pre-trained

language models by creating natural logical reasoning benchmarks. In addition,

some recent work in this area has explored evaluating robust deductive reasoners on

simple perturbations like logical equivalences (Sanyal et al., 2022a), creating logically

consistent adversarial attacks (Gaskell et al., 2022), and exploring some pre-training

objectives to improve model’s ability to reason logically (Sanyal et al., 2022b).

There have been prior approaches that performed logical reasoning using specially

designed models like LRReasoner (Wang et al., 2022b) which parses symbolic logical

structures for logical reasoning question-answering datasets. ReClor (Yu et al., 2020c)

uses data augmentation using logical context extensions. Ouyang et al. (Ouyang et al.,

2021) constructed logical graphs using the chain of facts present in a task instance and

used GNNs to reason on the graph. Jiao et al. (Jiao et al., 2022) proposed MERIt,

which used Wikipedia to generate sentence pairs for contrastive learning that are

logically related, and trained the PLM using contrastive loss. However, these methods

make pre-training specific to downstream tasks rather than focusing on generalization.
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Recently, to overcome this limitation, Sanyal et al. (Sanyal et al., 2022b) has proposed

a logical keyword-based pre-training approach for enabling logical reasoning skills in

large language models.

8.6 Future Works

The approach can be improved considering the problem from multiple approaches.

Increasing the Pre-Training Data: We have pre-trained with specially selected

10K paragraphs from Wikipedia which provided us with some significant improvements.

But there are 25GB of Wikipedia texts available to us. Training the model on such

text is likely to improve its reasoning performance further.

Increasing the SLW: We created a dictionary of logical keywords. We can use some

automated approaches to extract more such specific keywords.

Including Multi-Worded Logical Keywords: We have used only the single

logical words and masked them for prediction. However, there are multi-worded

logical keywords like ’because of ’, ’the reason is’, ’as a result of ’, ’due to’, ’as evident

in’,’justified by’, ’after all’, ’on account of ’, ’on the grounds’, ’there from’, ’there upon’,

’to that end’, ”don’t”, ’leading to’, ’resulting in’, ’and so’, ’for this reason’, ’called

into question by’,’undermined by’, ’not all’. We believe masking and predicting them

would help the model understand logical reasoning even better.

8.7 Conclusion

In this work, we present a continued pre-training approach of a transformer encoder-

based language model where we masked logical words along with some percentage

of non-logical words for prediction. This logical mask language modeling (LMLM)

approach showed significant improvement over the vanilla RoBERTa model in fine-

tuning with LogiQA, a logical reasoning dataset. We also propose several ways this
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work can be improved and logical reasoning skills can be embedded in the language

models.
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Chapter 9

INVESTIGATING NUMERACY LEARNING ABILITY OF A TEXT-TO-TEXT

TRANSFER MODEL

ABSTRACT

The transformer-based pre-trained language models have been tremendously successful

in most of the conventional NLP tasks. But they often struggle in those tasks where

numerical understanding is required. Some possible reasons can be the tokenizers

and pre-training objectives which are not specifically designed to learn and preserve

numeracy. Here we investigate the ability of the text-to-text transfer learning model

(T5), which has outperformed its predecessors in the conventional NLP tasks, to learn

numeracy. We consider four numeracy tasks: numeration, magnitude order prediction,

finding minimum and maximum in a series, and sorting. We find that, although T5

models perform reasonably well in the interpolation setting, they struggle considerably

in the extrapolation setting across all four tasks.
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9.1 Introduction

Recent advances in transfer learning in NLP have led to the emergence of pre-

trained models which show a much stronger contextual representation of words than

earlier static word embeddings. They have all performed extremely well in conventional

NLP tasks. Yet, they fail to capture a better understanding of numbers. Numbers

are an integral part of natural language texts which can change the meaning of a

sentence. So there is a need for NLP models which can identify numbers represented in

any surface forms like words, floats, or strings (Numeration), understand their values

in various contexts (Magnitude Order Prediction), compare their values with others

(List-MinMax) or able to rearrange a series of numbers based on its values (Sorting).

The transfer-learned models are pre-trained on a huge amount of natural language

texts with specially designed tasks and tokenizers to create stronger word embeddings.

