
Towards Development of Models that Learn New Tasks from Instructions

by

Swaroop Mishra

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved February 2023 by the
Graduate Supervisory Committee:

Chitta Baral, Chair
Yezhou Yang

Eduardo Blanco
Arindam Mitra

ARIZONA STATE UNIVERSITY

May 2023

ABSTRACT

Humans have the remarkable ability to solve different tasks by simply reading textual

instructions that define the tasks and looking at a few examples. Natural Language Pro-

cessing (NLP) models built with the conventional machine learning paradigm, however,

often struggle to generalize across tasks (e.g., a question-answering system cannot solve

classification tasks) despite training with lots of examples. A long-standing challenge in

Artificial Intelligence (AI) is to build a model that learns a new task by understanding the

human-readable instructions that define it. To study this, I led the development of NAT-

URAL INSTRUCTIONS and SUPERNATURAL INSTRUCTIONS, large-scale datasets

of diverse tasks, their human-authored instructions, and instances. I adopt generative pre-

trained language models to encode task-specific instructions along with input and generate

task output. Empirical results in my experiments indicate that the instruction-tuning helps

models achieve cross-task generalization. This leads to the question: how to write good

instructions? Backed by extensive empirical analysis on large language models, I observe

important attributes for successful instructional prompts and propose several reframing

techniques for model designers to create such prompts. Empirical results in my experiments

show that reframing notably improves few-shot learning performance; this is particularly

important on large language models, such as GPT3 where tuning models or prompts on large

datasets is expensive. In another experiment, I observe that representing a chain of thought

instruction of mathematical reasoning questions as a program improves model performance

significantly. This observation leads to the development of a large scale mathematical

reasoning model BHASKAR and a unified benchmark LILA. In case of program synthesis

tasks, however, summarizing a question (instead of expanding as in chain of thought) helps

models significantly. This thesis also contains the study of instruction-example equivalence,

power of decomposition instruction to replace the need for new models and origination

of dataset bias from crowdsourcing instructions to better understand the advantages and

i

disadvantages of instruction paradigm. Finally, I apply the instruction paradigm to match

real user needs and introduce a new prompting technique HELP ME THINK to help humans

perform various tasks by asking questions.

ii

Dedicated to the service of the Almighty

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis supervisor Dr. Chitta Baral

for his invaluable guidance. He has helped me in exploring many research problems,

experimenting with new ideas and collaborating with a diverse set of people. I could pursue

my ideas and research visions with full support from Dr. Baral. I am grateful to him for

being a constant source of encouragement.

I am also thankful to my thesis committee members Dr. Eduardo Blanco, Dr. Yezhou

Yang, and Dr. Arindam Mitra for their guidance and suggestions in my research. Their

expertise in the field, insightful comments, and unwavering belief in my abilities were

instrumental in helping me complete my research.

I would also like to extend my thanks to my mentors: Dr. Hanna Hajishirzi (Allen

Institute for AI), Dr. Daniel Khashabi (Allen Institute for AI), Dr. Ashwin Kalyan (Allen

Institute for AI), Dr. Peter Clark (Allen Institute for AI), Dr. Elnaz Nouri (Microsoft

Research), Dr. Kuzman Ganchev (Google Research) and Chris Alberti (Google Research)

for their invaluable feedback, encouragement, and support.

I would like to acknowledge the financial support provided by ASU, DARPA and the

resources made available by ASU HPC that enabled me to conduct my research and complete

this thesis.

I extend my appreciation to my colleagues and friends: Anjana Arunkumar, Yizhong

Wang, Man Luo, Pulkit Verma, Bhavdeep Sachdeva, Pan Lu, Pratyay Banerjee, Tejas

Gokhale, Kuntal Pal, Neeraj Varshney, Mihir Parmar, Shailaja Sampat, Yiran Luo, Ravsehaj

Singh Puri, Kirby Kuznia, Himanshu Gupta, Maitreya Patel, Pruthvi Patel, Ankita Sharma,

Neha Vadnere, other members of the Cognition and Intelligence Lab and Tsu (pet) who

provided me with emotional support and encouragement during this journey. They were a

constant source of strength and motivation.

I am blessed to have a good number of awesome friends: Amulya, Kiran, Sandip, Dipu,

iv

Varun, Makara, Subhasish, Jyoti, Subrat, Suhan, Nikunj, Sumeet, Rakesh. Their support and

confidence in me pushed me further in research.

Finally, I would like to express my deep love and gratitude to my parents, sister, mama,

and all my family members for unwavering support and encouragement. Their love and

support were the foundation that sustained me throughout this journey. Thank you all for

your unconditional love and support.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . xiv

LIST OF FIGURES . xxxi

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK . 11

3 CROSS-TASK GENERALIZATION BY LEARNING FROM INSTRUCTIONS 19

3.1 Introducing Cross-Task Generalization . 19

3.2 Natural Instructions. 20

3.2.1 Instruction Schema . 20

3.2.2 Constructing Natural Instructions . 23

3.3 Problem Setup and Models . 27

3.3.1 Task Splits and Generalizations Types . 28

3.3.2 Models . 29

3.4 Experiments . 35

3.4.1 Generalization Under Various Task Splits . 35

3.4.2 Generalization Under Instruction Encoding and Task Categories 36

3.4.3 Generalization vs. Number of Seen Tasks . 37

3.4.4 Analyses . 37

3.4.5 Error Analysis . 37

3.5 Analysis of Datasets and their Templates . 42

3.5.1 Division of Crowdsourcing Instructions into Minimal Tasks 42

3.5.2 Analysis of Crowdsourcing Templates . 43

3.5.3 Qualitative Analysis . 45

3.5.4 Data Curation Effort . 48

vi

CHAPTER Page

3.5.5 Qualitative Comparison to PromptSource . 49

3.6 Additional Analysis of Results . 53

3.6.1 Comparison to Raw Instructions . 53

3.6.2 T0pp baseline for Natural Instructions . 54

3.7 Conclusion . 55

4 NUMGLUE: MULTITASKING IN NUMERICAL REASONING 60

4.1 Introduction . 60

4.2 NumGLUE . 62

4.2.1 Novel Datasets . 64

4.2.2 Existing Datasets . 65

4.2.3 Data Quality Analysis: . 67

4.3 Experiments . 68

4.3.1 Baselines . 68

4.4 Results and Discussion . 72

4.4.1 Error Analysis . 73

4.5 Additional Analysis . 75

4.5.1 NumGLUE vs Other Datasets: . 75

4.5.2 Construction of NumGLUE : . 76

4.5.3 GPT3-Instruct’s Response . 76

4.5.4 Data Quality Analysis of NumGLUE . 76

4.5.5 Ex-NumNet . 79

4.5.6 Proposed Memory-Augmented Model . 79

4.5.7 Hyper Parameters Used . 80

4.5.8 Additional Examples . 80

vii

CHAPTER Page

4.6 Conclusion . 81

5 REFRAMING INSTRUCTIONAL PROMPTS . 89

5.1 Introduction . 89

5.2 Prompt Reframing . 92

5.2.1 Reframing Principles . 92

5.2.2 Reframing Techniques . 96

5.3 Experimental Setup . 99

5.4 Empirical Results . 102

5.4.1 Main Results . 102

5.4.2 Analyses . 104

5.5 Additional Analysis . 107

5.5.1 Examples of Error Types . 107

5.6 Conclusion . 108

6 Līla: A UNIFIED BENCHMARK FOR MATHEMATICAL REASONING . . 114

6.1 Introduction . 115

6.2 Līla . 116

6.2.1 Dataset Construction . 117

6.2.2 Categories and Tasks . 119

6.2.3 Līla-OOD . 120

6.2.4 Līla-Robust . 120

6.2.5 Statistics . 120

6.3 Experiments . 121

6.4 Results and Analysis . 123

6.4.1 Results: Fine-tuned Models . 124

viii

CHAPTER Page

6.4.2 Results: Category-wise Analysis . 126

6.4.3 Results: Few-shot Prompting . 127

6.5 Qualitative Examples . 128

6.6 Dataset Collection . 128

6.6.1 Expert annotation . 128

6.7 Dataset Statistics . 131

6.8 Additional Results . 131

6.9 Conclusion . 131

7 LESS IS MORE: SUMMARY OF LONG INSTRUCTIONS IS BETTER

FOR PROGRAM SYNTHESIS . 151

7.1 Introduction . 151

7.2 Method . 152

7.2.1 Dataset . 152

7.2.2 Model . 154

7.3 Experimental Setup . 154

7.4 Results and Analysis . 155

7.4.1 Human Generated Summaries . 155

7.4.2 Synthetic Summaries . 156

7.4.3 Analysis . 156

7.5 Additional Analysis . 157

7.6 Example of removing fake information . 159

7.6.1 Original Prompt . 159

7.6.2 Basic Summary . 163

7.6.3 Expert Summary . 164

ix

CHAPTER Page

7.7 Prompt templates . 166

7.8 Strict Accuracy . 168

7.9 Codex Configuration . 168

7.10 Worst Problems and Statistics . 168

7.11 Average length of Problems and Solutions . 169

7.12 Abbreviated Synthetic Results . 169

7.13 Generated Code . 169

7.14 StudioAI21 Generated Code . 170

7.15 StudioAI21 Generated Code . 173

7.16 GPT Generated Summaries . 180

7.17 Human Generated Instructions . 185

7.17.1 Summarization . 186

7.17.2 Expert Summary . 188

7.18 Superfluous Information Confusing the Model . 189

7.18.1 Original Prompt . 189

7.18.2 Basic Summary . 190

7.18.3 Expert Summary . 191

7.18.4 Generated Code . 192

7.19 Made Up Information Confusing the Model . 192

7.19.1 Original Prompt . 193

7.19.2 Expert Summary . 194

7.20 Conclusion . 194

8 IS A QUESTION DECOMPOSITION UNIT ALL WE NEED? 201

8.1 Introduction . 201

x

CHAPTER Page

8.2 Methods . 203

8.2.1 Datasets . 203

8.2.2 Decomposition Process . 203

8.3 Experimental Setup . 204

8.4 Results and Analysis . 205

8.4.1 Experimental Results . 205

8.4.2 Analysis . 206

8.5 Prompts . 210

8.5.1 HotpotQA, DROP, Break . 210

8.5.2 MATHQA . 211

8.5.3 SVAMP . 213

8.5.4 StrategyQA . 216

8.5.5 QASC . 217

8.5.6 MultiRC . 219

8.6 Error Examples . 220

8.7 Examples, Results and Details for Automation . 224

8.8 Results . 230

8.9 Conclusion . 230

9 HOW MANY DATA SAMPLES IS AN ADDITIONAL INSTRUCTION

WORTH? . 236

9.1 Introduction . 236

9.2 Multi-Variant Instruction Dataset . 238

9.2.1 Variant Instruction Task . 238

9.2.2 Dataset Creation Process . 239

xi

CHAPTER Page

9.2.3 Dataset Properties and Statistics . 239

9.3 Experimental Setup . 241

9.3.1 Models . 241

9.3.2 Experiments . 241

9.4 Results and Analysis . 243

9.4.1 Experimental Results . 243

9.4.2 Analysis . 244

9.5 Multi-Variant Dataset Additional Details . 247

9.5.1 Semantic Textual Similarity . 247

9.5.2 Word-Level Dissimilarity . 248

9.5.3 Length Diversity . 248

9.6 Example of Variants . 249

9.7 Task-Specific Results . 249

9.8 Multi-Task Results . 252

9.9 Cross-Task Results . 252

9.10 Equal Data Analysis . 252

9.11 Robustness Analysis . 252

9.12 Contribution of Individual Variants . 253

9.13 Conclusion . 254

10 HELP ME THINK: A SIMPLE PROMPTING STRATEGY FOR NON-

EXPERTS TO CREATE CUSTOMIZED CONTENT WITH MODELS 261

10.1 Introduction . 261

10.2 Help me Think . 263

10.3 Experiments . 263

xii

CHAPTER Page

10.3.1 Tasks: . 263

10.3.2 Data Collection: . 263

10.3.3 Statistics: . 264

10.3.4 Evaluation: . 264

10.4 Results . 266

10.5 Related Work . 271

10.6 Help me Think Algorithm and Description . 273

10.7 Detailed Prompts and Hyperparameters . 275

10.8 User Inputs and GPT3 Outputs . 276

10.9 Additional Analysis . 284

10.10Additional Tasks . 287

10.11Conclusion . 337

11 DISCUSSION . 346

12 CONCLUSION & FUTURE WORK . 352

REFERENCES . 357

APPENDIX

A RELATED PUBLICATION DETAILS . 374

xiii

LIST OF TABLES

Table Page

3.1 Examples of the Datasets and the Tasks Formed From Them. The Extracted

Tasks Are Independent Annotation Assignments in the Crowdsourcing Tem-

plates of the Datasets. 25

3.2 Task Categories and Their Statistics. 26

3.3 Statistics of Natural Instructions . 28

3.4 Cross-task Generalization of BART under Various Splits. Fine-tuned BART

Shows Improved Performance When Provided with Instructions. It also

Achieves Better Performance than GPT3, Despite Being over 1k times

Smaller. All Numbers are ROUGE-L. 33

3.5 Cross-task Generalization under Random Split. Models Show Improved

Results When Provided with Instructions. The Numbers in Parenthesis

Indicate Absolute Gains Compared to ‘no Instructions’ Baseline. Fine-tuned

BART Achieves Better Performance than GPT3, Despite Being over 1k

times Smaller. Category Names: QG: Question Generation, AG: Answer

Generation, CF: Classification, IAG: Incorrect Answer Generation, MM:

Minimal Text Modification, VF: Verification. All Numbers are ROUGE-L

(in Percentage). 34

3.6 Effect of Excluding Negative Examples from Full Instruction Encoding.

Negative Instructions Are Surprisingly Difficult for the Models to Learn

From. 38

3.7 Percentage of Errors on QASC QG Task. The Numbers Do Not Sum to 100

since the Error Types Are Not Mutually Exclusive. 38

xiv

Table Page

3.8 Results of Humans’ Perceived Importance of Instruction Elements. Our

Annotators, for Example, Find Definition and Things to Avoid to Be Helpful

for Classification and Minimal Text Modification Tasks, Respectively. 39

3.9 Steps Taken to Curate Each Task in Natural Instructions and Their Estimated

Times. 49

3.10 Detailed Set of Tasks Included in Natural Instructions . 50

3.11 Detailed Set of Tasks Included in Natural Instructions . 51

3.12 Detailed Set of Tasks Included in Natural Instructions . 52

3.13 Comparing Zero-shot Performance of Gpt3 on Our Instructions Vs. Prompt-

source. The Instructions Curated in This Work, Despite Being Lengthier,

Lead to Higher Performance. 53

3.14 Qualitative Comparison of the Task Instructions for Several Shared Tasks

among Natural Instructions and Promptsource. 54

3.15 T0pp Performance with Prompt and Detailed Instructions for Different Task

Categories under Random Split. Tasks on Which T0pp Were Trained on

Were Excluded from Evaluation, since They Are No More Unseen Tasks.

Models Show Improved Results When Provided with Detailed Instructions

Compared to the PROMPT Encoding.) Category Names: QG: Question

Generation, AG: Answer Generation, CF: Classification, IAG: Incorrect

Answer Generation, MM: Minimal Text Modification, VF: Verification. All

Numbers Are ROUGE-L. 55

4.1 Size and Example of Each Task in the NumGLUE Benchmark. RC: Reading

Comprehension, NR: Numerical Reasoning . 63

xv

Table Page

4.2 F1 Performance of Various Baselines on the NumGLUE Test Set Across

Various Tasks 1-8. Human Performance Was Calculated on 100 Samples

of Each Task (81 of Task 1) [*IR = Information Retrieval, CIR=conditional

Information Retrieval, OS=oversampling, Q. Only: Question Only, C. Only:

Context Only]. 69

4.3 Error Analysis for the Best Ex-NumNet Multitask+CIR and GPT3 Task-

specific Model . 74

4.4 Example Questions Where Numerical Knowledge Required to Answer Is

Not Explicitly Provided in the Question. 85

4.5 Example Questions Where Domain Knowledge Is Required to Answer a

Question. 86

4.6 Examples Showing Conversion of Quarel Questions to Quantitative Com-

parison Questions . 87

4.7 Examples Showing MAWPS Questions and Corresponding Questions in

Completion Format . 88

5.1 Examples of Various Reframing Techniques. Italicized Text Represents the

Prompt. Changes in Prompt and Example in the Transformed Task Are

Indicated with Blue and Red Markings, Respectively. 93

5.2 Examples of Various Reframing Techniques. Italicized Text Represents the

Prompt. Changes in Prompt and Example in the Transformed Task Are

Indicated with Blue and Red Markings, Respectively. 94

5.3 Examples of Various Reframing Techniques. Italicized Text Represents the

Prompt. Changes in Prompt and Example in the Transformed Task Are

Indicated with Blue and Red Markings, Respectively. 95

xvi

Table Page

5.4 List of Evaluation Tasks Used in This Study (§5.3). 99

5.5 List of Evaluation Tasks Used in This Study (§5.3). 100

5.6 Evaluation of Various Few-shot and Supervised Learning Baselines in

ROUGE-L. Category Names: QG: Question Generation, AG: Answer Gener-

ation, CF: Classification, IAG: Incorrect Answer Generation, MM: Minimal

Text Modification, VF: Verification. The Reframed Prompts Improve GPT3-

Instruct’s Performance. Among the Methods That Use the Same Number of

Examples, the Highest Performing Method Is in Bold. in the Few-shot (Max.

Ex.) Setup, We Use as Many Examples as Fits Within Gpt’s Token Limit.

Up-arrows (Ò) and Down-arrows (Ó) Signify Performance Improvement and

Decline, Respectively, over the Raw Instructions Baseline. 103

5.7 Distribution of Error Patterns Associated with Raw Instructions That Get

Resolved by Reframing. It Also Shows the Type of Reframing Technique

That Resolves the Errors. 106

5.8 Examples of Various Types of Error Patterns Associated with Raw Instruc-

tions That Gets Resolved by Reframing. Italicized Text Represents the

Prompt. Model Prediction Is Indicated with Red Marking. 109

5.9 Examples of Various Types of Error Patterns Associated with Raw Instruc-

tions That Gets Resolved by Reframing. Italicized Text Represents the

Prompt. Model Prediction Is Indicated with Red Marking. 110

5.10 Examples of Various Types of Error Patterns Associated with Raw Instruc-

tions That Gets Resolved by Reframing. Italicized Text Represents the

Prompt. Model Prediction Is Indicated with Red Marking. 111

xvii

Table Page

5.11 Examples of Various Types of Error Patterns Associated with Raw Instruc-

tions That Gets Resolved by Reframing. Italicized Text Represents the

Prompt. Model Prediction Is Indicated with Red Marking. 112

5.12 Distribution of Error Patterns Associated With Cases Where Reframing

Causes Failures and Retains Failures over Raw Instructions. 113

6.1 Categories and Their Associated Tasks. 117

6.2 Key Statistics of Līla. 121

6.3 Evaluations of Different Baselines Across 23 Tasks in Līla. On Most Tasks,

Codex Outperforms All Baselines While Bhāskara-p Outperforms All Fine-

tuned Baselines. A Model Usually Performs Worse on the Ood Data Set.

The Bold Score Refers to the Best Score among Models with the Same

Supervision Method; The Underlined Score Refers to the Best Score among

All Models. Gpt-3 and Codex Performance Are Computed on 100 Uniformly

Distributed Examples Owing to Their Cost and Usage Limit. Fine-tuned

Model Performance Is Calculated on the Full Test Set. 132

6.4 Multi-task Models Are Able to Generalize to Unseen Tasks in Some Cat-

egories. Program Output (Neo-P) Always Outperforms Number Output

(Neo-A). 133

6.5 Here We Show the Results of Fine-tuning Both Gpt-neo-2.7b (Neo) and

Bhāskara(Multi) on 100%, 40%, and 20% of the Held-out Data from Līla-

OOD. The Multi Almost Always Outperforms Neo (the δ Column Shows

the Margin). 133

xviii

Table Page

6.6 The IID Scores for GPT-3 Models with and Without Instruction Prompting

(Inst). Instruction Helps Slightly in Zero-shot Setting, but Not in Few-shot

Setting. 134

6.7 Examples and Datasets Meta-table. 134

6.8 Example of Each Task in the Math Ability Category of the Līla Benchmark. 137

6.9 Example of Each Task in the Language Complexity Category of the Līla

Benchmark. 138

6.10 Example of Each Task in the Question Format Category of the Līla Benchmark.139

6.11 Example of Each Task in the Background Knowledge Category of the Līla

Benchmark. 140

6.12 Raw Datasets Used to Create Different Tasks in Līla Across Different Math

Categories. 141

6.13 Raw Datasets Used to Create Different Tasks in Līla Across Different Lan-

guage Categories. 142

6.14 Raw Datasets Used to Create Different Tasks in Līla Across Different Format

Categories. 143

6.15 Raw Datasets Used to Create Different Tasks in Līla Across Different Knowl-

edge Categories. 144

6.16 Example for Each Template Provided to Mturk Workers to Produce Līla-Robust145

6.17 Main Statistics of LīlaAcross the Total of 23 Tasks. 148

6.18 Evaluation Results of Baselines Across Different Single Datasets. 149

6.19 List of Source Datasets and Corresponding References Used in Constructing

Līla. 150

7.1 Statistics of the Proposed Meta-dataset. 196

xix

Table Page

7.2 Results of Baseline and Proposed Model in Terms of Strict Accuracy (Sacc).

The First Block Is from the Apps Dataset. The Last Block Is from the Code-

contests Dataset. Ap: All Problems, Ewpr: Either Worst Problem Removal,

Bwpr: Both Worst Problem Removal. All Results Are in %. Weighted

Average Is Not Shown for Codecontests Because Similar Difficulties Were

Not Provided (See Explanation In 7.4.1). 197

7.3 Results When Taking the Best Summary for Each Problem. The Ewpr

Baseline Is Different Because a Different Set of Problems Have Been Removed.197

7.4 Results of Baseline and Proposed Approach (All Results Are in %). Sum-

maries Generated by Gpt-3, Studio21, and Pegasus Used for Inference from

Apps. 198

7.5 Results of Baseline and Proposed Approach (All Results Are in %). 80

Summaries Generated by Gpt-3 and Studio21 Used for Inference from

Codecontests. 198

7.6 These Are the Numbers of Problems in Each Split of the Dataset. For GPT

and Studio21 We Did Not Look at Problems That Were Worse or Same for

Both Experiments Because There Was Insignificant Overlap Between the

Two Experiments. 199

7.7 The Average Length of the Original/Summarized Prompt and Generated

Code. The Average Length of the Code Solutions Is the Average Length

of the Solutions Provided by the Creators of the Apps Dataset. A Problem

Could Have One or Multiple Solutions. The Length Is Reported in Characters.200

7.8 Results When Taking the Top 500 Gpt Problems and Top 1000 Studio Problems200

8.1 Type of Qa Task Corresponding to Each Dataset. RC: Reading Comprehension203

xx

Table Page

8.2 Examples for DROP And HotpotQA. 212

8.3 Decomposition Examples for Svamp and Mathqa. We Use the Annotated

Formula Presented in the Dataset to Make Our Decompositions. 215

8.4 Examples of Decompositions for Strategyqa and Qasc Datasets. For Each

Option in Qasc, #1 Is Replaced with the Option and Posed to Gpt-3 as a Yes

or No Question. 218

8.5 Decomposition Examples for Multirc. Multirc Has Multiple Correct An-

swer and the Final Correct Answer Which Gives the Best Metrics for the

Generated Answer Is Chosen as the Correct Answer Corresponding to the

Generated Answer. 221

8.6 Results Obtained by Using Decomposed Questions Generated Using GPT3 224

8.7 Decompositions for DROP Generated Using GPT3 . 232

8.8 Comparison of Metrics for Reading Comprehension Datasets Between Gpt3

Baseline And Decompose_GPT3 . 233

8.9 Comparison of Metrics for Mathematical Reasoning Datasets Between

GPT3 Baseline and Decompose_GPT3 . 233

8.10 Comparison of Metrics for Strategyqa (Strategic Reasoning) and Qasc (Fact-

based Multichoice) Between GPT3 Baseline and Decompose_GPT3 234

8.11 Comparison of Metrics for Reading Comprehension Datasets Between Base-

line and Decompose Settings Using Roberta-base Finetuned on Squad. 234

xxi

Table Page

8.12 Comparison of Metrics for Strategyqa and Svamp Between Baseline and

Decompose Settings Using Roberta-base Finetuned on Squad. For Strate-

gyqa, Roberta-base Squad Is Used to Answer Intermediate Decompositions

Whereas Roberta-base Finetuned on Boolq Is Used to Answer the Original

Question and the Final Decomposed Question . 235

9.1 Multi-Variant Instructions Dataset Statistics . 239

9.2 Number of Variant Instructions for 8 Different Tasks . 242

9.3 Weight of Each Additional Instruction in Terms of Number of Data Samples

Across Task-specific, Multi-task and Cross-task Settings. 246

9.4 Comparison of Performance in Task-specific Setting Across SI and MVI

Learning. 247

9.5 Example of an Instruction for a Classification Task with Its Variant Instruc-

tions; These Belong to the Task117_afs_argument_similarity_gun_control. . 250

9.6 Example of an Instruction for an Answer Generation Task with Its Variant

Instructions - Task018_qasc_answer_generation . 251

9.7 Comparison of Performance in Single-task Setting Across Single-instruction

and Multi-variant Instruction Learning. Si: Single-instruction, Mvi: Multi-

variant Instruction. 256

9.8 Comparison of Performance in Task-specific Setting Across Single-instruction

and Multi-variant Instruction Learning. SI: Single-instruction, , MVI: Multi-

Variant Instruction . 257

9.9 Comparison of Performance in Multi-task Setting Across Single-instruction

and Multi-variant Instruction Learning. SI: Single-instruction, MVI: Multi-

variant Instruction . 257

xxii

Table Page

9.10 Comparison of Performance in Task-specific (Average Across 3 Tasks) and

Multi-task Settings. 258

9.11 Comparison of Performance in Multi-task Setting Across Single-instruction

and Multi-variant Instruction Learning. 258

9.12 Comparison of Performance in Cross-task Setting Across Single-instruction

and Multi-variant Instruction Learning. SI: Single-instruction, MVI: Multi-

variant Instruction. 259

9.13 Contribution of Each Variant Instruction Towards Performance in Task-

specific Setting for Task010. SI: Single-instruction, MVI_k: Multi-variant

Instruction Where K Equals Number of Variant Instructions Used. 260

9.14 Contribution of Each Variant Instruction Towards Performance in Multi-task

Setting. SI: Single-instruction, MVI_k: Multi-variant Instruction Where K

Equals Number of Variant Instructions Used. 260

10.1 Key Statistics of Our Collected Data. 264

10.2 Evaluation (Majority Voting of 3 Annotators) of Model Generated Questions

for Each Task. 265

10.3 Model Performance on Different Evaluation Aspects for Each Task (Majority

Voting of 3 Annotators). For the ‘knowledge Absorption’ Category, a

Tolerance Level of 1 Question-answer Pair for Tasks with 4 Questions

(Poem and Dialogue Tasks) and 2 Question-answer Pairs for Tasks with

More than 4 Questions Are Taken. 265

10.4 Questions Generated by GPT3 for Various Tasks in Response to Our Prompt-

ing (Figure 10.3,10.4). 277

xxiii

Table Page

10.5 A Sample from the Bio Generation Task Containing Model Generated Ques-

tions, User Written Answers and Model Generated Task-specific Output.

. 281

10.6 A Sample from the Travel Plan Generation Task Containing Model Gener-

ated Questions, User Written Answers and Model Generated Task-specific

Output. 282

10.7 A Sample from the Dialogue Generation Task Containing Model Gener-

ated Questions, User Written Answers and Model Generated Task-specific

Output. 283

10.8 A Sample from the Poem Generation Task Containing Model Generated

Questions, User Written Answers and Model Generated Task-specific Out-

put. 284

10.9 A Sample from the Event Details Generation Task Containing Model Gener-

ated Questions, User Written Answers and Model Generated Task-specific

Output. 285

10.10A Sample from the Story Generation Task Containing Model Generated

Questions, User Written Answers and Model Generated Task-specific Out-

put. 286

xxiv

Table Page

10.11Model Performance Without Incorporating the ‘not Applicable’ Option in

Evaluation. Each Sample Is Evaluated Using the Majority Voting of 3 Anno-

tators. The Results Signify That the Number of times Gpt3 Has to Improve

Robustness Is Relatively Lower as Users Do Not Do Typos/Grammatical

Incorrectness Frequently, However, the Coherence Improvement Is More

Often Necessary as Users Often Write Short Answers Which Are Required

to Be Expanded in the Form of a Coherent Text. 287

10.12Model Performance with Strict Evaluation (Model Gets a Score of 1 for

Sample Only If All Question-answer Pairs Are Incorporated in the Generated

Task-specific Output). Each Sample Is Evaluated Using the Majority Voting

of 3 Annotators. 287

10.13Generated Questions for Additional Task-1 along with the Prompt Fed to

GPT3. 288

10.14Generated Questions for Additional Task-2 along with the Prompt Fed to

Gpt3. 289

10.15Generated Questions for Additional Task-3 along with the Prompt Fed to

Gpt3. 290

10.16Generated Questions for Additional Task-4 along with the Prompt Fed to

Gpt3. 292

10.17Generated Questions for Additional Task-5 along with the Prompt Fed to

Gpt3. 293

10.18Generated Questions for Additional Task-6 along with the Prompt Fed to

Gpt3. 294

xxv

Table Page

10.19Generated Questions for Additional Task-7 along with the Prompt Fed to

Gpt3. 295

10.20Generated Questions for Additional Task-8 along with the Prompt Fed to

Gpt3. 296

10.21Generated Questions for Additional Task-9 along with the Prompt Fed to

Gpt3. 297

10.22Generated Questions for Additional Task-10 along with the Prompt Fed to

Gpt3. 298

10.23Generated Questions for Additional Task-11 along with the Prompt Fed to

Gpt3. 299

10.24Generated Questions for Additional Task-12 along with the Prompt Fed to

Gpt3. 300

10.25Generated Questions for Additional Task-13 along with the Prompt Fed to

Gpt3. 301

10.26Generated Questions for Additional Task-14 along with the Prompt Fed to

Gpt3. 302

10.27Generated Questions for Additional Task-15 along with the Prompt Fed to

Gpt3. 303

10.28Generated Questions for Additional Task-16 along with the Prompt Fed to

Gpt3. 304

10.29Generated Questions for Additional Task-17 along with the Prompt Fed to

Gpt3. 305

10.30Generated Questions for Additional Task-18 along with the Prompt Fed to

Gpt3. 306

xxvi

Table Page

10.31Generated Questions for Additional Task-19 along with the Prompt Fed to

Gpt3. 307

10.32Generated Questions for Additional Task-20 along with the Prompt Fed to

Gpt3. 308

10.33Generated Questions for Additional Task-21 along with the Prompt Fed to

Gpt3. 309

10.34Generated Questions for Additional Task-22 along with the Prompt Fed to

Gpt3. 310

10.35Generated Questions for Additional Task-23 along with the Prompt Fed to

Gpt3. 311

10.36Generated Questions for Additional Task-24 along with the Prompt Fed to

Gpt3. 312

10.37Generated Questions for Additional Task-25 along with the Prompt Fed to

Gpt3. 313

10.38Generated Questions for Additional Task-26 along with the Prompt Fed to

Gpt3. 314

10.39Generated Questions for Additional Task-27 along with the Prompt Fed to

Gpt3. 315

10.40Generated Questions for Additional Task-28 along with the Prompt Fed to

Gpt3. 316

10.41Generated Questions for Additional Task-29 along with the Prompt Fed to

Gpt3. 317

10.42Generated Questions for Additional Task-30 along with the Prompt Fed to

Gpt3. 318

xxvii

Table Page

10.43Generated Questions for Additional Task-31 along with the Prompt Fed to

Gpt3. 319

10.44Generated Questions for Additional Task-32 along with the Prompt Fed to

Gpt3. 320

10.45Generated Questions for Additional Task-33 along with the Prompt Fed to

Gpt3. 321

10.46Generated Questions for Additional Task-34 along with the Prompt Fed to

Gpt3. 322

10.47Generated Questions for Additional Task-35 along with the Prompt Fed to

Gpt3. 323

10.48Generated Questions for Additional Task-36 along with the Prompt Fed to

Gpt3. 324

10.49Generated Questions for Additional Task-37 along with the Prompt Fed to

Gpt3. 325

10.50Generated Questions for Additional Task-38 along with the Prompt Fed to

Gpt3. 326

10.51Generated Questions for Additional Task-39 along with the Prompt Fed to

Gpt3. 327

10.52Generated Questions for Additional Task-40 along with the Prompt Fed to

Gpt3. 328

10.53Generated Questions for Additional Task-41 along with the Prompt Fed to

Gpt3. 329

10.54Generated Questions for Additional Task-42 along with the Prompt Fed to

Gpt3. 330

xxviii

Table Page

10.55Generated Questions for Additional Task-43 along with the Prompt Fed to

Gpt3. 331

10.56Generated Questions for Additional Task-44 along with the Prompt Fed to

Gpt3. 332

10.57Generated questions for additional task-45 along with the prompt fed to

GPT3. 333

10.58Generated Questions for Additional Task-46 along with the Prompt Fed to

Gpt3. 334

10.59Generated Questions for Additional Task-47 along with the Prompt Fed to

Gpt3. 335

10.60Generated Questions for Additional Task-48 along with the Prompt Fed to

Gpt3. 336

10.61Generated Questions for Additional Task-49 along with the Prompt Fed to

Gpt3. 337

10.62Generated Questions for Additional Task-50 along with the Prompt Fed to

Gpt3. 338

10.63Generated Questions for Additional Task-51 along with the Prompt Fed to

Gpt3. 339

10.64Generated Questions for Additional Task-52 along with the Prompt Fed to

Gpt3. 340

10.65Generated Questions for Additional Task-53 along with the Prompt Fed to

Gpt3. 341

10.66Generated Questions for Additional Task-54 along with the Prompt Fed to

Gpt3. 342

xxix

Table Page

10.67Generated Questions for Additional Task-55 along with the Prompt Fed to

Gpt3. 343

10.68Generated Questions for Additional Task-56 along with the Prompt Fed to

Gpt3. 344

10.69Generated Questions for Additional Task-57 along with the Prompt Fed to

Gpt3. 345

xxx

LIST OF FIGURES

Figure Page

1.1 We Construct the Natural Instructions Dataset from Crowdsourcing Instruc-

tions and Instances of Different Nlp Datasets. We Study If Models Can

Learn from Seen Tasks and Generalize to Unseen Tasks given Their Natural

Crowdsourcing Instructions. 4

3.1 An Example from Our Dataset. Note That It Follows the Schema Provided

In Fig.3.2. See Fig .3.11 for More Examples. 21

3.2 The Schema Used for Representing Instruction In Natural Instructions

(§3.2.1), Shown in Plate Notation. 22

3.3 Encoding Instruction It, Where tc Refers to the Text of a Component c in

the Instruction Schema. 30

3.4 Variations in the Number of Subtasks . 43

3.5 Variation in the Number of Positive and Negative Examples 44

3.6 Variation in the Number of Sentences in the Crowdsourcing Instructions

Across Datasets . 45

3.7 Dividing a Data Creation Task into Multiple Subtasks for the MC-TACO

dataset. 46

3.8 Variation in Topics . 46

3.9 Variation in Reasoning Skills . 47

3.10 Variation in Task Specification: Quoref Contains a Single Line Instruction

Whereas the CosmosQA Contains a Detailed Instruction. QASC on the

Other Hand, Contains Examples along with Instruction. 48

3.11 Examples from Natural Instructions. Each Task Follows the Schema Pro-

vided In Fig. 3.2. 56

3.12 Variation in Reasons and Suggestions Associated with Examples 57

xxxi

Figure Page

3.13 Variation in Number of Dimensions . 57

3.14 GPT3 Performance as a Function of the Number of Examples in Its Encoding.

The Number of Examples Is Limited by Three Upperbounds: 3, 10 and 70.

This Shows That Addition of Examples Is Not Helping GPT3. 58

3.15 BART Performance as a Function of the Number of Examples in Its Encod-

ing. The Number of Examples Is Limited by Two Upperbounds: 3 and 10.

This Shows That Addition of Examples Is Not Helping Bart. Since Bart’s

Maximum Token Size Is 1024, It Can Not Fit a Lot Examples Unlike GPT3,

so We Did Not Experiment Further with Larger Number of Examples. 59

4.1 A System That Can Robustly Perform Numeric Reasoning over Language

Should Be Able to Solve Problems Such as the above, Regardless of How

the Problem Is Posed. However, We Observe Existing Systems Are Brittle;

Producing Inconsistent Solutions to Such Minor Stylistic Variations. 61

4.2 Performance of Zeroshot, Fewshot and Finetuning Baselines Across NumGLUE.

There Is a Significant Gap Between the Highest Performing Model and

the Human Baseline. ZS: Zeroshot, Gpt3I: Gpt3-instruct, MT: Multi-task,

TS: Task-specific, QO: Question Only, CO: Context Only, EXNN: Ex-

numnet,FS: Few-shot, OS: Oversampling, IR: Information Retrieval, CIR:

Conditional Information Retrieval. 67

4.3 Our Proposed Memory-augmented Model That Detects the Type of Task (1-

8), Uses Information Retrieval from Math KB and Append the Information

That Gets Fed to Ex-NumNet . 68

xxxii

Figure Page

4.4 Our Dataset NumGLUE (Center in the Yellow Circle) Has Been Positioned

with Respect to Existing Datasets. T1-T8 Represents 8 Tasks. Note That,

NumGLUE contains the Feature of Being Format Invariant Unlike Other

Datasets. Position of Datasets Within Clusters Is Done Based on Their Se-

mantic Category, for Example T1 Numerical Commonsense Qa Is Closer to

the Cluster of Commonsense Reasoning + Knowledge of Facts; Its Position

Reflects the Same . 75

4.5 Step by Step Data Creation Process for Task 1, 2 and 4 Questions 76

4.6 Step by Step Data Creation Process for Task 3 Questions 77

4.7 Data Quality Analysis of NumGLUE across Various Tasks of Data. On an

Average, Novel Datasets Have Higher Quality than the Others since They

Have Higher Average Vocabulary, Higher Average Pos Tag Numbers and

Lower Semantic Textual Similarity (Sts) among Each Other. X-axis and

Y-axis Represents Samples Ordered in the Same Way, an Ideal High Quality

Dataset Would Have a Bright Line in the Diagonal and For the Rest of the

Places It Should Be Dark Signifying Lower Repetition Across Instances. . . . 83

4.8 Architecture of Ex-NumNet . 84

4.9 Conversion of Various Tasks to Reading Comprehension Format 84

5.1 GPT3 Has Difficulty in Writing Questions That Require Entity Coreference

Resolutions Based on a Single Lengthy Prompt (Top, in Yellow), However,

It Succeeds in Solving a Manually Reframed Task That Has Four Simpler

Sub-steps (Bottom, in Green). 89

xxxiii

Figure Page

5.2 Across a Variety of Model Sizes, Reframed Prompts Consistently Show

Considerable Performance Gain over Blue Raw Task Instructions (No Re-

framing)in a Few-shot Learning Setup. Since Fine-tuning GPT3 Is Pro-

hibitively Expensive, We Show the Performance of Fine-tuning Smaller

Models (Horizontal Lines). This Results Indicate That Evaluating Reframed

Prompts on a Large Model like GPT3-instruct (Red Line) Might Be More

Effective That Fine-tuning a Smaller Model like GPT2large (Green Line)

with 200ˆMore Data. Details of the Experiments In §5.3. 91

5.3 Average Performance Gain (Numbers on the Left Side) of Reframing In-

structions (over Raw Instructions), When Evaluated via GPT3-instruct in a

Few-shot Learning Setup. The Plot Shows the Gains Resulting from Apply-

ing Each Reframing Type (Left) to Various Task Categories (Right). While

Specialization Reframing Is Versatile, Others like Decomposition Improve

Model Performance for a Narrower Range of Tasks. 104

5.4 x-axis: Length Reduction in Instruction Length as a Result of Reframing; y-

axis: Performance Gain (Rouge-l) after Applying Reframing and Evaluating

via Gpt3-instruct in a Few-shot Learning Setup. Each Dot Represents a Task

in Our Evaluation Set. The Scatter Plot Show That Least Length Reductions

Are Not Necessarily Worse. 105

5.5 Distribution of the Error Patterns. In 24% of Questions, Reframing Corrects

the Raw Instructions Mistakes, While Causing Only 4% Additional Failures. 107

xxxiv

Figure Page

6.1 A Data Example with Two Python Programs in Līla. One Program Anno-

tation Uses a Function Construct Whereas the Other One Is a Plain Script

Without Function. The Instruction for Each Task and Categories Across

Four Dimensions Are Annotated for Developing Līla. 114

6.2 Question N-gram Distribution in Līla. 122

6.3 Average F1 Scores of GPT-3 and Codex with Different Numbers of Few-shot

Examples in Līla. 127

6.4 Examples with Bhāskara on Basic Math and Muldiv. 129

6.5 Examples with Bhāskara on Statistics and Linear Algebra. 135

6.6 NameErrors in Codex and Bhāskara. 136

6.7 An Example of Instruction Annotation. 146

6.8 Task Diversity in Līla Across Math, Language, Format, and Knowledge

Categories. 147

6.9 The Word Cloud Distribution of Annotated Programs in the LīlaDataset. . . . 147

7.1 (Top Plot) Mean Frequency of Pos for Problems Where Programs Where

the Generated by Both the Original and Summarized Prompt Pass All Test

Cases, and (Bottom Plot) Mean Frequency of Pos for Problems Where the

Summary Passes All Test Cases and the Original Did Not. The Blue Bar

Represents the Mean of the Entire Dataset. Analyzed Only the Top 11 Most

Occurring Pos. The Plot Shows That Higher Number of Nouns Degrade

Model Performance. 158

xxxv

Figure Page

7.2 (Top Plot) Mean Frequency of the Entity Labels for Problems Where Pro-

gram Generated by the Original and Summarized Prompt Pass All Test

Cases, and (Bottom Plot) Mean Frequency of Entity Labels for Problems

Where the Summary Passes All Test Cases and the Original Did Not. We

Analyzed Only the Top 5 Most Occurring Entities among All Entities We

Found. 160

7.3 On the Far Left Is the Code Generated by the Original Prompt. The Middle

Is the Code Generated by the Expert Summary. The Right Is the Code

Generated by the Basic Summary. 170

7.4 The Left Is the Code Generated Using the Original Prompt. The Right Is

the Code Generated When Using the Studioai21 Generated Summary. 173

7.5 The Left Is the Code Generated Using the Original Prompt. The Right Is

the Code Generated When Using the Studioai21 Generated Summary. 177

7.6 The Left Is the Code Generated Using the Original Prompt. The Right Is

the Code Generated When Using the Studioai21 Generated Summary. 180

7.7 The Left Is the Code Generated Using the Original Prompt. The Right Is

the Code Generated When Using the GPT3 Generated Summary. 183

7.8 The Left Is the Code Generated Using the Original Prompt. The Right Is

the Code Generated When Using the GPT3 Generated Summary. 186

7.9 The Left Is the Code Generated by the Original Prompt. The Middle Is the

Code Generated by the Expert Summary. The Right Is the Code Generated

by the Basic Summary. 192

7.10 The Left Is the Code Generated by the Expert Summary. The Right Is the

Code Generated by the Original Prompt. 195

xxxvi

Figure Page

8.1 The Original Question Is Answered Incorrectly by a Model. A Human Then

Decomposes the Question into a Set of Simpler Questions Which the Model

Then Answers Correctly. 202

8.2 Results in Terms of f1-score Across Different Categories for Roberta-based

Models. RC: Reading Comprehension, Math: Mathematical Reasoning, SR:

Strategy Reasoning. 206

8.3 Results in Terms of f1-score Across Different Categories for GPT-3. RC:

Reading Comprehension, Math: Mathematical Reasoning, MC: Multi-

choice Qa, SR: Strategy Reasoning. 207

8.4 % Error Correction by Using Decompositions With GPT3 208

8.5 % Error Correction by Using Decompositions With RoBERTa 208

8.6 Performance Improvements in f1 Scores for Questions with 2, 3, 4 and 5

Decompositions. 209

9.1 Schematic Representation of Instructional-prompts Mishra et al. (2022f) -

Dotted Blue Box Represents Entities Which Are Changed in Constructing

Variant Instruction Task. 238

9.2 Semantic Text Similarity Between Original Instruction and its Variants. 240

9.3 Comparison Across SI and MVI Learning in Task-specific Setting; Results

Are Averaged over 3 Tasks. 243

9.4 Comparison Across SI and MvI Learning in Multi-task Setting by Varying

Number of Instances. 244

9.5 Comparison Between SI and MVI Learning in Cross-task Setting by Varying

Number of Instances and Fixing Number of Tasks to 100%. 245

9.6 Word-level Dissimilarity Between Original Instruction and Its Variants. 248

xxxvii

Figure Page

9.7 Definition Length Variation Between Original Instruction and Its Variants. . 249

9.8 Robustness Comparison of Si Vs. Mvi in Multi-task Setting - Lm Fine-tuned

Using Mvi Learning Is More Robust to Variants as Compared to Si Learning.253

9.9 Comparison of Performance Across Si and Mvi Learning in Cross-task

Setting by Varying Number of Instances and Tasks. Evaluation Is Performed

on the Test Set of Original Instructions. 254

xxxviii

Figure Page

10.1 Illustration of Help me Think Prompting for a Non-expert User on the

Bio Generation Task. A Non-expert User Is Asked to Write a Biography,

but This Is a Hard Task for the User since It Demands Thinking about

Key and Necessary Components for a Biography Which He Might Not

Know about or He Might Just Simply Be Dealing with Writer’s Block

When Faced with Creative Writing Tasks. The User Decides to Get Help

from an Ai Model. The User Wants to Try to Prompt an Ai Model (Using

State-of-the-art Instruction Prompting Paradigms), but the Model Produces

Factually Incorrect Output for Him. Next, the User Tries to Interact with

the Model and Provide Feedback to Correct the Model Prediction (Dialogue

Paradigm), but This Approach Is Also a Failure Because It Is a Challenge

for Models to Accurately Follow Feedback Instructions. For the Majority

of Non-expert Users, Figuring out an Effective Prompting Strategy Is a

Major Challenge. Finally, Help me Think Helps the User Generate His

Factually Correct Biography via the Model by Guiding the User in the

Process by Asking Questions, This Alleviates the Cognitive Demand on the

User Significantly. By Removing the Hurdles out of the Way of the User in

Writing His Biography, Help me Think Also Allows the User to Take a Step

Further and Focus on Creativity and Quality. 268

10.2 Prompt given to the Model to Generate Question. $task-executer$ and $do

the Task.$ Are ‘bio Generator’ and ‘generate a Bio for You’ for the Bio

Generation Task. They Vary Across Tasks. 269

xxxix

Figure Page

10.3 Model Generation in Response to the Prompt. Model Also Generates an

Answer along with the Question, but <-> Indicates That We Are Not Storing

This Information. 269

10.4 Prompt and the Generated Question-answer Pair Are Fed to the Model to

Generate New Questions for the Task. 269

10.5 User Writes Answers to the Questions Generated by Model 270

10.6 A Task-specific Prompt Is Added after the Model Generated Question-

answer Pairs. <Model Generates Task-specific-output> In Response to the

Prompt. $task-specific-output$ for the Bio Generation Task Is ‘a Long Bio

about John’. $task-specific-instruction$ Is Optional, e.g. ‘introduce Names

to Represent Characters.’ for the Story Generation Task. 270

10.7 Prompt given to Model to Generate Question about the Bio Generation Task. 275

10.8 Prompt given to Model to Generate Question about the Travel Plan Genera-

tion Task. 275

10.11Prompt given to Model to Generate Question about the Event Summary

Generation Task. 276

10.12Prompt given to Model to Generate Question about the Story Generation Task.276

10.9 Prompt given to Model to Generate Question about the Dialogue Generation

Task. 276

10.10Prompt given to Model to Generate Question about the Poem Generation Task.276

10.13Prompt given to Model to Generate Task-specific Output about the Bio

Generation Task. 278

10.14Prompt given to Model to Generate Task-specific Output about the Travel

Plan Generation Task. 278

xl

Figure Page

10.15Prompt given to Model to Generate Task-specific Output about the Dialogue

Generation Task. 279

10.16Prompt given to Model to Generate Task-specific Output about the Poem

Generation Task. 279

10.17Prompt given to Model to Generate Task-specific Output about the Event

Summary Generation Task. 280

10.18Prompt given to Model to Generate Task-specific Output about the Story

Generation Task. 280

10.19Summary of 57 additional tasks. 291

xli

Chapter 1

INTRODUCTION

The traditional approach in Machine Learning (ML) has been to learn a map between input

and output pairs. With the evolution of ML, various tasks have been defined e.g. NLP

tasks: NLI, Numerical reasoning QA, Co-reference resolution etc. Can we leverage the

task information we have available to help ML models learn a task quickly with a very few

data samples? The recent advancement in language models to understand language paves a

way for utilizing the task information in ML. Our proposal is motivated from humans who

often learn a task quickly and comprehensively from task instructions, e.g. there is evidence

by the work of ANDERSON and MAGILL (2021) that humans understand an exercise

quickly when they are provided with instructions that describe the exercise, than when they

are asked to learn directly from few examples that demonstrate the exercise. A possible

explanation behind this is that instructions provide a holistic view of the task, whereas there

is a risk of a specific type of bias while learning just from examples. An advantage of the

proposed instruction learning paradigm is that often the instructions are easily available, e.g.

the high quality crowdsourcing instructions which typically helps crowdworkers in creating

consistent and large scale datasets.