This causes the numbers embedded in the texts to lose their meaning and inherent

rules of numeracy guiding them (Thawani et al., 2021; Nogueira et al., 2021). This

is possibly the reason they perform worse in numerical reasoning tasks on numbers

absent in training data (Nogueira et al., 2021; Wallace et al., 2019).

In this paper, we test the numeracy learning ability of a text-to-text transfer learning

generative model, T5 (Raffel et al., 2020) which has outperformed its predecessors in

conventional NLP tasks. The text-to-text format of input and output helps the model

to generalize all the NLP tasks as a unified model. We use four numeracy tests both

in interpolation (training and testing on the same range of data) and extrapolation

settings (training on lower and testing on the higher range of data) and study how

much numeracy skill it can acquire. Figure 9.1 shows some examples of each of the

numeracy tests.

Our contributions in this paper are (1) an Extensive study on three versions of T5
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Figure 9.1: Examples of Numeracy Tests

models (small, base, large) on four numeracy tests in interpolation and extrapolation

settings. (2) Reporting interesting observations in the behavior of each model version

across multiple experimental settings through detailed manual error analysis. The

synthetically generated data and codes are publicly available1 for future numeracy

analysis in similar settings.

9.2 Numeracy Tests

We perform four essential numeracy tests to explore the model’s ability to under-

stand numerical values.

Motivation: These four elementary tasks are simple and easy for the models since

they do not need to generate a completely new number in a different numerical range

(like in mathematical tests: multiplication, division, exponentiation). Here we evaluate

1https://github.com/kuntalkumarpal/T5Numeracy
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whether the models learn the numeracy tasks or they simply learn bias from the

number range seen in training data.

9.2.1 Numeration

The probability of a number represented in multiple surface forms (word, scientific,

float, integer) increases with the increase in the volume of the pre-training corpus of

the language models. It is impractical for an end-to-end NLP model to semantically

parse these numbers accurately and convert them into a single representation to retain

their value or reason with. This task tests the model’s ability to understand the word

representation of a number and to decode it into integer form.

9.2.2 Magnitude Order Prediction

The task is to identify the order of magnitude of a missing (masked) number

that fits the context of a natural language text. This task is important in numerical

commonsense reasoning (Lin et al., 2020) and prompt-based methods (Liu et al., 2021).

Here, we do not expect the model to predict the exact number that fits the context

as this may vary in different domains. Instead, this task tests the model’s ability to

understand a missing number’s context and predict its appropriate range.

9.2.3 List-MinMax

We test the model’s ability to understand numerical values and compare them.

Given a series of n positive numbers, the task is to find the minimum and the maximum

number. This is the basis of many question-answering and commonsense numerical

reasoning datasets like SQuAD (Rajpurkar et al., 2016), DROP (Dua et al., 2019) and

NUMBERGAME (Mishra et al., 2020). We simplify the task by generating templates

so that the models can concentrate on understanding the task rather than getting
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confused by the language complexities.

9.2.4 Sorting

In addition to understanding the values of each number in a series, the model will

have to rearrange them in the correct order through this task, making it even harder

than List-MinMax. Even if a model is successful in the previous test, it is necessary

to identify whether it has actually been compared among all the numbers in the series.

Hence, sorting a list of n numbers in ascending and descending orders ensures that the

model compares all the numbers and rearranges them into two different sequences.

9.3 Experiments

9.3.1 Experimental Setup

We use T5-SM (small, 60M parameters), T5-BS (base, 220M), T5-LG (large,

770M), and positive integers for the experiments. The results are average of three

random seeds. We perform experiments in two settings: interpolation (training and

testing on the same numerical range) and extrapolation (training on lower and testing

on the higher numerical range). The latter helps us to analyze whether a model has

learned the task, or it has exploited bias in the numerical range of the training data.