A long-standing challenge in AI is to build a model that learns a new task by under-

standing the human-readable instructions that define it. To study this, we build NATURAL

INSTRUCTIONS and SUPERNATURAL INSTRUCTIONS, large-scale datasets of diverse

tasks, their human-authored instructions, and instances. We adopt generative pre-trained

language models to encode task-specific instructions along with input and generate task

output. Our results indicate that the instruction-tuning helps models achieve cross-task

1

generalization. This leads to the question: how to write good instructions? Backed by

extensive empirical analysis of large language models, we observe important attributes

for successful instructional prompts and propose several reframing techniques for model

designers to create such prompts. Our results show that reframing notably improves few-

shot learning performance; this is particularly important on large language models, such

as GPT3 where tuning models or prompts on large datasets is expensive. We also observe

that representing a chain of thought instruction of mathematical reasoning questions as a

program improves model performance significantly. We leverage our observation to build

a large scale mathematical reasoning model BHASKAR and a unified benchmark LILA.

In case of program synthesis tasks, we observe that summarizing a question (instead of

expanding as in chain of thought) helps models significantly.

In order to better understand the advantages and disadvantages of the instruction-learning

paradigm, we study the extremities of the instruction learning paradigm. We investigate the

power of question decomposition as an alternative to the development of new models since

building new models may not be an ideal option owing to the cost, time and environmental

impact associated with it. We explore an alternative route: can we modify data by expressing

it in terms of the model’s strengths, so that a question becomes easier for models to answer?

We empirically observe that decomposition improves model performance significantly. We

also observe that instruction examples contain the risk of propagating dataset bias. On

experimenting across a range of datasets, we observe that instruction examples used to

create NLU benchmarks often exhibit clear patterns that are propagated by annotators to

the collected data. In addition, we investigate the effect of instruction bias on model perfor-

mance, showing that instruction patterns can lead to overestimation of model performance

as well as limit the ability of models to generalize to other task examples. Finally, we apply

the instruction paradigm to match real user needs and introduce a new prompting technique

2

HELP ME THINK to help humans perform various tasks by asking questions.

To quantify the benefits of instruction-learning over conventional machine learning, we

investigate: how many data samples is an additional instruction worth? We observe that

instruction learning is very effective in a low data regime: an additional instruction can

be equivalent to around 200 data samples on average across tasks. We also observe that

Instruction tuned models are quick learners, as further instruction tuning an instruction-tuned

model on downstream tasks surpasses the SOTA model with just 25% of training samples in

both single task and multitask settings. We also propose methods to learn from less data,

e.g. our data selection method enables RoBERTA to achieve near-equal performance on

2% data of SNLI. Finally, we build several new benchmarks to help learn tasks that are

relatively harder for language models to learn, e.g. we propose NumGLUE, a multi-task

benchmark that evaluates the performance of AI systems on eight different tasks, that at

their core require simple arithmetic understanding.

We focus on the development and experiments associated with Natural Instructions

in chapter 3. We have witnessed great progress in solving many NLP datasets through

fine-tuning pre-trained language models (LMs) (Peters et al., 2018; Brown et al., 2020).

More recent studies show tremendous promise in generalization within the set of observed

tasks through multi-task training and unified encoding (Khashabi et al., 2020; Aghajanyan

et al., 2021). However, cross-task generalization – generalization to unseen tasks – has

generally remained under-explored. For example, can we supervise a model with instances

of grammar checking or question answering tasks, yet expect it to solve a different task

like question typing (Fig.1.1). Evidently, humans are capable of such generalizations; an

average human can follow natural language instructions to solve a variety of problems, as

evident by the success of crowdsourcing platforms (also argued in (Efrat and Levy, 2020)).

3

grammar
check

tagging
essential
phrases

question
typing

answering
questions

Input: She chose to make a salad for lunch on Sunday.
Question: how long did it take for her to make a salad?

Crowdsourcing Instruction: List all
the words that are essential for
answering it correctly. [...]

Crowdsourcing Instruction: Label
the type of the temporal phenomena
in the question. Example are [...]

Output:
30mins

Output:
making
salad

Output:
no

? supervision with seen tasks

Output:
Event

duration

? evaluation on unseen tasks

Crowdsourcing Instruction: Label
"yes" if the sentence contains any
grammatical issues. Otherwise, [...]

Crowdsourcing Instruction:
Answer the provided question based
on a given [...]

Figure 1.1: We Construct the Natural Instructions Dataset from Crowdsourcing Instructions

and Instances of Different Nlp Datasets. We Study If Models Can Learn from Seen Tasks

and Generalize to Unseen Tasks given Their Natural Crowdsourcing Instructions.

In this thesis, we study if models can generalize to unseen tasks given their crowdsourcing

instructions (Fig.10.1).

We build Natural Instructions, a dataset consisting of natural crowdsourcing instructions

for various tasks and their instances. Training on seen tasks seen in our dataset, we build

a model that learns to follow natural instructions that define a task and perform tasks (i.e.,

mapping input to output). Testing on unseen tasks unseen, we evaluate if the model can

perform unseen tasks solely from their instructions and without any task-specific labeled

data.

We compile Natural Instructions from task instructions written by researchers for crowd-

4

number of seen tasks

pe
rf

or
m

an
ce

 (R
O

U
G

E-
L)

0

10

20

30

40

50

10 20 30 40 50

No Instruction With Instruction GPT-3

Figure 1.2: BART Evaluation on Unseen Tasks (y-axis Is Perf. On Unseen) When Supervised

with Seen Tasks (x-axis Is |Seen|). A Model Using Instructions (It) Consistently Improves

with More Observed Tasks. In Contrast, Models with No Access to the Instructions Show

No Sign of Improved Generalization.

sourcing existing NLP datasets. Such crowdsourcing instructions often elaborate a variety of

details about how a task should (and should not) be done. To provide a systematic study of

various elements of crowdsourcing instructions, we map them to a unified schema to cover

the most important elements of task descriptions — such as definition, constraints, positive

and negative examples. We collect tasks in Natural Instructions as minimal stand-alone

steps provided to crowdworkers to complete a downstream NLP task. For example, tasks

collected from QASC (Khot et al., 2020) include sub-tasks about generating topic words or

combining facts, as well as answering multi-hop questions. Therefore our dataset not only

contains typical downstream tasks in NLP, but also the intermediate subtasks that are not

well-represented in the common benchmarks. The unified schema and the collection of

minimal subtasks enable training LMs that can generalize across different tasks by learning

from instructions. In total, our dataset consists of 61 distinct NLP tasks and 193k instances.

5

Our experimental results indicate that LMs learn to leverage natural language instruc-

tions as they show improved generalization to new tasks. For example, a BART (Lewis et al.,

2019) achieves a 19% gain in terms of cross-task generalization compared to a model not

using instructions. Importantly, LMs can generalize better to unseen tasks if they observe

more tasks in training (Figure 1). This upward trajectory suggests the potential for stronger

cross-task generalizable models upon scaling up the diversity of tasks represented in a

meta-dataset of task instructions. Despite the benefits of instructions, we observe a sizable

gap between models’ generalization and their estimated upperbounds, encouraging the

community to work on this challenging problem.

In chapter 4, the focus is on applying the multitask learning framework (with and without

instructions) to numerical reasoning tasks. Given the ubiquitous nature of numbers in text,

reasoning with numbers to perform simple calculations is an important skill of AI systems.

While many datasets and models have been developed to this end, state-of-the-art AI systems

are brittle; failing to perform the underlying mathematical reasoning when they appear in

a slightly different scenario. Drawing inspiration from GLUE that was proposed in the

context of natural language understanding, we propose NumGLUE, a multi-task benchmark

that evaluates the performance of AI systems on eight different tasks, that at their core

require simple arithmetic understanding. We show that this benchmark is far from being

solved with neural models including state-of-the-art large-scale language models performing

significantly worse than humans (lower by 46.4%). Further, NumGLUE promotes sharing

knowledge across tasks, especially those with limited training data as evidenced by the

superior performance (average gain of 3.4% on each task) when a model is jointly trained

on all the tasks as opposed to task-specific modeling. Finally, we hope that NumGLUE will

encourage systems that perform robust and general arithmetic reasoning within language, a

first step towards being able to perform more complex mathematical reasoning.

6

What kinds of instructional prompts are easier to follow for Language Models (LMs)? In

chapter 5, we study this question by conducting extensive empirical analysis that sheds light

on important features of successful instructional prompts. We propose several reframing

techniques for model designers to manually create more effective prompts. Some examples

include decomposing a complex task instruction into multiple simpler tasks or itemizing

instructions into sequential steps. Our experiments compare the zero-shot and few-shot

performance of LMs prompted with reframed instructions on 12 NLP tasks across 6 cate-

gories. Compared with original instructions, our reframed instructions lead to significant

improvements across LMs with different sizes, underscoring the cross-model generality

of these guidelines. For example, the same reframed prompts boost few-shot performance

of GPT3-series and GPT2-series by 12.5% and 6.7% respectively averaged over all tasks.

Furthermore, reframed instructions reduce the number of examples require to prompt LMs

in the few-shot setting. We hope these empirically-driven techniques will pave the way for

more effective ways to prompt LMs in the future.

In chapter 6, the focus is on applying the instruction learning framework (with and

without instructions) to numerical reasoning tasks. Mathematical reasoning skills are es-

sential for general-purpose intelligent systems to perform tasks from grocery shopping to

climate modeling. Towards evaluating and improving AI systems in this domain, we propose

Līla, a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four

dimensions: (i) mathematical abilities, e.g. arithmetic, calculus (ii) language format e.g.

question-answering, fill-in-the-blanks (iii) language diversity e.g. no language, simple

language (iv) external knowledge e.g. commonsense, physics. We construct our benchmark

by extending 20 datasets benchmark by collecting task instructions and solutions in the

form of Python programs, thereby obtaining explainable solutions in addition to the correct

7

answer. We additionally introduce two evaluation datasets to measure out-of-distribution

performance and robustness to language perturbation. Finally, we introduce Bhāskara, a

general-purpose mathematical reasoning model trained on Līla. Importantly, we find that

multi-tasking leads to significant improvements (average relative improvement of 21.83% F1

score single-task models), while the best performing model only obtains 60.40%, indicating

the room for improvement in general mathematical reasoning and understanding.

In chapter 7, we contribute to the development of a prompting technique for program

synthesis tasks. Despite the success of large pre-trained language models (LMs) such as

Codex, they show below-par performance on the larger and more complicated programming

related questions. We show that LMs benefit from the summarized version of complicated

questions. Our findings show that superfluous information often present in problem de-

scription such as human characters, background stories, and names (which are included to

help humans in understanding a task) does not help models in understanding a task. To

this extent, we create a meta-dataset from the frequently used APPS dataset and the newly

created CodeContests dataset for the program synthesis task. Our meta-dataset consists of

human and synthesized summaries of the long and complicated programming questions.

Experimental results on Codex show that our proposed approach outperforms baseline by

8.13% on the APPS dataset and 11.88% on the CodeContests dataset on average in terms of

strict accuracy. Our analysis shows that summaries significantly improve performance for

introductory (9.86%) and interview (11.48%) programming questions. However, it shows

improvement by a small margin („ 2%) for competitive programming questions, implying

scope for future research in this direction.

In chapter 8, we focus on an alternate route to the development of Large Language

Models. Large Language Models (LMs) have achieved state-of-the-art performance on

8

many Natural Language Processing (NLP) benchmarks. With the growing number of new

benchmarks, we build bigger and more complex LMs. However, building new LMs may not

be an ideal option owing to the cost, time and environmental impact associated with it. We

explore an alternative route: can we modify data by expressing it in terms of the model’s

strengths, so that a question becomes easier for models to answer? We investigate if humans

can decompose a hard question into a set of simpler questions that are relatively easier

for models to solve. We analyze a range of datasets involving various forms of reasoning

and find that it is indeed possible to significantly improve model performance (24% for

GPT3 and 29% for RoBERTa-SQuAD along with a symbolic calculator) via decomposition.

Our approach provides a viable option to involve people in NLP research in a meaningful

way. Our findings indicate that Human-in-the-loop Question Decomposition (HQD) can

potentially provide an alternate path to building large LMs.

In chapter 9, our focus is to study instruction-example equivalence. Recently introduced

instruction-paradigm empowers non-expert users to leverage NLP resources by defining

a new task in natural language. Instruction-tuned models have significantly outperformed

multitask learning models (without instruction); however they are far from state-of-the-art

task specific models. Conventional approaches to improve model performance via creating

datasets with large number of task instances or architectural changes in model may not be

feasible for non-expert users. However, they can write alternate instructions to represent

an instruction task. Is Instruction-augmentation helpful? We augment a subset of tasks in

the expanded version of Natural Instructions with additional instructions and find that it

significantly improves model performance (up to 35%), especially in the low-data regime.

Our results indicate that an additional instruction can be equivalent to „200 data samples on

average across tasks.

9

In chapter 10, we propose a technique to help humans think. Controlling the text gener-

ated by language models and customizing the content has been a long-standing challenge.

Existing prompting techniques proposed in pursuit of providing control are task-specific and

lack generality; this provides overwhelming choices for non-expert users to find a suitable

method for their task. The effort associated with those techniques, such as in writing exam-

ples, explanations, instructions, etc. further limits their adoption among non-expert users. In

this chapter, we propose a simple prompting strategy Help me Think where we encourage

GPT3 to help non-expert users by asking a set of relevant questions and leveraging user

answers to execute the task. We demonstrate the efficacy of our technique Help me Think

on a variety of tasks. Specifically, we focus on tasks that are hard for average humans and

require significant thinking to perform. We hope our work will encourage the development

of unconventional ways to harness the power of large language models.

10

Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, we discuss the background and various related works of the instruction

learning paradigm.

Instructions in NLP applications. Prior work has studied “instructions” in various niches,

such as robotic instructions (Shridhar et al., 2020; Stepputtis et al., 2020), databases (Kim

et al., 2020), programming (Lin et al., 2018; Shao and Nakashole, 2020), inter alia. Such

instructions are inherently different from ours, as they are intended to be mapped to pre-

defined symbolic forms (e.g., SQL commands). Conversely, our instructions describe

general NLP tasks (no underlying grammar) for measuring task-level generalization.

Learning from instructions. There is recent literature on the extent to which models

follow language instructions (Hase and Bansal, 2021; Ye and Ren, 2021; Gupta et al.,

2021b; Zhong et al., 2021). For example, Efrat and Levy (2020) examine if language models

can follow crowdsourcing instructions with no further training. On the contrary, our work is

pursuing a fundamentally different goal: creating a dataset of crowdsourcing instructions

and task instances and formulating cross-task generalization by training models on seen

tasks and measuring generalization to the remaining unseen ones. Weller et al. (2020)

construct a crowdsourced dataset with short question-like task descriptions. Compared to

this work, our instructions are longer, more complex and natural since they were used to

collect datasets through crowdsourcing.

PromptSource and FLAN (Wei et al., 2022a; Sanh et al., 2022) are two concurrent

works that pursue a similar goal as ours. A key difference between our work to these

works is in terms of data collection strategy. Our work uses natural instructions created by

11

NLP researchers before the dataset instances were created by crowd workers, and hence it

contains the complete definition of each task (definition, things to avoid, negative examples,

etc.). On the other hand, instructions in the concurrent work are collected retroactively

based on the already-available task instances. Our natural instructions enable evaluating

models on how they learn tasks given different elements of task descriptions. (See §3.5.5

for further comparisons.) Nevertheless, we believe that all these approaches to constructing

instructions and task categories are complementary and the community will benefit from

considering both towards solving the challenging problem of cross-task generalization.

Prompt engineering. Constructing effective discrete prompts for language models to

perform NLP tasks is an active area of research (Schick and Schütze, 2021; Reynolds and

McDonell, 2021; Liu et al., 2021b). Such prompts are often extremely short and may not

include a complete definition of complex tasks. In contrast, our instructions encode detailed

instructions as they were used to collect the datasets. Moreover, the goals are different:

Most prompt-engineering approaches seek prompts with higher performance on a particular

task, typically through assumptions about their target task which make them non-trivial to

generalize to any other task. However, our introduced meta dataset enables the measurement

of generalization to unseen tasks.

Beyond standard multi-task learning. Multi-task learning is a long-standing goal for

AI (Caruana, 1997) and has led to successful models that can support a wider range of tasks

(McCann et al., 2018; Raffel et al., 2020; Khashabi et al., 2020; Aghajanyan et al., 2021;

Ye et al., 2021). Most of the conventional setups in the multi-tasking literature evaluate on

instances that belong to the tasks that are seen, i.e., their labeled instances were observed

during training. We augment this setup by introducing natural language instructions which

enable our models to bridge to tasks that were not seen during training.

12

Datasets for Numerical reasoning. Quantitative reasoning has been a challenging prob-

lem for a long time. Small question answering datasets were proposed to understand the

quantitative aspect of natural language such as the template-based dataset which solved

questions with equations as parameters (Kushman et al., 2014), addition-subtraction dataset

(Hosseini et al., 2014) and arithmetic problems dataset (Koncel-Kedziorski et al., 2015).

Difficulty of questions were increased in subsequent datasets (Upadhyay et al., 2016). Later,

larger datasets were created to facilitate deep learning research (Ling et al., 2017; Dua

et al., 2019b). Several other maths datasets have been proposed to improve explainability

(Amini et al., 2019), diversity (Miao et al., 2020), scale information in language embeddings

(Zhang et al., 2020) and hardness of math questions (Hendrycks et al., 2021b). One of

the motivations behind creating our benchmark NumGLUE is to test for simple arithmetic

reasoning independent of the context or the presentation style of the problem. Further, To

the best of our knowledge, our work is the first to consider multiple tasks in the numerical

reasoning space.

Multi-Task Benchmarks. With increased success of deep learning based models on indi-

vidual tasks, there has been a significant push both in the NLP community and in the broader

AI community towards general purpose models that excel at multiple tasks. Naturally,

various benchmarks and challenges that test for such understanding have been proposed.

For instance, the BAbI dataset (Weston et al., 2015), GLUE (Wang et al., 2019) and the

subsequent harder SuperGLUE (Wang et al., 2019) were proposed to both evaluate and drive

progress in language understanding via shared linguistic knowledge across tasks. McCann

et al. (2018) build a multi-task dataset via a novel approach – formatting each task as that

of question-answering. In the more restricted setting of reading comprehension, Dua et al.

(2019a) build a meta-dataset that spans multiple domains and reasoning skills.

13

Multi-task Models. With the growing interest towards models that go beyond specific

datasets, various neural models that can perform mutliple tasks have been proposed. When

the underlying reasoning is similar – eg. commonsense reasoning, problem decomposi-

tion or linguistic understanding – it has been found that training on multi-task datasets

yields more robust and accurate models. For instance, the Multi-task Question Answering

Network (McCann et al., 2018), T5 (Raffel et al., 2020), GPT3 (Brown et al., 2020) and

GPT3-Instruct models aim to build general purpose language models that are capable of

transferring linguistic understanding across tasks. A similar approach is taken by Khashabi

et al. (2020) in the setting of question-answering and Lourie et al. (2021) in the scope of

commonsense reasoning. Further, Muppet (Aghajanyan et al., 2021) adds an additional

step of pre-finetuning between pretraining and finetuning that improves generalization to

multiple tasks.

Discrete Prompts Constructing effective discrete prompts for language models to perform

NLP tasks is an active area of research (Schick and Schütze, 2021; Tam et al., 2021; Lo-

gan IV et al., 2021; Reynolds and McDonell, 2021). Most such works focus on light-weight

changes to the original prompt (Liu et al., 2021b). Unlike the earlier literature, we focus

on framings of complex instructions, which often lead to reframed prompts that are often

very different from the original raw instructions. While our proposed prompt-reframing is

not quite algorithmic, the principles behind them are relatively simple, which can hopefully

motivate algorithmic solutions in future. Our goal in reframing is fundamentally different

from the meta-training with instructions (Mishra et al., 2022f; Sanh et al., 2022; Wei et al.,

2022a). Such approaches depend on labeled data (language prompts for thousands of tasks)

which can be costly to collect. Additionally, they require fine-tuning models which can be

costly for larger LMs. Exploring effective framings of language instructions can provide

alternative ways of utilizing LMs.

14

Continuous Prompts Tuning continuous prompts leads to the making of space-efficient

models compared to fine-tuning model parameters (Liu et al., 2021c; Lester et al., 2021).

Despite being algorithmic, these models require propagating gradient information across

the whole architecture, leading to high computational costs, which is a key bottleneck

when it comes to large LMs such as GPT3. While our proposal to reframe instructional

prompts requires human intervention, it provides model designers with several relatively

easy rules-of-thumb to come up with language prompts that work effectively with large

LMs.

Role of Input Framing There have been repeated observation of models’ sensitivity to

the input representations. For example encoding numbers in text (Nogueira et al., 2021)).

More recently, in the prompting literature, we have seen the importance of selecting of

informative examples and how they are ordered (Zhao et al., 2021; Lu et al., 2021d; Liu

et al., 2021a). Motivated by the role of input reframing, we develop reframing as a general

method that provides various ways for model designers to reframe a diverse category of

tasks.

Mathematical Reasoning Datasets. Our work in Līla builds on an existing body of

mathematical reasoning literature. Early work in this areas focuses on small-scale datasets

testing addition-subtraction (Hosseini et al., 2014), templated questions with equations

as parameters (Kushman et al., 2014) and other forms of arithmetic reasoning (Koncel-

Kedziorski et al., 2015; Upadhyay et al., 2016; Roy and Roth, 2017, 2018; Ling et al., 2017).

Later datasets increase in complexity and scale, incorporating reading comprehension (Dua

et al., 2019b), algebra (Saxton et al., 2019), and multi-modal contexts (Lu et al., 2021a,

2022b). Other numerical reasoning datasets focus on diversity (Miao et al., 2020) with

15

multiple categories of numerical reasoning tasks (e.g., Amini et al., 2019). Most recently,

new datasets have focused on increasing difficulty, e.g., olympiad problems (Hendrycks et al.,

2021b) and adversarial problems (Patel et al., 2021), as well as increasing the knowledge

requirements to solve tasks, with a growing focus on commonsense reasoning (Zhou et al.,

2019; Zhang et al., 2020; Lu et al., 2021b; Mishra et al., 2022g). A separate line of work in

mathematical reasoning includes datasets testing mathematical theorem proving (e.g., Li

et al., 2021; Wu et al., 2021; Welleck et al., 2021; Zheng et al., 2021; Han et al., 2021).

We do not, however, consider theorem proving in our work, choosing instead to focus on

numerical reasoning.

Task Hierarchy and Multi-tasking in Numerical Reasoning. We take inspiration from

the success of multi-task learning in NLP (Weston et al., 2015), including benchmarks (e.g.,

Wang et al., 2018, 2019; Dua et al., 2019a) and multitasking models (e.g., McCann et al.,

2018; Khashabi et al., 2020; Lourie et al., 2021; Aghajanyan et al., 2021). NumGLUE (Mishra

et al., 2022g) has been proposed as a multi-tasking numerical reasoning benchmark that con-

tains 8 different tasks. Līla expands NumGLUE to provide wider coverage of mathematical

abilities, along with evaluation that captures out-of-domain, robustness, and instruction-

following performance. Our introduction of mathematical reasoning categories and the

evaluation setup in Līla is inspired by task hierarchies in other domains such as vision (Zamir

et al., 2018) and NLP (Rogers et al., 2021) which appear in large scale benchmarks (e.g.,

Srivastava et al., 2022; Wang et al., 2022d).

Instructions for Program Synthesis In the past, there are several methods including

semantic parsing (Ge and Mooney, 2005), deductive approaches, enumerative and stochastic

search, and constraint solving which have gained attention for program synthesis (Gulwani

et al., 2017). With the advent of machine/deep learning, Balog et al. (2016) introduced a

16

neural network based model for solving programming competition-style problems. Devlin

et al. (2017) used sequence-to-sequence approach to do program synthesis. Furthermore,

Hendrycks et al. (2021a) introduced the APPS dataset for testing the accuracy of large

LMs on program synthesis. Hendrycks et al. (2021a) leveraged the GPT-Neo model (Black

et al., 2021) which they fine-tune for this task using APPS dataset. CodeT5 model (Wang

et al., 2021) utilizes many different training objectives. Recently, Austin et al. (2021)

explore limitations of large language models and propose two new benchmarks, MBPP and

MathQA-Python. The Codex model (Chen et al., 2021a) is an advanced code generation

model that powers GitHub’s Copilot. The state of the art model for program synthesis was

introduced by Deepmind called AlphaCode (Li et al., 2022). They released their dataset

CodeContests, which was used to fine-tune and test their model, and was used in our work

(Kuznia et al., 2022). Our approach suggesting smaller instructions compliments other

approaches in improving model performance in instruction paradigm (Mishra et al., 2022f;

Wei et al., 2022b; Parmar et al., 2022b; Nye et al., 2021; Puri et al., 2022; Luo et al., 2022;

Wei et al., 2022a; Sanh et al., 2022)

Question Decomposition A recent methodology to reason over multiple sentences in

reading comprehension datasets is to decompose the question into single-hop questions

(Talmor and Berant, 2018; Min et al., 2019). Min et al. (2019) decompose questions from

HotpotQA using span predictions based on reasoning types and picks the best decomposition

using a decomposition scorer. Khot et al. (2021) generate decompositions by training a

BART model on question generation task by providing context, answers and hints. Wolf-

son et al. (2020) crowd-sourced annotations for decompositions of questions. Perez et al.

(2020), on the other hand, uses the unsupervised mechanism of generating decomposition by

mapping a hard question to a set of candidate sub-questions from a question corpus. Iyyer

et al. (2017) answer a question sequentially using a neural semantic parsing framework over

17

https://copilot.github.com/

crowdsourced decompositions for questions from WikiTableQuestions. Decomposition us-

ing text-to-SQL query conversion has also been studied (Guo et al., 2019). Also, knowledge

graphs are combined with neural networks to generate decompositions (Gupta and Lewis,

2018). Recently, Xie et al. (2022) presented another use case where decompositions can be

used to probe models to create explanations for their reasoning.

18

Chapter 3

CROSS-TASK GENERALIZATION BY LEARNING FROM INSTRUCTIONS

3.1 Introducing Cross-Task Generalization

Let Tseen “ tt1, . . . , tnu be a set of seen tasks, and Tunseen “ tt11, . . . , t1mu be a set of

unseen tasks. Let T “ Tseen Y Tunseen. For each task t P T , let It denote the instruction

(given in natural language) for that task, and Traint and Testt consist of the training and

test set of that task. Both Traint and Testt consist of pairs px, yq, where x denotes an input

to the task and y is the output of the task. Let TrainT denote
Ť

tPT Traint, and TestT

denote
Ť

tPT Testt.

Standard supervised learning algorithms learn task specific models. I.e., for a task t,

they learn a model Mt which gets trained on Traint and gets evaluated on Testt. Unified

multi-task models learn a model MT that gets trained on TrainT and gets evaluated on

TestT . Both do not use the instruction corresponding to the tasks.

Our goal is in learning a model M that learns from Tseen and uses the instructions

during learning and that can now be used on unseen tasks. I.e., it is evaluated on Tunseen.

During training (fine-tuning), for all tasks t P Tseen, if px, yq P Traint then It and x

are given as input and y is the expected output. During our initial (zero-shot) evaluation,

for all tasks t1 P Tunseen, if px1, y1q P Testt1 then It1 and x1 are given as input to M and

MpIt1 , x
1q is compared with the gold standard output y1. This has been discussed further in

our work (Mishra et al., 2022f).

19

3.2 Natural Instructions

Natural Instructions consists of instructions that describe a task (e.g., question answer-

ing) and instances of that task (e.g., answers extracted for a given question). Fig.3.1 shows

an example instruction for the task of ‘generating questions that require an understanding

of event duration’ accompanied with positive and negative examples that contextualize the

task. Here we introduce a schema for representing instructions (§3.2.1) and then describe

how existing datasets (their crowdsourcing templates) are mapped into our schema (§3.2.2).

Since following natural language instructions is a challenge for state of the art mod-

els (Efrat and Levy, 2020), we limit source datasets in Natural Instructions to Question

Answering datasets. Incorporation of NLI and other NLP tasks may make the task of

following natural language instructions even harder. Hence Natural Instructions contains

various tasks required to construct QA datasets.

3.2.1 Instruction Schema

We reuse existing crowdsourcing templates and crowdworker annotation on these tem-

plates as our main goal is to construct a dataset of Natural Instructions and crowdsourcing

templates are mostly natural. Also, they are mostly curated by data creators and so quality

is of less concern here in contrast to the quality concerns that exist in setting up a new

crowdsourcing setup for data creation.

Instructions used in crowdsourcing various datasets, are written by distinct authors for

different purposes, and they are different in a variety of ways. We introduce a unified schema

(Fig.3.2) to consistently represent these diverse forms of instructions. Our instruction schema

is the result of our pilot study conducted on a subset of datasets. Below we describe the

20

Instructions for MC-TACO question generation task

- Title: Writing questions that involve commonsense understanding of "event
duration".
- Definition: In this task, we ask you to write a question that involves ?event
duration", based on a given sentence. Here, event duration is defined as the
understanding of how long events typically last. For example, ?brushing teeth?,
usually takes few minutes.
- Emphasis & Caution: The written questions are not required to have a single
correct answer.
- Things to avoid: Don't create questions which have explicit mentions of
answers in text. Instead, it has to be implied from what is given. In other words,
we want you to use "instinct" or "common sense".

- Input: Sentence: Jack played basketball after school, after which he was
very tired.

-Output: How long did Jack play basketball?
-Reason: the question asks about the duration of an event; therefore it's a
temporal event duration question.

Positive Example

-Input: Sentence: He spent two hours on his homework.
-Output: How long did he do his homework?
-Reason: We DO NOT want this question as the answer is directly mentioned
in the text.

-Suggestion: -

Negative Example

- Prompt: Ask a question on "event duration" based on the provided sentence.

Example task instances

- Input: Sentence: It's hail crackled across the comm, and Tara spun to
retake her seat at the helm.

-Expected Output: How long was the storm?

Instance

- Input: Sentence: During breakfast one morning, he seemed lost in thought
and ignored his food.

-Expected Output: How long was he lost in thoughts?

Instance

...

Figure 3.1: An Example from Our Dataset. Note That It Follows the Schema Provided In

Fig.3.2. See Fig .3.11 for More Examples.

ingredients of this schema:

• TITLE provides a high-level description of a task and its associated skill (such as question

generation, answer generation).

• PROMPT is a single sentence command that often appears before the input instance and

connects it to the instructions.

• DEFINITION provides the core detailed instructions for a task.

• THINGS TO AVOID contain instructions regarding undesirable annotations that must be

21

Instructions

Title Definition Things to avoid Emphasis/caution Prompt

of positive examples

Input Output

Reason

of negative examples

Input Output

Reason Suggestion

Positive Example Negative Example

Instances

of instances

Input Output

Task Instance

Figure 3.2: The Schema Used for Representing Instruction In Natural Instructions (§3.2.1),

Shown in Plate Notation.

avoided. These help to define the scope of a task and the space of acceptable responses.

• EMPHASIS AND CAUTION are short, but important statements highlighted in the crowd-

sourcing templates which were intended to be emphasized or warned against.

• POSITIVE EXAMPLES contain inputs/outputs similar to the input given to a worker/system

and its expected output, helping crowdworkers better understand a task (Ali, 1981).

• NEGATIVE EXAMPLES contain inputs/outputs to emphasize THINGS TO AVOID by pro-

viding examples that must not be produced.

• REASON provides explanations behind why an example is positive or negative.

• SUGGESTION contains suggestions on how a negative example could be modified to turn

it into a positive example.

The next section describes the process of mapping the raw instructions (designed for

crowdworkers) to our instruction schema.

22

Natural human-readable instructions. The collected instructions in natural language

are designed for crowd workers and hence understandable to laypeople in a way that they

can perform the intended task seamlessly after reading the given instructions.

Diversity. The collected instructions cover various intricacies of language for a wide

variety of reasoning skills since they are naturally written by creators of datasets. Importantly,

we avoid templating our instructions (Clark et al., 2020).

Minimal descriptions. While the instructions written for humans often contain repetition

(for emphasis), it is not clear whether such repetition is necessary for machines. Hence, we

prefer the instructions that are concise while conveying their purpose.

Minimal tasks. Unlike most of the crowdsourcing templates that involve sequences of

annotation steps, we would like each subtasks to be minimal, that is, Decomposition of

those into subtasks should be done in such a way that each of the subtasks represents the

simplest possible step.

Negative instructions. The conventional learning paradigms in NLP mostly rely on the

inductive bias produced by positive examples. However, for humans, negative instructions

(describing undesirable behaviors; (Lin et al., 2003; Jindal and Roth, 2011)) are effective

means to communicate a given task’s scope. For humans, concise negative examples can

be as informative as many positive examples. Our collected instructions include negative

instructions originally provided to crowd workers to add constraints for data generation.

3.2.2 Constructing Natural Instructions

In this section, we describe various considerations in the process of mapping raw

instructions (designed for crowdworkers) to our proposed schema (§3.2.1), while adhering

23

to our desiderata. Here, we first describe our data source collected from existing datasets

(§3.2.2)) and the process of mapping the raw instructions (designed for crowdworkers) to

our instruction schema (§3.2.1).

Collecting Data

Collecting raw instructions and instances. We use existing, widely adopted NLP bench-

marks that are collected via crowdsourcing platforms and hence, come with crowdsourcing

templates. In the first step, we identified several datasets and engaged with their authors to

get their crowdsourcing templates and raw data. This yields the following datasets: Cos-

mosQA (Huang et al., 2019), DROP (Dua et al., 2019b), Essential-Terms (Khashabi et al.,

2017), MCTACO (Zhou et al., 2019), MultiRC (Khashabi et al., 2018), QASC (Khot et al.,

2020), Quoref (Dasigi et al., 2019), ROPES (Lin et al., 2019) and Winogrande (Sakaguchi

et al., 2020). 1

Splitting crowdsourcing instructions into minimal tasks. Almost all the crowdworking

instructions include sequences of steps to guide crowdworkers in creating task instances.

For example, QASC and MCTACO include 7 and 19 steps in the data creation process,

respectively. We divide crowdsourcing instructions into their underlying steps and generate

multiple subtasks that are minimal and standalone. 2 Table 3.1 shows subtasks extracted for

Quoref and QASC. For example, the main task in Quoref is to answer a question given a

context paragraph, but the crowdsourcing template consists of two sub-tasks of question

generation and answer generation with their separate instructions. This process results in

a more consistent definition of tasks, enabling a successful mapping of instructions into

our schema, in contrast to the work of Efrat and Levy (2020) that uses crowdsourcing
1We only focus on textual instructions and avoid datasets that involve visual or auditory steps, mostly

focusing on QA datasets that were available to the authors.
2We eliminate tasks that involve model-in-the-loop.

24

source dataset task

Quoref

(Dasigi et al., 2019)

question generation

answer generation

QASC

(Khot et al., 2020)

topic word generation

fact generation

combining facts

question generation

answer generation

incorrect answer generation

Table 3.1: Examples of the Datasets and the Tasks Formed From Them. The Extracted Tasks

Are Independent Annotation Assignments in the Crowdsourcing Templates of the Datasets.

instructions as-is.

In total, there are 61 tasks, which are categorized into 6 semantic categories (Table 3.2).

We assigned these broad categories to the tasks to understand their collective behavior in the

experiments. It is noteworthy that, despite the apparent resemblance of the tasks included in

the same category, any pair of tasks is distinct. For example, while question generation is

part of Quoref, CosmosQA, and QASC, each has its own separate variant of the question

generation task.

Mapping Raw Instructions to Schema

We manually fill in the fields of our instruction schema with the content from the crowdsourc-

ing instructions. For instance, parts of the raw instructions that are highlighted for emphasis

are incorporated as part of our emphasis/caution field. The modifications suggested in

this step were applied by one author and were verified by another author (On average, the

25

category # of tasks # of instances

question generation 13 38k

answer generation 16 53k

classification 12 36k

incorrect answer generation 8 18k

minimal modification 10 39k

verification 2 9k

Total 61 193k

Table 3.2: Task Categories and Their Statistics.

process of data curation for each task takes around 5 hrs-34 hrs.

Improving description quality and consistency. We edit raw instructions to ensure their

quality. Particularly, we fix writing issues (typos, ambiguities, etc.) and redact repetitions.

While repetition often helps in augmenting human understanding, short and concise instruc-

tions are often more effective for computers due to their limited attention span (Beltagy

et al., 2020).

Augmenting examples and reasons. There is a large variance in the number of examples

provided in the raw instructions. Instructions often include more positive examples, or some

instructions do not include any negative examples (e.g., QASC). Whenever possible, we

add negative examples such that each task has at least two negative examples. Furthermore,

not all raw instructions contain REASONS or SUGGESTIONS for each of their examples. For

example, positive examples are usually not accompanied by explanations, and most datasets

do not include suggestions. We add them, wherever such information is missing in the

instructions.

26

Collecting input/output instances for subtasks. Most of our tasks are the intermediate

steps in the crowdsourcing process. Therefore, to extract input/output instances for each

task, we need to parse the raw annotations of crowdworkers for every step. Since each

dataset stores its annotations in a slightly different format, extracting and unifying such

intermediate annotations can be non-trivial.

Verification. An annotator verified the quality of the resulting data in consultation with

dataset authors. The annotator iterated on the authors’ feedback (avg of 3 iters) until they

were satisfied.

Quality assessment. We ask independent human annotators to answer 240 random in-

stances (20 instances from 12 random tasks, used later for our evaluation §3.3.1). The

subsequent evaluation of the human-generated responses results in more than 96% accuracy,

which indicates that humans can effortlessly understand and execute our instructions.

Natural Instructions Statistics

In summary, Natural Instructions consists of subtasks each with a set of instructions and

input/output instances (Fig.3.1 and 3.2). In total, the dataset includes 61 tasks and 193k

instances. Table 3.2 shows data statistics for each task category. 3 On average, instructions

contain 4.9 positive examples and 2.2 negative examples. The longest element of instructions

is usually DEFINITIONS with 65.5 tokens and the shortest is TITLE with 8.3 tokens (more

statistics in Table 3.3).

3.3 Problem Setup and Models

Here we define different cross-task generalization settings (§3.3.1) and the models

(§3.3.2).
3We limit the number of instances in each task to 6.5k to avoid massive instance imbalance.

27

statistic value

“title” length 8.3 tokens

“prompt” length 12.6 tokens

“definition” length 65.5 tokens

“things to avoid” length 24.1 tokens

“emphasis/caution” length 45.0 tokens

“reason” length 24.9 tokens

“suggestion” length 19.6 tokens

avg. length of “input in examples” (tokens) 50.2

avg. length of “output in examples’ (tokens) 6.6

num of positive examples 4.9

num of negative examples 2.2

Table 3.3: Statistics of Natural Instructions

3.3.1 Task Splits and Generalizations Types

To teach a model we supervise it with the set of tasks in train and evaluate them in eval.

Random split. This setup follows the common practice in benchmarking NLP models

with random data splits. Here, two tasks from each task category (Table 3.2) in Natural

Instructions are randomly selected for evaluation, and the rest of the tasks are used for

training. This leads to 12 tasks in unseen and 49 tasks in seen. 4

Leave-one-out generalization. To better understand the nature of cross-task generaliza-

tion, we study more restrictive settings of dividing training and evaluation tasks.
4Those tasks that do not accept a relatively reliable automatic evaluation are excluded from unseen.

28

leave-one-category: evaluates how well a model generalizes to a task category if it is trained

on others – no task of that category is in seen.

leave-one-dataset: evaluates how well a model can generalize to all tasks in a particular

dataset if it is trained on all other tasks – no task of that dataset is in seen. This split prevents

any leakage across tasks that belong to the same source datasets.

leave-one-task: evaluates how well a model can learn a single task by training on all other

tasks.

3.3.2 Models

We build models using pre-trained LMs with encoder-decoder architectures BART (Lewis

et al., 2019) for fine-tuning and GPT3 (Brown et al., 2020) for few-shot experiments.

Encoding instructions and instances. For every problem setup, we map a given instruc-

tion It and an input instance x into a textual format and decode an output y and obtain

encpIt, xq. This encoding function is then fed to an encoder-decoder model to predict y:

M : encpIt, xq Ñ y.

Encoding instances follows a standard NLP paradigm of mapping an input instance to

text. Each instruction It consists of multiple elements as described in our instruction schema

(§3.2.1). Here, we map each element of the instruction to a textual format and append it

before the input instance. Fig.3.3 shows how we encode the full instruction.