9.3.2 Data Preparation

Numeration: We create a dataset keeping in mind that at least a few examples of

all unique words needed to represent each number are present in the training data

(Trask et al., 2018). In Table 9.1, interpolation samples are from [0,10K) and 99K

extrapolation samples are from [10K,1000K). We use num2words2 for generating

2https://github.com/savoirfairelinux/num2words
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# TRAIN → 4.9K 1.3K 0.9K

TP Model IN EX IN EX IN EX

FL

T5-SM 45.31 0.08 1.90 0.01 0.33 0.00

T5-BS 92.16 1.03 66.47 0.45 37.20 0.42

T5-LG 98.06 1.91 89.49 1.96 79.48 1.58

SP

T5-SM 69.67 39.35 26.89 1.10 0.23 0.01

T5-BS 99.50 11.31 81.21 22.44 73.61 31.06

T5-LG 100.00 10.05 99.97 7.35 91.59 12.92

Table 9.1: Numeration EM Scores w/ Split (SP) And w/o Split (FL) Representation on

4.9K, 1.3K, 0.9K Train-data In Interpolation (IN) And Extrapolation (EX) Settings.

LIST MINIMUM LIST MAXIMUM

# ELEMENTS 3 5 10 3 5 10

Range Model IN EX IN EX IN EX IN EX IN EX IN EX

< 99

T5-SM 90.5 0.6 86.5 0.1 65.9 0.0 80.4 0.5 71.6 0.3 74.7 0.1

T5-BS 96.2 33.9 99.1 13.0 98.2 2.8 92.3 22.7 96.8 6.0 90.4 1.1

T5-LG 100.0 22.2 99.4 2.8 100.0 0.5 100.0 29.6 100.0 13.6 100.0 2.0

< 999

T5-SM 72.6 41.8 55.5 22.2 49.9 9.7 65.3 38.4 54.8 17.5 40.0 5.2

T5-BS 91.5 67.2 92.1 42.6 80.4 27.1 89.1 65.3 90.8 47.2 88.3 25.0

T5-LG 98.3 70.1 96.1 49.3 87.4 34.7 96.1 61.2 97.8 58.7 95.2 35.3

< 9999

T5-SM 59.1 44.7 43.5 30.4 30.7 17.1 51.2 47.0 36.0 27.0 20.9 11.1

T5-BS 89.6 68.8 86.9 53.8 85.4 38.1 87.1 58.6 83.1 43.4 81.6 29.9

T5-LG 97.1 81.3 93.7 71.8 94.0 58.2 96.2 84.9 94.9 76.4 94.9 59.1

Table 9.2: List-MinMax (Series Length: 3, 5, 10) In Three Different Number Ranges

Evaluated as Interpolation (IN) and Extrapolation (EX) Exact-match Scores on 1k

Test Data.
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Datasets → AT MC

Models ↓ µF1 mF1 µF1 mF1

LR 62.49 30.81 71.25 60.80

CNN 69.27 35.96 77.17 58.49

GRU 70.92 38.43 78.25 58.08

BiGRU 71.49 39.94 80.16 62.74

CRNN 69.50 36.15 78.00 64.62

CNN-capsule 63.11 29.41 75.89 59.22

GRU-capsule 70.73 33.57 77.36 64.71

BiGRU-capsule 71.49 34.18 77.97 64.34

BiLSTM-DICE 75.56 46.80 - -

T5-SM 69.87 31.36 66.11 34.68

T5-BS 78.06 40.04 72.22 47.44

T5-LG 81.40 44.64 80.29 59.16

Table 9.3: Magnitude Order Prediction for Market Comments (MC) and Article Titles

(AT) Datasets of Numeracy600k in Micro-f1 (µF1) and Macro-f1 (mF1). The Best

Score Is in Bold and the Second Best Is Underlined.

the word form of each integer. To simulate fewer shot settings, we carefully craft

two smaller training sets taking only 20% and 10% data. We show two number

representation schemes with split-digits (SP) and without split (FL) hypothesizing

that for a generative model, it would be easier to correctly generate individual digits

instead of full integers at once.

We have 4906, 2097, and 2997 in train, dev, and test respectively. We make

sure that all numbers within 10K are present in any of the train, dev or test. For

extrapolation, we select 1K integers randomly from every 10K range from [10K,1000K)

making it a total of 99K.