According to our schema (§3.2.1), each instruction It for the t-th task is a set that

contains the following fields:

It “ ttitle, tdef., tavoid, temph., tprompt, tpos.ex., tneg.ex.

To feed the instances to LMs, we first encoder them into plain text. Let encpI, xq define

29

Prompt : tprompt

Definition : tDefinition

Things to Avoid : tavoid.

Emphasis&Caution : temph.

NegativeExample1´

input : tpos.ex., output : tpos.ex., reason : tpos.ex.

PositiveExample1´

input : tpos.ex., output : tpos.ex.reason : tpos.ex.

input : x, output :”

Figure 3.3: Encoding Instruction It, Where tc Refers to the Text of a Component c in the

Instruction Schema.

a function that maps a given instruction I and input instance x to plain text. Evidently, there

are many choices for this function. In our study, we consider the following encodings:

NO-INSTRUCTIONS encoding. This encoding is the conventional paradigm where no

instructions exist:

encpIt, xq :“input : x

output :”
(3.1)

PROMPT encoding. In this encoding, we append the prompt message before the input:

30

encpIt, xq :“Prompt : tprompt

input : x

output :”

(3.2)

PROMPT + DEFINITION encoding. In this encoding, the prompt message and the task

definition appear before the input:

encpIt, xq :““Definition : tdef.

Prompt : tprompt

input : x

output :”

(3.3)

Intuitively, this encoding is more informative and more complex than “prompt” encoding.

31

FULL INSTRUCTIONS encoding. This encoding contains all the instruction content:

encpIt, xq :““Definition : tdef.

Prompt : tprompt

Things to Avoid : tavoid.

Emphasis&Caution : temph.

“NegativeExample1´

input : tpos.ex.pinputq

output : tpos.ex.poutputq

reason : tpos.ex.preasonq

NegativeExample2´

. . .

“PositiveExample1´

input : tpos.ex.pinputq

output : tpos.ex.poutputq

reason : tpos.ex.preasonq

PositiveExample2´

. . .

input : x

output :”

(3.4)

where encexpItq is an alternating encoding positive and negative examples. We include

as many examples as possible, before exceeding the input limit.

POSITIVE EXAMPLES encoding. This encoding contains only positive examples of the

subtask (no task description, etc).

32

model ↓ evaluation set unseen →
random split

of tasks

leave-one-

category (QG)

leave-one-

dataset (QASC)

leave-one-

task (QASC QG)

BART (fine-Tuned)
MULTITASK LEARNING 13 6 37 20

INSTRUCTION TUNING 32 17 51 56

GPT3 (not fine-tuned) FULL INSTRUCTIONS 24 33 22 33

BART (fine-Tuned) SUPERVISED UPPERBOUND 67 59 60 66

Table 3.4: Cross-task Generalization of BART under Various Splits. Fine-tuned BART

Shows Improved Performance When Provided with Instructions. It also Achieves Better

Performance than GPT3, Despite Being over 1k times Smaller. All Numbers are ROUGE-L.

encpIt, xq :“ input : tpos.ex.pinputq

output : tpos.ex.poutputq

. . .

input : x

output :”

(3.5)

Such example-only models have been used in several recent studies in the field (Zhao et al.,

2021).

To study the impact of each instruction element for cross-task generalization, we compare

these encodings: (1) PROMPT, (2) POS. EXAMPLES, (3) PROMPT + DEFINITION, (4) PROMPT

+ THINGS TO AVOID, (5) PROMPT + EMPHASIS , (6) PROMPT + POS. EXAMPLES, (7)

PROMPT + DEFINITION + POS. EXAMPLES, and (8) FULL INSTRUCTION. Each of

these (e.g., PROMPT and POS. EXAMPLES) correspond to prompting setups in the recent

literature (Le Scao and Rush, 2021; Lu et al., 2021d).

BART. We use BART (base) (Lewis et al., 2019) which allows us to fine-tune its model

parameters. This is an encoder-decoder architecture with 140m parameters. For each setup,

33

model ↓ task category → QG AG CF IAG MM VF avg

BART

(fine-tuned)

NO INSTRUCTION 26 6 0 21 33 7 13

PROMPT 27 22 7 22 34 9 20

+DEFINITION 35 24 50 25 36 7 30Ò (+50)

+THINGS TO AVOID 33 24 4 24 58 9 25Ò (+25)

+EMPHASIS 38 23 16 26 49 3 26Ò (+30)

+POS. EXAMPLES 53 22 14 25 17 7 23Ò (+15)

+DEFINITION+POS. EXAMPLES 51 23 56 25 37 6 33Ò (+65)

POS. EXAMP. 55 6 18 25 8 6 20

FULL INSTRUCTION 46 25 52 25 35 7 32Ò (+60)

GPT3

(not fine-tuned)
FULL INSTRUCTION 33 18 8 12 60 11 24 (+11)

Table 3.5: Cross-task Generalization under Random Split. Models Show Improved Results

When Provided with Instructions. The Numbers in Parenthesis Indicate Absolute Gains

Compared to ‘no Instructions’ Baseline. Fine-tuned BART Achieves Better Performance

than GPT3, Despite Being over 1k times Smaller. Category Names: QG: Question Genera-

tion, AG: Answer Generation, CF: Classification, IAG: Incorrect Answer Generation, MM:

Minimal Text Modification, VF: Verification. All Numbers are ROUGE-L (in Percentage).

the input is encoded using different instruction elements, trained on all seen tasks, and

evaluated on unseen (§3.3.1).

GPT3. As a comparison, we evaluate GPT3 (Brown et al., 2020) which is a 175B pa-

rameter autoregressive LM (ˆ1.2k larger than BART) and has shown promising results in

mimicking demonstrations provided in its prompt. We cannot fine-tune the parameters of

this massive model and use it as-is under its default setting on the evaluation tasks in unseen

(§3.3.1) using the encoding introduced earlier.

34

3.4 Experiments

Evaluation metrics. We treat all of our tasks as text generation problems and evaluate

them with automated evaluation metrics for text generation. In particular, we use ROUGE-

L (Lin, 2004) to automatically evaluate the generated outputs. 5

Implementation details. For BART, our models are trained for 3 epochs with a learn-

ing rate of 5e-5 for a given training split and input encoding. For GPT3, we use the

davinci-instruct engine and produce outputs with greedy decoding, generating up to a

maximum number of tokens of 16 (the default value). We use the default stop condition

which is 2 newline tokens. 6

3.4.1 Generalization Under Various Task Splits

Table 3.4 reports the results of the BART model train and evaluated with various task

splits (§3.3.1). For comparison, we evaluate GPT3 which uses no fine-tuning, unlike BART

that is fine-tuned with the seen tasks.

The first column corresponds to random split of tasks, while the remaining columns

report cross-task generalization results of the BART model under leave-one-x splits (§3.3.1).

For x “ category, the tasks in question-generation category are held out during training.

For x “ dataset, the tasks that were extracted from the QASC dataset were excluded from

training. For x “ task, we train a model on all tasks, except QASC question generation task

which is used for evaluation.
5Our experiments show that other metrics, e.g. BLEURT (Sellam et al., 2020) are also correlated with

ROUGE-L, which has also been used in generative QA tasks.
6The relevant code is available at: https://github.com/allenai/natural-instructions-v1

35

https://github.com/allenai/natural-instructions-v1

Instructions benefit cross-task generalization. The results indicate that BART benefits

from instructions in generalizing to new tasks, regardless of task splits. For example, under

random split, the model using FULL INSTRUCTIONS results in +19% gains over a model

that is not using instructions. This is particularly interesting for leave-one-category-out

split since the trained model can generalize to the tasks of a particular semantic category,

without being exposed to it. In comparison to GPT3, the fine-tuned BART model that

utilizes instructions achieves a stronger performance despite being ˆ1k smaller than GPT3.

For example, a BART model using FULL INSTRUCTIONS achieves 8% higher performance

than GPT3 under random split of tasks.

Note that the absolute values in leave-one-category are lower due to the difficulty of this

setup compared to, for example, the random split setup. While all settings involve evaluating

on tasks not seen during training, the leave-one-category setting enforces more dissimilarity

among training and evaluation tasks.

3.4.2 Generalization Under Instruction Encoding and Task Categories

Table 3.5 reports the results of the BART model per encodings of different instruction

elements (§3.3.2) and for different task categories. The table shows that encoding more

elements of the instructions generally achieves better results than just using PROMPT or

POSITIVE EXAMPLES. It additionally shows that the benefit of the instruction elements

seems to depend on the target task category. We observe that the question-generation

(QG) tasks benefit the most from POSITIVE EXAMPLES, whereas in classification (CF),

POSITIVE EXAMPLES are of little help. We hypothesis this is because it is easier to mimic

question-generation based on a few examples, whereas it is difficult to define classes via a

few examples, where DEFINITION can be more helpful. The models show little improvement

in verification (VF). We hypothesize these tasks are inherently more difficult, partially

36

because of their distinctness from the rest of the tasks in the dataset. We hope future work

on this line will study a wider variety of tasks and will improve our understanding of such

failure cases.

3.4.3 Generalization vs. Number of Seen Tasks

Fig.1 compares the impact of the number of seen tasks for cross-task generalization. For

supervision, we randomly sample a few tasks as seen and evaluate on 6 tasks (one from

each category). (each point in the figure is averaged over 5 random subsamples.) The results

show that with NO-INSTRUCTION encoding there is no tangible value in observing more

tasks. In contrast, the generalization of the models that encode instructions improves with

observing more tasks. This is an exciting observation since it suggests that scaling up our

dataset to more tasks may lead to stronger instruction-following systems.

3.4.4 Analyses

Upperbound: Task-specific Models. For each task, we obtain a task-specific model

(§ 3.1) by training BART separately on each task’s annotated training data. We evaluate

these task-specific models to obtain a loose estimate of upperbounds for each task.

On average, task-specific models score 66% which is considerably higher than our

models’ best generalization (32%; Table 3.4). This indicates that there is considerable room

for improving generalization-based models that use instructions.

3.4.5 Error Analysis

Table 5.7 shows the breakdown of the most common error types for the QASC question

generation task by analyzing 30 errors (more error analyses can be found in Table 3.7).

37

Model ↓ Split ↓
w/ neg.

examples

w/o neg.

examples

BART

random 32 35

leave-one-x

ë x “ category (AG) 19 21

ë x “ dataset (Quoref) 37 37

ë x “ task (QASC QG) 56 57

GPT3 - 24 44

Table 3.6: Effect of Excluding Negative Examples from Full Instruction Encoding. Negative

Instructions Are Surprisingly Difficult for the Models to Learn From.

error type BART

Generates a nonsensical/vague question 47

Generate an invalid question 8

Generates a yes/no question 4

Copies the given fact or a subset of it 3

Generates unanswerable questions 3

Table 3.7: Percentage of Errors on QASC QG Task. The Numbers Do Not Sum to 100 since

the Error Types Are Not Mutually Exclusive.

38

Category Helpful Fields Explanation

Question Genera-

tion (QG)

1. DEFINITION - Provides a holistic picture of the task.

2. EMPHASIS & CAUTION - Provides key information for solving the task.

3. POSITIVE EXAMPLES - This gives an idea of what is expected in the output.

4. NEGATIVE EXAMPLES - Good to know the common mistakes people do.

Answer Genera-

tion (AG)

1. PROMPT - It limits the exploration space to question spans.

2. DEFINITION - Provides a general understanding of the task.

3. POSITIVE EXAMPLES - Reason field is very helpful.

Classification

(CF)

1. DEFINITION - The task is unclear without this field.

Incorrect Answer

Generation (IAG)

1. DEFINITION - Helps understand the utility of such a task.

2. EMPHASIS & CAUTION - Source of some useful shortcuts.

3. POSITIVE EXAMPLES - Helps in understanding the type of questions asked.

Minimal Text

Modification

(MM)

1. THINGS TO AVOID - Provides critical information.

Verification (VF) 1. DEFINITION - Makes the task easy to understand.

2. THINGS TO AVOID - Contains useful tips required for this task.

3. POSITIVE EXAMPLES - Exemplifies task understanding.

4. NEGATIVE EXAMPLES - Helps avoid potential mistakes.

Table 3.8: Results of Humans’ Perceived Importance of Instruction Elements. Our Annota-

tors, for Example, Find Definition and Things to Avoid to Be Helpful for Classification and

Minimal Text Modification Tasks, Respectively.

39

Impact of Negative Examples. Crowdsourcing instructions often include negative exam-

ples to exemplify undesirable responses. We study how negative examples in instructions

affect cross-task generalization. Our case study (Table 3.6) indicates that the models work

better without (w/o) negative examples, contrary to the previously-observed benefits of other

instructional elements (e.g., definition, positive examples). This is aligned with the previous

studies (Xuan et al., 2020; Lin et al., 2003) that discuss the challenges of learning from

negative examples. Interestingly, GPT3’s drop (44 vs 24) is more significant than BART (35

vs 32), showing that BART can partly recover through the training step.

Error Analysis. We randomly sample 30 erroneous predictions of our fine-tuned BART

on 3 distinct tasks (Winogrande answer generation; QASC question generation; MC-TACO

incorrect answer generation). We categorize the errors into common patterns (Table 3.7).

Unlike GPT3 which generally suffers from generating redundant content irrelevant to

instructions, our BART model provides more control, however, it can fail to generate proper

output. Here are several erroneous predictions from our model:

Does not follow instruction and generate an invalid question

GPT3 input:[...]input: Fact: Populations of viruses do not grow through division because

they are parasites. output:

GPT3 output: Populations of viruses do not grow through division?

Generates a nonsensical/vague question

BART input:[...]input: Fact: graduations are used for measuring the volume of substances.

output: ?

BART output: How many substances are there in volume?

Copies the given fact or a subset of it

BART input:[...] input: Fact: If someone is not breathing, begin with ventilation. output: ?

40

BART output: If someone is breathing, begin with ventilation.

Explains the question after generating it

GPT3 input:[...] input: Fact: Marmots in underground burrows will be protected from wild

fire. output:

GPT3 output: What will be protected? reason: It’s a good question because it is...

Generates a yes/no question

BART input:[...] input: Fact: Lack of saliva hinders the break down of food into compo-

nents the body can absorb. output: ?

BART output: Does saliva hinders the break down of food into components the body can

absorb?

Generates candidate answers as output

GPT3 input:[...] input: Fact: Marmots in underground burrows will be protected from wild

fire. Output:"

GPT3 output: a) Burrows will protect marmots from a wild fire?

Generates questions whose answer does not exist

GPT3 input:[...]input: Fact: electrical energy is converted to heat energy to cook bread.

output:

GPT3 output: How is electrical energy converted to heat energy to cook bread?

Generates a Generic Question Independent of Context

GPT3 input:[...] input: Fact: Populations of viruses do not grow through division because

they are parasites. output:

GPT3 output: What does the given fact mean?

Perceived Impact of Instruction Elements. We survey human annotators to find out the

value of instruction elements to humans. Except for the negative examples which were

shown to be difficult for models, we observe similar trends between humans’ perceived value

41

of those elements (Table 3.8) and their contributions to the model performance (Table 3.5).

For example, humans viewed DEFINITION and THINGS TO AVOID as necessary fields for

classification and minimal text modification categories, respectively, which is compatible

with our empirical observations (e.g., PROMPT + DEFINITION has the highest score on the

CF category in Table 3.5).

3.5 Analysis of Datasets and their Templates

3.5.1 Division of Crowdsourcing Instructions into Minimal Tasks

Fig. 3.7 shows an example of how a task is divided into multiple subtasks for the

MC-TACO dataset. MC-TACO has five categories (Event Duration, Event Frequency etc.).

Each category contributes to 2 subtasks one for question generation and one for answer

generation.

Number of tasks in each dataset. Fig. 3.4 illustrates how the number of steps in the

data creation process varies across the 6 datasets. QASC and MC-TACO contain a rela-

tively higher number of steps in the data creation process in comparison to DROP, Quoref,

CosmosQA, and Winogrande.

42

Figure 3.4: Variations in the Number of Subtasks

3.5.2 Analysis of Crowdsourcing Templates

We analyzed crowdsourcing templates of 6 datasets: CosmosQA Huang et al. (2019),

DROP Dua et al. (2019b), MC-TACO Zhou et al. (2019), QASC Khot et al. (2020),

Quoref Dasigi et al. (2019), and Winogrande Sakaguchi et al. (2020). Our intention behind

the analysis is to identify similarities and differences across templates and subsequently

decide regarding the collection of more templates.

Size of the instructions. We observe significant variation in size across the 6 datasets

(Fig. 3.6). In the case of QASC, the instruction size associated with each step of the data

creation process is very high, whereas for Winogrande, it is exactly the opposite– instruction

size associated with each step of the data creation process is very low. Instead, the size of

the common instruction (i.e., the instruction preceding the first step of the data creation

process) is high in Winogrande; this is also seen for DROP. The major mode of instruction

varies across datasets. Examples and instructions associated with each step of data creation

respectively take up the majority of space in Quoref and CosmosQA. MC-TACO relies on

43

examples to explain the crowdsourcing task, while Winogrande and QASC depend mostly

on common instructions and instructions associated with each step of the data creation

process respectively, to explain the task to the crowdworker.

The number of positive/negative examples. Variation in the occurrence of POSITIVE

and NEGATIVE Examples across datasets has been illustrated in Fig. 3.5. Only Winogrande

provides an equal number of POSITIVE and NEGATIVE Examples. QASC instructions do

not contain any NEGATIVE Examples. Overall, DROP instructions consist of a relatively

higher number of examples than other datasets.

Figure 3.5: Variation in the Number of Positive and Negative Examples

44

Figure 3.6: Variation in the Number of Sentences in the Crowdsourcing Instructions Across

Datasets

Presence of reasons/suggestions in examples. All datasets except QASC contain both

POSITIVE and NEGATIVE Examples. However, Quoref is the only dataset to provide

REASONS for all the POSITIVE and NEGATIVE Examples. There are explanations associated

with each of the NEGATIVE Examples, but the presence of explanations associated with

POSITIVE Examples varies across datasets. Finally, Quoref is the only dataset to provide

SUGGESTIONS along with the REASONS associated with the NEGATIVE Examples.

3.5.3 Qualitative Analysis

Writing Style. There is significant variation in writing style across the datasets, even

among those datasets that have a common a objective (e.g., DROP, Quoref and QASC).

DROP instructions say "There is an AI running in the background which will also try to

answer the question. You won’t be able to submit the question if the AI gives the same

45

Figure 3.7: Dividing a Data Creation Task into Multiple Subtasks for the MC-TACO dataset.

Figure 3.8: Variation in Topics

response." The writing style in Quoref however is different: "We also want you to avoid

questions that can be answered correctly by someone without actually understanding the

paragraph. ..." In QASC, variations are as follows: "Two AI systems will try to answer your

question. Make sure you fool at least one AI with an incorrect answer. If you fool both AIs,

you will receive a bonus of $0.25."

Information. We observe that sometimes instructions of a dataset contain information

that is relevant to several other datasets, which do not contain similar instruction information.

For example, Quoref, DROP and CosmosQA are datasets that are all based on reading

comprehension tasks. CosmosQA contains a step in the data creation process asking users

to skip passages containing inappropriate or offensive content. This information is also

46

Figure 3.9: Variation in Reasoning Skills

relevant to Quoref and DROP, but is not mentioned in their respective instructions.

Topic. Fig. 3.8 illustrates some examples where the reasoning skill associated with the

datasets is the same, but the topic varies. The experience gained creating data for one topic

may help with understanding instructions and creating data for another dataset with the

same underlying reasoning skill.

Hardness. In a typical crowdsourcing task, certain tasks may be harder than the others,

often these are the core tasks, e.g.: question generation, adversarial data creation, etc.

Additional information, especially in the form of tips is always helpful in solving these

hard tasks. Figure 3.10 illustrates that the task of question generation is stated differently

in Quoref, CosmosQA, and QASC. QASC mentions an easy and detailed way to create

questions, whereas CosmosQA mentions several different attributes of a good quality

question. Knowing about the CosmosQA and QASC question generation processes may

help with data creation for Quoref and other such question generation tasks, where less

additional information is provided regarding question creation.

47

Figure 3.10: Variation in Task Specification: Quoref Contains a Single Line Instruction

Whereas the CosmosQA Contains a Detailed Instruction. QASC on the Other Hand,

Contains Examples along with Instruction.

Associated reasoning skill. Finally, there are similarities among datasets in terms of their

underlying skill requirements. Fig. 3.9 illustrates datasets clustered based on similarity in

their associated reasoning class.

3.5.4 Data Curation Effort

Table 3.9 shows the effort distribution in the data curation process of Natural Instructions.

Step-8 which involves parsing instances is the main bottleneck in the data curation process.

Table 3.10-3.12 shows the detailed structure of tasks in Natural Instructions. Fig. 3.11 shows

examples of four different tasks in Natural Instructions.

48

step task time per task

1 Identify crowdsourced dataset and engage with their

authors.

20-30 mins

2 Go through the template and understand the task. 10-15 mins

3 Manually fill fields in the schema with content from

the template.

30-45 mins

4 Iterate over the instructions to ensure their clarity

while eliminating the repeated content. Fix writing

issues in examples, also typos etc.

2-3 hrs

5 Create negative examples if not present. Add the

missing explanations to the examples.

1-2 hrs

6 Extract the input/output instances from raw crowd-

sourcing annotations.

0.5-24 hrs

7 Final inspections of the data to verify the data qual-

ity

0.25- 2hrs

Overall 6-34 hrs

Table 3.9: Steps Taken to Curate Each Task in Natural Instructions and Their Estimated

Times.

3.5.5 Qualitative Comparison to PromptSource

We provide a comparison between our proposed dataset and PromptSource (Sanh et al.,

2022). PromptSource tasks are mainly focused on the common NLP downstream tasks (such

as question-answering, coreference, NLI, etc). However, since we create tasks from various

steps (including the intermediate steps) in a data creation process, our instructions contain a

49

task id title source dataset task category

1 task001_quoref_question_generation Quoref Question Generation

2 task002_quoref_answer_generation Quoref Answer Generation

3 task003_mctaco_question_generation_event_duration MC-TACO Question Generation

4 task004_mctaco_answer_generation_event_duration MC-TACO Answer Generation

5 task005_mctaco_wrong_answer_generation_event_duration MC-TACO Incorrect Answer Generation

6 task006_mctaco_question_generation_transient_stationary MC-TACO Question Generation

7 task007_mctaco_answer_generation_transient_stationary MC-TACO Answer Generation

8 task008_mctaco_wrong_answer_generation_transient_stationary MC-TACO Incorrect Answer Generation

9 task009_mctaco_question_generation_event_ordering MC-TACO Question Generation

10 task010_mctaco_answer_generation_event_ordering MC-TACO Answer Generation

11 task011_mctaco_wrong_answer_generation_event_ordering MC-TACO Incorrect Answer Generation

12 task012_mctaco_question_generation_absolute_timepoint MC-TACO Question Generation

13 task013_mctaco_answer_generation_absolute_timepoint MC-TACO Answer Generation

14 task014_mctaco_wrong_answer_generation_absolute_timepoint MC-TACO Incorrect Answer Generation

15 task015_mctaco_question_generation_frequency MC-TACO Question Generation

16 task016_mctaco_answer_generation_frequency MC-TACO Answer Generation

17 task017_mctaco_wrong_answer_generation_frequency MC-TACO Incorrect Answer Generation

18 task018_mctaco_temporal_reasoning_presence MC-TACO Classification

19 task019_mctaco_temporal_reasoning_category MC-TACO Classification

20 task020_mctaco_span_based_question MC-TACO Classification

21 task021_mctaco_grammatical_logical MC-TACO Classification

Table 3.10: Detailed Set of Tasks Included in Natural Instructions

50

task id title source dataset task category

22 task022_cosmosqa_passage_inappropriate_binary Cosmosqa Classification

23 task023_cosmosqa_question_generation Cosmosqa Question Generation

24 task024_cosmosqa_answer_generation Cosmosqa Answer Generation

25 task025_cosmosqa_incorrect_answer_generation Cosmosqa Incorrect Answer Generation

26 task026_drop_question_generation DROP Question Generation

27 task027_drop_answer_type_generation DROP Classification

28 task028_drop_answer_generation DROP Answer Generation

29 task029_winogrande_full_object Winogrande Minimal Text Modification

30 task030_winogrande_full_person Winogrande Minimal Text Modification

31 task031_winogrande_question_generation_object Winogrande Question Generation

32 task032_winogrande_question_generation_person Winogrande Question Generation

33 task033_winogrande_answer_generation Winogrande Answer Generation

34 task034_winogrande_question_modification_object Winogrande Minimal Text Modification

35 task035_winogrande_question_modification_person Winogrande Minimal Text Modification

36 task036_qasc_topic_word_to_generate_related_fact QASC Minimal Text Modification

37 task037_qasc_generate_related_fact QASC Minimal Text Modification

38 task038_qasc_combined_fact QASC Minimal Text Modification

39 task039_qasc_find_overlapping_words QASC Verification

40 task040_qasc_question_generation QASC Question Generation

41 task041_qasc_answer_generation QASC Answer Generation

42 task042_qasc_incorrect_option_generation QASC Incorrect Answer Generation

Table 3.11: Detailed Set of Tasks Included in Natural Instructions

51

task id title source dataset task category

43 task043_essential_terms_answering_incomplete_questions Essential Terms Answer Generation

44 task044_essential_terms_identifying_essential_words Essential Terms Verification

45 task045_miscellaneous_sentence_paraphrasing Miscellaneous Minimal Text Modification

46 task046_miscellaenous_question_typing Miscellaenous Classification

47 task047_miscellaenous_answering_science_questions Miscellaenous Answer Generation

48 task048_multirc_question_generation MultiRC Question Generation

49 task049_multirc_questions_needed_to_answer MultiRC Classification

50 task050_multirc_answerability MultiRC Classification

51 task051_multirc_correct_answer_single_sentence MultiRC Answer Generation

52 task052_multirc_identify_bad_question MultiRC Classification

53 task053_multirc_correct_bad_question MultiRC Minimal Text Modification

54 task054_multirc_write_correct_answer MultiRC Answer Generation

55 task055_multirc_write_incorrect_answer MultiRC Incorrect Answer Generation

56 task056_multirc_classify_correct_answer MultiRC Classification

57 task057_multirc_classify_incorrect_answer MultiRC Classification

58 task058_multirc_question_answering MultiRC Answer Generation

59 task059_ropes_story_generation ROPES Minimal Text Modification

60 task060_ropes_question_generation ROPES Question Generation

61 task061_ropes_answer_generation ROPES Answer Generation

Table 3.12: Detailed Set of Tasks Included in Natural Instructions

broader variety of tasks. For example, tasks for chaining facts (task 38; Table 3.11), question

typing (task 27; Table 3.11) or detecting inappropriate content (task 22; Table 3.11) are

unique additions in Natural Instructions. Additionally, since our instructions were originally

written by various researchers and targeted at crowdworkers, they are elaborate and contain

the complete definition of each task. This is somewhat evident from observation that GPT3

leads to higher performance on our instructions (Table 3.13). Last but not least, since we

represent the instructions in a structured format, we are able to ablate various elements of

52

the instructions (definition, negative/positive examples, etc.) and empirically quantify their

contributions (§3.4).

Task Model PromptSource Natural Instructions

Quoref QA (002)
GPT3-Instruct 43 47

GPT3 2 13

DROP QA (028)
GPT3-Instruct 6 10

GPT3 2 3

Table 3.13: Comparing Zero-shot Performance of Gpt3 on Our Instructions Vs. Prompt-

source. The Instructions Curated in This Work, Despite Being Lengthier, Lead to Higher

Performance.

3.6 Additional Analysis of Results

3.6.1 Comparison to Raw Instructions

We seek to understand the value of breaking the tasks into sub-tasks and mapping them

into our proposed schema (§3.2.2). We compute performance of raw instructions (first

sub-task of four datasets), in the same vein as Efrat and Levy (2020)’s setup. We compare

this to our FULL INSTRUCTION - NEG EXAMPLES encoding. We observe that GPT3 leads

to notably higher performance with our encoding compared to raw instructions. Weak

performance of LMs on raw instructions aligns with (Efrat and Levy, 2020)’s finding that

“language model performs poorly”.

This might be partly due to the verbose language of the raw instructions: the average

length of the raw instructions is 2.5k tokens, in comparison to 950 tokens for our encoding.

While repetition often helps human understanding, concise instructions seem to be more

effective for computers.

53

task Natural Instructions PromptSource (Sanh et al. 2021)

MC-TACO
(question

answering)

* Definition: In this task we ask you to write answer to a question that involves
“absolute timepoint" of events, which is defined as understanding of when events usually
happen. For example, "going to school" usually happens during the day (not at 2 A.M).
* Emphasis: Note that a lot of the questions could have more than one correct answers. We
only need a single most-likely answer. Please try to keep your "answer" as simple as
possible. Concise and simple "answer" is preferred over those complex and verbose ones.
* Prompt: Answer the given question on "absolute timepoint" of events.
 Sentence: {{ sentence }}
 Question: {{ question }}

Given the context,
 {{sentence}}
observe the following QA pair
and check if the answer is
plausible:
 Question: {{question}}
 Answer: {{answer}}

Quoref
(question

answering)

* Definition: In this task, you're expected to write answers to questions involving
multiple refences to the same entity.
Emphasis: The answer to the question should be unambiguous and a phrase in the paragraph.
Most questions can have only one correct answer.
* Prompt: Answer the given question. Your answer must be a single span in the passage.
 Passage: {{ passage }}
 Question: {{ question }}

Given the following context:
 {{context}}
answer the following question:
 {{question}}

CosmosQA
(question

answering)

* Definition: Craft one correct answer to the question given in input. To make it more
interesting, try to use non-stereotypical language if possible. Make sure your correct
answer is reasonably long, consistent with the context, and requires common sense (instead
of explicit extraction from the context.)
* Emphasis: 1. In your answer, use as few words as possible from the given context. 2. Use
a response that is uncommon/non-stereotypical, so that it is less predictable. 3. To be
less repetitive, please vary your language for each question.
* Prompt: Craft one correct answer to the question given in input.
 Context: {{ context }}
 Question: {{ question }}

{{ context }}
According to the above context,
choose the best option to
answer the following question.
 Question: {{ question }}
 Options: {{answer_choices}}

DROP
(question
answering)

* Definition: This task involves creating answers to complex questions, from a given
passage. Answering these questions, typically involve understanding multiple sentences.
Make sure that your answer has the same type as the "answer type" mentioned in input. The
provided "answer type" can be of any of the following types: "span", "date", "number". A
"span" answer is a continuous phrase taken directly from the passage or question. You can
directly copy-paste the text from the passage or the question for span type answers. If
you find multiple spans, please add them all as a comma separated list. Please restrict
each span to five words. A "number" type answer can include a digit specifying an actual
value. For "date" type answers, use DD MM YYYY format e.g. 11 Jan 1992. If full date is
not available in the passage you can write partial date such as 1992 or Jan 1992.
* Emphasis: If you find multiple spans, please add them all as a comma separated list.
Please restrict each span to five words.
* Prompt: Write an answer to the given question, such that the answer matches the "anwer
type" in the input.
 Passage: {{ passage }}
 Question: {{ question }}

Context: {{passage}}
I am trying to figure out the
answer to the question from the
above context. Can you tell me
the answer?
 Question: {{question}}
 Answer:

Winogrande
(pronoun
resolution)

Definition: You need to answer a given question containing a blank (_). Your answer must
be one of the two objects mentioned in the question for example "trophy" and "suitcase".
Things to avoid: Your answer must not contain a word that is not present in the question.
Prompt: Answer a fill in the blank question that is based on a provided context word.
 Sentence: {{ sentence }}

The _ in the sentence below
refers to {{option1}}. True or
False?
 {{sentence}}Table 3.14: Qualitative Comparison of the Task Instructions for Several Shared Tasks among

Natural Instructions and Promptsource.

3.6.2 T0pp baseline for Natural Instructions

We evaluate T0pp (Sanh et al., 2022) on our evaluation tasks of the random split

(§3.3.1). Tasks on which T0pp was trained on were excluded from evaluation. Table 3.15

illustrates summary of our results. T0pp shows improved results when provided with

detailed instructions compared to the PROMPT encoding. Most performance gain comes

in the Question Generation category whereas the only performance drop comes from the

Minimal Text Modification category. We attribute this behavior to the distribution of training

tasks in T0pp; if a task has adequate number of similar tasks seen during training, we

54

probably do not need detailed instructions and prompt only is enough; whereas for other

tasks, detailed instructions in the form of definition etc. helps.

model ↓ task category → QG AG CF IAG MM VF avg

T0pp
PROMPT 17 37 - 21 69 2 29

FULL INSTRUCTION 22 39 - 22 64 2 30

Table 3.15: T0pp Performance with Prompt and Detailed Instructions for Different Task

Categories under Random Split. Tasks on Which T0pp Were Trained on Were Excluded from

Evaluation, since They Are No More Unseen Tasks. Models Show Improved Results When

Provided with Detailed Instructions Compared to the PROMPT Encoding.) Category Names:

QG: Question Generation, AG: Answer Generation, CF: Classification, IAG: Incorrect

Answer Generation, MM: Minimal Text Modification, VF: Verification. All Numbers Are

ROUGE-L.

3.7 Conclusion

We studied the goal of building models that generalize to new tasks by encoding and

understanding crowdsourcing instructions. We introduced Natural Instructions 7 , which

is built based on existing crowdsourced datasets, that enables building such models and

systematically evaluating them. To the best of our knowledge, this is the first work to show

the benefit of instructions towards improved cross-task generalization. Additionally, we

observe that our proposed task has a large room for improvement, which we believe will

bring more attention to building stronger models that can generalize to a wider range of

tasks.

7https://instructions.apps.allenai.org/

55

question generation (from MC-TACO)

- Title: Writing questions that involve commonsense understanding of "event
duration".
- Definition: In this task, we ask you to write a question that involves ?event
duration", based on a given sentence. Here, event duration is defined as the
understanding of how long events typically last. For example, ?brushing teeth?,
usually takes few minutes.
- Emphasis & Caution: The written questions are not required to have a single
correct answer.
- Things to avoid: Don't create questions which have explicit mentions of
answers in text. Instead, it has to be implied from what is given. In other words,
we want you to use "instinct" or "common sense".

- Input: Sentence: Jack played basketball after school, after which he was
very tired.

-Output: How long did Jack play basketball?
-Reason: the question asks about the duration of an event; therefore it's a
temporal event duration question.

Positive Example

- Input: Sentence: He spent two hours on his homework.
-Output: How long did he do his homework?
-Reason: We DO NOT want this question as the answer is directly mentioned
in the text.

-Suggestion: -

Negative Example

- Prompt: Ask a question on "event duration" based on the provided sentence.

- Input: Sentence: Still, Preetam vows to marry Nandini if she meets him
again.

-Expected Output: How long had they known each other?

Task Instance

answer generation (from Winogrande)

- Title: Answering a fill in the blank question on objects
- Definition: You need to answer a given question containing a blank (_). Your
answer must be one of the two objects mentioned in the question for example
"trophy" and "suitcase".
- Emphasis & Caution: -
- Things to avoid: Your answer must not contain a word that is not present in
the question.

- Input: Context word: fit. Question: The trophy doesn't fit into the brown
suitcase because _ is too large.

-Output: trophy
-Reason: Answer is one of the objects ("trophy" and "suitcase") in the
question. Since the blank is a "large" object that didn't fit the
"suitcase", the answer must be "trophy".

Positive Example

- Input: Context word: fit. Question: The trophy doesn't fit into the brown
suitcase because _ is too large.

-Output: bottle
-Reason: The issue is that the answer is not one of the objects present
in the question which are "trophy" and "suitcase". Note that, a valid
answer must be one of the objects present in the question.

-Suggestion: -

Negative Example

- Prompt: Answer a fill in the blank question that is based on a provided
context word.

- Input: Context Word: Story. Question: After watching the movie Kelly
began to work on her own story. The _ was for her research.

-Expected Output: movie

Task Instance

classification (from DROP)

- Title: Finding the answer type of a reasoning question
- Definition: This task involves annotating the answer type to a given
question that involve some kind of complex reasoning (including numerical
reasoning). Note that the questions require looking at more than one part
of the passage to answer. There are 3 possible answer types (i) spans, (ii)
numbers and (iii) dates. If the answer can be found in the passage, label it
as "span". If the answer is a number, label as "number". Similarly, label
"date" if you think the answer to the given question is a date.
- Emphasis & Caution: -
- Things to avoid: -

- Input: Passage: The outbreak of the Seven Years' War in Europe in 1756
resulted in renewed conflict between French and British forces in India. The
Third Carnatic War spread beyond southern India and into Bengal where
British forces captured the French settlement of Chandernagore in 1757.
However, the war was decided in the south, where the British successfully
defended Madras, and Sir Eyre Coote decisively defeated the French,
commanded by Comte de Lally at the Battle of Wandiwash in 1760. After
Wandiwash, the French capital of Pondicherry fell to the British in 1761. The
war concluded with the signing of the Treaty of Paris in 1763, which
returned Chandernagore [...] Question: Which french settlement did the
British capture first, Chandernagore or Pondicherry?

-Output: Span
-Reason: The answer "Chandernagore" is a word from the passage. So, the
answer type is "span".

Positive Example

-

Negative Example

- Prompt: What is the type of the answer corresponding to the given question?
Number, Date, or Span?

- Input: Passage: Hoping to rebound from their loss to the Patriots, the
Raiders stayed at home for a Week 16 duel with the Houston Texans.
Oakland would get the early lead in the first quarter as quarterback
JaMarcus Russell completed a 20-yard touchdown pass to rookie wide
receiver Chaz Schilens. The Texans would respond with fullback Vonta
Leach getting a 1-yard touchdown run, yet the Raiders would answer with
kicker Sebastian Janikowski getting a 33-yard and a 30-yard field goal.
Houston would tie the game in the second quarter with kicker Kris Brown
getting a 53-yard and a 24-yard field goal. Oakland would take the lead in
the third quarter [...] Question: How many field goals did Kris Brown kick?

-Expected Output: Number

Task Instance

minimal text modification (from Winogrande)

- Title: Modifying a fill in the blank question on persons
- Definition: You're given a fill-in-the-blank question where the answer is
PersonX. You need to minimally change the given question so that the
answer flips to PersonY. This task typically involves replacing one word i.e.
the 'trigger word' by its antonym (e.g. changing from "sympathetic" to
"stern").
- Emphasis & Caution: 1. Your question must contain at least 15 and at
most 30 words. 2. Your question must have atleast 70% overlapping words
with the given question 3. Your question must contain only one blank. 4.
Make sure that PersonX and PersonY have the same gender. 6. In your
question, PersonX and PersonY should be used only ONCE and PersonX
should appear earlier than PersonY. [...]
- Things to avoid: 1. You should not change any content in the given
question beyond a word or two i.e. the trigger word/phrase. [...]

- Input: Context word: upset. Question: PersonX yelled at PersonY
because _ was so upset about the news. Answer: PersonX.

-Output: PersonX comforted at PersonY because _ was so upset
about the news.

-Reason: On replacing the trigger word "yelled" by its antonym
"comforted", the answer flips to PersonY which is as per the given
instruction. So, this is a valid question.

Positive Example

- Prompt: What is the type of the answer corresponding to the given
question? Number, Date, or Span?

-Input: Context Word: day. Question: PersonX learned new
organizational skills from PersonY because _ 's day schedule
was very chaotic. Answer: PersonX

-Expected Output: PersonX learned new organizational skills
from PersonY because _ 's day schedule was very efficient.

task instance

- Input: Context word: step. Question: PersonX was always ahead of
PersonY, as _ walked with a quick step. Answer: PersonX.

-Output: PersonY was always ahead of PersonY, as _ walked with a
quick step.

-Reason: Here, the issue is that the usage order of PersonX and
PersonY has been changed in the generated question. Remember
that, for a question to be valid, PersonX should appear earlier than
PersonY.

-Suggestion: -

Negative Example

Figure 3.11: Examples from Natural Instructions. Each Task Follows the Schema Provided

In Fig. 3.2.

56

Figure 3.12: Variation in Reasons and Suggestions Associated with Examples

Figure 3.13: Variation in Number of Dimensions

57

Instruction Schema

R
O

U
G

E-
L

0

10

20

30

40

50

prompt+pos ex prompt+pos, neg
ex+ explan.

prompt+definition+
pos. ex.

pos. ex. only all inst.-neg ex. all inst.

<70 examples <10 examples <3 examples

Figure 3.14: GPT3 Performance as a Function of the Number of Examples in Its Encoding.

The Number of Examples Is Limited by Three Upperbounds: 3, 10 and 70. This Shows

That Addition of Examples Is Not Helping GPT3.

58

Instruction Schema

R
O

U
G

E-
L

0

10

20

30

40

prompt+pos ex prompt+pos, neg
ex+ explan.

prompt+definition+
pos. ex.

pos. ex. only all inst.-neg ex. all inst.

<10 examples <3 examples

Figure 3.15: BART Performance as a Function of the Number of Examples in Its Encoding.

The Number of Examples Is Limited by Two Upperbounds: 3 and 10. This Shows That

Addition of Examples Is Not Helping Bart. Since Bart’s Maximum Token Size Is 1024, It

Can Not Fit a Lot Examples Unlike GPT3, so We Did Not Experiment Further with Larger

Number of Examples.

59

Chapter 4

NUMGLUE: MULTITASKING IN NUMERICAL REASONING

4.1 Introduction

Reasoning with numbers is an important skill that occurs in various day-to-day scenarios

and not surprisingly, numbers are ubiquitous in textual data. To train AI reasoning systems

that can perform simple mathematical reasoning, many tasks have been proposed (Dua et al.,

2019b; Ravichander et al., 2019; Koncel-Kedziorski et al., 2016). Despite these efforts,

current state-of-the-art AI systems are brittle and fail when problems involving similar

mathematical reasoning are posed in a slightly different manner. For instance, presenting

a word problem in a different manner as shown in 4.1, while hardly affecting human

performance, is sufficient to confuse state-of-the-art AI systems (The recently released

GPT3-Instruct, a fine-tuned model with 175B parameters produces inconsistent answers for

these questions). This brittleness in reasoning indicates that the models latch on to spurious

signals in the specific dataset resulting in “solving” the dataset while not truly understanding

the underlying reasoning skill of simple arithmetic.

Further, we believe that building AI systems that can truly understand and apply simple

arithmetic reasoning is a mandatory first step towards successfully tackling complex math-

ematical reasoning skills (Saxton et al., 2019; Hendrycks et al., 2020a, 2021b). This has

been discussed further in our work (Mishra et al., 2022g).

NumGLUE. To this end, we propose NumGLUE, a multi-task benchmark consisting of

eight different tasks that at their core test for arithmetic reasoning skills. For example, as

discussed in 4.1, tasks can involve word problems presented in a slightly different manner or

60

Original Word Problem

John had 5 apples. He gave 3 to Peter. How many apples does John have now?

Fill In The Blanks Format

John had 5 apples. He gave 3 to Peter. John has apples now.

NLI Format

Premise: John had 5 apples. He gave 3 apples to Peter. Hypothesis: John has 2 apples

now. Does the hypothesis entail, contradict or is neutral to the premise?

Comparison Format

John had 5 apples. He gave 3 to Peter. Who has more apples?

Figure 4.1: A System That Can Robustly Perform Numeric Reasoning over Language

Should Be Able to Solve Problems Such as the above, Regardless of How the Problem

Is Posed. However, We Observe Existing Systems Are Brittle; Producing Inconsistent

Solutions to Such Minor Stylistic Variations.

can involve additional reasoning strategies like commonsense reasoning or reading compre-

hension to be combined with the core skill of simple arithmetic. Our benchmark consists of

four new tasks in addition to four existing ones; with „100K problems spread across eight

different tasks.

The motivation behind NumGLUE is similar to GLUE (Wang et al., 2018, 2019), a

multi-task benchmark that aimed at models that demonstrated superior language understand-

ing by learning the underlying linguistic features. NumGLUE is designed with goal of

progressing towards AI systems that are capable of performing arithmetic reasoning in a

61

general setting; achieving superior performance on our benchmark requires the ability to

correctly identify and perform the underlying arithmetic reasoning without relying on task

or dataset-specific signals. Finally, we hope that NumGLUE will encourage systems that

perform robust and general numeric reasoning within language, a first step towards being

able to perform more complex mathematical reasoning.

4.2 NumGLUE

As mentioned previously, our NumGLUE benchmark consists of both new and already

existing arithmetic reasoning tasks. We first begin by introducing the novel datasets curated

by us before providing a brief overview of existing tasks that are part of NumGLUE. Finally,

in this section, we provide an analysis of the datasets demonstrating that it contains interest-

ing and diverse linguistic and mathematical properties.