Magnitude Order Prediction: For this task we work on Numeracy600K (Chen
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Train on → AT MC

Models ↓ µF1 mF1 µF1 mF1

BiGRU 25.59 10.58 31.38 11.08

T5-SM 28.88 12.04 37.35 10.81

T5-BS 35.53 14.48 31.51 12.25

T5-LG 50.18 21.24 38.43 12.32

Table 9.4: Cross Domain (Extrapolation) Tests of Order Prediction. Train on MC,

Test on AT, and Vice-versa.

et al., 2019) dataset. We consider this as a mask prediction task. We train models

to find the exact number that fits the mask. Then, we map the predicted numbers

into their magnitude order, save the model based on the best magnitude order and

calculate the evaluation metrics on test data. Since this is a generation task we reject

those answers which are not valid floating point numbers. The baseline results in

Table 9.3 are from (Chen et al., 2019; Sundararaman et al., 2020). We also consider

the extrapolation setting by showing the cross-domain performance (train on market

comments and test on the article title and vice-versa) in Table 9.4.

For this data, we consider 450K, 50K, and 100K samples for train, dev, and test

data respectively from each of the market comments and article titles data.

List Min-Max & Sort: We experiment on three different number ranges: [0,100),

[0,1K), [0,10K). For interpolation tests, the numbers in the test data are from the same

ranges. The extrapolation numbers are from the maximum of respective ranges to

100K. To prevent the model’s bias on number lengths, we bring them closer following

prior work (Wallace et al., 2019). We extend the experiment on a series of 3, 5, and

10 numbers (for each range) to study how each of the models behaves with increasing

series length. We consider the same data for sorting experiments as well. The results
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LIST-SORT ASCENDING LIST-SORT DESCENDING

# ELEMENTS 3 5 10 3 5 10

Range Model IN EX IN EX IN EX IN EX IN EX IN EX

< 99

T5-SM 54.0 12.4 7.6 0.0 0.0 0.0 56.0 12.6 5.9 0.4 0.0 0.0

T5-BS 80.6 12.2 87.2 0.0 0.4 0.0 84.3 12.9 75.5 0.0 6.2 0.0

T5-LG 100.0 5.8 99.9 0.0 69.7 0.1 100.0 13.1 96.6 0.1 57.6 0.1

< 999

T5-SM 32.6 15.1 1.4 0.6 0.0 0.0 38.0 22.3 3.4 1.3 0.0 0.0

T5-BS 74.7 45.7 64.0 8.0 12.5 0.0 73.1 42.0 62.6 9.6 16.8 0.1

T5-LG 95.1 64.2 91.8 16.8 61.9 1.7 94.7 63.5 92.5 25.7 61.2 1.6

< 9999

T5-SM 23.4 17.1 1.0 0.1 0.0 0.0 30.4 21.2 0.7 0.4 0.0 0.0

T5-BS 63.1 45.5 51.1 12.7 15.0 0.2 59.8 43.9 51.4 12.4 14.3 0.3

T5-LG 94.5 76.0 87.4 43.2 74.6 12.6 94.2 76.1 86.1 44.4 75.6 11.9

Table 9.5: List-sort (Ascending & Descending) on Series Lengths: 3, 5, 10 in Three

Different Integer Ranges Evaluated as Interpolation (IN) and Extrapolation (EX)

Exact-match Scores on 1k Test Data.

are in Table 9.2 for List-MinMax and Table 9.5 for List-Sort.

We consider both the task of arranging in ascending and descending orders since if

a series is already sorted in ascending order the model can directly predict by copying

it from the given input.

9.3.3 Hyperparameters

For all the experiments we use a maximum sequence length of 128 and 256 for

question context. The maximum sequence length of the answers is kept as [5, 10, 20,

25] for different tasks. We ran for 20 epochs and save a model based on validation EM

performance. Our training and validation batch size varies between [2, 4, 8, 16, 32]

based on the experiment. We work on 4 Tesla V100 GPUs. We use AdamW optimizer

and StepLR scheduler with a step size of 2, a learning rate of 5e-5, and a gamma of
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0.1.

9.4 Results and Error Analysis

Table 9.1 shows all versions of T5 benefit when they are trained with split repre-

sentation. When trained with 4.9K data, T5-SM gains 24% points in interpolation

evaluation whereas T5-LG gains only 2%. None of the models perform well on unseen

number data ranges. In fewer shot interpolation settings, however, only the T5-LG

model maintains its performance beyond 90% which is not surprising because of its

large parameter space. We noticed that the best model could only partially decode

numbers having multiple zeros (Figure 9.2). In the first example, the model predicts

an extra seven and in the second (extrapolation), it ignored the keyword ‘hundred’ as

it attempts to fit this unseen data into a similar seen number range (4 digits).

In magnitude order prediction (Table 9.3), T5-LG’s performance improves by 5

µF1 in the article title. For extrapolation (Table 9.4), all T5 versions beats previous

estimates (BiGRU) by at most 25%. This shows that T5 can learn robust numeric

representations based on contexts. Both the samples in Fig 9.2 are hard as they need

prior explicit knowledge. Yet they are able to predict numbers in similar feasible

ranges. This shows that the model is not randomly assigning magnitude but has

learned based on the domain and context. We found that the best T5 model predicted

an order of 1 instead of 2 for market and article data making a maximum error of

39.07% and 33.59% respectively.

Table 9.2 shows List-MinMax results. Both T5-BS and T5-LG perform over 80%

across all ranges and series lengths. T5-SM however, degrades in performance as

the range increases along with the list size. As the model learns more variations in

numbers, the extrapolation performance increases to a max of 81% (List-Min) and

84.9% (List-Max). But the performance drops as the series length increases. The best
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Figure 9.2: Two Incorrect Predictions For Each Task.

model predicted the second minimum and maximum element in the examples of Fig

9.2.

From the sorting results (Table 9.5), we see T5-SM performance drops (18-22%

from 2-3 digits, 8-9% from 3-4) as number ranges increase across the series length of 3.

T5-SM fails to generate a single correct order for a series of 10 elements and achieves

less than 10% success in 5-element series across all ranges. This degrading performance

can be attributed to its mere 60M parameter space. As the number of parameters keeps

increasing the models perform consistently across each of the 3, 5, and 10 elements in

series, both for interpolation and extrapolation settings. With the increasing range

of training data, the models become more robust to extrapolated numbers across all

series lengths with 8-30% change in ascending order and 7-20% change in descending

order. Finally, for sorting, we find a variety of incorrect predictions: missing order of

one element, omission of one and two elements, or repeating a particular element.

Overall, none of the models were able to perform well on extrapolation samples

showing the inherent rules of numeracy are difficult for these models to learn. But,
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Figure 9.3: Some Predictions For Numeration Task.

Figure 9.4: Magnitude Order Prediction Examples.

it also shows, more variations in numbers (increasing the range) help them perform

better in extrapolation settings. The smaller model’s limited parameter space affects

its performance in all four tasks whereas larger models are able to pick up some

numeracy skills through training. We show more predictions in Figure 9.3, 9.4, 9.5,

9.6.

Analysis of NT5: We test with the NT5 (Yang et al., 2021) model on all our

experiments and compared the results with T5-small. For the Numeration task with

the split number representation, NT5 performed 73.07 (accuracy), a 4% improvement

over T5. The performance however did not improve for the MinMax and Sorting tasks.

For 3-element sorting, it dropped by 10-20%. In the Magnitude Order Prediction, we

find the cross-domain (extrapolation) µF1 score increases by 5-7% while the in-domain
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Figure 9.5: Some Predictions For List-MinMax Task.

Figure 9.6: Some Predictions For List-Sort task.

decreases by 3-6%. This might be because NT5 has seen more variety of contexts of

numbers and can generalize well on this task.

Zero-Shot Magnitude Order Prediction: We also experimented with zero-shot

magnitude order predictions. We found 553 and 8783 exact matches out of 100K test

data using T5-large which shows that the performance is very poor without proper

fine-tuning. We show some more predictions of the best performing T5 model in

Figure 9.7, 9.8, 9.9, 9.10.

9.5 Related Works

Numeracy Tests: Multiple numeracy tests have been proposed to evaluate the

static word embeddings (Naik et al., 2019) like GloVe, Word2Vec, FastText, and
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Figure 9.7: More Predictions For Numeration Task.

Figure 9.8: More Magnitude Order Prediction Examples.

contextual embeddings (Wallace et al., 2019) like BERT through probing tasks like

numeration, magnitude comparison, addition, list-maximum. Multilingual numeration

(Johnson et al., 2020) tests have been performed by probing models like DistilBERT,

XLM, and BERT. CNN, BiGRU models have been shown to perform well in magnitude

order prediction (Chen et al., 2019) and T5 on addition and subtraction tasks (Nogueira

et al., 2021) through training on similar texts. We, however, focus on studying how

much text-to-text transfer models (T5) can learn across four fundamental numeracy

tasks in samples containing both in-domain and out-of-domain numerical ranges.