NumGLUE Benchmark. Our proposed NumGLUE benchmark is a collection of eight dif-

ferent tasks that together include „100K questions. The tasks may either be self-contained

or require additional background knowledge (commonsense reasoning) to arrive at the final

solution; however, all the tasks, at their core, involve arithmetic reasoning. 4.1 shows an

example question belonging to each task along with indicating the total number of data

points associated with each task. It is important to note that tasks are imbalanced with

only „400 examples for Task 1 and nearly 50K questions under Task 5. While we could

have under-sampled the questions to create a balanced suite, we retain the imbalanced

dataset in order to mimic the real world – for instance, arithmetic word problems are more

abundant as opposed to word problems that may require commonsense reasoning in addition

to arithmetic reasoning.

Data Partition and Evaluation. We randomly partition data in each task into training

62

Task Question Setting Size Example

TASK 1 Commonsense + Arithmetic 404
Question: A man can lift one box in each of his hands.

How many boxes can a group of 5 people hold in total?

Answer: 10

TASK 2 Domain specific + Arithmetic 1620
Question: How many units of H2 are required to react

with 2 units of C2H4 to form 2 units of C2H6? Answer:

2

TASK 3 Commonsense + Quantitative 807

Question: A person wants to get shopping done quickly.

They know that they can get through the check-out at

big store in 5 minutes whereas it can take 20 minutes

at small store. The store they go to finish quickly is?

(A) big store (B) small store? Answer: big store

TASK 4 Fill-in-the-blanks 1100

Question: Joan found 70 seashells on the beach. She

gave Sam some of her seashells. She has 27 seasshells

left. She gave _____ seashells to Sam? Answer: 43

TASK 5 RC + Explicit NR 54212
Passage: <>. Question: How many counties were

added in 1887? Answer: 2

TASK 6 RC + Implicit NR 32724
Passage: <>. Question: Which player kicked the short-

est field goal? Answer: David Akers

TASK 7 Quantitative NLI 9702

Statement 1: James took a 3 - hour bike ride, Statement

2: James took a more than 1 - hour bike ride, Options:

Entailment or contradiction or neutral?, Answer: En-

tailment

TASK 8 Arithmetic word problems 1266
Question: Joe had 50 toy cars. If he gives away 12 cars,

how many cars will he have remaining?, Answer: 38

Table 4.1: Size and Example of Each Task in the NumGLUE Benchmark. RC: Reading

Comprehension, NR: Numerical Reasoning

63

(70%), development (10%) and test (20%) sets . In the case of reading comprehension tasks

(Task 5 and 6), we assign all questions corresponding to a passage to the same split – we do

this in order to discourage any data leakage and thereby, allowing models to potentially rely

on memorization to arrive at the correct answer.

For each task, we report the F1 measure and as an aggregate measure of performance

on the NumGLUE benchmark similar to Dua et al. (2019b), we report the (unweighted)

average of the F1 scores corresponding to each task.

4.2.1 Novel Datasets

The novel tasks proposed as part of NumGLUE are a combination of both freshly

collected data and intelligent modifications of already existing datasets. The four novel

arithmetic reasoning tasks introduced are as follows 1 :

Task 1: Commonsense + Arithmetic Reasoning. Consider the following question – How

many faces do 10 dice have? Answering this not only requires simple arithmetic multiplying

the number of faces in a die by ten but also requires knowing that a standard die has six faces.

We collect this dataset by first asking the annotator to write down a numerical commonsense

fact (a human has 2 hands, a day has 24 hours) and then use frame a question that requires

using this numerical fact as part of a simple arithmetic calculation.

Task 2: Domain Specific + Arithmetic Reasoning. How many units of hydrogen are

required to produce 10 units of water? This question, similar to the previously introduced

task of arithmetic reasoning questions, requires additional domain-specific knowledge –
1We annotate the datasets manually.

64

specifically, that each unit of water contains two units of hydrogen. We curate a dataset

of such questions that require both domain-specific knowledge and arithmetic reasoning

motivated by the finding that QA systems perform poorly on the ARC dataset (Clark et al.,

2018) consisting of grade-school level science questions. Specifically, the dataset collected

by us requires understanding of a small set of chemistry (conservation of mass in chemical

reactions) and physics principles (speed “ distancetime).

Task 3: Commonsense + Quantitative Comparison. A golf ball weighs 40g and a base-

ball weighs 150g. Which has a higher gravitational force? Answering this question requires

both knowing that mass is directly proportional to gravitational force and a numerical

comparison via subtraction. We collect such quantitative comparison questions by using

the QuaRel dataset (Tafjord et al., 2019) containing questions from diverse fields such

as physics and economics as the starting point. The annotator chooses a subset of these

questions that involve numerically comparable quantities (for instance, in this example,

mass of the objects involved) to create the required task of quantitative comparison questions.

Task 4: Fill-in-the-blanks Format. Unlike the previously proposed tasks that require

external information (commonsense knowledge) in addition to simple arithmetic reasoning,

this task is self-contained but a stylistic variant of existing math word problems. We

source word problems from the Arithmetic Word Problem repository (Roy and Roth, 2015,

2017, 2018) and convert them into the fill-in-the-blanks format. For an example of such a

conversion, refer to 4.1.

4.2.2 Existing Datasets

We now review existing datasets while discussing any modifications made when includ-

ing them in NumGLUE. In general, for all the datasets included, we perform a filtering step

65

to clean and control for the quality of the data points being included. This step includes – a)

discarding questions that do not have answer annotations b) eliminating questions with high

lexical overlap with the remainder of the dataset and c) fixing any type mismatches present

in the data (“7.0 students”Ñ “7 students”).

Task 5: Reading Comprehension (RC) + Explicit Numerical Reasoning. We select

a subset from the DROP (Dua et al., 2019b) dataset to create this task. Specifically, the

selected questions involve reading comprehension and numerical reasoning but importantly,

the required answer is also a number.

Task 6: Reading Comprehension (RC) + Implicit Numerical Reasoning. Consider

the following question based on a relevant passage – Which state has the highest income

tax rate? Here, while the final answer is a name, arriving at it requires performing com-

parison (subtraction). We classify such questions in the DROP dataset as a separate task in

NumGLUE.

Task 7: Quantitative NLI EQUATE (Ravichander et al., 2019) introduces quantitative NLI

questions that require simple arithmetic calculations to be performed in order to accurately

classify the relationship between the provided premise and the hypothesis. As noted in 4.1,

many word problems can also be easily converted to this format and is therefore, a diverse

and interesting task for evaluating arithmetic reasoning skills of AI systems.

Task 8: Arithmetic Word Problems Finally, we arrive at one of the earliest and extensively

studied class of arithmetic reasoning problems word problems. The specific dataset included

as part of our NumGLUE benchmark is a combination of multiple datasets proposed by

Koncel-Kedziorski et al. (2016), (Koncel-Kedziorski et al., 2015) and Kushman et al. (2014).

66

Figure 4.2: Performance of Zeroshot, Fewshot and Finetuning Baselines Across NumGLUE.

There Is a Significant Gap Between the Highest Performing Model and the Human Baseline.

ZS: Zeroshot, Gpt3I: Gpt3-instruct, MT: Multi-task, TS: Task-specific, QO: Question Only,

CO: Context Only, EXNN: Ex-numnet,FS: Few-shot, OS: Oversampling, IR: Information

Retrieval, CIR: Conditional Information Retrieval.

Further, to ensure that the benchmark as a whole is diverse, we eliminate questions that have

a high sentence similarity with questions from the fill-in-the-blanks task.

4.2.3 Data Quality Analysis:

In order to ensure a high-quality test set, three independent annotators evaluate each

question in the test set across all tasks. A tiny portion of the data marked as invalid or with

disagreement between the annotators was excluded, resulting in a verified, high-quality

NumGLUE evaluation suite. We also perform a variety of analyses and find that the novel

question tasks we created (task 1-4) have higher quality than the existing question tasks

67

A group of boys decided to play a
game of poker and kept 8 cards

away. Find the count of cards they
were playing with?

Reading
Comprehension

Convertor

MATHKB
Retrieval

Extended
NumNet+v2

There are 52 cards in a card deck.

Passage: A group of boys decided
to play a game of poker and kept 8

cards away.

Question: Find the count of cards
they were playing with?

44

Original Question
Retrieved Fact

Answer

Figure 4.3: Our Proposed Memory-augmented Model That Detects the Type of Task (1-8),

Uses Information Retrieval from Math KB and Append the Information That Gets Fed to

Ex-NumNet

since they have higher average vocabulary (number of unique words per number of samples),

higher number of unique nouns, verbs and other POS tags and have less semantic textual

similarity among each other (indicating lower repetition).

4.3 Experiments

In this section, we establish multiple baselines on our benchmark and discuss their

performance.

4.3.1 Baselines

We evaluate several baselines on our benchmark – (i) Heuristic, (ii) Zero-shot, (iii)

Few-shot, (iv) Fine-tuning and (v) Human. We use two kinds of model architectures (i)

Neuro-symbolic, a memory augmented novel architecture that extends Numnet+v2 (Ran

et al., 2019) and (ii) End-to-end, GPT3 (Brown et al., 2020).

Architectures. In the multi-task setting where the same model is trained on all the

NumGLUE tasks, we use Reading Comprehension (RC) as the common format – con-

verting each task to RC format via a set of hand-coded rules. In addition to being capable

68

Learning Baseline Baseline Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 NumGLUE

category name Score

HEURISTIC
Task-specific Random 0 0.3 46.9 0 0.5 3.4 33 0.4 10.6

Task-specific Majority 1.2 13.9 50 0.5 7.4 3.8 36.5 1.2 14.3

ZERO-SHOT
- GPT3 0 1 11 2 0 17 6 2 4.9

- GPT3-Instruct 2 1 7 3 3 29 17 3 8.1

FEW-SHOT

Task-specific GPT3 44 42 46 40 10 42 35 40 37.4

Task-specific GPT3-Instruct 40 39 51 33 13 43 35 33 35.9

Multi-task GPT3 0 3 27 1 7 28 30 4 12.5

Multi-task GPT3-Instruct 1 2 37 2 6 35 31 7 15.1

FINE-TUNING Multi-task GPT3-13B 21.5 40.7 71.2 11.1 6.3 48.2 48.0 14.2 32.7

FINE-TUNING

Multi-task (Q-only) Ex-NumNet 1.2 13.2 25.1 0.5 6.1 25.1 32.8 2.4 13.3

Multi-task (C-only) Ex-NumNet 1.2 14.2 22.8 19.1 0.6 3 0 9.5 8.8

Single-task Ex-NumNet 0 37.8 50.8 22.2 66.6 71.6 85.9 12.2 43.4

Multi-task Ex-NumNet 0 37.5 58 31.4 68.2 70.2 85.7 23.2 46.8

Multi-task + IR Ex-NumNet 5.6 37.5 46.6 36.4 68.6 69.6 85.9 22.4 46.6

Multi-task + CIR Ex-NumNet 7.4 38.8 58 36.8 69.2 70.8 85.8 23.6 48.8

Multi-task + OS Ex-NumNet 7.4 38.8 47.8 35.9 44.3 53.7 85.4 22.4 42.0

- - Human 94.4 94.5 97.8 95 94.7 96.1 96.5 92.8 95.2

Table 4.2: F1 Performance of Various Baselines on the NumGLUE Test Set Across Various

Tasks 1-8. Human Performance Was Calculated on 100 Samples of Each Task (81 of Task

1) [*IR = Information Retrieval, CIR=conditional Information Retrieval, OS=oversampling,

Q. Only: Question Only, C. Only: Context Only].

of faithfully representing all the constituent tasks, the RC format also allows us to inject

additional context in the IR setting without affecting the rest of the pipeline 2 . On the other

hand, GPT3 being a generative model does not require such modifications. Importantly,

note that both models are inputted the exact same information for the multi-task experiments.

Heuristic Baselines with Task Oracle. For this baseline, we assume a task oracle that
2Henceforth we will be calling our extension to Numnet+v2 as Ex-NumNet

69

knows the task a particular question belongs (in a multi-task setting) – we use this to make

our heuristic baselines more competitive. The first heuristic baseline is random: we ran-

domly select one of the options in case the question has multiple options (task 3 and 7),

a number between 0 to 100 for questions having a numerical answer and a random entity

present in the passage for questions having a text segment from the passage as the answer. In

the majority baseline, we select the most frequent answer for each task such as "Entailment"

for NLI questions and similarly, the most frequent number for questions having numerical

answer and the major entity present in the passage for questions having span based answer.

As the task information is known, we include these baselines under task-specific baselines

when discussing results.

Zeroshot and Fewshot Baselines. We use GPT3 (Brown et al., 2020) and the more recent

GPT3-Instruct 3 . We have two types of few shot baseline (i) task specific and (ii) multi task.

In case of task specific fewshot baseline, instances of the same task are used as in-context

examples (Brown et al., 2020) whereas in case of multitask few shot baseline, instances

from all tasks are used to condition the model. Multitask fewshot is naturally a harder setting

as it is task-agnostic. We use default parameters in GPT3 and GPT3-Instruct. In few-shot

setting, we experiment after feeding as many examples as it can fit within the tokensize.

For few shot experiments, we randomly select examples and averaged the results over 5 runs.

Fine-tuning Baselines. We first consider variations of the fine-tuning baselines in the

context of our neuro-symbolic model, Ex-NumNet. We use it as bias-checking baseline –

to ensure that solving the benchmark correctly requires considering all of the information

presented to it. To this end, we evaluate the performance of our model when finetuned

only on the question (Q-only) or the context (C-only). Next, we present task-specific and
3newly released by OpenAI as part of the GPT3 finetuned series

70

multi-task baselines where Ex-NumNet is fine-tuned on individual tasks and the entire

NumGLUE benchmark respectively. With the goal of addressing the data imbalance across

the tasks, we include an oversampling baseline that oversamples data from tasks with limited

data so as to ensure that the model sees the same number of examples from each constituent

task.

In addition, we propose a new architectural modification to Ex-NumNet. Noting that

our baseline model Ex-NumNet does not take into account external knowledge, we create a

new enhanced architecture in the form of a memory-augmented model that does Information

Retrieval (IR) (Khot et al., 2019) with respect to a knowledge base we create, MATH KB to

identify the needed knowledge. This is inspired by the observation that formula book and

mathematical knowledge make the task easier for humans while solving math questions of

various types. We then use this knowledge in the Ex-NumNet setting. Figure 4.3 illustrates

our approach which leverages our newly created knowledge base MATH KB. Conditional

IR model is different from the regular IR model in the sense that, IR is performed only for

questions of task 1 , 2 and 4, since they require external knowledge to get answered.

Finally, we discuss fine-tuning baselines in the context of end-to-end models, specifically

GPT3. We finetune the GPT3-13B model (for which the finetuning capability has been

recently provided by OpenAI 4) in the multi-task setting i.e. the desired setting of the

NumGLUE benchmark.

Human Baseline. Human baseline was calculated on 100 test set samples of each task (81

of Task 1) by averaging the scores of four annotators.
4https://beta.openai.com/docs/guides/fine-tuning

71

4.4 Results and Discussion

Table 4.2 shows the performance of various baseline models on the test set of our bench-

mark. Note that the performance of all baseline models is significantly lesser than the human

baseline (Figure 4.2). We now discuss various insights based on these results.

Does the benchmark contain bias that a model can exploit? A challenging dataset

requires the model to ideally consider all the information provided to it before arriving at an

answer. To ensure that this is indeed the case, we perform ablations where only one portion

of the input is provided i.e. either the question or the context. Both these “bias-checking”

baselines perform poorly even in task-specific settings – indicating that both the benchmark

and constituent tasks are challenging.

Which Tasks are Hard to Solve? Our results show that task 1 which requires numeri-

cal commonsense knowledge, is the hardest task to solve. Similarly, tasks 2, 4 and 8 appear

to be comparatively harder from the rest. One pattern among these tasks is that all of them

expect the answer to be numeric. Numeric answer requires accurate calculation. So, models

might have difficulty in learning the task directly from data. This hypothesis is also justified

from the slight drop in human performance in these tasks..

On the other hand, task 7 has the best performance among all. Further, we see that per-

formance on task 6 is slightly better than task 5 – although both tasks are sourced from

the same dataset, we observe that models answer span based questions better as compared

to numeric answers. Relatively higher performance for task 3 suggests that models find it

easier to answer in an MCQ setting.

Does IR Help? Results show that knowledge help in improving performance of tasks

72

1, 2 and 4 – where indeed, external knowledge like commonsense or domain-specific knowl-

edge is needed in addition to arithmetic reasoning to arrive at the correct answer. However,

task 3 is an exception to this trend and in fact registers a drop in the score when provided

with (unnecessary) additional information; we find that this shortcoming is fixed when

using conditional information retrieval (CIR) which in fact leads to the strongest baseline

presented in this work.

Does Oversampling help overcome data imbalance across tasks? Even though over-

sampling results in higher performance in certain tasks (in comparison with the multitask

baseline), specifically the ones with smaller training data, it results in significant drop in

performance in the other extreme, i.e tasks with bigger training data. Also, it never performs

better than the Conditional IR module in multitask setting.

4.4.1 Error Analysis

We now present an analysis of the errors made by our baselines to indicate potential

avenues for future research.

We analyze errors associated with 50 samples in each of the 8 tasks and find that there are

mainly 4 categories of error models make: (1) producing invalid output (e.g. answering

text where the answer is supposed to be a number, answering a text different from the

classes allowed in a classification problem), (2) copying a number from the question instead

of calculating the answer, (3) incorrect calculation – this can be due to multiple reasons

including (i) using an incorrect operation e.g. subtraction in place of addition, (ii) incorrect

parsing of numbers or (iii) incorrect knowledge of numerical commonsense facts. (4) pro-

ducing redundant text after producing correct answer. Based on error distribution in Table

4.3, we observe that the majority of errors come from incorrect calculation. Further, GPT3

73

Error Ex-NumNet GPT3

Invalid output 16 % 7%

Copy number 5 % 3%

Incorrect calculation 71 % 56%

Redundant text 8 % 34%

Table 4.3: Error Analysis for the Best Ex-NumNet Multitask+CIR and GPT3 Task-specific

Model

is better than Ex NumNet+v2 in producing valid outputs, but it produces more redundant text.

Future Directions: Bigger model, more data or . . . ? Table 4.2 shows that fine-tuned

GPT3-13B outperforms other baselines on task 1, 2 and 3. Recall that these tasks require

external knowledge and perhaps, this is the reason why GPT3, already pre-trained on a

diverse web-scale text corpus has an edge over other baselines on these tasks. In case of

the smaller Ex-NumNet, it is interesting that multitask baselines are higher than the single

task baselines by 3.4% on average and that information retrieval helps in tasks that require

external knowledge. Also notice that, GPT-3 is better on smaller datasets and NumNet is

better on large datasets. This may indicate that GPT-3 is a better few-shot learner but not

necessarily a better many-shot learner. This non-overlapping performance of GPT-3 and

Ex-numnet, end-to-end and neuro-symbolic models respectively, indicates that a potential

future direction for research is to combine the best of both the models.

74

Multimodal
Numerical
Reasoning

Classification

NumGLUE

T3

Theorem
Proving

(Polu and
Sutskever.

2020)

HMWP (Qin
et al. 2020)

Math23K
(Wang et al.

2017)
Dolphin

(Huang et
al. 2016)

Numersense
(Lin et al.

2020)

Machine
Numbersense
(Zhang et al.

2020)

Geometry
(Seo et al.

2015)

MATHQA
(Amini et
al. 2019)

ARC (Clark
et al 2018)

MCTaco
(Zhou et al

2019)
Scales

(Zhang et al.
2020)

T7
T4

T5 T6

Complex Reasoning
+ Complex Math

Complex
Reasoning

Domain-
specific
Reasoning

Commonsense
Reasoning

Commonsense +
Knoweldge of Facts

Word Math
Problems

T8

T2

T1

Mathematics
(Saxton et al.

2019)

MATH
(Hendrycks et al.

2021)

Math
Puzzles
(Mitra &

Baral
2015)

College Physics
(Hendrycks et al. 2021)

Question Answering

NLI Probes

Reading
Comprehension

Fill in the Blank

Complex
Math
Problems

Figure 4.4: Our Dataset NumGLUE (Center in the Yellow Circle) Has Been Positioned with

Respect to Existing Datasets. T1-T8 Represents 8 Tasks. Note That, NumGLUE contains

the Feature of Being Format Invariant Unlike Other Datasets. Position of Datasets Within

Clusters Is Done Based on Their Semantic Category, for Example T1 Numerical Common-

sense Qa Is Closer to the Cluster of Commonsense Reasoning + Knowledge of Facts; Its

Position Reflects the Same

4.5 Additional Analysis

4.5.1 NumGLUE vs Other Datasets:

As figure 4.4 shows, we select each task from one of the clusters of numerical reasoning

datasets (except the multi-model reasoning cluster since we wanted to limit our dataset to

text only).

75

4.5.2 Construction of NumGLUE :

Figures 4.5 and 4.6 illustrate detailed data creation process for task 1, task 2, task 3 and

task 4 questions with the help of an example for each task. We follow the same procedure

for creating other examples within the task.

Figure 4.5: Step by Step Data Creation Process for Task 1, 2 and 4 Questions

4.5.3 GPT3-Instruct’s Response

We used GPT3-Instruct on various forms of a simple arithmetic question. An expert did

tuning of various parameteres such as temperature, stop condition, presence penalty, engine,

maximum token size. However, GPT3-Instruct still could not solve the basic aritmetic

questions reliabily.

4.5.4 Data Quality Analysis of NumGLUE

In this section, we discuss various linguistic and statistical properties of our benchmark;

ones that we believe result in the quality, diversity and challenging nature (Gururangan et al.,

2018; Mishra et al., 2020b; Mishra and Sachdeva, 2020; Swayamdipta et al., 2020; Mishra

76

Figure 4.6: Step by Step Data Creation Pro-

cess for Task 3 Questions

et al., 2020a; Arunkumar et al., 2023) of the proposed NumGLUE benchmark.

Vocabulary Size. First, we calculate vocabulary size of each task by finding the num-

ber of unique words across all questions. Since our dataset is unbalanced in terms of

question task, we find the average vocabulary size by dividing vocabulary size with number

of data in that task.

Which Data has Higher Average Vocabulary? As illustrated in Figure 4.7a, most of the

77

tasks belonging to the novel dataset category have relatively better average vocabulary size.

This implies questions in those tasks have less repetitiveness. Furthermore, we expand our

vocabulary analysis to understand Figure 4.7a better. We dive deep to analyze different

parts of speech. Figure 4.7b summarises our analysis. Most of the novel datasets have more

average number of nouns, verbs and adjectives implying there are more varieties of entities,

actions and attributes. This further means that datasets belonging to the novel category are

more diverse in nature.

Sentence Similarity Analysis We extend our analysis to reinforce our inference from

the word vocabulary analysis. We find Semantic Textual Similarity (STS) of a sentence with

every other sentence.

Which Data Consists of Most Dissimilar Sentences? As depicted by Figure 4.7c-4.7f,

most questions in QuaRel have high similarity value with other questions indicating the

repetitiveness of data. Same is true for majority of EQUATE data. DROP also has high simi-

larity among questions. However, similarity among questions in our dataset is significantly

less. Some similarity boxes can be seen in the chart. They are mostly due to task 2 data, and

partly due to task 3 data. Lesser similarity implies that our dataset is far less repetitive than

others. Also, the repetition in our dataset is sparse and is not equally distributed among the

whole dataset unlike others. This way, our dataset is more diverse.

Note that question in Task 2 have lower vocabulary and further, a higher similarity as

well. As a small set of chemistry and physics principles are used to generate questions, the

result is a fairly templated or uniform-looking dataset – leading to the observed reversal of

trends in this particular task.

78

4.5.5 Ex-NumNet

Figure 4.8 illustrates our baseline model: Ex-NumNet. This contains a Reading Compre-

hension Converter module which converts each task of question to reading comprehension

format. Figure 4.9 illustrates various examples of how each task of questions gets converted

to the reading comprehension format. We add a task converter module to detect task of

a question. We design task converter heuristically based on the features associated with

questions (e.g. NLI contains "Sentence 1" and "Sentence 2" whereas completion contains a

blank). We convert each of the tasks to RC format. For NLI questions, we use the premise

sentence as passage, hypothesis as the question and append the string “Entailment, contra-

diction or neutral?” to the question so that it has a span based answer. For other questions,

we tokenize the question string into its constituent sentences and use a heuristic approach to

split the question string into passage and question. Furthermore, for option based questions,

we append all the options at the end of the question.

4.5.6 Proposed Memory-Augmented Model

Figure 4.8 illustrates our baseline model Ex-NumNet. We add an IR mechanism as

described in Algorithm 1 and illustrated in Figure 3. As mentioned in the ‘Baselines’

subsection (Experiments section), we convert each task to RC format in our baseline and

append the knowledge retrieved using IR from MATH KB at the end of the passage. In our

experiments, we use the following hyperparameters in the IR process: Z “ 50, v “ 10,

th “ 0.75 and b “ 0.1.

Formalization Let D represents dataset, s represents sample, K represent the MATH

KB, v represents the number of knowledge statements retrieved for each sample, th is the cut

off STS (Semantic Textual Similarity) value above which knowledge statements are treated

79

redundant and removed, b is the reduction we do iteratively on th until v statements remain.

We create a knowledge base, MATH KB by accumulating all tasks of external knowledge

which are needed to solve questions of various tasks (e.g. human has 2 hands, cow has 4

legs, there are 24 hours in a day .). We also add math formulae required to solve questions

in our benchmark (e.g. the formula of speed in terms of distance and time). We add all these

in the form of plain text separated by new line. We use Elasticsearch to retrieve relevant

knowledge sentences. We further filter them using a heuristic threshold of relevance. We

append this knowledge at the beginning of the passage so that continuity is not broken

between passage and question. Figure 3 illustrates our approach.

4.5.7 Hyper Parameters Used

All the experiments were run with the following hyper parameters, batch size was kept

at 16 where as the eval batch size was 5. The maximum number of epoch ran for the

experiments were 5 with the warm-up kept at 0.06. The learning rate used was 1.5e-5 and

the weight decay was 0.01.

All above hyper parameters were selected using a grid search; we kept rest of the hyper

parameters unaltered. All the experiments were performed on "TeslaV100-SXM2-16GB",

with which the model takes 24hrs to train on nearly 100k samples.

4.5.8 Additional Examples

We provide additional examples of task 1, 2, 3 and 4 questions here to better illustrate

the novel datasets we have created as part of our NumGLUE.

80

Algorithm 1: Our Information Retrieval Approach
Input: Dataset D, MATH KB K Hyper-Parameters: Z, v, th, b

Output: v Knowledge sentences

1 forall s P D do

2 Concat Question and Answer ;

3 Generate Query by retaining only verbs, adjectives and adverbs;

4 forall j P K do

5 Create Index using Elastic Search ;

6 Retrieve top Z sentences from MATH KB.

7 end

8 while size(Z)ąv do

9 forall k P Z do

10 forall u P k ´ 1 do

11 if STS(Z(u),Z(k))ąth then

12 Delete k;

13 end

14 end

15 end

16 th=th-b;

17 end

18 end

4.6 Conclusion

We propose NumGLUE 5 , a multi-task benchmark to test for arithmetic understanding.

Our benchmark consists of eight tasks including four new ones. While some of the tasks

require external knowledge like commonsense or domain-specific information in addition
5https://allenai.org/data/numglue

81

to arithmetic reasoning, some are self-contained e.g. arithmetic word problems. Further,

we demonstrate that our benchmark is far from being solved – with state-of-the-art large

scale models achieving considerably lower performance than humans. This indicates that

current AI systems are incapable of performing simple arithmetic reasoning in a general

setting – indicating a fundamental hurdle towards AI systems that understand complex

mathematical concepts like differential equations or combinatorics. Finally, we present

various baselines including a novel architecture (memory augmented Ex-NumNet) that

demonstrate the advantages of various modeling choices (e.g. end-to-end vs neuro-symbolic

models). Specifically, we show that training in the multi-task setting leads to meaningful

sharing of knowledge across tasks as evidenced by an average gain of 3.4% on tasks

compared to task-specific modeling. Finally, we hope that our benchmark not only leads to

AI systems that are capable of performing simple arithmetic reasoning in a fairly general

setting but also results in progress towards more complex mathematical reasoning capability.

82

(a) Average Vocabulary Represents the Average

Number of Unique Words Across Various Tasks.

On an Average, Novel Datasets (Task 1-4) Have

Higher Vocabulary.

(b) Average Number of Unique Part of Speech

(POS) Tags Is Higher for Task 1 and Task 4 in

the Novel Datasets in Contrast to Other Tasks.

(c) STS Plot for the

Quarel Dataset Shows

Significant Repetition

Across Samples

(d) STS Plot for the

Equate Dataset Shows

Considerable Repetition

Across Samples.

(e) STS Plot for the

Drop Dataset Shows

Repetitions for Most

Part of the Data.

(f) STS Plot for the

Novel Datasets Show

Relatively Lower

Repetition than Other

Datasets

Figure 4.7: Data Quality Analysis of NumGLUE across Various Tasks of Data. On an Aver-

age, Novel Datasets Have Higher Quality than the Others since They Have Higher Average

Vocabulary, Higher Average Pos Tag Numbers and Lower Semantic Textual Similarity (Sts)

among Each Other. X-axis and Y-axis Represents Samples Ordered in the Same Way, an

Ideal High Quality Dataset Would Have a Bright Line in the Diagonal and For the Rest of

the Places It Should Be Dark Signifying Lower Repetition Across Instances.

83

A group of boys decided to play a
game of poker and kept 8 cards

away. Find the count of cards they
were playing with?

Reading
Comprehension

Convertor

Extended
NumNet+v2

Passage: A group of boys decided
to play a game of poker and kept 8

cards away.

Question: Find the count of cards
they were playing with?

44

Original Question

Answer

Figure 4.8: Architecture of Ex-NumNet

Figure 4.9: Conversion of Various Tasks to Reading Comprehension Format

84

Question Knowledge Required Answer

Ella and Lily are

playing a game that

requires 10 die. Find

out the total number

of faces in 10 die.

A die has 6

faces

60

Jacob and Lillian are

running a km long

race. Jacob finished

the race when Lil-

lian was 190 meters

from the finish line.

How many meters

did Lillian cover till

that time?

1000 meters

make a km

810

A man can lift one

box in each of his

hands. How many

boxes can a group of

5 people hold in to-

tal?

A human

being has 2

hands

10

Table 4.4: Example Questions Where Numerical Knowledge Required to Answer Is Not

Explicitly Provided in the Question.

85

Question Knowledge Required Answer

Find the mass per-

centage of H in

C6H6

Mass of C is

12 units and

mass of H is

1 unit

7.69

How many units of

H2 are required to

react with 2 units

of C2H4 to form 2

units of C2H6

H2 + C2H4

= C2H6

2

A car covers 912 me-

ters in 19 seconds.

If bike’s speed is

one fourth of the

car. Find the dis-

tance covered by the

bike in 4 seconds.

distance

travelled =

speed * time

48

Table 4.5: Example Questions Where Domain Knowledge Is Required to Answer a Question.

86

QuaRel Question Transformed Question

A person wants to get

shopping done quickly.

They know that they can

get through the check-

out at big store faster

than they can at small

store. The store they go

to to finish quickly is

(A) big store (B) small

store

A person wants to get

shopping done quickly.

They know that they can

get through the check-

out at big store in 5

minutes whereas it can

take 20 mintues at small

store. The store they go

to to finish quickly is

(A) big store (B) small

store

Tina is racing her two

dogs. Her greyhound

is slim, her rottweiler is

heavy. The dog that gets

faster more quickly is

the

(A) rottweiler (B) grey-

hound

Tina is racing her two

dogs. Her greyhound

weighs 88 lbs and her

rottweiler weighs 79 lbs.

The dog that gets faster

more quickly is the

(A) rottweiler (B) grey-

hound

A golf ball has a smaller

mass then a baseball.

Which item has a

weaker gravitational

field?

(A) golf ball (B)

baseball

A golf ball has a mass

of 78 grams and a base-

ball has a mass of 0.159

Kg. Which item has

a weaker gravitational

field?

(A) golf ball (B) base-

ball

Table 4.6: Examples Showing Conversion of Quarel Questions to Quantitative Comparison

Questions

87

Arithmetic Word Problem Transformed Question

Joan found 70 seashells

on the beach. She

gave Sam some of her

seashells. She has 27

seashell left. How many

seashells did she give to

Sam ? 43

Joan found 70 seashells

on the beach . She

gave Sam some of her

seashells . She has 27

seashells left. She gave

seashells to Sam.

43

Last week Tom had 74

dollars. He washed

cars over the weekend

and now has 86 dollars.

How much money did

he make washing cars ?

12

Last week Tom had 74

dollars. He washed cars

over the weekend and

made another 86 dollars.

Tom has dollars

now . 160

Table 4.7: Examples Showing MAWPS Questions and Corresponding Questions in Comple-

tion Format

88

Chapter 5

REFRAMING INSTRUCTIONAL PROMPTS

5.1 Introduction

Prompting language models (LMs) (Liu et al., 2021b) has made NLP modules accessible

to non-expert users through plain text instructions (We focus on instructional prompts (Efrat

and Levy, 2020) as opposed to exemplar prompts which are already well-studied (Brown

You are given passages that contain mentions of names of people, places,
or things. Your job is to write questions that evaluate one's understanding
of pronouns (she, her, him, his, their, etc.) or other mentions to people,
places, or things to which they may refer.

Raw Task Definition

Generate names of persons, places or things from the passage.

Generate a question from the
passage with name as the answer.

Based on the passage, generate a
question that contains the name.

Generate a question using $Q1 and $Q2 with $A1 as the answer

Biden

Q2: Who is the president of US?
A2: Biden

Q1: What is Biden's birthplace?
A1: Scranton

What is the birthplace of the person who is the president of US?

Reframed Task Definition

Reframing

Figure 5.1: GPT3 Has Difficulty in Writing Questions That Require Entity Coreference

Resolutions Based on a Single Lengthy Prompt (Top, in Yellow), However, It Succeeds in

Solving a Manually Reframed Task That Has Four Simpler Sub-steps (Bottom, in Green).

89

et al., 2020; Lu et al., 2021d) of NLP tasks). Such task instructions written by non-expert

users are often long and contain abstract descriptions which are not easy to follow for

LMs, as evidenced by their low performance (Efrat and Levy, 2020; Mishra et al., 2022f).

However, it is not quite clear whether this is due to the inherent difficulty of the target tasks

or an artifact of the complex phrasing of their language instructions.

In this analysis, we aim to understand the sensitivity of LMs to the framing of instruc-

tional prompts. In particular, we study several reframing techniques to frame instructional

prompts differently so that LMs achieve better understanding of the task. These reframing

techniques are motivated by various empirical intuitions such as ease of understanding con-

cise and concrete instructions and those that contain little abstract statements about human

commonsense or their background knowledge. For example, Fig.5.1 shows a reframing

example which involves decomposing a task into multiple sub-tasks. The intended task here

is writing questions that require entity coreference (Dasigi et al., 2019). While GPT3 fails

in solving the original task instruction (the yellow box at the top), it succeeds when the task

is decomposed to four simpler and easier sub-tasks.

We provide analysis for five diverse reframing techniques 1 . These include incorporating

low-level patterns about the target task, decomposing and itemizing instructions, stating the

task constraints, and providing specialized instructions (examples in Table 5.1-5.3).

We analyze reframed instructions over 12 tasks from Natural Instructions (Mishra

et al., 2022f), which contains a variety of NLP tasks and their instructions. Empirically,

we compare the quality of LMs (GPT2/3 Radford et al. 2019; Brown et al. 2020) in two

settings: raw vs reframed instructions. In particular, we observe that the reframed prompts

have notable performance gains over raw instructions (the gap between the red and blue
1https://github.com/allenai/reframing

90

RO
U

G
E

-L

0

20

40

60

GPT2 GPT2Large GPT2XL GPT3 GPT3-Instruct

Raw Instructions (No Reframing) Task Reframing
GPT2Large-finetuned (n=10)

GPT2Large-finetuned (n=1000)

Figure 5.2: Across a Variety of Model Sizes, Reframed Prompts Consistently Show Consid-

erable Performance Gain over Blue Raw Task Instructions (No Reframing)in a Few-shot

Learning Setup. Since Fine-tuning GPT3 Is Prohibitively Expensive, We Show the Per-

formance of Fine-tuning Smaller Models (Horizontal Lines). This Results Indicate That

Evaluating Reframed Prompts on a Large Model like GPT3-instruct (Red Line) Might Be

More Effective That Fine-tuning a Smaller Model like GPT2large (Green Line) with 200ˆ

More Data. Details of the Experiments In §5.3.

trends in Fig.5.2) with an average of 14% and 17% gains when using GPT3-instruct in the

few-shot and zero-shot setups, respectively. Furthermore, the average gains across tasks

remain consistent across different models hinting at consistency of reframed prompts on

various architectures. This is in contrast to the widely-used fine-tuning approaches which

need to be performed separately for each model. Reframing prompts by model design-

ers can be particularly effective when evaluated on large LMs, where fine-tuning can be

prohibitively expensive (such as GPT3). In particular, we observe that, reframed prompts

on GPT3-instruct score roughly 17% higher than GPT2Large that is supervised with 1k

instances (i.e., 200ˆ more data).

91

While reframing instructions are not algorithmic, nonetheless, we view this systemic

analysis as a preliminary stepping stone in this direction. We hope that this study will lead

to the development of algorithmic better few-shot learning methods that generalize across

models, thereby leading to more effective ways of reaping the investments already poured

into creating massive LMs. This has been discussed further in our work (Mishra et al.,

2022e).

5.2 Prompt Reframing

This section describes our reframing principles and then describes the guidelines to

operationalize them. Reframing principles are obtained by probing instructions of various

tasks in the training split of Natural Instructions (Mishra et al., 2022f) to understand different

failure modes associated with prompting in GPT3.

Motivation from GPT3’s Failures We observe that GPT3 fails to follow instructions

when it is provided with long prompts that often contain repeated information, abstract

notions, analogies, complex statements requiring human commonsense and their domain

knowledge (see examples in Table 5.1 and 5.7). Humans typically find these helpful for

describing their tasks. For example, some content intended to motivate the task or repetition

for the sake of emphasis, might be unnecessary or even redundant for a model.

5.2.1 Reframing Principles

We observe that short prompts that contain concrete statements and avoid terms associ-

ated with background knowledge improve GPT3’s response to instructions. We recursively

apply this observation and provide a set of reframing principles to resolve various issues

on GPT3’s failures with prompting, backed by extensive empirical analysis on GPT3. The

92

Raw task definitions and their reframed counterpart
PA

T
T

E
R

N

R
E

F
R

A
M

IN
G

Raw Task: Craft a question which requires commonsense to be answered. Based on

the given context, craft a common-sense question, especially those that are LONG,

INTERESTING, and COMPLEX. The goal is to write questions that are easy for humans

and hard for AI machines! To create such questions, here are some suggestions: A. What

may (or may not) be the plausible reason for an event? B. What may (or may not) happen

before (or after, or during) an event? C. What may (or may not) be a plausible fact about

someone (or something)? D. What may (or may not) happen if an event happens (or did

not happen)? You can also create other types of questions.

Input: Context:<> Expected Output: Question:<>

Reframed Task: Use ’what may happen’, ’will ...?’, ’why might’, ’what may have

caused’, ’what may be true about’, ’what is probably true about’, ’what must’ and

similar phrases in your question based on the input context.

Input: Context:<> Expected Output: Question:<>

IT
E

M
IZ

IN
G

R
E

F
R

A
M

IN
G

Raw Task: Follow the instructions to produce output with the given context word. Do

<>. Do <>. Don’t <>

Input: Context word <> Expected Output: Long text <>

Reframed Task: Follow instructions below to produce output based on the given context

word.

- Do <>

- Do <>

- Do <>

Input: Context word <> Expected Output: Long text <>

Table 5.1: Examples of Various Reframing Techniques. Italicized Text Represents the

Prompt. Changes in Prompt and Example in the Transformed Task Are Indicated with Blue

and Red Markings, Respectively.
93

Raw task definitions and their reframed counterpart
D

E
C

O
M

P
O

S
IT

IO
N

R
E

F
R

A
M

IN
G

Raw Task: In this task, based on the given context word, you need to create a pair of

sentences each containing a blank (_) and their corresponding answer. The sentence pair

should look similar, and should be about two related but different objects; for example

"trophy" and "suitcase". Also, the sentences must be different in terms of trigger words

(e.g., "small" and "big") which express contrasting properties about the two objects.

Input: Context word:<> Expected Output: Question 1: <> Answer 1: <> Question

2: <> Answer 2: <>

Reframed Task:

Subtask 1. Write 2 objects based on the given context word.

Input: Context word:<> Expected Output: Objects: <>

Subtask 2. Write a sentence by connecting objects with a verb.

Input: Objects: <> Expected Output: Sentence: <>

Subtask 3. Create a fill in the blank question from the sentence where object 1 will fit

the blank.

Input: Object 1: <>,Sentence: <> Expected Output: Question: <>

Subtask 4. Change the given question so that answer flips to object 2 in the question.

Input: Object 2: <>, Sentence: <>, Question: <> Expected Output: Question: <>

Subtask 5. Generate both questions and answers:

Input: Question 1: <> Object 1: <> Question 2: <> Object 2: <>

Expected Output: Question 1: <> Answer 1: <> Question 2: <> Answer 2: <>

Table 5.2: Examples of Various Reframing Techniques. Italicized Text Represents the

Prompt. Changes in Prompt and Example in the Transformed Task Are Indicated with Blue

and Red Markings, Respectively.

94

Raw task definitions and their reframed counterpart
R

E
S

T
R

A
IN

IN
G

R
E

F
R

A
M

IN
G

Raw Task:... What is the type of the answer corresponding to the given question?

Number, Date, or Span?...

Input: Passage: <>. Question: <> Expected Output: <Number/Date/Span> ...

Reframed Task:... What is the type of the answer corresponding to the given question?

Number, Date, or Span?...

Input: Passage: <> Question: <> Answer either Number, Date or Span? Expected

Output:<Number/Date/Span>

S
P

E
C

IA
L

IZ
A

T
IO

N

R
E

F
R

A
M

IN
G

Raw Task: Answer the following question ... <Not so important Text> ...

Input: Question <> Expected Output: Answer <>

Reframed Task:Calculate answer to the following question. You need to either add or

subtract numbers associated with two objects present in the question.

Input: Question <> Expected Output: Answer <>

Table 5.3: Examples of Various Reframing Techniques. Italicized Text Represents the

Prompt. Changes in Prompt and Example in the Transformed Task Are Indicated with Blue

and Red Markings, Respectively.

principles have light resemblance to how basic tasks are formulated and taught to kids.

(C1) Use Low-level Patterns: Instead of using terms that require background knowledge to

understand, use various patterns about the expected output.

(C2) Itemizing Instructions: Turn descriptive attributes into bulleted lists. If there are any

negation statements, turn them into assertion statements.

(C3) Break it Down: Break down a task into multiple simpler tasks, wherever possible.

(C4) Enforce Constraint: Add explicit textual statements of output constraints.

95

(C5) Specialize the Instruction: Customize the instructions so that they directly speak to the

intended output.

We operationalize each of the above principles in terms of 5 reframing techniques. The

degree of reframing (the amount of change applied to the raw instructions) varies significantly

across the reframing techniques: the simplest one adds an enforcement statement at the

end whereas the other extreme involves completely changing the task as a whole (e.g.,

decomposing it into multiple tasks).

5.2.2 Reframing Techniques

We explain each of the reframing techniques in three parts (1) model failure states a

potential weakness of LM with reference to examples in Table 5.7 (2) approach describes

our suggested approach and intuition behind it, according to our empirical observations (3)

example illustrates the application of the suggested technique in reference to Table 5.1-5.3.

In designing these techniques, we used a development set that contains all the positive

examples included as part of the instructions of each task in .

PATTERN REFRAMING

Model failure While humans have an incredible ability in understanding and acting with

respect to abstract descriptions, LMs tend to ignore most of them or just repeat the content

of such instructions in their output (copy instruction in Table 5.7.)

Approach Find low-level patterns among the dev set examples and extrapolate those by

adding similar patterns (C1).

Example Table 5.1 (row 1) illustrates the CosmosQA (Huang et al., 2019) question gen-

eration task. The raw task instruction consists of various high-level statements such as

“commonsense”, “complex”, “interesting”, “easy for humans and hard for AI machines”,

whereas the reframed task consists of various low-level patterns about the expected output

96

such as “what may happen”, “in the future, will..”, “why might”, which generally improve

GPT3’s performance in generating valid questions.

ITEMIZING REFRAMING

Model failure LMs cannot follow long paragraphs stating multiple requirements (first

instruction bias in Table 5.7) and do not perform well when the requirements are formulated

as a negative statement (negation challenge in Table 5.7).

Approach Turn long descriptions into bulleted lists of several statements (C2). Additionally,

turn negative statements to positive ones. For example, reformulate “don’t create questions

which are not answerable from the paragraph” into “create questions which are answerable

from the paragraph”.

Example Table 5.1 (row 2) illustrates the WinoGrande (Sakaguchi et al., 2020) sample

generation task where the raw instructions contain several requisites (do’s and don’ts) that

are hard for models to follow. Reframing the instructions into a structured list improves the

model response.

DECOMPOSITION REFRAMING

Model failure Tasks with implicit multi-step reasoning are challenging for models, even

after itemizing reframing (5.2.2) (multi-step task challenge in Table 5.7).

Approach Wherever possible, decompose a task into multiple different sub-tasks which can

be executed either sequentially or in parallel (C3) and hence, make them relatively easier for

models.

Example In Table 5.2 (row 1), the task is to generate samples for the Winogrande (Sakaguchi

et al., 2020) dataset. Decomposition of the task into 5 sequential steps improves GPT3’s

response.

97

RESTRAINING REFRAMING

Model failure A common mistake of GPT3 occurs when the task definition deviates from

its pre-trained objective (predicting next words) (conventional-task bias in Table 5.7). For

example, when predicting question types GPT3 often answers the question instead of

generating its type. Similarly, in reading comprehension tasks, GPT3 sometimes answers a

question based on its background knowledge instead of answering from the given passage.

Approach Append a statement to the task instruction that expresses a constraint about the

output generation (C4).

Example Table 5.2 (row 2) illustrates the DROP (Dua et al., 2019b) answer type generation

task where the objective is to generate a valid answer type among “Number”, “Date” and

“Span” for a given question. Adding an enforcement statement tends to improve the model

output by constraining it to the provided types.

SPECIALIZATION REFRAMING

Model failure LMs ignore generic instructions such as “answer the following question” and

sometimes misconceive the output format when the given instruction contains redundant

text (misconceive output format in Table 5.7).

Approach Reformulate the instructions so that they directly describe the low-level task

needed to be done and drop all the repeated and generic statements (C5).

Example Table 5.3 (row 1) illustrates a task of numerical reasoning problems that involve

natural language sentences describing additions and subtractions. The reframed prompt

specializes the generic task instruction (“calculate answer”).

98

task source category

generating questions

on event duration

MC-TACO

(Zhou et al., 2019)
Question

Generation

(QG)generating questions

on sentence composition

QASC

(Khot et al., 2020)

answering event

coreference questions

Quoref

(Dasigi et al., 2019)
Question

Answering

(QA)answering fill in the

blank questions on

coreference resolution

WinoGrande

(Sakaguchi et al., 2020)

identifying inappropriate

content in context

CosmosQA

(Huang et al., 2019) Classification

(CF)
identifying bad questions

in reading comprehension

MultiRC

(Khashabi et al., 2018)

Table 5.4: List of Evaluation Tasks Used in This Study (§5.3).

5.3 Experimental Setup

Dataset We evaluate the proposed reframing techniques on the evaluation tasks from

Natural Instructions (Mishra et al., 2022f), which consists of 12 tasks categorized into 6

categories. Following the original setup, we use ROUGE-L (Lin, 2004) as the evaluation

metric in our experiments. Table 6.1 contains the list of evaluation task used in this study.

99

task source category

generating incorrect

answers to event

transience questions

MC-TACO

(Zhou et al., 2019)
Incorrect

Answer

Generation

(IAG)
generating incorrect

answers to event

duration questions

MC-TACO

(Zhou et al., 2019)

modifying fill in the

blank questions on

coreference resolution

WinoGrande

(Sakaguchi et al., 2020)
Text

Modification

(MM)
generating paraphrase

of given sentences
Miscellaneous

finding overlapping words

between two sentences

QASC

(Khot et al., 2020) Verification

(VF)
Identifying words

essential for choosing

correct answers.

Essential-Terms

(Khashabi et al., 2017)

Table 5.5: List of Evaluation Tasks Used in This Study (§5.3).

100

Models For evaluation we use various models of the GPT family: GPT2, GPT2Large,

GPT2XL, GPT3 and GPT3-instruct (Brown et al., 2020; Radford et al., 2019) 2 and

BART-base (Lewis et al., 2019). We evaluate the models according to the following setups:

GPTk w/ raw instructions: We follow the setup of Mishra et al. (2022f) who experiment

with GPT3-instruct on their raw instructions. Overall the prompts provided to the model

consist of three segments (in this order): (a) task instructions, (b) examples (input and

outputs) and (c) a new input for which we expect model’s response. We experiment with

three different variants of the baselines, depending on the number of examples in their

prompts: (i) FEW-SHOT: We experiment with 5 examples 3 which is a more realistic few-

shot setup. (ii) MAX. EX.: in another variant we use as many examples as fits within GPT’s

token limit. (iii) ZERO-SHOT: in this setup, we do not incorporate any example while

prompting the models with the instructions. Finally, we build variants of these baselines

by conducting ‘schema selection’ where we experiment with 12 different encodings of the

instruction (Mishra et al., 2022f) and select the best performing one for each task.

GPTk w/ reframed instructions: The model designer applies various reframing techniques

(Section 5.2.2) on tasks in . Similar to the raw instructions baseline, we use 5 examples in

our reframed tasks. In our setup, model designer is an author who follows the guidelines

(§5.2.2) by observing 5 examples in the development set and reframes instructions. This

process was done in interaction with GPT3-instruct via the development examples. This

took roughly 15 minutes per task and per reframing type. Similar to the setup with raw

instructions, the ultimate encoded prompts contained a concatenation of the following (in

this order): reframed instructions, positive examples and the instance input.

GPTk w/ calibration: This method extends the recent calibration approach introduced by

Zhao et al. (2021), which involves compensating for various model-specific biases in a
2https://beta.openai.com/docs/engines/
3These 5 positive examples are part of instructions in each task of , and sometimes the number of positive

examples is less than 5.

101

few-shot setup, such as recency bias and majority bias. Zhao et al. (2021) perform cal-

ibration by masking input instances with ‘N/A’ tokens, estimating the bias using model

prediction probabilities and then compensating the bias while feeding the input instance

during prediction. We extend calibration to our instruction setup by masking the input

instance in our instruction encoding with an ‘N/A’ token and calibrating biases associated

with GPT3-instruct.

Supervised baseline: While the conventional setup of supervised learning has been success-

ful for reasonably sized models, it is prohibitively expensive for large models like GPT3.

We train medium-sized LMs (e.g., BART-base Lewis et al., 2019) on 5k examples of each

task and evaluate on unseen instances of the corresponding task.

5.4 Empirical Results

5.4.1 Main Results

A summary of our experiments is provided in Fig.5.2 which shows the performance

of the reframed instructions on various models, compared to our baselines. Furthermore,

Table 5.6 provides a more granular comparison of few-shot, zero-shot and supervised

models per task category, all on GPT3-instruct and in terms of ROUGE-L. Below are several

takeaways from these experiments.

Reframing improves upon the few-shot and zero-shot baselines. Table 5.6 shows that

reframing outperforms the original raw instruction baseline with 14% (44%Ñ 58%) and

17% absolute gains (33%Ñ 50%) in few-shot and zero-shot setups, respectively. Addition-

ally, it outperforms the schema selection baseline with 11% (47%Ñ 58%) and 13% absolute

gains (37%Ñ 50%) in few-shot and zero-shot setups, respectively. It also outperforms the

calibration and max-examples with schema selection baseline by 12% (46%Ñ 58%) and

8% (50%Ñ 58%), respectively. The gains are spread across task categories, with the highest

102

supervision
model

task category →
QG AG CF IAGMMVF Avg

mode # of examples Ó

SUPERVISED BART 5000 59 61 91 26 85 82 67

FEW-SHOT (MAX. EX.) GPT3-instruct (raw instructions + schema selection) 32 47 57 52 23 79 42 50

FEW-SHOT

GPT3-instruct (raw instructions) 5 43 54 44 21 70 32 44

GPT3-instruct (calibrated raw instructions) 5 41Ó 52Ó 58Ò 22Ò 70 35Ò 46Ò

GPT3-instruct (raw instructions + schema selection) 5 45Ò 58Ò 49Ò 23Ò 72Ò 37Ò 47Ò

GPT3-instruct (reframed instructions) 5 55Ò 72Ò 65Ò 30Ò 80Ò 48Ò 58Ò

ZERO-SHOT

GPT3-instruct (raw instructions) 0 31 34 39 14 69 13 33

GPT3-instruct (raw instructions + schema selection) 0 37Ò 36Ò 40Ò 17Ò 75Ò 17Ò 37Ò

GPT3-instruct (reframed instructions) 0 52Ò 46Ò 63Ò 25Ò 80Ò 39Ò 50Ò

Table 5.6: Evaluation of Various Few-shot and Supervised Learning Baselines in ROUGE-L.

Category Names: QG: Question Generation, AG: Answer Generation, CF: Classification,

IAG: Incorrect Answer Generation, MM: Minimal Text Modification, VF: Verification. The

Reframed Prompts Improve GPT3-Instruct’s Performance. Among the Methods That Use

the Same Number of Examples, the Highest Performing Method Is in Bold. in the Few-shot

(Max. Ex.) Setup, We Use as Many Examples as Fits Within Gpt’s Token Limit. Up-arrows

(Ò) and Down-arrows (Ó) Signify Performance Improvement and Decline, Respectively, over

the Raw Instructions Baseline.

gains in Answer Generation (AG), Classification (CF), and Verification (VF) categories.

Reframed prompts retain their superiority across different models. As Fig.5.2 shows,

the reframed instructions consistently outperform raw task instructions across various models.

This is in contrast to parameter tuning algorithms (such as fine-tuning and prompt-tuning),

which need to be performed separately for each model.

Reframing instructions with a large LM is comparable to a mid-sized supervised

model. The average performance associated with supervised baselines is higher than

103

Pattern

Itemizing

Decomposition

Restraining

Specialization

Question
Generation

Answer
Generation

Classification

Incorrect Answer
Generation

Text
Modification

Verification

12
14
15
8

14
10

16

12

5

21
14

13

18
17
9
9
16

A
bs

ol
ut

e
G

ai
n

(R
O

U
G

E
-L

)

Reframing Type Task Category

9

8

9

12

6
6
9

7

7

Figure 5.3: Average Performance Gain (Numbers on the Left Side) of Reframing Instruc-

tions (over Raw Instructions), When Evaluated via GPT3-instruct in a Few-shot Learning

Setup. The Plot Shows the Gains Resulting from Applying Each Reframing Type (Left) to

Various Task Categories (Right). While Specialization Reframing Is Versatile, Others like

Decomposition Improve Model Performance for a Narrower Range of Tasks.

the reframing method. However, in the Answer Generation (AG) and Incorrect Answer

Generation (IAG) categories, reframing in the few-shot setup outperforms the supervised

baselines by 11%, 4% absolute gains, respectively. A similar observation can be made in

Fig.5.2, where reframed prompts with GPT3-instruct have notably higher performance than

the supervised mid-size model (GPT2Large), which uses 200ˆ more data.

5.4.2 Analyses

Contribution of Reframing Techniques Fig.5.3 illustrates the average performance gain

associated with each of the reframing techniques across various categories of tasks. We

104

Length reduction (tokens)

Pe
rf

. g
ai

n
(R

O
U

G
E

-L
)

0

10

20

30

40

100 200 300 400

Figure 5.4: x-axis: Length Reduction in Instruction Length as a Result of Reframing; y-axis:

Performance Gain (Rouge-l) after Applying Reframing and Evaluating via Gpt3-instruct in

a Few-shot Learning Setup. Each Dot Represents a Task in Our Evaluation Set. The Scatter

Plot Show That Least Length Reductions Are Not Necessarily Worse.

apply various reframing techniques on each task of . We observe that SPECIALIZATION

REFRAMING, RESTRAINING REFRAMING and PATTERN REFRAMING improve model

performance for a wider range of tasks. We also observe that, RESTRAINING REFRAMING

contributes the most to Classification tasks whereas SPECIALIZATION REFRAMING is

dominant on Answer Generation tasks. DECOMPOSITION REFRAMING and PATTERN

REFRAMING are most effective for Question Generation tasks. Since the dominant reframing

techniques vary across task categories, we recommend users to experiment with all five

reframing techniques for their tasks.

Performance vs Instructions Length We observe that reframed instructions are usually

shorter than the original instructions. A natural question that might arise is whether there is

a correlation between the length reduction and the performance improvement, as a result

of applying reframing. Fig.5.4 shows that performance gain is not always proportional to

105

error name error description #(%) reframing

copy instruction generates some of the lines in the given instruction if it

contain domain-specific terms

14 PATTERN REFRAMING ,

SPECIALIZATION REFRAM-

ING
instance distraction ignores the instructions if input instances contain some

specific information e.g. numbers

7 PATTERN REFRAMING

first instruction bias ignoring the instructions beyond the one mentioned in the

first sentence

18 ITEMIZING REFRAMING

doing the next task generating redundant text often associated with followup

tasks when instructions are long and presented in a para-

graph format

9 ITEMIZING REFRAMING,

SPECIALIZATION REFRAM-

ING

negation challenge not following instructions containing negation 11 ITEMIZING REFRAMING

multi-step task chal-

lenge

generating incorrect outputs for the instructions of com-

plex multi-step tasks

17 DECOMPOSITION REFRAM-

ING

conventional-task bias ignoring instructions for non-conventional task e.g. incor-

rect answer generation and generating outputs associated

with conventional tasks

12 RESTRAINING REFRAMING

misconceive output for-

mat

not understanding intended output format without explicit

mention in the instructions

12 SPECIALIZATION REFRAM-

ING, RESTRAINING RE-

FRAMING

Table 5.7: Distribution of Error Patterns Associated with Raw Instructions That Get Resolved

by Reframing. It Also Shows the Type of Reframing Technique That Resolves the Errors.

the length difference across various evaluation tasks (dots in the figure) in . This indicates

that just shortening the instructions is not necessarily the primary factor in improving the

instructions.

Qualitative Analysis We analyze failure of GPT3 on raw vs. reframed instructions.

We samples 100 examples across various tasks for the analysis. Fig.5.5 illustrates the

distribution of errors. As it can be seen, reframing introduces little additional errors (4%),

while correcting a major portion of the mistakes on raw instructions (24%). We further

106

Failures
caused by
Reframing

Failures
corrected by
Reframing

Successes
before & after

Reframing

4 41%

31%

24%

Figure 5.5: Distribution of the Error Patterns. In 24% of Questions, Reframing Corrects the

Raw Instructions Mistakes, While Causing Only 4% Additional Failures.

manually analyze this subset (mistakes of raw instruction corrected by reframing) to better

understand the dominant error patterns and the reframing that corrects them (Table 5.7).

The result shows that most of the errors are corrected by ITEMIZING REFRAMING, while

RESTRAINING REFRAMING has the least contribution.

5.5 Additional Analysis

5.5.1 Examples of Error Types

Table 5.8-5.11 contains examples of error patterns where model performance improves

with reframing over raw instructions. These exemplify each type of error mentioned in Table

5.7.

Additional Error Analysis:

In our qualitative analysis (Section 5.4.2 and Figure 5.5), we find that 4% of the errors

are caused by refaming of raw instructions and 31% of the errors are the failures of raw

instructions that are retained by reframing. Table 5.12 shows the dominant patterns among

107

such errors.

5.6 Conclusion

Inspired by GPT3’s poor performance in following task instructions, we study reframing

them. We introduce five approaches that reformulate task instructions to make them easier,

while maintaining their human readability. Manually applying reframing on 12 tasks, we

study their benefits compared to using raw instructions or fine-tuning mid-sized models.

Reframing can be particularly helpful in applications where task definitions are evolving

(making it difficult to crowdsource and fine-tune models), where model designers can come

up with new reframed prompts, in a matter of minutes.

108

Raw task definitions and model predictions
co

py

in
st

ru
ct

io
n

Raw Task: Craft a question which requires commonsense to be answered. Based on the given

context, craft a common-sense question, especially those that are LONG, INTERESTING, and

COMPLEX. The goal is to write questions that are easy for humans and hard for AI machines!

To create such questions, here are some suggestions: A. What may (or may not) be the plausible

reason for an event? B. What may (or may not) happen before (or after, or during) an event? C.

What may (or may not) be a plausible fact about someone (or something)? D. What may (or

may not) happen if an event happens (or did not happen)? You can also create other types of

questions.

Context:you see , at my age relationship is kind of important and i thought i got the one after

all these years . I noticed that once again i was wrong . i was good simply because i was good ,

i was caring , helping , supportive , bla bla blaaa .

Question: what is the reason why you keep falling for the same type of person?

A. What is the reason you keep falling for the same type of person?

B. What may (or may not) be the problem with your relationships?

C. What may (or may not) be the possible cause

in
st

an
ce

di
st

ra
ct

io
n

Raw Task: In this task, we ask you to write a question that involves “event duration", based

on a given sentence. Here, event duration is defined as the understanding of how long events

typically last. For example, “brushing teeth”, usually takes few minutes.

Sentence:About 30% of Ratners’s profit already is derived from the U.S.

Question: How much of Ratner’s profit comes from the U.S.?

Table 5.8: Examples of Various Types of Error Patterns Associated with Raw Instructions

That Gets Resolved by Reframing. Italicized Text Represents the Prompt. Model Prediction

Is Indicated with Red Marking.

109

Raw task definitions and model predictions

fir
st

in
st

ru
ct

io
n

bi
as

Raw Task: Write a story about John. Also, mention Hari.

Story:

John was a very happy person. He always had a smile on his face and was always willing to

help others. He was a very kind person. He was always there for his friends and family.

do
in

g
th

e

ne
xt

ta
sk

Raw Task: Definition: Write a fact related to the given fact. Note that, your fact should have

at least one word in common with the given fact. All facts in this task refer to science facts.

Your related fact must form a chain with the given fact. Chains form when two facts connect

together to produce a third fact. An example of a chain is: "pesticides cause pollution"

(given fact) + "pollution can harm animals" (related fact) → "pesticides can harm animals"

(connected chain) <truncated instructions>

Prompt: Write a related fact to a given fact

Fact: damming a river can cause a lake to form.

Fact: dams can cause pollution

Related Fact: producing fossil fuels causes pollution.

Related Fact: making fossil fuels causes pollution.

Fact: lakes can be polluted.

Fact: lakes can be polluted by dams. <truncated output>

Table 5.9: Examples of Various Types of Error Patterns Associated with Raw Instructions

That Gets Resolved by Reframing. Italicized Text Represents the Prompt. Model Prediction

Is Indicated with Red Marking.

110

Raw task definitions and model predictions

ne
ga

tio
n

ch
al

le
ng

e

Raw Task: Write a sentence. It should start with ’What’. It should not have more than 4

words. It should mention "Patrick".

Sentence: What is Patrick’s favorite color?

m
ul

ti-
st

ep
ta

sk

ch
al

le
ng

e

Raw Task: In this task, based on the given context word, you need to create a pair of

sentences each containing a blank (_) and their corresponding answer. The sentence pair

should look similar, and should be about two related but different objects; for example

"trophy" and "suitcase". Also, the sentences must be different in terms of trigger words (e.g.,

"small" and "big") which express contrasting properties about the two objects. Context

word:fitness

He realized that he needed to

He realized that he needed to

find a new workout routine.

find a new workout routine.

I couldn’t believe how

I couldn’t believe how <truncated output>

Table 5.10: Examples of Various Types of Error Patterns Associated with Raw Instructions

That Gets Resolved by Reframing. Italicized Text Represents the Prompt. Model Prediction

Is Indicated with Red Marking.

111

Raw task definitions and model predictions

co
nv

en
tio

na
l

ta
sk

bi
as

Raw Task: Generate an incorrect answer to the given question

Question: What is the captial of US?

Washington, DC

m
is

co
nc

ei
ve

ou
tp

ut

fo
rm

at

Raw Task: Answer the following question.

Father’s age is 70 years. What could be the son’s age? (i) 71 (ii) 72 (iii) 40 (iv) 102?

Note that a son’s age is always lower than father’s age.

Answer: In the given problem the father’s age is 70 years. So, the son’s age can be either

less than 70 years or 70 years. Since the given age is less than 70 years, the son’s age is

71 years.

Table 5.11: Examples of Various Types of Error Patterns Associated with Raw Instructions

That Gets Resolved by Reframing. Italicized Text Represents the Prompt. Model Prediction

Is Indicated with Red Marking.

112

error type error name error description #(%)

reframing causes fail-

ures

decomposition error

propagation

model’s error in an initial step of a decomposed

task gets propagated to later steps

100

reframing retains failures

example bias the class imbalance bias in examples supersedes

the effect of instructions– this happens mostly in

classification tasks, but also applicable to other

tasks.

22

instance level decompo-

sition requirement

for certain difficult tasks involving reasoning, task-

level decomposition is not enough and instance-

level decomposition is required; DECOMPOSITION

REFRAMING at its current form does not support it

78

Table 5.12: Distribution of Error Patterns Associated With Cases Where Reframing Causes

Failures and Retains Failures over Raw Instructions.

113

Chapter 6

LĪLA: A UNIFIED BENCHMARK FOR MATHEMATICAL REASONING

4XHVWLRQ��6DUD�SLFNHG����SHDUV�DQG�6DOO\�SLFNHG����SHDUV�
IURP�WKH�SHDU�WUHH��+RZ�PDQ\�SHDUV�ZHUH�SLFNHG�LQ�WRWDO"�

3URJUDP����
?@A�NJGPODJI�S��T �
����<INR@M�Ó�S�Ï�T�
����M@OPMI�<INR@M
KMDIO�NJGPODJI�¿À��¼¼ �º�OJO<G�K@<MN�DN�OC@�NPH�JA�
K@<MN�RDOC��<M<�<I?��<GGT

3URJUDP����
S�Ó�¿À
T�Ó�¼¼
<INR@M�Ó�S�Ï�T�º�OJO<G�K@<MN�DN�OC@�NPH�JA�K@<MN�RDOC�
�<M<�<I?��<GGT
KMDIO�<INR@M

$QVZHU����

0DWK�DELOLW\��EDVLF�PDWK
/DQJXDJH�FRPSOH[LW\��VLPSOH�ODQJXDJH
)RUPDW��JHQHUDWLYH�TXHVWLRQ�DQVZHULQJ
.QRZOHGJH��QR�H[WHUQDO�NQRZOHGJH

,QVWUXFWLRQ��<RX�DUH�JLYHQ�D�TXHVWLRQ�WKDW�LQYROYHV�WKH�
FDOFXODWLRQ�RI�QXPEHUV��<RX�QHHG�WR�SHUIRUP�HLWKHU�DQ�
DGGLWLRQ�RU�VXEWUDFWLRQ�RSHUDWLRQ�RQ�WKH�QXPEHUV��*HQHUDWH�
\RXU�DQVZHU�WR�WKH�JLYHQ�TXHVWLRQ�

Figure 6.1: A Data Example with Two Python Programs in Līla. One Program Annotation

Uses a Function Construct Whereas the Other One Is a Plain Script Without Function.

The Instruction for Each Task and Categories Across Four Dimensions Are Annotated for

Developing Līla.

114

6.1 Introduction

Mathematical reasoning is required in all aspects of life, from buying ingredients for a

recipe to controlling the world economy. Given the fundamental nature of mathematical

reasoning, a number of works propose datasets to evaluate specific mathematical reasoning

abilities of AI agents (Kushman et al., 2014) (algebra word problems), (Mishra et al., 2022g)

(arithmetic reasoning), (Saxton et al., 2019) (templated math reasoning spanning algebra,

calculus, probability, etc.) Since evaluating high-capacity models on narrowly scoped

mathematical reasoning datasets risks overestimating the reasoning abilities of these AI

systems, creating the need for a unified benchmark for systematic evaluation over diverse

topics and problem styles.

To this end, we introduce Līla1, a unified mathematical reasoning benchmark that consists

of 23 mathematical reasoning tasks. Līlais constructed by extending 20 existing datasets

spanning a wide range of topics in mathematics, varying degrees of linguistic complexity,

and diverse question formats and background knowledge requirements. Importantly, Līla

extends all of these datasets to include a solution program as opposed to only an answer,

and instruction annotations to enable instruction-based learning (Sanh et al., 2022; Wei

et al., 2022a; Mishra et al., 2022f).

In order to accurately assess the mathematical reasoning ability of models, evaluating

the chain of reasoning that leads to the correct solution is equally important (if not more im-

portant) to evaluating the final answer or expression. We therefore collect Python programs

that serve as reasoning chains for each question in the benchmark. We achieve this by
1Named after Līlavati, a 12th century mathematical treatise on arithmetic that covers topics like arithmetic

and geometric progressions, indeterminate equations and combinations. It is also widely known for the

extensive number of math word problems. The author, Bhāskara is known for fundamental and original

contributions to calculus, physics, number theory, algebra, and astronomy (Colebrooke, 1817; Sarkar, 1918;

Kolachana et al., 2019)

115

automatically converting domain-specific language (DSL) annotations into Python programs

and by manually collecting expert annotations when no DSL annotations are available. By

incorporating program annotations, Līla unifies various mathematical reasoning datasets

under a single problem formulation given an input problem in natural language, generate a

Python program that upon execution returns the desired answer. This formulation allows

neural approaches to focus on the high-level aspects of mathematical problem solving (iden-

tifying potential solution strategies, decomposing the problem into simpler sub-problems),

while leveraging external solvers (Python builtins, Sympy) to perform precise operations

like adding huge numbers or simplifying expressions. Figure 6.1 illustrates a sample from

our Līla benchmark that illustrates the question, answer, program, instructions, and category

tags.

In addition to evaluating high-level problem solving, we also facilitate two other key

ways to make a fair assessment of models on mathematical reasoning tasks. In line with

Bras et al. (2020), Ribeiro et al. (2020) and Welleck et al. (2022), we evaluate generalization

alternate formulations of a problem (“2+2=?” “What is two plus two?”) using an out-of-

distribution evaluation set (Līla-OOD) containing datasets requiring the same underlying

mathematical reasoning skills, but were collected independently of the training datasets.

Further, we collect a robustness split Līla-Robust, that introduces linguistic perturbations

(active passive voice) via crowd-sourcing. The evaluation scheme is a combination of the

performance on all three sets: Līla-Test, Līla-OOD and Līla-Robust. This has been discussed

further in our work (Mishra et al., 2022c).

6.2 Līla

Līla is composed of 23 tasks across 4 dimensions, curated from 44 sub-datasets across

20 dataset sources. Here we discuss the construction and composition of the benchmark and

provide descriptive statistics of the datasets.

116

Category Tasks

Math ability Basic math, multiplication/division, number theory, algebra, geometry, count-

ing and statistics, calculus, linear algebra, advanced math

Language No language, simple language, complex language

Knowledge No background knowledge, commonsense, math, science, computer science,

real world knowledge

Format Fill-in-the-blank, generative question answering, multiple-choice, natural lan-

guage inference, reading comprehension

Table 6.1: Categories and Their Associated Tasks.

6.2.1 Dataset Construction

Data Sources. Līla incorporates 20 existing datasets from the mathematical reasoning

literature (Table 6.19 gives a detailed list), where inputs are natural language or templated

text and outputs are numerical or expressions, we exclude theorem proving (Welleck et al.,

2021; Han et al., 2021), where the output is not a number or expression. We leave the

incorporation of formats like theorem proving to future work.

Unified format. We normalize all datasets to a unified format with the following fields:

1. The source dataset. Category tags for each of the four dimensions (math ability, language

complexity, format, and external knowledge; see §6.2.2).

2. The question, in English.

3. The answer to the question, as a string containing a number, expression, list, or other

data format. A set of Python strings that print the answer.

4. A task-level instruction in natural language.

We also retain meta-data from the original dataset.

117

Automatic program annotation. Most of the annotations in the source datasets do not

contain output in the form of a Python program. We automatically annotate most datasets

by generating Python programs using the annotations (answer, explanation, etc.) provided

in the source datasets. Where possible, we generate multiple Python programs for a single

question. This is to account for variation in the program space such as the choice of data

structure, language construct, variable name, and programming style (e.g., declarative vs

procedural). For example, Figure 6.1 gives multiple Python programs solving the same

question; in this case one program directly calculates the answer, whereas the other defines

a function to solve the problem more generally.

Some datasets contain program annotations that can be captured by a domain-specifc

language (DSL) in which case we write rules to convert them into Python programs,

volume(sphere,3) to the Python expression 4/3*math.pi*3**3. In some cases where

a DSL annotation is not provided, we use pattern matching to convert highly templated

datasets like the AMPS dataset (Hendrycks et al., 2021b) to our unified format. In other

cases, instead of converting the existing dataset, we modify the data generation code to

reproduce the dataset with program annotations. For the DeepMind mathematics dataset

(Saxton et al., 2019), this allows us to create diverse, compositional math problems with

program annotations using a sophisticated grammar.

Expert program annotation. For many datasets, it is not possible to obtain Python pro-

gram annotations via automated methods described above; either the original dataset contains

only the final answer or contains solutions expressed in free-form natural language. For

such datasets, we obtain annotations from experts who are proficient in basic programming

and high-school level mathematics.

118

Instruction annotation. Given the effectiveness of instruction learning (Mishra et al.,

2022f; Wei et al., 2022a; Mishra et al., 2022e; Sanh et al., 2022) for effective generalization,

we collect instruction annotation for each task. Each instruction contains a definition that

clearly defines the task and provides guidelines, a prompt that provides a short and straight

forward instruction, and examples that facilitate learning by demonstration (Brown et al.,

2020). Figure 6.1 shows an example instruction for the basic math task (§6.2.2).

6.2.2 Categories and Tasks

We create 4 views2 or categories of Līla along the dimensions of mathematical area,

language complexity, external knowledge, and question format. Altogether, these views

classify the data into 23 tasks (Table 6.1). By creating multiple views of the benchmark, we

are able to systematically characterize the strengths and weaknesses of existing models at a

granular level.

The first category, math ability, partitions the datasets into common pedagogical subjects:

arithmetic, algebra, geometry, calculus, etc.

Our second category, language complexity, separates math problems by the complexity

of the language used to represent them. This ranges from formal representations only (e.g.,

1+1=?) to natural language (e.g., “Mariella has 3 pears. . . ”).

We next partition datasets based on the type of background knowledge, required to solve

the problem. For instance, commonsense questions like “How many legs to 3 people have?”

or science questions like “Will water boil at 200 degrees Celsius?” require different sets of

knowledge to answer.

Lastly, we categorize based on question format, putting e.g., multiple choice questions

under one task and natural language inference under another.
2Note that it is not a partition of the benchmark as each dimensions divides the constituent examples in

different ways

119

6.2.3 Līla-OOD

In order to measure if the model has truly learned the underlying mathematical rea-

soning skill, we evaluate both in-distribution (IID, i.e., standard train-test splits) and out-

of-distribution (OOD) performance for each task, we evaluate on examples requiring the

same underlying mathematical reasoning skill but from a different dataset. To construct

Līla-OOD, we follow the works of Bras et al. (2020) and Hendrycks et al. (2020b) by

randomly assigning the datasets for each task into IID and an OOD sets, using the IID set

for training and standard evaluation and the OOD set to evaluate generalization. We do not

include tasks in Līla-OOD for tasks containing only one dataset.

6.2.4 Līla-Robust

In light of recent work demonstrating the brittleness of language models at solving

math problems (Patel et al., 2021), we create a high-quality evaluation dataset, Līla-Robust,

to evaluate performance on mathematical reasoning tasks when linguistic perturbations

are introduced. Specifically, we define and apply a set of carefully chosen augmentation

templates, summarized in Table 6.16, on each task, yielding a set of challenging problems

that are consistent answer-wise but stylistically different question-wise. Overall, we define a

total of 9 templates for such question perturbations: 3 from Patel et al. (2021) and 6 of our

own. From each constituent dataset, we sample 20 questions and obtain perturbed question

annotations via Amazon Mechanical Turk (AMT).

6.2.5 Statistics

Table 6.2 shows key statistics of our proposed benchmark, Līla. Līla contains « 134K

examples with significant diversity across question, answer, program and instruction length.

Figure 6.2 shows the diversity of questions in Līla. Note that we downsample (via random

120

Statistic Number

Total tasks 23

Total datasets 44

Total instructions 44

Total questions 133,815

Total programs 358,769

Unique questions 132,239

Unique programs 325,597

Unique answers 271,264

Average length of instructions 31.18

Average length of questions 47.72

Average length of programs 47.85

Table 6.2: Key Statistics of Līla.

selection) some datasets like AMPS (Hendrycks et al., 2021b) which contains numerous

templated questions that can get over-represented in the distribution of examples across

categories in Līla.

6.3 Experiments

In this section, we introduce our modeling contributions for the Līla benchmark and

discuss the overall experimental setup.

Data partition and evaluation. For the IID setup, we randomly partition the data in

each task into training (70%), development (10%) and test (20%) sets. Additionally, we

also evaluate on Līla-OOD and Līla-Robust settings; thus, the final evaluation scheme is a

121

m
or

e

da
ys

pe
rce

nt
ho

ur
s

tim
es

yea
rs

minutes

did
does

money
did

does
does
dodid

man
y

long

much

often

smallestdistancesecondnumber

greatest

sumleast

difference

jacobian

quotient
union

eigenvectors
re

al\

the

al
l$

the

did
theafterof

is

tim
ewashappenedpercent

the

is

$

following

the

did

polyhedron's

the

How

Find
What

Compute
Which

The
Simplify

Convert

Multiply

When

Solve
Estimate

Figure 6.2: Question N-gram Distribution in Līla.

combination of the performance on all three evaluation setups

Fine-tuning. We fine-tune a series of GPT-Neo-2.7B causal language models (Black et al.,

2021)) on Līla. We choose GPT-Neo because it was pre-trained on both natural language and

code (Gao et al., 2020), as opposed to solely on natural language. To assess the capabilities

of GPT-Neo on various aspects of the dataset, we fine-tune single-task models on each of

the 23 tasks in Līla. We also evaluate the benefit of transfer learning by fine-tuning a single

multi-task GPT-Neo baseline on all the tasks simultaneously. We call our multitask model

Bhāskara.

122

Prompting. We also use few-shot prompting to evaluate GPT-3 and Codex 3 (Brown et al.,

2020; Chen et al., 2021a). For the IID setting, we prompt the model with a random input-

output examples from the same dataset as the input. In the OOD setting, we take examples

from other datasets (Table 6.12-6.15) within the same task. We repeat this evaluation with

increasing numbers of examples (up to the token size of models) to study the effect on

performance 4 .

Evaluation. We evaluate our models under two regimes—directly outputting the answer

program induction and outputting a Python program that is then executed to obtain the final

answer program synthesis. In the case of our fine-tuned models, we train them to output

both the final answer and the Python program conditioned on the input question. To evaluate

our models under direct question answering, we use F1-score 5 to compare the model output

and the gold answer. To evaluate program synthesis, we execute the model’s output within a

Python interpreter and compare the program output with the output of the gold program,

again using F1. We evaluate based on the program output, rather than the program itself, to

account for diversity in solving techniques and programming styles.

6.4 Results and Analysis

A summary of all key results on our Līla benchmark are shown in Table 6.3. In this

section, we will discuss the performance of fine-tuned 2.7B GPT-Neo models (§6.4.1),

performance of models along the 4 categories of tasks (§6.4.2) and finally, the few-shot

performance of much larger („175B parameters) models (§6.4.3).
3text-davinci-002, code-davinci-002

4Henceforth we refer to the max example model unless otherwise specified.
5This is a soft version of exact match accuracy assigning partial credit when common words are present in

the output and gold answer.

123

6.4.1 Results: Fine-tuned Models

Multitasking improves IID performance, robustness, and OOD generalization. The

multi-tasking model (Bhāskara) substantially improves upon the single task models (Neo).

Bhāskara achieves better average in-domain performance than the 23 individual per-task

models (0.480 vs. 0.394 average score), suggesting that it leverages cross-task structure not

present in a single task’s training set.

We also find that our multi-task model is robust to the linguistic perturbations we test

in Līla-Robust. We did not find any degradation in performance when testing on perturbed

IID test examples. Additionally, multi-task training substantially improves out-of-domain

generalization (0.448 vs. 0.238). The gap between IID and OOD performance is much

smaller for Bhāskara than for the single task models (Table 6.3), and in one case (format)

Bhāskara’s OOD performance on held-out tasks is better than its IID performance (Table 6.4).

Līla’s multi-task structure opens interesting future directions related to developing improved

multitasking techniques, and further understanding its benefits.

Lastly, we do not find any benefit to fine-tuning with instructions. Our best instruction

tuned model achieves 0.133 F1, whereas the worst non-instruction-tuned multitask model

achieves 0.290.

Program synthesis substantially outperforms answer prediction. Synthesizing the pro-

gram and evaluating it to get an answer substantially outperforms directly predicting the

answer. For instance, multi-task program synthesis (Bhāskara-P) has an average score of

0.480 while multi-task answer prediction (Bhāskara-A) scores 0.252. This means models

are often able to generate a program that evaluates to the correct answer, even when the

model cannot directly compute the answer.

Program synthesis improves over answer prediction in all math categories except

Geometry, with the largest improvements in Statistics and Linear Algebra; see Table

124

6.5 for examples. We even see benefits of program synthesis in NLI, a classification-based

task. Līla’s unified problem format decouples synthesis from computation, while opening

directions for further study on either aspect.

Models leverage symbolic execution and libraries. The gap between program synthesis

and answer prediction suggests that the neural language model offloads computations to the

symbolic Python runtime that are otherwise difficult to compute directly. We identify two

common cases. First, the model leverages standard Python as a calculator. For instance, this

pattern is common in the basic_math and mul_div categories, which involve evaluating

arithmetic expressions; Table 6.4 shows examples. Second, the model is able to call external

libraries that perform sophisticated computations. For instance, in statistics the model uses

scipy.stats.entropy or np.linalg.det in linear algebra while solving problems (Table

6.5).

Models occasionally generate non-executable code. Roughly 10% of Bhāskara’s IID

programs fail to execute. 86% of these are SyntaxErrors, which often occur because

decoding terminates before finishing the program or the model generates a program of the

form ‘2+3=5’, which is invalid Python. The remaining 14% of execution failures are less

trivial, including NameErrors (7%) and TypeErrors (1%) (see Table 6.6).

Bhāskara is a good starting point for further fine-tuning Table 6.5 shows that our

Bhāskara model is a better starting point for downstream fine-tuning than the vanilla pre-

trained GPT-Neo-2.7B. When comparing fine-tuning for direct question answering with

T5-3B, we see an almost 8% absolute improvement in F1 (30.1% to 37.6%). These findings

establish Bhāskara as a strong starting point for further fine-tuning on new tasks. For this

reason, we release our multi-task model for public use under the name Bhāskara, with the

hope that it will be useful for future research into math reasoning models.

125

6.4.2 Results: Category-wise Analysis

In this section we discuss the trends among the tasks within each category. For brevity,

we primarily consider Bhāskara, the GPT-Neo multi-task model in the program-synthesis

setting.

Math ability. Among the tasks in the math category, Bhāskara excels in basic math, linear

algebra, and in-domain statistics. On these tasks, it performs equal or better to Codex. On the

other hand, Bhāskara struggles in advanced math and geometry, with mediocre performance

in multiplication-division, number theory, and calculus. Codex shows analogous trends,

except for performing very well on calculus (0.930)6.

Language complexity . Models generally show lower performance on program synthesis

as language complexity increases. Bhāskara gets mean F1 over 0.5 only for datasets with

the least linguistic complexity where it achieves an F1 of 0.7.

Question format. Among the format tasks in the dataset, Bhāskara does exceptionally

well on multiple-choice and natural-language inference, getting performance close to 0.9 on

the latter, and outperforming Codex on both. On the other hand, the model performs close to

0.25 for reading comprehension and fill-in-the-blank, though with 0.5 F1 on out-of-domain

fill-in-the-blank.

Background knowledge. Bhāskara performs above 0.5 F1 only for problems requiring

commonsense and math formulas and fails to do similarly on problems requiring other forms

of external knowledge like physics, computer science, or real-world knowledge.
6Note that the training set for Codex is not known.

126

0 1 3 max
Number of few-shot examples

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

F1

Model
GPT3
Codex

Figure 6.3: Average F1 Scores of GPT-3 and Codex with Different Numbers of Few-shot

Examples in Līla.

6.4.3 Results: Few-shot Prompting

Finally, we study the few-shot performance of much larger models («175B), to better under-

stand the performance of the smaller trained models («2.7B) and to provide a benchmark

for evaluating other large language models. Overall, we find that few-shot prompted models

generally outperform their much smaller but fine-tuned counterparts.

Instructions and more examples improve performance. We find that the number of

few-shot examples greatly impacts prompt models’ performance. Figure 6.3 shows that

GPT-3 answer prediction beats Codex program synthesis in zero- to one-shot settings, but

Codex overtakes with more examples. Table 6.6 shows that prompting with instructions

improves performance only in the zero-shot setting, meaning that in the limited contexts

of the prompt models, examples are more important than instructions for mathematical

reasoning. This is consistent with the findings of Puri et al. (2022) on instruction-example

equivalence.

127

Few-shot GPT-3 answer prediction underperforms Bhāskara. While prompt-based

models outperform our fine-tuned models in general when comparing within direct-answering

and program-synthesis, when comparing Bhāskara program-synthesis to GPT-3 direct an-

swering we find that the much smaller Bhāskara consistently outperforms GPT-3.

Few-shot Codex performance is relatively strong. Relative to the 2.7B trained models,

Codex demonstrates strong few-shot IID and OOD performance. Some notable exceptions

to this pattern are the statistics, linear algebra, multiple-choice question answering, and NLI

tasks. Generally, OOD few-shot performs much better than OOD for the fine-tuned models.

Few-shot Codex fails on some tasks. Despite strong performance relative to Bhāskara,

Codex obtains less than 0.5 F1 on several tasks, with especially poor performance on

geometry, number theory, advanced math, complex language, computer science problems,

science formulas, and real world knowledge.

6.5 Qualitative Examples

Figures 6.4 and 6.5 give examples of input-output behavior of Bhāskara. Figure 6.6

gives an example of a non-compiling output program.

6.6 Dataset Collection

Tables 6.12-6.15 give examples and datasets from each task for each category.

6.6.1 Expert annotation

In the worker qualification process, we ask each worker to annotate 30 questions. We

manually verify each annotation and qualify those whose Python annotations are satisfactory.

We also provide feedback such as "write simpler programs, use representative variable

128

Task: Basic Math

Problem: Before December, customers

buy 1346 ear muffs from the mall. During

December, they buy 6444, and there are

none. In all, how many ear muffs do the

customers buy?

Predicted Answer: 1346.0

Generated Program:

answer = 1346.0 + 6444.0

print(answer)

Result ==> 7790.0

Gold Answer: 7790.0

Task: Muldiv

Problem: Tickets to the school play cost 6

for students and 8 for adults. If 20 students

and 12 adults bought tickets, how many

dollars’ worth of tickets were sold?

Predicted Answer: 48

Generated Program:

a=20*6

b=12*8

c=a+b

answer=c

print(answer)

Result ==> 216.0

Gold Answer: 216

Figure 6.4: Examples with Bhāskara on Basic Math and Muldiv.

names instead of just letters, add comments wherever possible" to annotators after the

worker qualification process. We instruct annotators to use a minimal set of Python libraries,

and we ask them to record the Python libraries they use in a common document. We find that

the annotators could get the task done just by using the sympy and the datetime libraries.

We also ask annotators to report any bugs in answer annotation, which they report for a

small number of questions; we subsequently fix those.

We give 10 sample question annotations to annotators as illustrative examples which

vary in structure, length, format, underlying reasoning skill, etc.

129

Līla-Robust To create the Līla-Robustdataset, we first define a set of 9 templates, consist-

ing of 3 variation styles defined in SVAMP (Patel et al., 2021) as well as 6 novel templates of

our own. We refer to the SVAMP templates as SVAMP-COO, SVAMP-COP, and SVAMP-

IU, which correspond to changing the order of objects, changing the order of phrases, and

adding irrelevant, unhelpful information to the problem statement, respectively. Our novel

templates are named ROBUST-IR, ROBUST-AP, ROBUST-ADJ, ROBUST-Q, ROBUST-

RQ, and ROBUST-RM. ROBUST-IR refers to adding information that is unhelpful for

solving the question but may be related to the context of the problem. ROBUST-AP refers

to increasing problem verbosity by turning active speech to passive speech. ROBUST-ADJ

refers to increasing problem verbosity by adding adjectives or adverbs. ROBUST-Q in-

dicates turning a problem statement into a question, in the style of a conversation with a

student. ROBUST-RQ indicates removing question words in a problem and turning it into

a statement; it is roughly the inverse of ROBUST-Q. Finally, ROBUST-RM refers to the

removal of mathematics terms that are implicitly defined. Examples of each template are

found in Table 6.16.

For our crowdsourcing pipeline, we provide each Amazon Mechanical Turk worker

with 10 questions split from 20 questions sampled from each dataset. We run a separate

job for each of our 9 templates. In particular, each HIT contains the 10 split questions

from the original datasets, alongside the problem solution. Workers are asked to submit an

augmentation for each question according to the style of the template assigned to each job.

Thus, we run 9 separate jobs to obtain augmentations for all templates across all datasets.

To familiarize workers with the intended style of each template, we provide 3 demonstrative

augmentations within the instructions of each HIT, as summarized in Table 6.16. We restrict

our crowdsourcing pipeline to workers that had above a 98% acceptance rate with over 1000

completed HITs. We provide workers with an upper bound of 1 hour to complete each HIT

but specify in the instructions that each HIT should feasibly be completed in 10 minutes.

130

Finally, to ensure dataset quality of generations via the Amazon Mechanical Turk Fort et al.