Specially Designed Models: NALU (Trask et al., 2018), NAU and NMU (Madsen

and Johansen, 2020), numBERT (Zhang et al., 2020), GenBERT (Geva et al., 2020),

NT5 (Yang et al., 2021) have emerged in the last few years to incorporate arithmetic
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Figure 9.9: More predictions For List-MinMax Task.

Figure 9.10: More predictions for List-Sort task.
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skills into models through specially designed architecture or fine-tuning tasks which

improves the performance in synthetic arithmetic or crowd-sourced numerical reasoning

tasks like DROP.

Numerical Embeddings: There are limited prior works in numeracy-aware embed-

dings that show good performance in extrapolation settings. One approach (Jiang

et al., 2019) represents numerals as a weighted average of prototype numeral embed-

dings obtained using either a self-organizing map or Gaussian Mixture models. DICE

(Sundararaman et al., 2020) is a deterministic numeral embedding approach, indepen-

dent of the corpus, which preserves the relative magnitude between two numerals and

their embeddings.

9.6 Conclusion & Future Works

We show that text-to-text models are able to learn numeracy quite well in an

interpolation setting. Our extensive experiments show that T5 models struggle to

learn with numbers outside training data ranges. We believe that to make further

progress in transfer learning, models need to achieve such elementary numeracy skills

and this gap between interpolation and extrapolation performance needs to be reduced.

We are of the opinion that, adding more data would not bridge this gap since the

domain of numbers is open. However, special pre-training objectives for digits rather

than whole numbers can be designed to teach inherent numeracy to models. In the

future, we intend to explore these objectives centered around preserving numeracy

rules in transfer-learned models to generalize between in-domain and out-of-domain

numbers.
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Chapter 10

CONCLUSION

In this dissertation, I presented various projects, not only in the natural language

domain but also in resource-limited Cybersecurity and Biomedical domains, to un-

derstand the role of knowledge in improving the transformer-based language models.

First, I demonstrated through Knowledge Extraction (KX), how LMs can be used

effectively to extract specific explicit, implicit, and structured knowledge from data

which improves our understanding of the data by helping us to gain insights and take

informed decisions. Then through Knowledge Integration (KI), I presented methods to

show how LMs can incorporate targeted external knowledge to improve their reasoning

skills (multi-step, commonsense, and logical). Finally, through Knowledge evaluation

(KE), I demonstrated how LM’s knowledge can be assessed and their limitations can

be learned. Thus knowledge takes various forms from an output in KX to an input in

KI to finally a evaluator to interact with transformer-based language models.

10.1 Knowledge Extraction (KX)

Chapters 2, 3, and 4 demonstrated how LMs can extract knowledge effectively.

Chapter 2 showed how LMs can be applied in resource-limited biomedical domains to

extract entities and assign their types in a multi-task setting. In this project, I develop

a novel knowledge-guided named entity recognition approach in a QA setting and

improved the state-of-the-art performance of 12 out of 18 publicly available biomedical

datasets. In Chapter 3, I introduced a dataset for the data-limited Cybersecurity

domain to analyze structured instruction flow in public forum documents. Then

I establish a benchmark on an information flow-graph prediction task. Finally, I
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demonstrate that the approaches also work on two datasets of natural language

domains. In Chapter 4, I showed how missing textual information like variable names

can be recovered from decompiled binaries using both pre-existing datasets and our

improved dataset. The chapter showed that the approach significantly outperforms

existing approaches in two decompilers.

In this direction, I would also like to mention two of my collaborative efforts

with other researchers. In the first project (Kashihara et al., 2023), I collaborated

in predicting thread structure from unstructured public forum conversations in the

cybersecurity domain which is relevant to Chapter 3. In this project, we perform better

social network prediction based on forum interactions using Instruction Prompting-

based Next Paragraph Prediction (NPP-IP) method, outperforming the existing

thread-structuring methods on two datasets - Reddit and Hacker Forums. In the

second collaborative effort (Agrawal et al., 2023), I contributed to developing an

Ontology for the Cybersecurity education domain for students or novice researchers.