(2011); Adda et al. (2011), we manually assess the worker augmentations produced for each

template.

6.7 Dataset Statistics

Figure 6.8 gives relatives sizes of tasks within each category. Figure 6.9 illustrates the

unigram frequencies in Līla, where larger words indicate higher frequency. Table 6.17 gives

comprehensive statistics on each task. Table 6.19 cites each component dataset of Līla.

6.8 Additional Results

Table 6.18 gives the unaggregated performance of each model on each dataset in Līla

(some datasets are split across tasks).

6.9 Conclusion

We introduce Līla 7 , a unified mathematical reasoning benchmark for a holistic evalua-

tion of AI agents. Līla consists of 23 tasks across 4 dimensions (i) mathematical abilities,

(ii) language format, (iii) language complexity, (iv) external knowledge. It builds on 20

existing mathematical reasoning datasets to collect instructions and Python programs. Fur-

ther, it also supports measuring out-of-distribution performance and robustness to language

perturbations via Līla-OOD and Līla-Robust respectively. We also introduce Bhāskara,

a 2.7B-parameter fine-tuned multi-task model. We find that multi-tasking improves over

single-task performance by 21.83% F1 score on average, and that our model is a strong

starting point for further fine-tuning on new math reasoning tasks. The best performing

model we evaluate achieves only 60.40% F1 indicating the potential for improvement on

the proposed benchmark.

7https://lila.apps.allenai.org/

131

Ñ Supervision/Size Few-shot, 175B Few-shot, 175B Fine-tuned, 2.7B Fine-tuned, 2.7B Fine-tuned, 2.7B Fine-tuned, 2.7B

Ó Task Category
GPT-3 Codex Neo-A Neo-P Bhāskara-A Bhāskara-P

IID OOD IID OOD IID OOD IID OOD IID OOD IID OOD

1 Basic math 0.766 0.818 0.791 0.762 0.533 0.523 0.611 0.555 0.693 0.657 0.790 0.787

2 Muldiv 0.479 0.665 0.691 0.790 0.136 0.089 0.388 0.194 0.155 0.083 0.448 0.395

3 Number theory 0.240 0.154 0.472 0.344 0.108 0.095 0.328 0.107 0.129 0.190 0.358 0.293

4 Algebra 0.338 0.130 0.603 0.511 0.164 0.031 0.348 0.051 0.203 0.054 0.473 0.007

5 Geometry 0.283 0.120 0.000 0.250 0.288 0.025 0.077 0.021 0.297 0.105 0.079 0.250

6 Statistics 0.183 0.210 0.650 0.200 0.107 0.008 0.839 0.034 0.115 0.179 0.947 0.164

7 Calculus 0.231 0.208 0.930 0.884 0.138 0.119 0.486 0.334 0.102 0.167 0.495 0.805

8 Linear algebra 0.127 - 0.692 - 0.229 - 0.809 - 0.240 - 0.808 -

9 Advanced math 0.150 - 0.472 - 0.012 - 0.100 - 0.019 - 0.160 -

10 No language 0.213 0.162 0.853 0.770 0.143 0.083 0.698 0.330 0.140 0.138 0.703 0.850

11 Simple language 0.486 0.561 0.568 0.610 0.269 0.243 0.363 0.292 0.332 0.269 0.433 0.384

12 Complex language 0.356 0.413 0.456 0.583 0.147 0.113 0.216 0.106 0.215 0.259 0.288 0.557

13 Fill in the blank 0.710 0.620 0.790 0.660 0.086 0.193 0.304 0.193 0.059 0.519 0.262 0.519

14 Generative QA 0.305 0.385 0.566 0.632 0.142 0.135 0.376 0.199 0.178 0.160 0.476 0.235

15 MCQ 0.801 0.870 0.771 0.870 0.636 0.818 0.652 0.818 0.752 0.888 0.817 0.888

16 NLI 0.500 - 0.710 - 0.221 - 0.212 - 0.566 - 0.893 -

17 RC 0.460 - 0.615 - 0.135 - 0.295 - 0.132 - 0.264 -

18 No external k. 0.437 0.485 0.638 0.660 0.138 0.110 0.387 0.159 0.167 0.199 0.400 0.465

19 Commonsense 0.788 0.698 0.752 0.815 0.613 0.364 0.624 0.356 0.735 0.470 0.778 0.526

20 Math formulas 0.259 0.162 0.661 0.544 0.137 0.074 0.454 0.382 0.170 0.077 0.599 0.404

21 Science formulas 0.305 0.120 0.315 0.250 0.158 0.025 0.239 0.021 0.157 0.105 0.181 0.250

22 Computer science k. 0.262 0.128 0.425 0.408 0.151 0.137 0.147 0.134 0.232 0.304 0.220 0.278

23 Real-world k. 0.150 - 0.472 - 0.012 - 0.100 - 0.019 - 0.160 -

Average score 0.384 0.384 0.604 0.586 0.204 0.177 0.394 0.238 0.252 0.268 0.480 0.448

Table 6.3: Evaluations of Different Baselines Across 23 Tasks in Līla. On Most Tasks,

Codex Outperforms All Baselines While Bhāskara-p Outperforms All Fine-tuned Baselines.

A Model Usually Performs Worse on the Ood Data Set. The Bold Score Refers to the Best

Score among Models with the Same Supervision Method; The Underlined Score Refers to

the Best Score among All Models. Gpt-3 and Codex Performance Are Computed on 100

Uniformly Distributed Examples Owing to Their Cost and Usage Limit. Fine-tuned Model

Performance Is Calculated on the Full Test Set.

132

Dimension
Neo-A Neo-P

IID OOD IID OOD

Math ability 0.191 0.129 0.445 0.188

Language 0.189 0.147 0.429 0.246

Format 0.246 0.382 0.372 0.404

Knowledge 0.206 0.143 0.331 0.213

Average 0.208 0.200 0.394 0.263

Table 6.4: Multi-task Models Are Able to Generalize to Unseen Tasks in Some Categories.

Program Output (Neo-P) Always Outperforms Number Output (Neo-A).

Data Answer (% F1) Program (% F1)

Neo Multi ∆ Neo Multi ∆

100% 28.4 32.3 +4.0 80.0 82.4 +2.5

40% 20.0 21.1 +1.2 75.2 70.3 -4.9

20% 15.8 18.4 +2.6 66.3 67.1 +0.8

Table 6.5: Here We Show the Results of Fine-tuning Both Gpt-neo-2.7b (Neo) and

Bhāskara(Multi) on 100%, 40%, and 20% of the Held-out Data from Līla-OOD. The

Multi Almost Always Outperforms Neo (the δ Column Shows the Margin).

133

Dimension
Zero-shot Few-shot (3)

w/o Inst w/ Inst w/o Inst w/ Inst

Math ability 0.120 0.123 0.311 0.306

Language 0.124 0.131 0.352 0.350

Format 0.241 0.257 0.555 0.540

Knowledge 0.108 0.112 0.367 0.363

Average 0.148 0.156 0.396 0.390

Table 6.6: The IID Scores for GPT-3 Models with and Without Instruction Prompting (Inst).

Instruction Helps Slightly in Zero-shot Setting, but Not in Few-shot Setting.

Category Examples Datasets

Math Table 6.8 Table 6.12

Language Table 6.9 Table 6.13

Format Table 6.10 Table 6.14

Knowledge Table 6.11 Table 6.15

Table 6.7: Examples and Datasets Meta-table.

134

Task: Statistics

Problem: Determine the KL Divergence

between the empirical distributions

0.149, 0.039, 0.099, 0.09, 0.203, 0.077, 0.039, 0.19

and

0.158, 0.256, 0.042, 0.008, 0.064, 0.051, 0.05, 0.072.

Predicted Answer: 0.36

Generated Program:

from scipy.stats import

entropy

distribution1 = [0.149 , 0.039 ,

0.099 , 0.09, 0.203 ,

0.077 , 0.039 , 0.19]

distribution2 = [0.158 , 0.256 ,

0.042 , 0.008 , 0.064 ,

0.051 , 0.05, 0.072]

print(entropy(distribution1 ,

qk=

distribution2))

Result ==> 0.5122 ...

Gold Answer: 0.5122...

Task: Linear Algebra

Problem: Find the determinant of the ma-

trix
¨

˚

˚

˚

˚

˝

0 ´2 ´3

0 5 0

1 3 2

˛

‹

‹

‹

‹

‚

.

Predicted Answer: ´8

Generated Program:

import numpy as np

a = np.array([

[0, -2, -3],

[0, 5, 0],

[1, 3, 2]])

print(np.linalg.det(a))

Result ==> 15.0

Gold Answer: 15

Figure 6.5: Examples with Bhāskara on Statistics and Linear Algebra.

135

Model: Codex

Task: Statistics

Problem: Simplify the expression p9x2 `

3x`7q`p3x2`7x5`2q. Express your an-

swer as a polynomial with terms arranged

in decreasing order of degree.

Generated Program:

from sympy import Poly

p = Poly(9*(x**2) + 3*x + 7 +

3*(x**2) + 7*(x**5) +

2)

answer = p.as_expr ()

print(answer)

==> NameError (x is not

defined)

Gold Answer: 7x5 ` 12x2 ` 3x` 9

Model: Bhāskara

Task: Muldiv

Problem: Jenny collects cans and bot-

tles to take down to the recycling center.

Each bottle weighs 6 ounces and each can

weighs 2 ounces. Jenny can carry a total

of 100 ounces. She collects 20 cans and

as many bottles as she can carry. If she

gets paid 10 cents per bottle and 3 cents

per can, how much money does she make

(in cents)?

Generated Program:

a=20*6

b=a*2

c=b*3

d=c*10

e=d*3

f=e*3

g=f+g

answer=g

print(answer)

==> NameError (g is not

defined)

Gold Answer: 216

Figure 6.6: NameErrors in Codex and Bhāskara.

136

Task Question category Example

TASK 1

Basic math: addition, subtraction,

fact based QA etc.

Question: If Jimbo is 484 feet away from a beetle and quarter of 827

feet away from a grasshopper, which insect will seem bigger to him?

"Option 1": beetle, "Option 2" :grasshopper Answer: Option 2

TASK 2
Muldiv: multiplication, division

along with addition, subtraction etc.

Question: Mrs. Hilt bought 2 pizzas. Each pizza had 8 slices. So, she

had __ total slices of pizza. Answer: 16

TASK 3
Number theory: prime, power, nega-

tion, modulus and other operators

etc.

Question: How many numbers are divisible by both 2 and 3 up to 300?

Answer: 50

TASK 4
Algebra: equations, functions, poly-

nomials, series etc.

Question: The sum of the three smallest of four consecutive integers is

30 more than the largest integer. What are the four consecutive integers

? Answer: [15, 16, 17, 18]

TASK 5

Geometry: triangles, polygons, 3D

structures etc.

Question: A hall is 6 meters long and 6 meters wide. If the sum of the

areas of the floor and the ceiling is equal to the sum of the areas of four

walls, what is the volume of the hall (in cubic meters)? Answer: 108

TASK 6
Statistics: binomial, divergence,

mean, median, mode, variance etc.

Question: There are 11 boys and 10 girls in a class. If five students

are selected at random, in how many ways that 3 girl and 2 boys are

selected? Answer: 6600

TASK 7
Calculus: differentiation, integra-

tion, gradient, series expansion etc.

Question: Let g(y) = 9*y**4 + 25*y**2 + 6. Let s(d) = 1 - d**4. Let

x(t) = -g(t) + 6*s(t). What is the third derivative of x(f) wrt f? Answer:

-360*f

TASK 8

Linear algebra: vectors, dot prod-

ucts, Eigen vectors, matrices etc.

Question: Problem: Convert the following matrix to reduced row eche-

lon form:

¨

˚

˝

7 ´2 ´10 ´4

´5 ´10 2 ´7

˛

‹

‚

. Answer:

¨

˚

˝

1 0 ´13
10

´13
40

0 1 9
20

69
80

˛

‹

‚

TASK 9

Advanced math: heuristics required

along with probability, statistics, or

algebra, Olympiad level problems

Question: Let fpxq “ 2x. Find
a

fpfpfpfp1qqqq. Answer: 256

Table 6.8: Example of Each Task in the Math Ability Category of the Līla Benchmark.

137

Task Question category Example

TASK 10 No language Compute the median of 4
?
2,´6, 3e, 3,´6,´ 14?

π
, 6. Answer: 3

TASK 11
Simple language Question: Joan had 9 blue balloons, but Sally popped 5 of them. Jessica

has 2 blue balloons. They have __ blue balloons now. Answer: 6

TASK 12

Complex language: involving

co-reference resolution etc., multi-

sentence language, adversarial

language: containing tricky words etc.,

often created adversarially

Question: Passage: According to the 2011 National Household Survey,

89.3% of Markhams residents are Canadian citizens, and about 14.5%

of residents are recent immigrants (from 2001 to 2011). The racial

make up of Markham is; East Asian (39.7%), White Canadian (27.5%),

South Asian Canadian (19.1%), Southeast Asian (3.9%), Black Cana-

dians (3.2%), West Asian & Arab Canadians (3.2%), Latin American

Canadian (0.5%), Aboriginal peoples in Canada (0.2%), and 1.9% of the

population is multiracial while the rest of the population (0.7%) is of

another group. Markham has the highest visible minority population of

any major Canadian city (over 100,000 residents) at 72.3%, and is one

of eight major cities with no majority racial group. Question: How many

percent of people were not white? Answer: 72.5

Table 6.9: Example of Each Task in the Language Complexity Category of the Līla Bench-

mark.

138

Task Question category Example

TASK 13 Fill in the blank Question: Delphinium has _ florets or they are full of holes. Answer:

no

TASK 14 Generative question answering Question: Calculate the remainder when 160 is divided by 125. Answer:

35

TASK 15

Multiple choice question answering

(MCQ)

Question: The fish glided with a speed of 8 m/s through the water and

5 m/s through the jello because the __ is smoother? "Option 1": jello,

"Option 2": water. Answer: Option 2

TASK 16

Natural language inference (NLI) Question: "statement 1": Alyssa picked 42.0 pears from the pear tree

and Nancy sold 17.0 of the pears , "statement 2" :25.0 pears were left ,

"options: " Entailment or contradiction? Answer: Entailment

TASK 17

Reading comprehension (RC) Question: Passage: A late game rally by Washington led them to the

Eagles’ 26 yard line. A shot to the end zone by Robert Griffin III would

be intercepted by Brandon Boykin, clinching an Eagles win. The Eagles

would move to 6-5. This is the Eagles first win at Lincoln Financial

Field since Week 4 of the 2012 season, because prior to this game, the

Eagles had never won a game in their home stadium in 414 days since

that same week, snapping a 10-game losing streak at home with this win.

Question: How many more wins than losses did the Eagles have after

this game? Answer: 1

Table 6.10: Example of Each Task in the Question Format Category of the Līla Benchmark.

139

Task Question category Example

TASK 18
No external knowledge: only mathe-

matical commonsense knowledge re-

quired

Question: If there are 7 bottle caps in a box and Linda puts 7 more

bottle caps inside, how many bottle caps are in the box? Answer: 14

TASK 19

Commonsense: temporal common-

sense knowledge (e.g., people usually

play basketball for a few hours and

not days), numerical commonsense

knowledge (e.g. birds has 2 legs)

Question: Outside temple, there is a shop which charges 12 dollars for

each object. Please note that one shoe is counted as an object. Same is

true for socks and mobiles. Paisley went to temple with both parents.

All of them kept their shoes, socks and mobiles in the shop. How much

they have to pay? Answer: 180

TASK 20
Math formulas: algebra, geometry,

probability etc.

Question: Simplify -3*(sqrt(1700) - (sqrt(1700) + (3 + sqrt(1700))*-6))

+ -3. Answer: -180*sqrt(17) - 57

TASK 21
Science formulas: physics, chemistry

etc.

Question: Find the number of moles of H2O formed on combining 2

moles of NaOH and 2 moles of HCl. Answer: 2

TASK 22
Computer science knowledge: data

structure algorithms like merge sort

etc.

Question: Apply functions ‘mean’ and ‘std’ to each column in dataframe

‘df’ Answer: df.groupby(lambda idx: 0).agg([’mean’, ’std’])

TASK 23

Real-world knowledge: COVID mod-

elling, climate modelling etc.

Question: Our physics club has 20 members, among which we have 3

officers: President, Vice President, and Treasurer. However, one member,

Alex, hates another member, Bob. How many ways can we fill the offices

if Alex refuses to serve as an officer if Bob is also an officer? (No person

is allowed to hold more than one office.) Answer: 6732

Table 6.11: Example of Each Task in the Background Knowledge Category of the Līla

Benchmark.

140

Task Math category IID OOD

TASK 1 Basic math

addsub.json MCTaco_event_duration_structured.json

Numersense_structured.json NumGLUE_Task3.json

MCTaco_stationarity_structured.json

MCTaco_frequency_structured.json

MCTaco_event_typical_time_structured.json

MCTaco_event_ordering_structured.json

NumGLUE_Task7.json

TASK 2 Muldiv

singleop.json svamp_structured.json

multiarith.json NumGLUE_Task4.json

asdiv.json

GSM8k_structured.json

NumGLUE_Task1.json

NumGLUE_Task2.json

deepmind_mathematics_muldiv.json

TASK 8 Number theory

mathqa_physics.json mbpp_structured.json

APPS_structured.json mathqa_other.json

mathqa_gain.json

amps_number_theory.json

mathqa_general.json

conala_structured.json

NumGLUE_Task5.json

deepmind_mathematics_numbertheory.json

TASK 4 Algebra

singleq.json draw_structured.json

simuleq.json dolphin_structured.json

amps_algebra.json

NumGLUE_Task8.json

deepmind_mathematics_algebra.json

TASK 5 Geometry amps_geometry.json mathqa_geometry.json

TASK 6 Statistics amps_counting_and_stats.json mathqa_probability.json

TASK 7 Calculus
amps_calculus.json deepmind_mathematics_calculus.json

deepmind_mathematics_basicmath.json

TASK 8 Linear algebra amps_linear_algebra.json

TASK 9 Advanced math MATH_crowdsourced.json

Table 6.12: Raw Datasets Used to Create Different Tasks in Līla Across Different Math

Categories.

141

ID Language cate-

gory

IID OOD

TASK 10 No language

amps_number_theory.json amps_algebra.json

amps_counting_and_stats.json deepmind_mathematics_calculus.json

amps_calculus.json

amps_linear_algebra.json

deepmind_mathematics_muldiv.json

deepmind_mathematics_numbertheory.json

deepmind_mathematics_algebra.json

deepmind_mathematics_basicmath.json

TASK 11 Simple language

addsub.json MCTaco_frequency_structured.json

Numersense_structured.json NumGLUE_Task1.json

MCTaco_stationarity_structured.json mathqa_general.json

MCTaco_event_typical_time_structured.json NumGLUE_Task4.json

MCTaco_event_ordering_structured.json

MCTaco_event_duration_structured.json

singleop.json

multiarith.json

asdiv.json

GSM8k_structured.json

APPS_structured.json

mathqa_gain.json

mathqa_other.json

singleq.json

simuleq.json

NumGLUE_Task8.json

draw_structured.json

dolphin_structured.json

mathqa_probability.json

TASK 12 Complex language

mathqa_physics.json mbpp_structured.json

APPS_structured.json mathqa_other.json

mathqa_gain.json

amps_number_theory.json

mathqa_general.json

conala_structured.json

NumGLUE_Task5.json

deepmind_mathematics_numbertheory.json

Table 6.13: Raw Datasets Used to Create Different Tasks in Līla Across Different Language

Categories.

142

ID Format category IID OOD

TASK 13 Fill in the blank NumGLUE_Task4.json Numersense_structured.json

TASK 14 Generative QA

amps_number_theory.json svamp_structured.json

amps_counting_and_stats.json mathqa_geometry.json

amps_linear_algebra.json amps_calculus.json

amps_algebra.json singleq.json

deepmind_mathematics_calculus.json NumGLUE_Task2.json

addsub.json mbpp_structured.json

singleop.json deepmind_mathematics_numbertheory.json

multiarith.json

asdiv.json

GSM8k_structured.json

APPS_structured.json

mathqa_gain.json

mathqa_other.json

simuleq.json

NumGLUE_Task8.json

draw_structured.json

dolphin_structured.json

mathqa_probability.json

MCTaco_frequency_structured.json

NumGLUE_Task1.json

mathqa_general.json

mathqa_physics.json

conala_structured.json

amps_geometry.json

MATH_crowdsourced.json

deepmind_mathematics_calculus.json

deepmind_mathematics_muldiv.json

deepmind_mathematics_algebra.json

deepmind_mathematics_basicmath.json

TASK 15 MCQ

NumGLUE_Task3.json MCTaco_event_typical_time_structured.json

MCTaco_stationarity_structured.json

MCTaco_event_ordering_structured.json

MCTaco_event_duration_structured.json

TASK 16 NLI NumGLUE_Task5.json

TASK 17 RC mathqa_physics.json mbpp_structured.json

Table 6.14: Raw Datasets Used to Create Different Tasks in Līla Across Different Format

Categories.

143

ID Knowledge cate-

gory

IID OOD

TASK 18 No external knowledge

addsub.json NumGLUE_Task4.json

singleop.json GSM8k_structured.json

multiarith.json svamp_structured.json

asdiv.json NumGLUE_Task7.json

simuleq.json

NumGLUE_Task8.json

draw_structured.json

dolphin_structured.json

NumGLUE_Task5.json

deepmind_mathematics_muldiv.json

TASK 19 Commonsense

Numersense_structured.json NumGLUE_Task1.json

MCTaco_frequency_structured.json MCTaco_event_ordering_structured.json

NumGLUE_Task3.json

MCTaco_stationarity_structured.json

MCTaco_event_duration_structured.json

MCTaco_event_typical_time_structured.json

TASK 20 Math formulas

amps_number_theory.json amps_counting_and_stats.json

amps_linear_algebra.json mathqa_general.json

amps_algebra.json amps_calculus.json

deepmind_mathematics_calculus.json

mathqa_probability.json

singleq.json

mathqa_gain.json

mathqa_other.json

deepmind_mathematics_algebra.json

deepmind_mathematics_basicmath.json

deepmind_mathematics_calculus.json

deepmind_mathematics_numbertheory.json

TASK 21 Science formulas

amps_geometry.json

NumGLUE_Task2.json

mathqa_physics.json

TASK 22
Computer science APPS_structured.json mathqa_geometry.json

knowledge conala_structured.json

TASK 23 Real-world knowl-

edge

MATH_crowdsourced.json mbpp_structured.json

Table 6.15: Raw Datasets Used to Create Different Tasks in Līla Across Different Knowledge

Categories.

144

Template Name Variation Example

SVAMP-COO
Change the order of objects Question: Allen bought 20 stamps at the post office in 37 cents and 20

cents denominations . If the total cost of the stamps was $ 7.06 , how

many 37 cents stamps did Allen buy ?

Variation: Allen bought 20 stamps at the post office in 20 cents and 37

cents denominations . If the total cost of the stamps was $ 7.06 , how

many 37 cents stamps did Allen buy ?

SVAMP-COP
Change the order of phrases Question: One pipe can fill a tank in 5 hours and another pipe can fill

the same tank in 4 hours . A drainpipe can empty the full content of the

tank in 20 hours . With all the three pipes open , how long will it take to

fill the tank ?

Variation: A drainpipe can empty the full content of a tank in 20 hours .

One pipe can fill the tank in 4 hours and another pipe can fill the same

tank in 5 hours . With all the three pipes open , how long will it take to

fill the tank with all the three pipes open ?

SVAMP-IU
Add irrelevant, unhelpful informa-

tion

Question: the area of an isosceles trapezoid with sides of length 5 and

bases of length 7 and 13 is ?

Variation: monkeys and apes are both primates, which means they’re

both part of the human family tree . the area of an isosceles trapezoid

with sides of length 5 and bases of length 7 and 13 is ?

ROBUST-IR
Add unhelpful, but contextually re-

lated information

Question: Tom is 15 years younger than alice . Ten years ago , Alice

was 4 times as old as Tom was then . How old is each now ?

Variation: Tom is 15 years younger than alice . Ten years ago , Alice

was 4 times as old as Tom was then . Alice really likes pinapple pizza.

How old is each now ?

ROBUST-AP
Turn active into passive speech to

increase problem verbosity

Question: Hay’s Linens sells hand towels in sets of 17 and bath towels

in sets of 6. If the store sold the same number of each this morning, what

is the smallest number of each type of towel that the store must have

sold?

Variation: Hand towels are sold by Hay’s Linens in sets of 17 and bath

towels are sold in sets of 6. If the same number of each were sold by the

store this morning, what is the smallest number of each type of towel

that the store must have sold?

ROBUST-ADJ
Add adjectives and adverbs to in-

crease problem verbosity

Question: ThereTea leaves exposed to oxygen for up to _ hours become

black tea.

Variation: Black tea leaves continuously exposed to oxygen for up to _

hours become a very rich black tea.

ROBUST-Q
Turn a task statement into a question Question: Product of -7 and -1469.125.

Variation: What is the product of -7 and -1469.125?

ROBUST-RQ
Turn a question into a task statement Question: Problem: If the product of 5 and a number is increased by 4 ,

the result is 19. What is the number?

Variation: Increasing the product of 5 and a number by 4 results is 19.

Find the number.

ROBUST-RM
Remove explicitly mathematical

terms that are implicitly defined

Problem: Find the arclength of the function fpxq “ 2
?
x on the interval

x “ 2 to x “ 8

Variation: Find the arclength of fpxq “ 2
?
x on r2, 8s

Table 6.16: Example for Each Template Provided to Mturk Workers to Produce Līla-Robust

145

Question: A gardener is going to plant 2 red rosebushes and 2 white rosebushes. If the gardener is to select each of the

bushes at random, one at a time, and plant them in a row, what is the probability that the 2 rosebushes in the middle of

the row will be the red rosebushes?

Options: {A:1/12, B:1/6, C:1/5, D:1/3, E:1/2}

Answer: B

Explanation: We are asked to find the probability of one particular pattern: wrrw. Total # of ways a gardener can plant

these four bushes is the # of permutations of 4 letters wwrr, out of which 2 w’ s and 2 r’ s are identical, so 4 ! / 2 ! 2 ! =

6 ; so p = 1 / 6. Answer: B.

Program: import scipy

n0 = 2.0

n1 = 2.0

n2 = 2.0

t0 = n0 + n0

t1 = scipy.special.comb(t0, n0)

answer = 1.0 / t1

Figure 6.7: An Example of Instruction Annotation.

146

23.2%

12.0%

33.4%

11.9%

2.4%
4.8%

3.4%
8.4%0.6% Basic math

Muldiv
Number theory
Algebra
Geometry
Statistics
Calculus
Linear algebra
Advanced math

(a) Math Ability Categories.

30.8%

49.7%

19.5%

No language
Simple language
Complex language

(b) Language Categories.

8.7%

76.4%

7.4%
4.7%2.7%

Fill in the blank
Generative QA
MCQ
NLI
RC

(c) Format Categories.

21.0%

18.4%

43.1%

7.8%

9.1%0.6%

No external knowledge
Commonsense
Math formulas
Science formulas
Complex knowledge
Real-world knowledge

(d) Knowledge Categories.

Figure 6.8: Task Diversity in Līla Across Math, Language, Format, and Knowledge Cate-

gories.

Figure 6.9: The Word Cloud Distribution of Annotated Programs in the LīlaDataset.

147

ID Category Questions Unique questions Question length Programs Unique programs Program length

TASK 1 Basic math 31,052 31,032 43.1 31,052 7,066 13.3

TASK 2 Muldiv 16,021 15,936 26.9 16,021 15,279 8.2

TASK 3 Number theory 44,760 44,183 41.3 269,232 261,865 33.2

TASK 4 Algebra 15,882 15,615 19.3 16,364 15,986 12.7

TASK 5 Geometry 3,190 3,149 36.1 3,190 3,035 28.7

TASK 6 Counting and statistics 6,423 6,384 39.7 6,423 6,335 31.5

TASK 7 Calculus 4,493 4,202 21.2 4,493 4,170 40.6

TASK 8 Linear algebra 11,248 11,204 32.4 11,248 11,204 23.0

TASK 9 Advanced math 746 746 21.2 746 745 27.3

TASK 10 No language 41,191 40,551 21.2 42,466 41,794 40.6

TASK 11 Simple language 66,505 66,172 26.9 290,184 258,839 8.2

TASK 12 Complex language 26,119 25,728 36.1 26,119 25,052 28.7

TASK 13 Fill in the blank 11,634 11,615 11.0 11,634 997 3.0

TASK 14 Generative QA 102,493 101,239 14.7 327,447 314,652 16.0

TASK 15 MCQ 9,989 9,989 28.3 9,989 470 3.0

TASK 16 NLI 6,326 6,325 50.8 6,326 6,243 25.8

TASK 17 RC 3,642 3,552 182.5 3,642 3,592 10.4

TASK 18 No external knowledge 28,115 27,964 50.8 28,115 27,117 25.8

TASK 19 Commonsense 24,677 24,658 30.9 24,677 823 3.0

TASK 20 Math formulas 57,841 56,947 19.1 59,116 57,019 25.5

TASK 21 Science formulas 10,505 10,319 36.1 10,505 9,764 28.7

TASK 22 Complex knowledge 12,200 12,086 14.5 235,879 230,486 24.2

TASK 23 Real-world knowledge 746 746 21.2 746 745 27.3

Table 6.17: Main Statistics of LīlaAcross the Total of 23 Tasks.

148

ID Dataset GPT-3 Neo-A Neo-P Codex

1 addsub 0.910 0.116 0.797 0.950

2 amps_algebra 0.116 0.100 0.902 0.655

3 amps_calculus 0.192 0.168 0.922 0.860

4 amps_counting_and_stats 0.183 0.117 0.958 0.650

5 amps_geometry 0.283 0.263 0.074 0.000

6 amps_linear_algebra 0.127 0.235 0.815 0.692

7 amps_number_theory 0.273 0.026 0.875 1.000

8 APPS_structured 0.167 0.154 0.134 0.459

9 asdiv 0.737 0.166 0.092 0.022

10 conala_structured 0.356 0.329 0.329 0.391

11 deepmind_mathematics_algebra 0.202 0.258 0.847 0.910

12 deepmind_mathematics_basicmath 0.270 0.125 0.614 1.000

13 deepmind_mathematics_calculus 0.208 0.026 0.152 0.884

14 deepmind_mathematics_muldiv 0.160 0.034 0.909 1.000

15 deepmind_mathematics_numbertheory 0.296 0.462 0.538 0.710

16 dolphin_t2_final 0.170 0.027 0.006 0.812

17 draw_structured 0.090 0.034 0.005 0.210

18 GSM8k_structured 0.110 0.060 0.139 0.350

19 MATH_crowdsourced 0.150 0.013 0.074 0.472

20 mathqa_gain 0.134 0.054 0.339 0.270

21 mathqa_general 0.110 0.073 0.193 0.120

22 mathqa_geometry 0.120 0.002 0.000 0.250

23 mathqa_other 0.180 0.043 0.011 0.280

24 mathqa_physics 0.120 0.087 0.429 0.210

25 mathqa_probability 0.210 0.003 0.000 0.200

26 mbpp_structured 0.128 0.175 0.164 0.408

27 MCTaco_event_duration_structured 0.800 0.773 0.773 0.710

28 MCTaco_event_ordering_structured 0.860 0.831 0.831 0.890

29 MCTaco_event_typical_time_structured 0.870 0.881 0.881 0.870

30 MCTaco_frequency_structured 0.890 0.862 0.862 0.790

31 MCTaco_stationarity_structured 0.710 0.758 0.758 0.670

32 multiarith 0.360 0.143 0.921 0.990

33 Numersense_structured 0.620 0.495 0.495 0.660

34 NumGLUE_Type_1 0.535 0.108 0.083 0.740

35 NumGLUE_Type_2 0.512 0.285 0.646 0.735

36 NumGLUE_Type_3 0.835 0.004 0.001 0.815

37 NumGLUE_Type_4 0.710 0.076 0.208 0.790

38 NumGLUE_Type_5 0.460 0.200 0.305 0.615

39 NumGLUE_Type_7 0.500 0.516 0.854 0.710

40 NumGLUE_Type_8 0.420 0.082 0.257 0.610

41 simuleq 0.120 0.074 0.010 0.170

42 singleop 0.940 0.347 0.611 1.000

43 singleq 0.830 0.143 0.474 0.670

44 svamp_structured 0.620 0.085 0.060 0.790

Average F1 score 0.400 0.223 0.440 0.613

Table 6.18: Evaluation Results of Baselines Across Different Single Datasets.

149

ID Dataset References

1 addsub Hosseini et al. (2014)

2 amps Hendrycks et al. (2021b)

3 APPS Hendrycks et al. (2021a)

4 asdiv Miao et al. (2020)

5 conala Yin et al. (2018)

6 mathematics Saxton et al. (2019)

7 dolphin Huang et al. (2016)

8 draw Upadhyay and Chang (2015)

9 GSM8k Cobbe et al. (2021)

10 MATH Hendrycks et al. (2021b)

11 mathqa Amini et al. (2019)

12 mbpp Austin et al. (2021)

13 MCTaco Zhou et al. (2019)

14 multiarith Roy and Roth (2015)

15 Numersense Lin et al. (2020)

16 NumGLUE Mishra et al. (2022g); Dua et al. (2019b);

Ravichander et al. (2019); Kushman et al.

(2014); Tafjord et al. (2019); Roy and Roth

(2018, 2017); Koncel-Kedziorski et al. (2016,

2015)

17 simuleq Kushman et al. (2014)

18 singleop Roy et al. (2015)

19 singleq Koncel-Kedziorski et al. (2015)

20 svamp Patel et al. (2021)

Table 6.19: List of Source Datasets and Corresponding References Used in Constructing

Līla.

150

Chapter 7

LESS IS MORE: SUMMARY OF LONG INSTRUCTIONS IS BETTER FOR PROGRAM

SYNTHESIS

7.1 Introduction

Recently, large pre-trained LMs have been proven pivotal in programming-related

tasks (Wang et al., 2021; Chen et al., 2021a; Hendrycks et al., 2021a; Lu et al., 2021c;

Papineni et al., 2002). Program synthesis aims to generate a code given the natural language

description of a problem. Programming requirements in these problems vary in terms of

complexity from a 3-5 line simple function to multiple functions that use advanced data

structures. However, LMs such as Codex show below-par performance on the long and

complicated programming questions. We observe that the natural language description of

the program becomes long and complicated when there is superfluous information (see

section 7.2.1). The goal of adding this information to the description is to make it more

understandable to humans. However, we find that this information confuses the model in

understanding a task. We propose that removing the excess information and providing the

model with the exact specifications of the problem can improve the performance of the LMs.

To remove excess information, we summarize the descriptions of the program in such

a way that it does not lose important specifications. We use the APPS dataset (Hendrycks

et al., 2021a) and CodeContests dataset (Li et al., 2022) which are a collection of coding

problems from different online sources and create a meta-dataset consisting of human and

synthesized summaries.

We perform all experiments using the GPT-based Codex model (Chen et al., 2021a) on

the proposed meta-dataset and show that the summarized version of complicated questions

151

improves strict accuracy by 8.13% on the APPS dataset and 11.85% on CodeContests. From

our analysis, we can see significant improvement for introductory (9.86%) and interview

(11.48%) related programming questions. However, it shows improvement by a small margin

(„ 2%) for competitive programming questions. Considering that automatic evaluation of a

program does not reward for partial correctness, we perform qualitative evaluation on our

meta-dataset and find that original questions often confuse models in understanding the

underlying problem, as models latch on to some spurious words in the text (e.g. the word

‘list’ in question makes the model design a list even though the underlying problem is on

graphs). We further analyze model performance on different types of summaries (i.e., basic,

expert, and synthetic) and provide instruction-design principles that can help future research

on prompting in program synthesis. This has been discussed further in our work (Kuznia

et al., 2022).

7.2 Method

7.2.1 Dataset

We use the APPS (Hendrycks et al., 2021a) and CodeContests (Li et al., 2022) datasets

to create summaries. We crowd-sourced the creation of human summaries. The result

was 373 human summaries for APPS, 80 summaries for CodeContests and 8663 synthetic

summaries using both datasets. Table 7.1 shows the statistics of the generated summaries.

Human Generated Summaries

For the APPS and CodeContests human-generated summaries, the crowd worker reads and

understands the original questions, then creates summaries in two steps. First, we create

a basic summary of the given problem and remove any information that is repeated and

any hypothetical information without concrete instructions. For example, if the problem

152

constructs a fake company or situation, we replace the fake situation with direct instructions.

Second, we create an expert summary of the problem. To create this, we further summarize

the first summary. This expert summary includes the absolute minimum information for

an expert to understand the problem. We would not expect a novice to understand these

prompts.

Synthetic Summaries

We have generated synthetic summaries of program descriptions using jumbo (178B), large

(7.5B) Studio21 model (Lieber et al., 2021), GPT-3 Davinci model (175B) (Brown et al.,

2020) and PEGASUS model (Zhang et al., 2019). To generate a summary, we provide these

models with a few examples in the in-context learning setup (Brown et al., 2020) from the

human-generated summaries. For the few-shot examples, we use expert-level summaries.

Studio21 We use five examples with the large model, and three examples with the jumbo

model. For both models, we use a temperature of 0.3, and topP of 1. For the format of our

prompt, we use De-Jargonizer template 1 with a change to their header. We create a total of

7, 505 synthetic summaries using these models.

GPT-3 We use three examples for GPT-3 model. We empirically set temperature to 0.05,

topP to 1, frequency penalty to 0.01, presence penalty to 0.05. To generate prompts, we

followed their tl;dr template 2 . We create 785 synthetic summaries using this model.

PEGASUS We use the PEGASUS model (Zhang et al., 2019) to create program sum-

maries for the same set of problems that were summarized by humans. We choose this

model because it was trained specifically for abstractive summarization.
1https://studio.ai21.com/

2https://beta.openai.com/playground/p/default-tldr-summary?model=text-davinci-001

153

https://studio.ai21.com/
https://beta.openai.com/playground/p/default-tldr-summary?model=text-davinci-001

7.2.2 Model

We use OpenAI Codex to build baselines and the proposed approach.

Baseline To create a baseline, we have used original program descriptions given in the

datasets as prompts for the Codex model.

Proposed Approach We have used summaries of original program descriptions given in

the datasets as prompts for the Codex model.

7.3 Experimental Setup

All the experiments are performed using the davinci´codex (Chen et al., 2021a) model

provided through OpenAI. At inference time, we use a modified version of the evaluation

code 3 provided by Hendrycks et al. (2021a). This evaluation code has four different outputs

for each test case: (1) -2: the code has a syntax error and can not run, (2) -1: the code is

syntactically correct but has a run time error, (3) 0: the code runs without any errors but fails

the test case, and (4) 1: the code runs without any error and passes the test case. Similar to

Chen et al. (2021a), we implement a timeout for the code at inference time. If a test case

takes more than 4 seconds to run then we throw an exception and count that test case as a

´1.

Experiments To show effectiveness of the proposed approach, we have performed three

different experiments using human generated summaries:

1. All problems from basic and expert summaries are used at inference time. We term

this experiment All Problems (AP).
3https://github.com/hendrycks/apps/blob/main/eval/test_one_solution.py

154

https://github.com/hendrycks/apps/blob/main/eval/test_one_solution.py

2. We eliminate problems that perform worse for either basic or expert summaries. We

term this experiment Either Worst Problem Removal (EWPR).

3. We eliminate problems that perform worse for both basic and expert summaries. We

term this experiment Both Worst Problem Removal (BWPR).

Motivation behind EWPR and BWPR If a summary caused every test case to perform

worse then it’s likely the crowd worker produced a faulty summary. To mitigate the effect

of outliers in the dataset, we use the EWPR method to remove such problems. Another

hypothesis is that every problem benefits from some level of summarization (i.e., basic or

expert). To measure this, we use the BWPR method. From Table 7.6 results, we identify

that only 1 problem had both summaries (basic and expert) preform worse.

Metric In Austin et al. (2021), they show that the BLEU metric (Papineni et al., 2002)

does not correlate well with synthesis performance. Thus, we use Strict Accuracy (SAcc) as

our evaluation metric for all experiments.

7.4 Results and Analysis

7.4.1 Human Generated Summaries

From Table 7.2, we can observe that both the summary-based models show on average

superior performance compared to baseline. In particular, when calculating results for every

problem, basic and expert summary-based models outperform baseline by 4.34% and 5.15%

on average for APPS dataset, respectively. Further analysis shows that the expert summary-

based model shows improved performance by „ 1% compared to the basic summary-based

model.

On the CodeContests dataset (Li et al., 2022), we show an average improvement of

11.88% in terms of SAcc. For this dataset, we did not separate the problems by difficulty.

155

This is because the problems come from different sources and have different scales of

difficulty. Thus, we did not report the SAcc when weighted by difficulty in Table 7.2.

Our analysis shows that many problems where the basic summary would fail, however,

the expert summary would succeed and vice-versa. Thus, we choose the best summary for

each problem after evaluating both summaries and then calculate the results for the best

summaries. Table 7.3 shows results when taking the best summary for each problem for

APPS dataset. We observe a 9.86%, 11.48%, and 1.91% increase on SAcc for introductory,

interview, and competition level problems, respectively.

7.4.2 Synthetic Summaries

Tables 7.4 and 7.5 show the results for baseline, synthetic summaries generated by GPT-

3, Studio21 and PEGASUS in terms of SAcc for two experiments. For the AP experiment,

we can observe that the performance of the baseline outperforms synthetic summary-based

models. However, the proposed model shows an average similar performance compared to

the baseline for the EWPR experiment.

7.4.3 Analysis

Why does eliminating the worst problems help? From Tables 7.2, we can observe

that EWPR and BWPR have improved performance compared to AP for both human and

synthetically generated summaries. By analyzing the summarized worst problems, we

notice a difference in the summarization style which shows that these summaries are outliers

and do not match the distribution of the other summaries. This can cause a problem in

synthesizing a good program since the model loses important information. Hence, we

believe that eliminating the worst problems improves model performance.

156

Is there any possible bias in the meta-dataset? Recent studies show that bias propagates

in human-annotated datasets (Geva et al., 2019; Parmar et al., 2022a). Given that our

summaries are also human-generated, there will be some bias in the dataset. Some details

that are critical to one person can be trivial to others. In the context of generating expert

summaries, assumptions about expert knowledge can vary. This bias causes drift in the

dataset and hinders the model’s performance. Similar to Mishra et al. (2022f), we can

provide a template for what is expected from the summary generator to reduce bias.

Why is competition accuracy low? We believe that these problems require multi-hop

reasoning, even after summarization, which is still a challenge for language models.

Impact of POS on Accuracy In the top plot of Figure 7.1, we observe that frequency

of nouns and propernouns for problems that passed all test cases is lower than the entire

dataset. In the bottom plot, we observe that the frequency for nouns and propernouns is

higher for the original question (which had < 100% accuracy on the test cases) and lower for

the summary (which had 100% accuracy on the test cases). Thus, we can see that number of

nouns degrades performance. We also see in the bottom chart that overuse of punctuation

can be detrimental to performance. From the results in Figure 7.1 we see results of nouns

affecting performance along with excessive punctuation.

7.5 Additional Analysis

Difficulty of CodeContests The accuracies for CodeContests is notably lower than the

APPS dataset since this dataset is more challenging, e.g. the number and complexity of

programming operations is relatively higher than APPS. From the baseline results in Table

7.2, we can observe that problems in CodeContests are harder than interview but easier than

competition.

157

Figure 7.1: (Top Plot) Mean Frequency of Pos for Problems Where Programs Where the

Generated by Both the Original and Summarized Prompt Pass All Test Cases, and (Bottom

Plot) Mean Frequency of Pos for Problems Where the Summary Passes All Test Cases and

the Original Did Not. The Blue Bar Represents the Mean of the Entire Dataset. Analyzed

Only the Top 11 Most Occurring Pos. The Plot Shows That Higher Number of Nouns

Degrade Model Performance.

158

Impact of Entities on Accuracy In Figure 7.2, we can observe that the total number of

entities num_entities is higher for problems that performed worse. Here, we can see that

the original problems (which failed test cases) had a higher mean than the dataset and the

summaries (which passed all test cases) had a lower number of entities.

7.6 Example of removing fake information

To see the code produced by the model for this example, refer to 7.13. There are

more examples of superfluous information confusing the model in 7.18 and of made up

information confusing the model in 7.19.

7.6.1 Original Prompt

Codefortia is a small island country located somewhere in the West Pacific. It

consists of n settlements connected by m bidirectional gravel roads. Curiously

enough, the beliefs of the inhabitants require the time needed to pass each road

to be equal either to a or b seconds. It’s guaranteed that one can go between any

pair of settlements by following a sequence of roads.

Codefortia was recently struck by the financial crisis. Therefore, the king

decided to abandon some of the roads so that:

it will be possible to travel between each pair of cities using the remaining roads

only, the sum of times required to pass each remaining road will be minimum

possible (in other words, remaining roads must form minimum spanning tree,

using the time to pass the road as its weight), among all the plans minimizing

the sum of times above, the time required to travel between the king’s residence

(in settlement 1) and the parliament house (in settlement p) using the remaining

roads only will be minimum possible.

159

Figure 7.2: (Top Plot) Mean Frequency of the Entity Labels for Problems Where Program

Generated by the Original and Summarized Prompt Pass All Test Cases, and (Bottom Plot)

Mean Frequency of Entity Labels for Problems Where the Summary Passes All Test Cases

and the Original Did Not. We Analyzed Only the Top 5 Most Occurring Entities among All

Entities We Found.

160

The king, however, forgot where the parliament house was. For each settlement

p “ 1, 2, . . . , n, can you tell what is the minimum time required to travel

between the king’s residence and the parliament house (located in settlement p)

after some roads are abandoned?

—–Input—–

The first line of the input contains four integers n, m, a and b (2 ď n ď 70,

n´ 1 ď m ď 200, 1 ď a ă b ď 107) — the number of settlements and gravel

roads in Codefortia, and two possible travel times. Each of the following lines

contains three integers u, v, c (1 ď u, v ď n, u ‰ v, c P ta, bu) denoting a

single gravel road between the settlements u and v, which requires c minutes to

travel.

You can assume that the road network is connected and has no loops or multi-

edges.

—–Output—–

Output a single line containing n integers. The p-th of them should denote the

minimum possible time required to travel from 1 to p after the selected roads

are abandoned. Note that for each p you can abandon a different set of roads.

—–Examples—–

Input

5 5 20 25

1 2 25

2 3 25

3 4 20

4 5 20

161

5 1 20

Output

0 25 60 40 20

Input

6 7 13 22

1 2 13

2 3 13

1 4 22

3 4 13

4 5 13

5 6 13

6 1 13

Output

0 13 26 39 26 13

—–Note—–

The minimum possible sum of times required to pass each road in the first exam-

ple is 85 — exactly one of the roads with passing time 25 must be abandoned.

Note that after one of these roads is abandoned, it’s now impossible to travel

between settlements 1 and 3 in time 50.

We can see the author of the problem is trying to describe a fully-connected graph with

n nodes and m edges each with a weight a or b. Thus, this paragraph can be summarized as:

162

7.6.2 Basic Summary

You are given a graph of n nodes and m bidirectional edges. The cost for each

edge is either a or b. The graph is fully-connected, so you can travel between

any pair of nodes using the edges.

For each node p “ 1, 2, . . . , n, you need to remove some edges so that: It will

be possible to travel between each pair of nodes using the remaining edges only,

and the sum of times required to pass each remaining road will be the minimum

possible. You should output the minimum time required to travel between node

1 and node p.

—–Input—–

The first line of the input contains four integers n, m, a and b (2 ď n ď 70,

n´ 1 ď m ď 200, 1 ď a ă b ď 107) — the number of nodes and edges in the

graph, and two possible travel times. Each of the following lines contains three

integers u, v, c (1 ď u, v ď n, u ‰ v, c P ta, bu) denoting an edge between the

nodes u and v, which has cost c.

You can assume that the graph is connected and has no loops or multiedges.

—–Output—–

Output a single line containing n integers. The p-th of them should denote the

minimum possible post required to travel from 1 to p after the selected edges

are abandoned. Note that for each p you can abandon a different set of edges.

—–Examples—–

Input

5 5 20 25

1 2 25

163

2 3 25

3 4 20

4 5 20

5 1 20

Output

0 25 60 40 20

Input

6 7 13 22

1 2 13

2 3 13

1 4 22

3 4 13

4 5 13

5 6 13

6 1 13

Output

0 13 26 39 26 13

7.6.3 Expert Summary

However, we can assume that an expert would already know what a minimum spanning

tree is. Thus, we can remove this detailed description of an MST.

You are given a connected graph of n nodes and m bidirectional edges. For

164

each node p “ 1, 2, . . . , n, you need to find a minimum spanning tree. Then

output the minimum cost required to travel between node 1 and node p.

—–Input—–

The first line of the input contains four integers n, m, a and b (2 ď n ď 70,

n´ 1 ď m ď 200, 1 ď a ă b ď 107) — the number of nodes and edges in the

graph, and two possible travel times. Each of the following lines contains three

integers u, v, c (1 ď u, v ď n, u ‰ v, c P ta, bu) denoting an edge between the

nodes u and v, which has cost c.

You can assume that the graph is connected and has no loops or multiedges.

—–Output—–

Output a single line containing n integers. The p-th of them should denote the

minimum possible post required to travel from 1 to p after the selected edges

are abandoned. Note that for each p you can abandon a different set of edges.

—–Examples—–

Input

5 5 20 25

1 2 25

2 3 25

3 4 20

4 5 20

5 1 20

Output

0 25 60 40 20

165

Input

6 7 13 22

1 2 13

2 3 13

1 4 22

3 4 13

4 5 13

5 6 13

6 1 13

Output

0 13 26 39 26 13

7.7 Prompt templates

Studio21 Here is our template for Studio21. To see examples of summaries produced by

Studio21AI’s model along with the code generated for those summaries, refer to 7.14 and

7.15.

The following sentences contain computer science jargon. Rewrite them using

simple words.

Jargon: <ORIGINAL>

Simple: <SUMMARY>

Jargon: <ORIGINAL>

Simple: <SUMMARY>

166

Jargon: <ORIGINAL>

Simple: <SUMMARY>

Jargon: <ORIGINAL>

Simple:

The few-shot examples were chosen randomly from the human generated expert sum-

maries.

GPT3 Here is our template for GPT3. To see examples of summaries produced by GPT3

and the code generated for those summaries refer to 7.16.

Summarize the following paragraph: Original: <ORIGINAL>

Summary: <SUMMARY>

Original: <ORIGINAL>

Summary: <SUMMARY>

Original: <ORIGINAL>

Summary: <SUMMARY>

Original: <ORIGINAL> Summary:

Codex Here is our default template for Codex, which is used when there is no starter code

provided. When there is starter code provided the docstring remains the same but the code

after the doc string will be what is provided.

167

Python3

"""

<PROBLEM DESCRIPTION>

"""

def code():

7.8 Strict Accuracy

Strict Accuracy (SAcc) is the percentage of problems that passed every test case. The

formula to calculate SAcc is given below:

strict acc :“
problems with 100% accuracy

total number of problems
(7.1)

Given that, we are only generating one code solution for each problem our strict accuracy

is comparable to Chen et al. (2021a)’s metric raw pass@1.

7.9 Codex Configuration

We did a small test with 75 summaries to find our hyper-parameters for Codex. We set

temperature to 0, topP to 1, frequency penalty to 0.2, and presence penalty to 0. We did

not provide few-shot examples to Codex since we want to see if summarization only could

improve the performance of the Codex model.

7.10 Worst Problems and Statistics

Using the test case labels as defined in section 7.3 we defined a test case as getting worse

if its label (result) was lower. Then we defined a problem as worse if every test case had a

lower label. Our methodology behind this was, if we removed problems that had a worse

accuracy, then it would be a non-trivial result that accuracy improved. Also, if we removed

168

problems with worse accuracy, then a problem that originally had all 0 labels (all False

test cases) would score the same if the summary had all ´1 labels (runtime error) or a ´2

(syntax error). So, we removed problems which every test case performed worse, to see if

removing these outliers would improve results. You can see the overall breakdown of each

split in table 7.6.

7.11 Average length of Problems and Solutions

Table 7.7 represents the statistics for average length of problems and solutions for

original and summarized prompts.

7.12 Abbreviated Synthetic Results

In table 7.8, we show the results for our synthetic summaries when taking the top 500

and 1000 summaries for GPT3 and StudioAI21, respectively. In our initial experiment, this

was the amount of problems we tested for each model. However, in our final experiment we

changed our configurations and generated more problems. For a comparison, we took the

top performing summaries and and reported those results.

7.13 Generated Code

In figure 7.3 we present the code that was generated for the example mentioned in 7.6

and 7.6.3. Given that the Codex model was prompted with the def codepq : the model did not

generate that function definition or the call to that function. That was added in afterwards,

but everything inside that function was generated by Codex. The originally generated code

(far left) fails with a ´1 because it did not take in the input correctly. It added in another

line p = int(input()), which most likely refers to the p mentioned in the original text. The

expert summary generated code (middle) fails every test case. The basic summary generated

code (right) passed 16{19 p84%q test cases and was the only code to pass at least 1 test case.

169

Figure 7.3: On the Far Left Is the Code Generated by the Original Prompt. The Middle Is

the Code Generated by the Expert Summary. The Right Is the Code Generated by the Basic

Summary.

7.14 StudioAI21 Generated Code

Below is an example of a competition problem where StudioAI21 summarized the

prompt too much but Codex was still able to produce viable code. Here is the original

prompt:

Cengiz recently learned Fibonacci numbers and now he is studying different

algorithms to find them. After getting bored of reading them, he came with his

own new type of numbers that he named XORinacci numbers. He defined them

as follows: fp0q “ a; fp1q “ b; fpnq “ fpn ´ 1q ‘ fpn ´ 2q when n ą 1,

where ‘ denotes the bitwise XOR operation.

You are given three integers a, b, and n, calculate fpnq.

You have to answer for T independent test cases.

—–Input—–

The input contains one or more independent test cases.

170

The first line of input contains a single integer T (1 ď T ď 103), the number of

test cases.

Each of the T following lines contains three space-separated integers a, b, and

n (0 ď a, b, n ď 109) respectively.

—–Output—–

For each test case, output fpnq.

—–Example—–

Input

3

3 4 2

4 5 0

325 265 1231232

Output

7

4

76

—–Note—–

In the first example, fp2q “ fp0q ‘ fp1q “ 3‘ 4 “ 7.

Here is the summary that StudioAI21 generated:

You are given three integers a, b, and n. Calculate fpnq.

—–Input—–

171

The input contains one or more independent test cases.

The first line of input contains a single integer T (1 ď T ď 103), the number of

test cases.

Each of the T following lines contains three space-separated integers a, b, and

n (0 ď a, b, n ď 109) respectively.

—–Output—–

For each test case, output fpnq.

—–Example—–

Input

3

3 4 2

4 5 0

325 265 1231232

Output

7

4

76

—–Note—–

In the first example, fp2q “ fp0q ‘ fp1q “ 3‘ 4 “ 7.

Because any input/output examples provided by the prompt are appended to the summary,

Codex was able to figure out the pattern in the problem and generate code that was almost

correct. In figure 7.4, the solution (left) used the pattern in the problem and simplify by

172

taking n mod 3. The Studio21 summary code (right) recognizes this pattern but erroneously

does not take the modulus of the number. The original code (center) also makes the same

mistake by not taking the modulus, but also brute forces the answer. This shows that the

model did not recognize the pattern in this problem because of the superfluous details. Even

though Studio21 might have summarized too much, the model was still able to make an

improvement and understand the pattern in the problem more.

Figure 7.4: The Left Is the Code Generated Using the Original Prompt. The Right Is the

Code Generated When Using the Studioai21 Generated Summary.

7.15 StudioAI21 Generated Code

Here is an example of a summary made by StudioAI21 where the qualitative aspect of

the code but it still failed. Here is the original prompt:

Given is a tree G with N vertices. The vertices are numbered 1 through N, and

the i-th edge connects Vertex ai and Vertex bi. Consider painting the edges in G

with some number of colors. We want to paint them so that, for each vertex, the

colors of the edges incident to that vertex are all different. Among the colorings

satisfying the condition above, construct one that uses the minimum number of

colors.

—–Constraints—–

- 2 ď N ď 105

173

- 1 ď ai ă bi ď N

- All values in input are integers.

- The given graph is a tree.

—–Input—–

Input is given from Standard Input in the following format:

N

a1 b1

a2 b2
...

aN´1 bN´1

—–Output—–

Print N lines.

The first line should contain K, the number of colors used.

The (i+1)-th line p1 ď i ď N ´ 1q should contain ci, the integer representing

the color of the i-th edge, where 1 ď ci ď K must hold.

If there are multiple colorings with the minimum number of colors that satisfy

the condition, printing any of them will be accepted.

—–Sample Input—–

3

1 2

2 3

—–Sample Output—–

174

2

1

2

Here is the summary that StudioAI21 generated:

You are given a tree with N vertices numbered from 1 to N. You need to find

the minimum possible number of colors to paint the edges such that vertices are

painted with different color. —–Constraints—–

- 2 ď N ď 105

- 1 ď ai ă bi ď N

- All values in input are integers.

- The given graph is a tree.

—–Input—–

Input is given from Standard Input in the following format:

N

a1 b1

a2 b2
...

aN´1 bN´1

—–Output—–

Print N lines.

The first line should contain K, the number of colors used.

The (i+1)-th line p1 ď i ď N ´ 1q should contain ci, the integer representing

175

the color of the i-th edge, where 1 ď ci ď K must hold.

If there are multiple colorings with the minimum number of colors that satisfy

the condition, printing any of them will be accepted.

—–Sample Input—–

3

1 2

2 3

—–Sample Output—–

2

1

2

In 7.5 the left is the original solution which fails with a ´2 because the runtime of the

algorithm is exponential. Note that it tries to create a list of all possible edge colorings which

is Op2Nq. The right is the code produced when using the StudioAI21 summary. You can

see that this code is much closer to solving the problem and produces an efficient algorithm.

However, this fails with a ´2 because it tries to print the sum of a boolean (near the end

before the last for loop). Which fails in python because a bool is not iterable.

Here is a problem where StudioAI21’s summary increased the accuracy to 100%. Here

is the original prompt:

Polycarpus has a sequence, consisting of n non-negative integers: a1, a2, ..., an.

Let’s define function f(l, r) (l, r are integer, 1 ď l ď r ď n) for sequence a as an

operation of bitwise OR of all the sequence elements with indexes from l to r.

Formally: f(l, r) = al|al ` 1|...|ar.

176

Figure 7.5: The Left Is the Code Generated Using the Original Prompt. The Right Is the

Code Generated When Using the Studioai21 Generated Summary.

Polycarpus took a piece of paper and wrote out the values of function f(l, r)

for all l, r (l, r are integer, 1 ď l ď r ď n). Now he wants to know, how many

distinct values he’s got in the end.

Help Polycarpus, count the number of distinct values of function f(l, r) for the

given sequence a.

Expression x|y means applying the operation of bitwise OR to numbers x and

y. This operation exists in all modern programming languages, for example, in

language C++ and Java it is marked as "|", in Pascal — as "or".

—–Input—–

The first line contains integer n p1 ď n ď 105q — the number of elements of

sequence a. The second line contains n space-separated integers a1, a2, ..., an

p0 ď ai ď 106q— the elements of sequence a.

—–Output—–

Print a single integer — the number of distinct values of function f(l, r) for the

given sequence a.

177

Please, do not use the lld specifier to read or write 64-bit integers in C++. It is

preferred to use cin, cout streams or the I64d specifier.

—–Examples—–

Input

3

1 2 0

Output

4

Input

10

1 2 3 4 5 6 1 2 9 10

Output

11

—–Note—–

In the first test case Polycarpus will have 6 numbers written on the paper: f(1, 1)

= 1, f(1, 2) = 3, f(1, 3) = 3, f(2, 2) = 2, f(2, 3) = 2, f(3, 3) = 0. There are exactly

4 distinct numbers among them: 0, 1, 2, 3.

Here is the summary that StudioAI21 generated. Not exactly as we would expect as the

prompt still mentions the fictional Polycarpus.

Polycarpus has a sequence, consisting of n non-negative integers: a1, a2, ..., an.

Let’s define function f(l, r) (l, r are integer, 1 l r n) for sequence a as an operation

of bitwise OR of all the sequence elements with indexes from l to r. Formally:

f(l, r) = al|al ` 1|...

178

—–Input—–

The first line contains integer n p1 ď n ď 105q — the number of elements of

sequence a. The second line contains n space-separated integers a1, a2, ..., an

p0 ď ai ď 106q— the elements of sequence a.

—–Output—–

Print a single integer — the number of distinct values of function f(l, r) for the

given sequence a.

Please, do not use the lld specifier to read or write 64-bit integers in C++. It is

preferred to use cin, cout streams or the I64d specifier.

—–Examples—–

Input

3

1 2 0

Output

4

Input

10

1 2 3 4 5 6 1 2 9 10

Output

11

—–Note—–

In the first test case Polycarpus will have 6 numbers written on the paper: f(1, 1)

179

= 1, f(1, 2) = 3, f(1, 3) = 3, f(2, 2) = 2, f(2, 3) = 2, f(3, 3) = 0. There are exactly

4 distinct numbers among them: 0, 1, 2, 3.

In 7.6 the left is the original solution which gets 77% accuracy. The right is the summary

code which gets 100% accuracy.

Figure 7.6: The Left Is the Code Generated Using the Original Prompt. The Right Is the

Code Generated When Using the Studioai21 Generated Summary.

7.16 GPT Generated Summaries

Here are two summaries where GPT perfectly summarized the prompt and gave a concise

description of what the task was. In both cases the original prompt did not have 100%

accuracy but the summarized prompt did have 100% accuracy.

Here is the original prompt for the first question:

Božo is a strange little boy. Every day he tires his friends with strange questions.

Today’s question is: how many integers in the interval rA,Bs are there such

that the sum of their digits is S, and which is the smallest such number?

Write a program that answers Božo’s question so that he can get some sleep.

180

—–Input—–

The input contains three integers A, B and S (1 ď A ď B ă 1015, 1 ď S ď

135).

—–Output—–

The first line should contain the number of integers in the interval with the digit

sum equal to S.

The second line should contain the smallest such integer.

The input data will guarantee that the first number is at least 1.

—–Examples—–

Sample Input 1:

1 9 5

Sample Output 1:

1

5

Sample Input 2:

1 100 10

Sample Output 2:

9

19

Here is the summary that GPT Generated:

Write a program that calculates the smallest integer in the given interval whose

sum of digits is equal to the given sum.

181

—–Input—–

The input contains three integers A, B and S (1 ď A ď B ă 1015, 1 ď S ď

135).

—–Output—–

The first line should contain the number of integers in the interval with the digit

sum equal to S.

The second line should contain the smallest such integer.

The input data will guarantee that the first number is at least 1.

—–Examples—–

Sample Input 1:

1 9 5

Sample Output 1:

1

5

Sample Input 2:

1 100 10

Sample Output 2:

9

19

In 7.7 you can see the original code on the left and the summary code on the right. There

is a subtle difference but it’s that difference that improved the problem from 33% accuracy

to 100%.

Here is the original prompt for another question.

182

Figure 7.7: The Left Is the Code Generated Using the Original Prompt. The Right Is the

Code Generated When Using the GPT3 Generated Summary.

Professor GukiZ makes a new robot. The robot are in the point with coordinates

px1, y1q and should go to the point px2, y2q. In a single step the robot can change

any of its coordinates (maybe both of them) by one (decrease or increase). So

the robot can move in one of the 8 directions. Find the minimal number of steps

the robot should make to get the finish position.

—–Input—–

The first line contains two integers x1, y1 p´109 ď x1, y1 ď 109q — the start

position of the robot.

The second line contains two integers x2, y2 p´109 ď x2, y2 ď 109q — the

finish position of the robot.

—–Output—–

Print the only integer d — the minimal number of steps to get the finish position.

—–Examples—–

Input

0 0

4 5

183

Output

5

Input

3 4

6 1

Output

3

—–Note—–

In the first example robot should increase both of its coordinates by one four

times, so it will be in position (4, 4). After that robot should simply increase its

y coordinate and get the finish position.

In the second example robot should simultaneously increase x coordinate and

decrease y coordinate by one three times.

Here is the summary that GPT3 generated:

The robot can move in one of the 8 directions. Find the minimal number of

steps the robot should make to get the finish position.

—–Input—–

The first line contains two integers x1, y1 p´109 ď x1, y1 ď 109q — the start

position of the robot.

The second line contains two integers x2, y2 p´109 ď x2, y2 ď 109q — the

finish position of the robot.

—–Output—–

Print the only integer d — the minimal number of steps to get the finish position.

184

—–Examples—–

Input

0 0

4 5

Output

5

Input

3 4

6 1

Output

3

—–Note—–

In the first example robot should increase both of its coordinates by one four

times, so it will be in position (4, 4). After that robot should simply increase its

y coordinate and get the finish position.

In the second example robot should simultaneously increase x coordinate and

decrease y coordinate by one three times.

In 7.8 you can see the original code on the left and the summary code on the right. There

is a subtle difference but it’s that difference that improved the problem from 20% accuracy

to 100%.

7.17 Human Generated Instructions

The section below was given to each crowd worker as instructions to follow when

creating the regular and expert summaries.

185

Figure 7.8: The Left Is the Code Generated Using the Original Prompt. The Right Is the

Code Generated When Using the GPT3 Generated Summary.

7.17.1 Summarization

Create a file called summary.txt this will contain your summary of the prompt. It’s

recommended that you copy the question.txt file into the summary.txt file then starting

from the top of the prompt follow the steps and remove words/lines as necessary.

These are the rough steps for making a summary. Following these steps will create the

most consistency in our dataset. However, you should summarize as you see fit. First, read

through the prompt and understand what it’s asking, then follow these steps to help create a

summary.

1. Directly state what is given in the problem.

• Most problems start by setting the scene, to help humans understand.

• Start the problems by explicitly telling the model what the input is.

• You are given . . .

2. Remove any notes given in the prompt.

186

• They are usually reemphasizing points, which is redundant and not needed in

the summary.

• This includes the ´Notes´ section at the bottom of the file.

• If there is pertinent information given from a note, include it in the prompt

without describing it as a note.

3. Remove any text in parenthesis.

• Most of the text in parenthesis is repeating the information that precede them.

• If the text in parenthesis provides more context or information, then remove the

preceding text.

• Keep any parenthesis if it is describing constraints, such as the minimum and

maximum values for the input etc...

4. Remove any made up people, places, things, etc...

• These abstractions are made to help humans understand but confuse the model.

• The prompts often mention things like Codefortia or Polycarp, try to replace

these with the word you.

• Any text visualizing what the problem is asking, should be removed.

5. If the Input or Output section reference an abstraction they should be changed.

• Overall, these sections are fine. However, if they mentioned something you

removed in the previous steps, they should be changed to reflect that.

• If these sections repeat themselves remove any redundancies.

• In most cases these sections will be left alone.

187

7.17.2 Expert Summary

Create a file called expert.txt this will contain an expert summary of the prompt. It’s

recommended that you copy the summary.txt file into the expert.txt file then starting

from the top of the prompt remove words/lines as necessary. You should aim for the expert

prompt to be 2´ 4 lines.

Imagine you are describing the prompt to a senior software engineer. What else could you

trim out? The difference between the original and expert summary, is the original summary

may include something obvious, whereas the expert solution should be the absolute bare

minimum. To create summary.txt you want to remove superfluous details from the original

prompt. To create expert.txt you want to remove details that an expert would find obvious,

from the summary.

For example, in problem 2000 (which is competitive difficulty) the summary mentions

’It will be possible to travel between each pair of nodes . . . , and the sum of times . . . will be

the minimum possible’. This process is describing a minimum spanning tree so you can just

say ’Find a minimum spanning tree’.

Also, if the prompt included an example and subsequent explanation, that should remain

in the summary but should be removed from the expert summary. An expert already

understands the problem and does not need any extra explanation. You should still keep the

´Examples´ section.

Takeaways

• Removing made up people, places, and things from the prompt improved the quality

of code generated.

• The optimal summarization depends on the difficulty of the problem.

• Synthetically generate summaries were close to maintaining accuracy.

188

• With more rigorous instructions, human summaries could be made with less noise

which would further improve synthetic summary generation.

7.18 Superfluous Information Confusing the Model

Here is an example of an interview level string problem where the original prompt got

0% and both human generated summaries got 100% accuracy. The question wants you to

write code that will return the number of unique character in the given string.

7.18.1 Original Prompt

You have initially a string of N characters, denoted by A1,A2...AN. You have to

print the size of the largest subsequence of string A such that all the characters

in that subsequence are distinct ie. no two characters in that subsequence should

be same.

A subsequence of string A is a sequence that can be derived from A by deleting

some elements and without changing the order of the remaining elements.

—–Input—– First line contains T, number of testcases. Each testcase consists

of a single string in one line. Each character of the string will be a small

alphabet(ie. ’a’ to ’z’).

—–Output—– For each testcase, print the required answer in one line.

—–Constraints—–

- 1 ď T ď 10

- Subtask 1 (20 points):1 ď N ď 10

- Subtask 2 (80 points):1 ď N ď 105

—–Example—–

189

Input:

2

abc

aba

Output: 3

2

—–Explanation—– For first testcase, the whole string is a subsequence which

has all distinct characters.

In second testcase, the we can delete last or first ’a’ to get the required subse-

quence.

7.18.2 Basic Summary

You are given N string. You have to identify the duplicates and print the length

of the new string as a combination of unique characters only.

—–Input—– First line contains T, number of testcases. Each testcase consists

of a single string in one line. Each character of the string will be a small

alphabet(ie. ’a’ to ’z’).

—–Output—– For each testcase, print the required answer in one line.

—–Constraints—–

- 1 ď T ď 10

- Subtask 1 (20 points):1 ď N ď 10

- Subtask 2 (80 points):1 ď N ď 105

190

—–Example—–

Input:

2

abc

aba

Output: 3

2

7.18.3 Expert Summary

You have to remove duplicates and print the length of unique characters of the

given string.

—–Input—– First line contains T, number of testcases. Each testcase consists

of a single string in one line. Each character of the string will be a small

alphabet(ie. ’a’ to ’z’).

—–Output—– For each testcase, print the required answer in one line.

—–Constraints—–

- 1 ď T ď 10

- Subtask 1 (20 points):1 ď N ď 10

- Subtask 2 (80 points):1 ď N ď 105

—–Example—–

Input:

2

abc

191

aba

Output: 3

2

7.18.4 Generated Code

The original code (left) does not accomplish the task but rather prints the count of the

most frequent character. The model was unable to distinguish what the task was given the

verbose prompt. However, the basic and expert summaries make the task clear and the

model produces the same code. Which properly solves the challenge.

Figure 7.9: The Left Is the Code Generated by the Original Prompt. The Middle Is the Code

Generated by the Expert Summary. The Right Is the Code Generated by the Basic Summary.

7.19 Made Up Information Confusing the Model

Here is an example of an interview level problem where the original prompt got 0% and

the expert generated summary got 100% accuracy.

192

7.19.1 Original Prompt

The chef was searching for his pen in the garage but he found his old machine

with a display and some numbers on it. If some numbers entered then some

different output occurs on the display. Chef wants to crack the algorithm that

the machine is following. Example to identify the pattern :

Input Output

9 36

5 10

1 0

2 1

—–Input:—–

- First-line will contain T , the number of test cases. Then the test cases follow. -

Each test case contains a single line of input, N .

—–Output:—–

For each test case, output in a single line answer as displayed on the screen.

—–Constraints—–

- 1 ď T ď 106

- 1 ď N ď 106

—–Sample Input:—–

1

7

193

—–Sample Output:—–

21

7.19.2 Expert Summary

Write a code to print the average of the multiplication of a given number N with

N-1 integer. 1

—–Input:—–

- First-line will contain T , the number of test cases. Then the test cases follow. -

Each test case contains a single line of input, N .

—–Output:—–

For each test case, output in a single line answer as displayed on the screen.

—–Constraints—–

- 1 ď T ď 106

- 1 ď N ď 106

—–Sample Input:—–

1

7

—–Sample Output:—–

21

7.20 Conclusion

We introduce a summarization-based approach 4 for efficient program synthesis. Exper-

imental results show that the proposed approach improves the performance of the Codex
4https://github.com/kurbster/Prompt-Summarization

194

Figure 7.10: The Left Is the Code Generated by the Expert Summary. The Right Is the Code

Generated by the Original Prompt.

model by on average „ 8% across various levels of programming questions provided by

the APPS and „ 11% on the CodeContests. Further, our work proposes a meta-dataset

consisting of „ 450 human-generated basic and expert-level summaries as well as „ 8k

synthetically generated summaries by GPT-3 and Studio21; this can be helpful for future

research on writing better instructions for the program synthesis. We show that program

synthesis models benefit from concise prompts, hence, we believe that less number of

high-quality instances are better than more low-quality data instances.

195

Data Source Difficulty # of Problems

Human

Introductory 145

Interview 123

Competition 105

CodeContests 80

Total 453

Studio21

Introductory 1588

Interview 4551

Competition 1286

CodeContests 80

Total 7505

GPT-3

Introductory 194

Interview 267

Competition 244

CodeContests 80

Total 785

PEGASUS

Introductory 145

Interview 123

Competition 105

Total 373

Table 7.1: Statistics of the Proposed Meta-dataset.

196

Difficulty
AP EWPR BWPR

Baseline Basic Expert Baseline Basic Expert Baseline Basic Expert

Introductory 42.96 50.00 50.00 44.20 51.45 51.82 43.23 50.35 50.35

Interview 37.70 41.80 44.26 36.52 45.54 46.96 37.70 41.80 44.26

Competition 4.76 5.71 5.71 4.00 6.00 6.00 4.76 5.71 5.71

Weighted Average 30.47 34.83 35.64 30.31 36.65 37.22 30.43 34.78 35.59

CodeContests 12.50 23.75 25.00 13.33 25.33 26.66 12.82 24.36 25.64

Table 7.2: Results of Baseline and Proposed Model in Terms of Strict Accuracy (Sacc). The

First Block Is from the Apps Dataset. The Last Block Is from the Codecontests Dataset. Ap:

All Problems, Ewpr: Either Worst Problem Removal, Bwpr: Both Worst Problem Removal.

All Results Are in %. Weighted Average Is Not Shown for Codecontests Because Similar

Difficulties Were Not Provided (See Explanation In 7.4.1).

Difficulty
AP EWPR

Baseline Proposed Baseline Proposed

Introductory 42.96 52.82 44.53 54.74

Interview 37.70 49.18 38.66 50.42

Competition 4.76 6.67 4.81 6.73

Weighted Average 30.47 38.48 31.11 39.44

Table 7.3: Results When Taking the Best Summary for Each Problem. The Ewpr Baseline

Is Different Because a Different Set of Problems Have Been Removed.

197

Model Difficulty
AP EWPR

Baseline Proposed Baseline Proposed

GPT-3
Introductory 41.75 38.66 41.11 41.67

Interview 20.30 18.80 18.18 20.66

Competition 2.87 3.28 2.73 3.64

Weighted Average 20.17 18.89 19.14 20.55

Studio21

Introductory 39.53 31.63 39.04 36.36

Interview 12.28 11.00 10.57 12.37

Competition 1.67 1.21 1.38 1.38

Weighted Average 11.53 9.66 10.61 10.98

PEGASUS

Introductory 42.96 34.48 44.26 40.98

Interview 37.70 10.57 14.29 21.56

Competition 4.76 0.00 2.76 0.00

Weighted Average 30.47 16.88 25.50 24.73

Table 7.4: Results of Baseline and Proposed Approach (All Results Are in %). Summaries

Generated by Gpt-3, Studio21, and Pegasus Used for Inference from Apps.

Model
AP EWPR

Baseline Proposed Baseline Proposed

GPT-3 12.50 10.0 18.75 18.75

Studio21 12.50 8.75 22.5 20.0

Table 7.5: Results of Baseline and Proposed Approach (All Results Are in %). 80 Summaries

Generated by Gpt-3 and Studio21 Used for Inference from Codecontests.

198

Summary Difficulty AP EWPR BWPR

Basic

Introductory 145 141 144

Interview 123 113 123

Competition 105 100 105

Expert

Introductory 145 140 144

Interview 123 116 123

Competition 105 100 105

StudioAI21

Introductory 215 187 -

Interview 627 558 -

Competition 659 578 -

GPT3

Introductory 194 180 -

Interview 266 242 -

Competition 244 220 -

Table 7.6: These Are the Numbers of Problems in Each Split of the Dataset. For GPT and

Studio21 We Did Not Look at Problems That Were Worse or Same for Both Experiments

Because There Was Insignificant Overlap Between the Two Experiments.

199

Experiment Original Len Summary Len Orig Code Len Summary Code Len Code Solution Len

Summary 1147 937 339 349 671

Expert 1147 869 339 343 671

GPT 1386 1011 437 392 748

StudioAI21 1646 1114 602 473 721

Table 7.7: The Average Length of the Original/Summarized Prompt and Generated Code.

The Average Length of the Code Solutions Is the Average Length of the Solutions Provided

by the Creators of the Apps Dataset. A Problem Could Have One or Multiple Solutions.

The Length Is Reported in Characters.

Model Difficulty
AP EWPR

Baseline Proposed Baseline Proposed

GPT-3
Introductory 41.97 38.86 41.11 41.67

Interview 25.27 27.47 24.86 28.25

Competition 4.80 6.40 4.88 6.50

Weighted Average 26.60 26.60 25.83 27.71

Studio21

Introductory 39.91 31.92 39.25 36.56

Interview 15.97 14.50 13.23 15.47

Competition 2.57 2.57 2.71 2.71

Weighted Average 16.90 14.50 15.10 15.64

Table 7.8: Results When Taking the Top 500 Gpt Problems and Top 1000 Studio Problems

200

Chapter 8

IS A QUESTION DECOMPOSITION UNIT ALL WE NEED?

8.1 Introduction

With the advent of large LMs, we have achieved state-of-the-art performance on many

NLP benchmarks (Brown et al., 2020). Our benchmarks are evolving and becoming harder

over time. To solve new benchmarks, we have been designing more complex and bigger

LMs at the cost of computational resources, time and its negative impact on the environment.

Building newer LMs for solving new benchmarks may not be an ideal and sustainable

option over time. Inspired by humans, who often view new tasks as a combination of

existing tasks, we explore if we can mimic humans and help the model solve a new task by

decomposing (Mishra et al., 2022e) it as a combination of tasks that the model excels at and

already knows.

As NLP applications are increasingly more and more popular among people in their

daily activities, it is essential to develop methods that involve humans in NLP-powered

applications in meaningful ways. Our approach attempts to fill this gap in LMs by providing

a human-centric approach to modifying data. Solving complex QA tasks such as multi-hop

QA, and numerical reasoning has been a challenge for models. Question Decomposition

(QD) has recently been explored to empower models to solve these tasks with the added

advantage of interpretability. However, previous studies on QD are limited to some specific

datasets (Khot et al., 2021) such as DROP (Dua et al., 2019b) and HotpotQA (Yang et al.,

2018). We analyze a range of datasets involving various forms of reasoning to investigate if

“a Question Decomposition Unit All We Need?"

Figure 8.1 shows the schematic representation of a QD unit. The original question is

201

difficult for a model to answer. However, it becomes easier for the model when a human

decomposes the question into a set of simpler questions.

CONTEXT:

Storm Corrosion is the
self-titled... divorce via
her Facebook page.

ORIGINAL QUESTION:

Jaclyn Stapp is married to the former
frontman of a band that disbanded in

what year?

SUB-QUESTION 1:

Who is Jaclyn Stapp married to?

SUB-QUESTION 2:

What band is #1 a part of?

SUB-QUESTION 3:

When did the band, #2, breakup?

Figure 8.1: The Original Question Is Answered Incorrectly by a Model. A Human Then

Decomposes the Question into a Set of Simpler Questions Which the Model Then Answers

Correctly.

We manually decompose randomly selected 50 samples of each dataset. The decomposi-

tions we perform are purely based on intuitions to reduce the complexity of the question,

inspired by the success of task-level instruction decomposition (Mishra et al., 2022e)

in improving model performance. We experiment with GPT3 (Brown et al., 2020) and

RoBERTA (Liu et al., 2019) fine-tuned on SQuAD 2.0 (Rajpurkar et al., 2018) and find that

HQD significantly improves model performance (24% for GPT-3 and 29% for RoBERTa-

SQuAD along with a symbolic calculator). Here, the evaluation happens on unseen tasks on

which the model is not fine-tuned. Our findings indicate that Human-in-the-loop Question

Decomposition (HQD) can potentially provide an alternate path to building large LMs.

We hope our work will encourage the community to develop human-centric solutions that

actively involve humans while leveraging NLP resources. This has been discussed further in

our work (Patel et al., 2022).

202

Name Type

HotpotQA Multihop RC

DROP Mulithop RC

StrategyQA Strategic Reasoning

MultiRC RC

Break RC

MathQA Mathematical Reasoning

QASC Fact-based Multichoice

SVAMP Context-based Math Word Problems

Table 8.1: Type of Qa Task Corresponding to Each Dataset. RC: Reading Comprehension

8.2 Methods

8.2.1 Datasets

We select eight datasets covering a diverse set of reasoning skills and domains: (1)

HotpotQA (Yang et al., 2018), (2) DROP (Dua et al., 2019b), (3) MultiRC (Khashabi et al.,

2018), (4) StrategyQA (Geva et al., 2021), (5) QASC (Khot et al., 2020), (6) MathQA

(Amini et al., 2019), (7) SVAMP (Patel et al., 2021), and (8) Break (Wolfson et al., 2020).

Table 8.1 indicates the different task types for each dataset.

8.2.2 Decomposition Process

For each dataset, we randomly select 50 instances for manual decomposition. The

question in each dataset is decomposed into two or more questions. Table 8.2, 8.3, 8.4 and

8.5 show examples of decomposition for various datasets. For each dataset, we created a set

D for decomposed questions. Each element Di P D can be represented as below:

203

Di “ tCi,Qi,Qd,Ai,Adu,

where Ci is the context paragraphs, Qi is the original question, Qd is the set of decom-

posed questions, Ai is an original answer, and Ad is the set of answers for corresponding

decomposed questions. For questions that require arithmetic or logical operations, we use a

computational unit as suggested in Khot et al. (2021), which takes a decomposed question

as input in the following format:

tOu!#m1!#m2!....!#mn,

where O “ {summation, difference, division, multiplication, greater, lesser, power,

concat, return, remainder}, #mi are answers of previous decomposed questions and !

separates the operands.

8.3 Experimental Setup

Models We use GPT-3 (Brown et al., 2020) to generate answers for original and decom-

posed questions. To show that QD significantly improves performance even on simpler

models, we use RoBERTa-base finetuned on SQuAD 2.0 dataset (i.e., RoBERTa-SQuAD).

Additionally, we use RoBERTa-base finetuned on BoolQ dataset (Clark et al., 2019) (i.e.,

RoBERTa-BoolQ) for original and decomposed questions in StrategyQA since they are

True/False type questions.

Experiments To create baselines, we evaluate all models on the original question along

with the context. We evaluate all models on the manually decomposed questions in the

proposed method. We carry out all experiments in GPT-3 by designing prompts for each

dataset. For RoBERTa-based models, we use RoBERTa-SQuAD for MultiRC, Break,

HotpotQA and DROP datasets, since SQuAD 2.0 is designed for a reading comprehension

204

task. For StrategyQA, we use two RoBERTa-base models: (1) RoBERTa-BoolQ, which

is used to answer the final boolean type of questions, and (2) RoBERTa-SQuAD which is

used to answer the remaining decomposition questions. For SVAMP, we use the RoBERTa-

SQuAD model to extract the necessary operands using decomposed questions and then we

use the computational module to perform various operations. In all experiments, we use

decomposition to get to the final answer sequentially.

Metrics For all our experiments, we use Rouge-L (Lin, 2004), F1-score and Exact Match

(EM) as the evaluation metrics.

8.4 Results and Analysis

Here, we divide our datasets into four categories: (1) RC: HotpotQA, DROP, MultiRC,

and Break in Reading Comprehension (RC), (2) MATH: MathQA and SVAMP in Mathe-

matical reasoning , (3) MC: QASC in Multi-Choice QA (MC) , and (4) SR: StrategyQA in

Strategy Reasoning (SR). All results presented in these sections are averaged over tasks for

each category.

8.4.1 Experimental Results

GPT-3 Figure 8.3 shows the GPT-3 performance in terms of average F1-scores for each

category. From the Figure 8.3, we can observe that our proposed approach outperforms

baseline by „ 24%.

RoBERTa Figure 8.2 represents the results we obtain using RoBERTa-based models in

terms of F1-scores for each category. On an average, we achieve „ 29% of significant

improvement compared to the baseline.

205

F1
-s
co
re

0

10

20

30

40

50

60

70

RC Math SR

Baseline Proposed

Figure 8.2: Results in Terms of f1-score Across Different Categories for Roberta-based

Models. RC: Reading Comprehension, Math: Mathematical Reasoning, SR: Strategy

Reasoning.

8.4.2 Analysis

Customized Question Decomposition for Each Model There can be multiple ways to

decompose a question based on the context. Multiple factors go into deciding how to

break down a question. One factor is the strength of the model. For instance, if we use

a model finetuned on SQuAD, it might be beneficial to ensure that the decompositions

are more granular and are generated to answer from a context span. On the other hand,

if we have a more sophisticated model like GPT3, we might not necessarily need to do

so. The results shown in Figure 8.2 are obtained on RoBERTa finetuned on SQuAD by

using decompositions originally designed for GPT3; note that in this case, the answers to

the decompositions might not always be the span of a particular sentence in the context.

However, we achieve a decent performance improvement. We believe the performance gain

will be greater if decompositions are designed to match the model’s strengths.

206

F1
-s
co
re

0
10
20
30
40
50
60
70
80
90
100

RC Math MC SR

Baseline Proposed

Figure 8.3: Results in Terms of f1-score Across Different Categories for GPT-3. RC:

Reading Comprehension, Math: Mathematical Reasoning, MC: Multi-choice Qa, SR:

Strategy Reasoning.

Qualitative Analysis We conduct qualitative analysis to capture the evaluation aspects

missed in the automated evaluation metrics. Here, we manually inspect and consider a

generated answer to be correct if it is semantically similar to the gold annotation. Figure 8.4

and 8.5 show the contribution of QD in correcting model prediction. We observe that the

decompositions correct more than 60% of the errors made on the original questions.

Error Analysis We conduct error analysis and observe that the major source of error is

the error propagated from one of the decomposed questions. Errors, in general, are of two

types: (i) incorrect span selection and (ii) failure to collect all possible answers in the initial

step of decomposition; this often omits the actual correct answer leaving no room for later

decomposition units to generate the correct answer. Errors occur in QASC because our

method of context-independent decomposition (via intuition) sometimes leads to open-ended

questions which models find hard to answer.

207

%
 e

rr
or

 c
or

re
ct

io
n

0
10
20
30
40
50
60
70
80

RC Math MC SR

Figure 8.4: % Error Correction by Using Decompositions With GPT3

%
 e

rr
or

 c
or

re
ct

io
n

0

20

40

60

80

RC Math SR

Figure 8.5: % Error Correction by Using Decompositions With RoBERTa

Effect of Decomposition on Math Datasets We observe that Math datasets benefit the

most from decomposition. This may be because of two reasons: 1) majority of math

questions can be decomposed as a combination of extractive QA (where the answer is a

span) and a symbolic calculation. Both of these are strengths of language models (note

that we use calculators that provide accurate answers consistently). However, this is not

necessarily true in case of other QA tasks. In a decomposition chain, if the answer in

one step goes wrong, it propagates till the end and the final prediction becomes wrong.

2) language models by default struggle to do math tasks Patel et al. (2021); Mishra et al.

(2022g), so the performance improvement seems more prominent there.

208

Number of decompositions

%
 in

cr
ea

se
 in

 F
1

sc
or

es

0

25

50

75

100

2 3 4 5

Figure 8.6: Performance Improvements in f1 Scores for Questions with 2, 3, 4 and 5

Decompositions.

Effect of Number of Decompositions on Results We typically decompose a question

based on the number of operations associated with it (e.g. mathematical calculation or

single hop operation). Increase in the number of decompositions has the advantage that it

simplifies the original question, but it can also have the disadvantage that if the answer to

one of the questions in the chain is incorrect, the end answer becomes incorrect. This is

also evident from our empirical analysis on HOTPOTQA and SVAMP datasets where we

observe that there is no direct correlation between the number of labeling QA and the final

performance. Figure 8.6 shows the variation in model performance improvement observed

for questions with 2, 3, 4 and 5 decompositions.

Efforts to Automate Decomposition For HotpotQA, DROP, and SVAMP, we attempt

to automate the decomposition process using GPT3. A limitation for generating decom-

positions for HotpotQA is that the context length makes it difficult to provide sufficient

examples in prompt. With DROP and SVAMP, we observe that GPT-3 often generates

209

incorrect arithmetic operations for the last sub-question. It also often fails to develop co-

herent decompositions of the questions. We also finetune a BART-base (Lewis et al., 2019)

model on our handwritten decompositions. However, the model overfits and fails to produce

meaningful decompositions, probably due to the limited number of training samples.

8.5 Prompts

Due to the success of large LMs, prompt-based learning is becoming popular to achieve

generalization and eliminate the need of creating task-specific models and large scale

datasets (Liu et al., 2021b). Recently, instructional prompts have been pivotal in improving

the performance of LMs and achieving zero-shot generalization (Mishra et al., 2022f; Wei

et al., 2022a; Sanh et al., 2022; Wei et al., 2022b; Ouyang et al., 2022; Parmar et al., 2022b;

Puri et al., 2022; Kuznia et al., 2022; Luo et al., 2022). We present the instructional prompts

that we used to generate answers for various datasets.

8.5.1 HotpotQA, DROP, Break

Given a context, answer the question using information and facts present in the context.