Such an ontology can be used to develop AI-based automated Cybersecurity education

systems that can improve cognitive engagement and active learning. We also introduced

AISecKG, a triple dataset with cybersecurity-related entities and relations as defined

by the ontology. We show a downstream application of our high-quality NER dataset

by extracting malicious named entities using BERT and RoBERTa models.

10.2 Knowledge Integration (KI)

Chapter 5 showed how multihop reasoning skills can be incorporated into language

models by using external knowledge extracted from an open book and missing knowl-

edge from relevant knowledge sources. The approach showed significant performance

improvement over the existing approaches on Open-Book QA dataset. Chapter 6

demonstrated four approaches by which external instance-specific knowledge can be
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incorporated into transformer-based language models. The integration of knowledge

can help language models to improve their commonsense reasoning abilities about the

physical interaction of humans with objects. In Chapter 7, I showed that training a

generative LM on the diverse nature of cybersecurity texts and tasks in a multi-task

setting can help it to adapt to unseen domains and tasks. In Chapter 8, I also

presented that by continued pre-training, logical reasoning skills can be incorporated

into language models. I showed that such an approach can achieve good performance

over vanilla language models on logical MCQ datasets.

In this direction, I would also like to mention a project where I collaborated. In this

project, Super-naturalinstructions (Wang et al., 2022c), we show that language models

trained with declarative natural instructions of NLP tasks could generalize over unseen

tasks. In this work, we crowd-sourced a dataset of 1616 diverse NLP tasks and their

expert-written instructions. Our collection covers 76 distinct task types, including

(but not limited to) classification, extraction, infilling, sequence tagging, text rewriting,

and text composition. Furthermore, we build Tk-Instruct, a transformer model trained

to follow a variety of in-context instructions (plain language task definitions or k-shot

examples). We show that even being orders of magnitude smaller than InstructGPT

we were able to achieve a 9% improvement over it.

10.3 Knowledge Evaluation (KE)

While extraction and integration of knowledge are two aspects of knowledge for

transformer-based language model development, their evaluation is of utmost necessity

to find avenues for further improvements. In Chapter 9, I show that LMs often lack

numerical reasoning skills. I developed and curated challenging numerical datasets

for each of the tasks of numeration (number decoding), magnitude order prediction,

finding minimum and maximum, and sorting numbers in a list of numbers. I show
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that T5 models are good at reasoning with numbers on which it is trained but fail to

generalize on out-of-domain number range.

I would also like to highlight my contributions to two other projects in this direction.

For the first project, we evaluated large language models like GPT-2, GPT-3, and T5

about their feasibility reasoning capabilities (Gupta et al., 2022) by carefully creating

challenge adversarial datasets in multiple-choice QA format and showing that they

are marginally better than random performance. For the second project, we evaluated

how much language models can reason about the effects of actions (Banerjee et al.,

2020) considering three classical planning domains like Blocksworld, Logistics, and

Dock-Worker-Robots domains. In this project, we develop three synthetic multiple-

choice QA datasets (leveraging Answer Set Programming) and show that if enough

information about the current world knowledge and actions taken are provided then a

transformer-based model can achieve near-perfect performance.

Overall, in this dissertation, through multiple projects, I proposed new approaches

and models which pushed the state-of-the-art performance on existing datasets, de-

veloped novel datasets and performed an extensive analysis of proposed models and

their prediction results. As can be seen from various projects demonstrated in this

dissertation, knowledge plays multiple roles in improving transformer-based language

models by infusing them into the models. This is possible by extracting such knowledge

effectively. Also, they can be improved further by learning about their limitations

through their proper knowledge evaluation. All the artifacts of the projects including

datasets, codes, and presentations have been made public for future researchers in

natural language, biomedical and cybersecurity domains.
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Uzuner, Ö., B. R. South, S. Shen and S. L. DuVall, “2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text”, Journal of the American Medical
Informatics Association 18, 5, 552–556 (2011).

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser
and I. Polosukhin, “Attention is all you need”, in “Advances in neural information
processing systems”, pp. 5998–6008 (2017).

248

https://www.aclweb.org/anthology/N19-1421
https://proceedings.neurips.cc/paper/2018/file/0e64a7b00c83e3d22ce6b3acf2c582b6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0e64a7b00c83e3d22ce6b3acf2c582b6-Paper.pdf
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