Keep the answer short.

Example:

Input:

Mehmed built a fleet to besiege the city from the sea .Contemporary estimates of the strength

of the Ottoman fleet span between about 110 ships , 145 , 160 , 200-250 to 430 . A more

realistic modern estimate predicts a fleet strength of 126 ships comprising 6 large galleys,

10 ordinary galleys, 15 smaller galleys, 75 large rowing boats, and 20 horse-transports.:44

Before the siege of Constantinople, it was known that the Ottomans had the ability to cast

medium-sized cannons, but the range of some pieces they were able to field far surpassed

the defenders’ expectations. Instrumental to this Ottoman advancement in arms production

210

was a somewhat mysterious figure by the name of Orban , a Hungarian .:374 One cannon

designed by Orban was named "Basilica" and was 27 feet long, and able to hurl a 600lb

stone ball over a mile .

Question: How many ordinary galleys and large rowing boats is estimated from the fleet

strength? Output:

Answer: 85

Input:

Context: «CONTEXT»

Question: «QUESTION»

Output:

Answer: «OUTPUT GENERATED BY GPT3»

8.5.2 MATHQA

Prompt for the original question:

Given a problem and 5 options, return the correct option. In order to choose the correct

option, you will have to perform some mathematical operations based on the information

present in the problem. Look at the examples given below to understand how to answer.

Input: Problem: the volume of water inside a swimming pool doubles every hour . if

the pool is filled to its full capacity within 8 hours , in how many hours was it filled to one

quarter of its capacity

Options: a) 2, b) 4, c) 5, d) 6, e) 7

Output:

Answer: 6

211

HotpotQA

Context: The Larkspur Press is a small letter-press publisher based in Mon-

terey, Kentucky , The film also features appearances by Helen Keller,

Anne Sullivan, Kate Adams Keller and Phillips Brooks Keller as themselves.

The movie was directed by George Foster Platt and written by Francis

Trevelyan Miller.

Original Question: Are John O’Hara and Rabindranath Tagore the same

nationality?

True Answer: no

Decomposed Question 1: What is John O’Hara’s nationality?

Generated Answer: American

Decomposed Question 2: What is Rbindranath Tagore’s nationality?

Generated Answer: Indian

Decomposed Question 3: Is #1 and #2 the same nationality?

Generated Answer: No

DROP

Context: Mehmed built a fleet to besiege the city from the sea and able

to hurl a 600 lb stone ball over a mile .

Original Question: How many ordinary galleys and large rowing boats is

estimated from the fleet strength?

True Answer: 85

Decomposed Question 1: How many ordinary galleys were there?

Generated Answer: 10

Decomposed Question 2: How many large rowing boats were there?

Generated Answer: 75

Decomposed Question 3: summation ! #1 ! #2

Generated Answer: 85

Table 8.2: Examples for DROP And HotpotQA.

212

Input:

Problem: a train 200 m long can cross an electric pole in 5 sec and then find the speed of the

train ?

Options: a) 114 , b) 124 , c) 134 , d) 144 , e) 154

Output:

Answer: 144

Input:

Problem: «Problem»

Options: «options»

Output:

Answer: «OUTPUT GENERATED BY GPT3»

8.5.3 SVAMP

Prompt used for both decomposed questions and original questions. The examples

contain both decomposed type questions and original type questions.

Given some context, answer a given question. Use the examples given below as refer-

ence.

Example 1:

Input:

Context: It takes 4.0 apples to make 1.0 pie.

Question: How many apples does it take to make 504.0 pies?

Output:

Answer: 2016

213

Example 2:

Input:

Context: Mary is baking a cake.The recipe calls for 7.0 cups of flour and 3.0 cups of

sugar.She already put in 2.0 cups of flour.

Question: How many cups of flour did recipe called?

Output:

Answer: 7

Example 3:

Input:

Context: Each pack of dvds costs 76 dollars. If there is a discount of 25 dollars on each

pack Question: How much is each pack of dvds without the discount?

Output:

Answer: 76

Example 4:

Input:

Context: Conner has 25000.0 dollars in his bank account.Every month he spends 1500.0

dollars.He does not add money to the account.

Question: How many dollars Conner spends every month?

Output:

Answer: 1500

Input:

Context: <CONTEXT»

214

Question: «QUESTION»

Output:

Answer: «OUTPUT GENERATED BY GPT3»

SVAMP

Context: Bryan took a look at his books as well.If Bryan has 56.0 books in

each of his 9.0 bookshelves.

Original Question: How many books does he have in total?

Answer: 504.0

Decomposed Question 1:How many books in each bookshelf?

Answer: 56.0

Decomposed Question 2:How many bookshelves?

Answer: 9.0

Decomposed Question 3: multiplication ! #1 ! #2

Answer: 504.0

MATHQA

Problem: if a train , travelling at a speed of 180 kmph , crosses a pole in 6

sec , then the length of train is ?

Options: a) 300 , b) 125 , c) 288 , d) 266 , e) 121

Annotated Formula: multiply(multiply(180, const_0.2778), 6)

Answer: 300

Generated Answer: 266

Decomposed Question 1: multiplication ! 0.2778 ! 180

Answer: 50.004

Decomposed Question 2: multiplication ! 50.004 ! 6

Answer: 300

Table 8.3: Decomposition Examples for Svamp and Mathqa. We Use the Annotated Formula

Presented in the Dataset to Make Our Decompositions.

215

8.5.4 StrategyQA

Input:

Context: A melodrama is a dramatic work ...The passengers’ response to the hijacking has

come to be invested with great moral significance.

Question: What do tearjerkers refer to?

Output:

Answer: a story, song, play, film, or broadcast that moves or is intended to move its audience

to tears.

Input:

Context: The purpose of the course is learning to soldier as ... The main motor symptoms

are collectively called "parkinsonism", or a "parkinsonian syndrome".

Question: True or False: Could someone experiencing A tremor, or shaking, Slowed

movement (bradykinesia), Rigid muscles, Impaired posture and balance, Loss of automatic

movements, Speech changes, Writing changes. complete Volunteer for assignment and be

on active duty. Have a General Technical (GT) Score of 105 or higher

Output:

Answer: False

Input:

Context: The Scientific Revolution was a series of events that marked the emergence of

modern science during the early modern period, ...The first-generation iPhone was released

on June 29, 2007, and multiple new hardware iterations with new iOS releases have been

released since.

Question: True or False: Did 1543 occur before 2007?

216

Output:

Answer: False

Input:

Context: «CONTEXT»

Question: «QUESTION»

Output:

Answer: «OUTPUT GENERATED BY GPT3»

8.5.5 QASC

Prompt for original question:

Answer the given question. The question contains options A-H, choose and return the

correct option. Look at the examples given below.

Input:

What are the vibrations in the ear called? (A) intensity (B) very complex (C) melanin content

(D) lamphreys (E) Otoacoustic (F) weater (G) Seisometers (H) trucks and cars

Output:

Answer: Otoacoustic

Input:

«QUESTION»

Output:

Answer: «OUTPUT GENERATED BY GPT3»

217

Prompt for decomposed question:

Given a yes or no question, return yes if the answer is yes. Otherwise return no.

«QUESTION»

Answer: «OUTPUT GENERATED BY GPT3»

StrategyQA

Context: Mail carriers, also referred to as mailmen or letter carriers, . . .

Clothing also provides protection from ultraviolet radiation.

Original Question: True or False: Mail carriers need multiple uniforms.

Original Answer: True

Generated Answer: False

Decomposed Question 1: What seasons do mail carriers work through?

Generated Answer: All seasons

Decomposed Question 2: True or False: In order to make it through all of

#1, one needs multiple clothing pieces.

Generated Answer: True

QASC

Original Question: what kind of beads are formed from vapor condensing?

(A) h2o (B) H20 (C) tiny (D) carbon (E) hydrogen (F) rain (G) oxygen (H)

Dew

Answer: h2o

Decomposed Question 1: Are #1 beads formed from vapor condensing?

Answer: yes

Table 8.4: Examples of Decompositions for Strategyqa and Qasc Datasets. For Each Option

in Qasc, #1 Is Replaced with the Option and Posed to Gpt-3 as a Yes or No Question.

218

8.5.6 MultiRC

Given a context-question pair, answer the question using information and facts present

in the context. Keep your answers as short as possible.

Example:

Input:

Context: Should places at the same distance from the equator have the same climate? You

might think they should. Unfortunately, you would not be correct to think this. Climate

types vary due to other factors besides distance from the equator. So what are these factors?

How can they have such a large impact on local climates? For one thing, these factors are

big. You may wonder, are they as big as a car. Think bigger. Are they bigger than a house?

Think bigger. Are they bigger than a football stadium? You are still not close. We are talking

about mountains and oceans. They are big features and big factors. Oceans and mountains

play a huge role in climates around the world. You can see this in Figure above. Only one

of those factors is latitude, or distance from the equator.

Question: Name at least one factor of climate

Output:

Answer: Oceans

Example:

Input:

Context: Earth processes have not changed over time. The way things happen now is the

same way things happened in the past. Mountains grow and mountains slowly wear away.

The same process is at work the same as it was billions of years ago. As the environment

changes, living creatures adapt. They change over time. Some organisms may not be able

219

to adapt. They become extinct. Becoming extinct means they die out completely. Some

geologists study the history of the Earth. They want to learn about Earths past. They use

clues from rocks and fossils. They use these clues to make sense of events. The goal is to

place things in the order they happened. They also want to know how long it took for those

events to happen.

Question: What is one example of how the earth’s processes are the same today as in the

past?

Output:

Answer: Things develop and then wither away

Input:

Context:: «CONTEXT»

Question: «QUESTION»

Output:

Answer: <ANSWER GENERATED BY GPT3»

8.6 Error Examples

This section discusses the errors generated by using decompositions. We observe

two types of errors while answering decomposed questions. The final answer is wrong

because previous sub-questions were answered incorrectly either because such a question

has multiple correct answer, or simply because the model could not understand the question

correctly.

Context: ... Roger David Casement (1 September 1864 - 3 August 1916), formerly

known as Sir Roger Casement In collaboration with Roger Casement, Morel led a cam-

paign against slavery in the Congo Free State, founding the Congo Reform Association

The association was founded in March, 1904, by Dr. Henry Grattan Guinness (1861-1915),

220

MultiRC

Context: Sometimes a full Moon moves through Earths shadow. ... The

Moon glows with a dull red coloring during a total lunar eclipse.

Original Question: Is it more common for the Moon to travel completely in

the Earth’s umbra or only partially?

List of correct answers: Partially, A total eclipse is less common than partial

so it is more common for the moon to travel partially in Earth’s umbra

Decomposed Question 1:When does the Moon travel’s completely in Earth’s

umbra?

Answer: total lunar eclipse

Decomposed Question 2:When does the Moon travel’s partially in Earth’s

umbra?

Answer: partial lunar eclipse

Decomposed Question 3: Which is more common #1 or #2?

Answer: partial lunar eclipse

Decomposed Question 4: Does the Moon travel partially or completely in

#3?

Answer: partially

Table 8.5: Decomposition Examples for Multirc. Multirc Has Multiple Correct Answer

and the Final Correct Answer Which Gives the Best Metrics for the Generated Answer Is

Chosen as the Correct Answer Corresponding to the Generated Answer.

Edmund Dene Morel, and Roger Casement ...

Question:

When was the date of birth of one of the founder of Congo Reform Association?

True Answer: 1 September 1864

Generated Answer: 18 October 1914

Decomposed Question 1:

Who is the founder of the Congo Reform Association?

221

True Answer: Roger Casement

Generated Answer: Henry Grattan Guinness

Decomposed Question 2: When was #1 born?

True Answer: 1 September 1864

Generated Answer: 1861

Above is an example from HotpotQA. As can be seen from the context, Congo Reform

Association had multiple founders. GPT3 did give a correct answer among a set of correct

answers whereas the ground truth answer provided by the dataset was some other correct

option.

Below is an example of incorrect retrieval. The answer generated for the first decom-

posed question incorrectly returns cities taken by Ottomans as well instead of just the

Venetians. Hence, the final decomposed questions return the incorrect count.

Context: In the Morean War, the Republic of Venice besieged Sinj in October 1684 and

then again March and April 1685, but both times without success. In the 1685 attempt, the

Venetian armies were aided by the local militia of the Republic of Poljica, who thereby

rebelled against their nominal Ottoman suzerainty that had existed since 1513. In an effort

to retaliate to Poljica, in June 1685, the Ottomans attacked Zadvarje, and in July 1686

Dolac and Srijane, but were pushed back, and suffered major casualties. With the help

of the local population of Poljica as well as the Morlachs, the fortress of Sinj finally fell

to the Venetian army on 30 September 1686. On 1 September 1687 the siege of Herceg

Novi started, and ended with a Venetian victory on 30 September. Knin was taken after

a twelve-day siege on 11 September 1688. The capture of the Knin Fortress marked the

end of the successful Venetian campaign to expand their territory in inland Dalmatia, and it

222

also determined much of the final border between Dalmatia and Bosnia and Herzegovina

that stands today. The Ottomans would besiege Sinj again in the Second Morean War, but

would be repelled. On 26 November 1690, Venice took Vrgorac, which opened the route

towards Imotski and Mostar. In 1694 they managed to take areas north of the Republic

of Ragusa, namely Čitluk, Gabela, Zažablje, Trebinje, Popovo, Klobuk and Metković. In

the final peace treaty, Venice did relinquish the areas of Popovo polje as well as Klek and

Sutorina, to maintain the pre-existing demarcation near Ragusa.

Question:

How many cities did Venice try to take?

True Answer: 10

Generated Answer: 3

Decomposed Question 1:

Which cities did Venice try to take?

True Answer: Sinj, Knin, Vrgorac, Čitluk, Gabela, Zažablje, Trebinje, Popovo, Klobuk and

Metković

Generated Answer: Sinj, Zadvarje, Dolac, Srijane, Knin, Vrgorac, Čitluk, Gabela, Za-

žablje, Trebinje, Popovo, Klobuk and Metković

Decomposed Question 2: What is the count of the cities mentioned in #1?

True Answer: 10

Generated Answer: 14

The samples for QASC are provided without context. Without the context, the answers to

some of the decomposed questions can be open ended. Certain options can be unambigu-

ously wrong and some are unambiguously correct. Below is an example:

223

Question: What can knowledge of the stars be used for? (A) travel (B) art (C) as a base (D)

safety (E) story telling (F) light source (G) vision (H) life

True Answer: travel

Generated Answer: art

Decomposed Question: Can the knowledge of stars be used for the following: #?

The decomposed question for each option is posed as a yes or no question to GPT3. It

returns yes for art and story telling but not for travel.

8.7 Examples, Results and Details for Automation

We attempt to automate the process of decomposition using GPT3. We use the examples

from manual decomposition in the prompts given to GPT3, some of which are presented

below. The results obtained from the experiments are presented in Table 8.6. The generated

decompositions are answered using RoBERTa-base finetuned on SQuAD 2.0 dataset.

Dataset F1 EM Rouge-L

Baseline Decompose Baseline Decompose Baseline Decompose

HotpotQA 32.68 14.12 29.50 11.47 33.29 14.00

DROP 22.8 3.77 21.69 3.77 23.4 3.76

SVAMP 7.4 17.35 7.4 17.35 7.4 17.35

Average 20.96 11.74 19.53 10.86 21.36 11.70

Table 8.6: Results Obtained by Using Decomposed Questions Generated Using GPT3

In this section, we present the prompts we used while attempting to automatically generate

224

decomposed questions using GPT3.

The prompt for generating decompositions for DROP was as follows:

Decompose a given question by breaking it into simpler sub-questions. The answer to

each subsequent sub-question should lead towards the answer of the given question. To do

so, use the context provided and look at the examples. Here are some helpful instructions:

1. If the given question compares two things, best strategy is to generate sub-questions

that finds the answer to each of those things and compare them in the last sub-question.

2. Some sub-questions must contain phrases like "answer of sub-question 1".

3. If a sub-question is an arithmetic operation, then the sub-question should be framed

as operation ! "answer of sub-question 1" ! "answer of sub-question 2".

4. The operation used in 3) is always one of the following: summation, difference,

greater, lesser.

Example 1:

Context: Mehmed built a fleet to besiege the city from the sea .Contemporary estimates of

the strength of the Ottoman fleet span between about 110 ships , 145 , 160 , 200-250 to

430 . A more realistic modern estimate predicts a fleet strength of 126 ships comprising

6 large galleys, 10 ordinary galleys, 15 smaller galleys, 75 large rowing boats, and 20

horse-transports.:44 Before the siege of Constantinople, it was known that the Ottomans had

the ability to cast medium-sized cannons, but the range of some pieces they were able to

field far surpassed the defenders’ expectations. Instrumental to this Ottoman advancement

in arms production was a somewhat mysterious figure by the name of Orban , a Hungarian.

One cannon designed by Orban was named B̈asilicaänd was 27 feet long, and able to hurl a

225

600 lb stone ball over a mile .

Question: How many ordinary galleys and large rowing boats is estimated from the fleet

strength?

Sub-question 1: How many ordinary galleys were there?

Sub-question 2: How many large rowing boats were there?"

Sub-question 3: summation ! "answer of sub-question 1" ! "answer of sub-question 2"

Example 2:

Context: As of the census of 2000, there were 14,702 people, 5,771 households, and 4,097

families residing in the county. The population density was 29 people per square mile

(11/km²). There were 7,374 housing units at an average density of 14 per square mile

(6/km²). The racial makeup of the county was 98.02% Race (United States Census), 0.69%

Race (United States Census) or Race (United States Census), 0.35% Race (United States

Census), 0.11% Race (United States Census), 0.05% Race (United States Census), 0.08%

from Race (United States Census), and 0.71% from two or more races. 0.44% of the popula-

tion were Race (United States Census) or Race (United States Census) of any race.

Question: How many more people than households are reported according to the census?

Sub-question 1: As of the 2000 census, how many people are residing in the country?

Sub-question 2: As of the 2000 census, how many households are reported?

Sub-question 3: difference !"answer of sub-question 1" ! "answer of sub-question 2"

Example 3: Context: As of the census of 2000, there were 49,129 people, 18,878 households,

and 13,629 families residing in the county. The population density was 88 people per square

mile (34/km2). There were 21,779 housing units at an average density of 39 per square mile

(15/km2). The racial makeup of the county was 74.4% Race (United States Census), 20.4%

Race (United States Census) or Race (United States Census), 0.60% Race (United States

226

Census), 1.1% Race (United States Census), 0.15% Race (United States Census), 1.3% from

Race (United States Census), and 2.2% from two or more races. 3.4% of the population

were Race (United States Census) or Race (United States Census) of any race. 2.85% of

the population reported speaking Spanish language at home, while 1.51% speak German

language. Question: How many more people are there than families? Sub-question 1: How

many people are there in the 2000 census? Sub-question 2: How many families are recorded

in the 200 census? Sub-question 3: difference ! "answer of sub-question 1" ! "answer of

sub-question 2"

Context: «CONTEXT»

Question: «QUESTION»

«OUTPUT GENERATED BY GPT3»

The prompt for HotpotQA was similar, except replacing the examples with instances from

HotpotQA. For SVAMP, since the context was much smaller, we could give more examples.

The prompt for SVAMP is as shown below:

Decompose a given question by breaking it into simpler sub-questions. The answer to

each subsequent sub-question should lead towards the answer of the given question. To do

so, use the context provided and look at the examples.

Here are some helpful instructions:

1. If the given question compares two things, best strategy is to generate sub-questions

227

that finds the answer to each of those things and compare them in the last sub-question,

2) Some sub-questions must contain phrases like "answer of sub-question 1".

2. Some sub-questions must contain phrases like "answer of sub-question 1".

3. If a sub-question is an arithmetic operation, then the sub-question should be framed

as operation ! "answer of sub-question 1" ! "answer of sub-question 2".

4. The operation used in 3) is always one of the following: summation, difference,

greater, lesser

Example 1:

Context: Jessica had 8.0 quarters in her bank . Her sister borrowed 3.0 of her quarters. How

many quarters does Jessica have now?

Sub-question 1: How many quarters did Jessica have in her bank initially?

Sub-question 2: How many quarters did Jessica’s sister borrow?

Sub-question 3: difference ! "answer of sub-question 1" ! "answer of sub-question 2"

Example 2:

Context: Shawn has 13.0 blocks. Mildred has with 2.0 blocks. Mildred finds another 84.0.

How many blocks does Mildred end with?

Sub-question 1: How many blocks does Mildred start with?

Sub-question 2: How many blocks does Mildred find?

Sub-question 3: summation ! "answer of sub-question 1" ! "answer of sub-question 2"

Example 3:

Context: Dave was helping the cafeteria workers pick up lunch trays, but he could only

carry 9.0 trays at a time. If he had to pick up 17.0 trays from one table and 55.0 trays from

228

another. how many trips will he make?

Sub-question 1: How many trays did Dave have to pick up from the first table?

Sub-question 2: How many trays did Dave have to pick up from the second table?

Sub-question 3: summation ! "answer of sub-question 1" ! "answer of sub-question 2"

Sub-question 4: How many lunch trays could Dave carry at a time?

Sub-question 5: division ! "answer of sub-question 3" ! "answer of sub-question 4"

Example 4:

Context: Paco had 93.0 cookies. Paco ate 15.0 of them. How many cookies did Paco have

left?

Sub-question 1: How many cookies did Paco start with?

Sub-question 2: How many cookies did Paco eat?

Sub-question 3: difference ! "answer of sub-question 1" ! "answer of sub-question 2"

Example 5:

Context: 43 children were riding on the bus. At the bus stop some children got off the bus.

Then there were 21 children left on the bus. How many children got off the bus at the bus

stop?

Sub-question 1: How many children were on the bus at the beginning?

Sub-question 2: How many children were left on the bus?

Sub-question 3: difference ! "answer of sub-question 1" ! "answer of sub-question 2"

Example 6:

Context: 28 children were riding on the bus. At the bus stop 82 children got on the bus

while some got off the bus. Then there were 30 children altogether on the bus. How many

more children got on the bus than those that got off?

229

Sub-question 1: How many children were on the bus at the beginning?

Sub-question 2: How many children were left on the bus?

Sub-question 3: difference ! "answer of sub-question 1" ! "answer of sub-question 2"

Example 7:

Context: They decided to hold the party in their backyard. If they have 11 sets of tables and

each set has 13 chairs, how many chairs do they have in the backyard?

Sub-question 1: How many tables are there in the backyard?

Sub-question 2: How many chairs are on each table?

Sub-question 3: multiplication ! "answer of sub-question 1" ! "answer of sub-question 2"

Context: «CONTEXT + QUESTION»

The examples of decompositions generated for HotpotQA, DROP and SVAMP are shown in

Table 8.7

8.8 Results

We tabulate the results we get for all the datasets for baseline and our proposed mecha-

nism.

8.9 Conclusion

In this chapter, we argue that the recent trend of building large LMs may not be sustain-

able to solve evolving benchmarks. We believe that modifying data samples can significantly

help the model improve performance. We study the effect of Question Decomposition (QD)

on a diverse set of tasks. We decompose questions 1 and significantly improve model
1https://github.com/Pruthvi98/QuestionDecomposition

230

performance (24% for GPT3 and 29% for RoBERTa-SQuAD along with a symbolic calcu-

lator). Our findings indicate that Human-in-the-loop Question Decomposition (HQD) can

potentially provide an alternate path to building large LMs. Our approach provides a viable

option to involve people in NLP research. We hope our work will encourage the community

to develop human-centric solutions that actively involve humans while leveraging NLP

resources.

231

DROP

Context: Hoping to rebound from their loss to the Patriots, the Raiders

stayed at home for a Week 16 duel with the Houston Texans. ... The Texans

tried to rally in the fourth quarter as Brown nailed a 40-yard field goal, yet

the Raiders’ defense would shut down any possible attempt.

Original Question: How many yards longer was the longest passing touch-

down than the shortest?

Decomposed Question 1: What was the length of the shortest touchdown

pass?

Decomposed Question 2:What was the length of the longest touchdown

pass?

Decomposed Question 3: greater ! #1 ! #2

DROP

Context: In 1085, Guadalajara was retaken by the Christian forces of Alfonso

VI . The chronicles say that the Christian army was led by Alvar Fanez de

Minaya, one of the lieutenants of El Cid. From 1085 until the Battle of Las

Navas de Tolosa in 1212, the city suffered wars against the Almoravid and

the Almohad Empires. In spite of the wars, the Christian population could

definitely settle down in the area thanks to the repopulation with people

from the North who received their first fuero in 1133 from Alfonso VII.In

1219, the king Fernando III gave a new fuero to the city .During the reign of

Alfonso X of Castile, the protection of the king allowed the city to develop

its economy by protecting merchants and allowing markets.

Original Question: When did the first battle against Guadalajara take place?

Decomposed Question 1: When was Guadalajara retaken by the Christian

forces?

Decomposed Question 2:Who led the Christian army?

Decomposed Question 3: #1 ! #2

Table 8.7: Decompositions for DROP Generated Using GPT3

232

Dataset F1 EM Rouge-L

Baseline Decompose Baseline Decompose Baseline Decompose

HotpotQA 71.97 78.53 70 76 73.33 79.93

DROP 52.97 78.16 46.87 75.86 46.72 77.66

MultiRC 64.39 80.74 33.33 55.55 61.24 77.31

BREAK 66.81 84.54 58 74 62.30 78.56

Average 60.10 81.97 52.64 76.26 59.35 81.10

Table 8.8: Comparison of Metrics for Reading Comprehension Datasets Between Gpt3

Baseline And Decompose_GPT3

Dataset F1 EM Rouge-L

Baseline Decompose Baseline Decompose Baseline Decompose

MATH 31.1 82.5 27.44 82.22 23.4 80.85

SVAMP 61.80 78.75 58.88 77.5 55 77.5

Average 46.45 80.62 43.16 79.86 39.2 79.17

Table 8.9: Comparison of Metrics for Mathematical Reasoning Datasets Between GPT3

Baseline and Decompose_GPT3

233

Dataset F1 EM Rouge-L

Baseline Decompose Baseline Decompose Baseline Decompose

StrategyQA 63.15 84.61 63.15 84.61 63.15 84.61

QASC 75.23 89.52 75.23 89.52 71.4 85.71

Average 69.19 87.06 69.19 87.06 67.27 85.16

Table 8.10: Comparison of Metrics for Strategyqa (Strategic Reasoning) and Qasc (Fact-

based Multichoice) Between GPT3 Baseline and Decompose_GPT3

Dataset F1 EM Rouge-L

Baseline Decompose Baseline Decompose Baseline Decompose

HotpotQA 32.14 49.50 26 42 33.33 50.72

DROP 25.56 66.14 25 62.5 25.56 66.14

MultiRC 45.74 48.1 24.44 28.88 44.83 46.95

BREAK 24.6 36.17 18 28 24.31 35.5

Average 23.68 47.65 20.26 43.96 28.76 50.74

Table 8.11: Comparison of Metrics for Reading Comprehension Datasets Between Baseline

and Decompose Settings Using Roberta-base Finetuned on Squad.

234

Dataset F1 EM Rouge-L

Baseline Decompose Baseline Decompose Baseline Decompose

StrategyQA 47.36 55.26 47.36 55.26 47.36 55.26

SVAMP 2 58 2 58 2 58

Average 24.68 56.63 24.68 56.63 24.68 56.63

Table 8.12: Comparison of Metrics for Strategyqa and Svamp Between Baseline and

Decompose Settings Using Roberta-base Finetuned on Squad. For Strategyqa, Roberta-base

Squad Is Used to Answer Intermediate Decompositions Whereas Roberta-base Finetuned

on Boolq Is Used to Answer the Original Question and the Final Decomposed Question

235

Chapter 9

HOW MANY DATA SAMPLES IS AN ADDITIONAL INSTRUCTION WORTH?

9.1 Introduction

Large scale benchmarks such as Imagenet (Russakovsky et al., 2015), SQuAD (Rajpurkar

et al., 2018) and architectural development in models such as CNNs (Amari et al., 2003)

and transformers (Vaswani et al., 2017) have propelled our progress in deep learning.

However, creating high quality benchmarks by controlling artifacts (Gururangan et al.,

2018), developing new models and training them are hard for non-expert users. Recently

introduced instruction-paradigm empowers non-expert users, practitioners and domain

experts in other fields to leverage NLP resources (Weller et al., 2020) as they now can

describe their tasks in natural language without requiring to create task-specific datasets or

developing models. Even though instruction-paradigm has led to development of models

that significantly outperform multitasking baselines, model performance has remained far

behind the supervised learning model trained with task-specific data (Efrat and Levy, 2020;

Mishra et al., 2022f).

Non-expert users can write multiple instructions per task each of which covers mul-

tiple perspectives spanning over a variety of linguistic features; many of these can be

created automatically by replacing certain words with their synonyms without changing

the overall semantics of instruction. Can the relatively inexpensive process of instruction

augmentation improves model’s performance in the instruction-paradigm, similar to the

role data-augmentation has played conventionally in machine learning (Feng et al., 2021)?

Instruction-paradigm is pivotal where it is expensive or infeasible to gather training data.

How effective is instruction-augmentation in low-data regimes?

236

Multi-variant instructions (original + augmented instructions) also can help evaluate the

robustness of instruction-following models to respond to variant instructions. This is similar

to the model robustness evaluation (Jia et al., 2019) that is done by creating variant data

instances. Multi-variant instruction based setup will also help gauge the true potential of

instruction-following systems since in a real world setting, users can write task instruction

in many different ways.

The expanded version of Natural Instructions (Mishra et al., 2022f) 1 provides a rich

collection of diverse category of tasks that covers a variety of reasoning skills, domains,

and languages. This is a constantly evolving benchmark which is growing in size with

respect to time. We take 426 tasks 2 and create variant instructions for each task. In

Natural Instructions, number of instances was limited to 6500 to reduce massive data

imbalance, we leverage remaining instances of source datasets in constructing instances

of our variant instruction tasks. We experiment with 3 types of learning scenarios (i) task-

specific (TS), (ii) multi-task (MT) and (iii) cross-task (CT) and observe that instruction

augmented models outperform their single-instruction counterpart by 17%, 11% and 11%,

respectively, when averaged over all experiments across the evaluation tasks. Interestingly,

instruction augmentation is more effective on low-data regime 3 as we see performance

gain of 26%, 16% and 11% in TS, MT and CT setting, respectively. We also quantify the

contribution of each of the additional instructions and find that an additional instruction can

be equivalent to „200 data samples on average across tasks. This has been discussed further

in our work (Puri et al., 2022).
1https://github.com/allenai/natural-instructions

2These were the accepted tasks in Natural Instructions in September 2021
3Average across 1%, 5% and 10% data

237

https://github.com/allenai/natural-instructions

9.2 Multi-Variant Instruction Dataset

We construct Multi-Variant Instruction dataset on top of various tasks in Natural Instruc-

tions. In total, our dataset has 426 different NLP tasks; each of which contains multi-variant

instructions.

9.2.1 Variant Instruction Task

An instruction task in Natural Instructions contains the definition of the task, positive

examples, negative examples and instances. Figure 9.1 shows the schematic representation

of variant instruction task where the blue boxes show the parts that differentiate variant

instruction tasks with their original counterparts in Natural Instructions. While constructing

a variant instruction task, we alter the definition and instances of the instruction task.

Figure 9.1: Schematic Representation of Instructional-prompts Mishra et al. (2022f) - Dotted

Blue Box Represents Entities Which Are Changed in Constructing Variant Instruction Task.

238

Parameter Value

Avg. # of variants per task 4.59

Avg. # of instances per task 9510.64

Avg. # of positive examples per task 3.15

Avg. # of negative examples per task 2.30

Table 9.1: Multi-Variant Instructions Dataset Statistics

9.2.2 Dataset Creation Process

Computer Science graduate students who participated in the data creation process are

asked to create as many variant instruction tasks as possible. They are instructed to change

definition (without changing the semantic meaning of the definition in the original task) and

instances (by random sampling from the set of instances in the source dataset which are

not part of instruction tasks in Natural Instructions). They are allowed to use automated

tools such as Semantic Control (Ross et al., 2021), Text Style Transfer (Reif et al., 2021),

NL-Augmenter (Dhole et al., 2021). Sometimes, the participants create variant instruction

tasks manually. Table 9.5 and Table 9.6 illustrate examples of alternate definitions across

variant instructions created for our dataset.

9.2.3 Dataset Properties and Statistics

Table 9.1 shows the statistics of our meta-dataset. Note that, variant instruction tasks

contain all instances from Natural Instructions, so the average number of instances per task

is higher than 6500 (which is a constraint in Natural Instructions). We describe various

attributes of our dataset in the following.

239

Semantic Textual Similarity

Semantic Textual Similarity (STS) should be high between original instruction and aug-

mented instructions as they represent the same task. We compute the pair-wise STS score

between definitions of original instruction and variant instructions. Figure 9.2 shows the

mean and SD of STS score between original instruction and its variants across 426 tasks.

0

0.2

0.4

0.6

0.8

1

1.2

Se
m

an
tic

 Te
xt

 S
im

ila
rit

y

Tasks

mean stddev

Figure 9.2: Semantic Text Similarity Between Original Instruction and its Variants.

Analysis of dataset properties From all dataset properties, we can observe that STS score

is higher for almost all the tasks. This indicates that all augmented variants are semantically

similar to original instruction. Moreover, we can see a significant variation in terms of word

dissimilarity and length of definitions. From this, we can conclude that the variants created

in our meta-dataset for each task have sufficient variations in terms of words and length yet

sustaining semantic similarity with original instruction.

240

9.3 Experimental Setup

9.3.1 Models

BART-base (Lewis et al., 2019) and T5-base (Raffel et al., 2020) models are used with

default hyper parameters from Huggingface (Wolf et al., 2019) to perform experiments. We

use Single Instruction (SI) learning as baseline where only original instruction is used to

fine-tune the model. We propose Multi-Variant Instruction (MVI) learning where variants

are used to fine-tune models. We use the same number of instances for both original and

variant instruction learning to accurately gauge the importance of additional instructions.

9.3.2 Experiments

We perform three experiments: (1) Task-Specific, (2) Multi-Task, and (3) Cross-Task.

All experiments are performed using 1%, 5%, 10%, 50% and 100% instances from the

task for fine-tuning. Here, we divide instances into train, test and dev splits by randomly

sampling in the ratio 70%, 20% and 10%, respectively. Evaluation is performed on the test

set of original instructions. As SI is dependent on Natural Instructions which has exactly one

instruction per task, we are not able to experiment with different instructions in SI setting

while comparing it with MVI which has multiple variant instructions.

Task-Specific Here, we fine-tune baseline and our model on one task and evaluate on

the same task. We have performed task-specific learning on 3 different tasks - wino-

grande_answer_generation, winogrande_question_modification_person and qasc_answer

_generation. In addition, we also analyze two different tasks in other task categories like

tweetqa_question_generation and odd-man-out_classification_no_category for generation

and classification tasks respectively.

241

Task ID Task Name Task Category # of Variants

task010 winogrande_answer_generation Answer Generation 8

task011 winogrande_question_modification_object Text Modification 8

task012 winogrande_question_modification_person Text Modification 8

task017 qasc_question_generation Question Generation 8

task018 qasc_answer_generation Answer Generation 8

task020 essential_terms_answering_incomplete_questions Classification 8

task028 multirc_correct_answer_single_sentence Answer Generation 3

task058 babi_t1_single_supporting_fact_answer_generation Answer Generation 5

Table 9.2: Number of Variant Instructions for 8 Different Tasks

Multi-Task To perform multi-task learning, we use 8 different tasks spanning across 4

different categories. Table 9.2 shows the different number of variant instructions for 8 tasks

and their categories. In this setting, we fine-tune baseline and our model on all 8 tasks

combined and evaluate on each task. However, we use only two positive and two negative

examples to satisfy the maximum token limit of BART-base.

Cross-Task Here, we fine-tune the model on a set of tasks and evaluate on different set of

tasks. Here, we use 274 different tasks for training by sampling 10% instances from each

task and evaluate on a set of 8 tasks which are same as in the multi-task setup. In addition

to sampling instances, we also sampled number of tasks by taking 1%, 5%, 10%, 50% and

100% tasks. We also investigate the extent of cross-task generalization in low-data regime;

we do this by randomly sampling 1%, 5%, 10% instances for fine-tuning.

Metric We use the Rouge-L metric (Lin, 2004) for evaluation in all our experiments,

following the evaluation in Natural Instructions.

242

9.4 Results and Analysis

9.4.1 Experimental Results

Task-Specific Figure 9.3 shows the comparison between SI and MVI across different num-

ber of instances sampled for fine-tuning. From this, we can observe that MVI outperforms SI

by 17% on an average. The performance difference between MVI and SI increases to 26% in

low data regime (average performance with 1%, 5% and 10% instances for fine-tuning). We

observe similar results for additional 2 tasks we have analyzed. 9.7 contains more details.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

1% 5% 10% 50% 100%

Ro
ug

e-
L

Number of Instances

Single Instruction Multi-Variant Instruction

Figure 9.3: Comparison Across SI and MVI Learning in Task-specific Setting; Results Are

Averaged over 3 Tasks

Multi-Task Figure 9.4 presents the comparison between SI and MVI for multi-task setting.

We can observe that MVI outperforms SI by 11% on an average. Moreover, we can see

higher improvement in low data regime („ 16%). Our model achieves high performance

243

boost („35%) at 1% instances setting. 9.8 contains more details.

0

10

20

30

40

50

60

70

80

1% 5% 10% 50% 100%

Ro
ug

e-
L

Number of Instances

Single Instruction Multi-Variant Instruction

Figure 9.4: Comparison Across SI and MvI Learning in Multi-task Setting by Varying

Number of Instances.

Cross-Task Figure 9.5 shows comparison between SI and MVI for 100% tasks in cross-

task setting (see Figure 9.9 in 9.9 for other settings). We can observe that MVI outperforms

SI by 9% on an average. 9.9 contains more details.

9.4.2 Analysis

How Many Data Samples is a Variant Instruction Worth? We calculate contribution of

an additional instruction with respect to data samples in following way: we calculate model

performance for BART-base in MVI with 5% instances. We interpolate model performance

plot in SI to find out the percentage of instances needed to match performance in MVI (with

5% instances). We divide the average number of instance difference by average number of

244

0

20

40

60

80

100

120

1% 5% 10% 50% 100%

Ro
ug

e-
L

Number of Instances

Single Instruction Multi-Variant Instruction

Figure 9.5: Comparison Between SI and MVI Learning in Cross-task Setting by Varying

Number of Instances and Fixing Number of Tasks to 100%.

instruction variants to get the number that indicates worth of an additional instruction in

terms of data samples. Using the above described procedure, we calculate the contribution

for additional instruction in all three settings and summarize the results in Table 9.3. We use

MVI performance with 5% instances as the base because a typical instruction-paradigm is

designed in a "low-data regime" where non-expert users can teach a task to a model without

requiring to create a dataset. However, we also calculated the instruction-equivalence using

MVI with 10% instances as base and report the results in Table 9.3. On an average across

TS, MT and CT, we conclude that an additional variant instruction alone is worth „200

instances.

Equal Data Analysis We believe that each instruction variant is equivalent to „200 data

instances. To show this by experiment, we perform equal data analysis and observe that

245

Base Task-Specific Multi-Task Cross-Task Average

5% 456.2 94.1 152.3 234.2

10% 460.4 58.2 279.6 266.1

Table 9.3: Weight of Each Additional Instruction in Terms of Number of Data Samples

Across Task-specific, Multi-task and Cross-task Settings.

model trained using our approach shows competitive performance compared to single-

instruction learning by using only N/V instances where N is the total number of instances in

the original task and V is the number of instruction variants for this task.

Is Model Robust to Instruction Perturbations? Here, we introduce 3 perturbations

while testing SI and MVI: (1) we perturb the instruction by removing the task definition,

(2) we perturb the instruction by changing the order of positive and negative examples by

placing positive examples followed by negative different from training setup, and (3) we

perturb the instruction by removing all positive and negative examples from the test set. We

evaluate model robustness across these perturbations (performance change while the change

in instruction) which are excluded from the training data. Here, Table 9.4 for task-specific

setting on T5-base (see Table 9.11 ins 9.11 for multi-task results). We can clearly observe

that our approach is robust to all the three instruction perturbations whereas model trained

with single-instruction learning is not able to perform equally well on perturbed test sets

compared to it original test counterpart. Similar trend is observed in multi-task setting as

well (see 9.11).

246

of Instances
SI Perturbation 1 Perturbation 2 Perturbation 3

Original Ours Original Ours Original Ours Original Ours

1% 0.90 25.21 1.60 18.03 1.02 23.16 5.12 9.71

5% 0.98 75.72 2.18 75.32 1.36 75.50 5.52 74.26

10% 50.88 78.20 20.76 78.07 50.49 78.37 40.31 77.22

50% 76.55 82.16 68.88 82.15 76.50 82.16 75.34 81.92

100% 79.38 83.16 73.51 82.97 79.34 83.12 78.71 82.40

Table 9.4: Comparison of Performance in Task-specific Setting Across SI and MVI Learning.

9.5 Multi-Variant Dataset Additional Details

9.5.1 Semantic Textual Similarity

We use en_core_web_md semantic similarity model of SpaCy to compute STS in our

experiments. We also calculate STS score between definitions of variants of the same task.

At the end, we calculate their mean and Standard Deviation (SD) for each task.

In the plot, the two exception points are task058 (Answer generation task based on babi

dataset Weston et al. (2015)) and task097 (Structured text generation task based on SCAN

dataset Lake and Baroni (2018)) where the original instructions are very long and the variant

task contains a short definition which causes the strong variation in STS. We also discuss

the Word-Level Dissimilarity and Length Diversity properties of our dataset below.

247

9.5.2 Word-Level Dissimilarity

To show the quality and diversity of variant instructions, we calculate the pair-wise edit

distance between the definition of the original instruction and its variant instructions. We

also calculate distance between definitions of variant instructions of the same task, further

normalize by the highest distance to obtain a dissimilarity score. We compute the mean and

SD of these scores for each task and show it in Figure 9.6.

0

0.2

0.4

0.6

0.8

1

1.2

W
or

d
Di

ss
im

ila
rit

y

Tasks

mean stddev

Figure 9.6: Word-level Dissimilarity Between Original Instruction and Its Variants.

9.5.3 Length Diversity

It is necessary to see how task definition lengths vary between original instructions and

its variants. To understand this, we compute the percentage difference between the length of

the maximum instruction definition and the minimum instruction definition for each task

and show it in Figure 9.7.

248

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Le
ng

th
 V

ar
ia

tio
n

(%
)

Tasks

Figure 9.7: Definition Length Variation Between Original Instruction and Its Variants.

9.6 Example of Variants

Table 9.5 and Table 9.6 show the examples of different variants created from the

task117_afs_argument_similarity_gun_control and task018_qasc_answer_generation re-

spectively.

9.7 Task-Specific Results

Table 9.7 shows the results for task-specific experiments for task010_winogrande _an-

swer_generation, task012_winogrande_question_modification_person and task018_qasc

_answer _generation. We also performed experiments for other task categories like task210

_tweetqa _question_generation and task113_odd-man-out_classification_no_category for

generation and classification tasks respectively and summarize our results in Table 9.8. From

the average results, we can observe that multi-variant instruction learning helps model to

249

Original instruction along with its augmented variant instructions

O
R

IG
IN

A
L

IN
S

T
R

U
C

T
IO

N

Definition: We would like you to classify each of the following sets of argument pairs (discussing Gun Control) into either

SIMILAR or NOT SIMILAR. A pair of arguments is considered SIMILAR if the arguments are about the same FACET (making

the same argument), and is considered NOT SIMILAR if they do not have the same FACET. A FACET is a low level issue that

often reoccurs in many arguments in support of the author’s stance or in attacking the other author’s position.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
1 Definition: Each of the following sets of argument pairs (on the topic of Gun Control) should be classified as SIMILAR

or NOT SIMILAR. If the arguments are about the same FACET (making the same argument), they are deemed SIMILAR;

otherwise, they are NOT SIMILAR. A FACET is a low-level problem that appears frequently in many arguments in favor of the

author’s position or in opposition to the position of the other author.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
2

Definition: Please classify the following sets of argument pairs (discussing the Gun Control) as SIMILAR or NOT SIMILAR.

If the arguments are about the same FACET (making the same argument), they are regarded SIMILAR; if they are not, they

are considered NOT SIMILAR. A FACET is a low-level problem that frequently recurs in numerous arguments in favor of the

author’s position or in opposition to the position of the other author.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N

3

Definition: Two arguments are SIMILAR if they are making the same case related to author’s position, else they are NOT

SIMILAR. Your task is to classify any 2 arguments as SIMILAR or NOT SIMILAR.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
4 Definition: Each of the following sets of argument pairs (discussing the Gun Control) should be classified as SIMILAR

or NOT SIMILAR. If the arguments are about the same FACET (making the same argument), they are regarded SIMILAR;

otherwise, they are NOT SIMILAR. A FACET is a low-level issue that appears frequently in many arguments in support of the

author’s position or in opposition to the position of the other author.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

Table 9.5: Example of an Instruction for a Classification Task with Its Variant Instructions;

These Belong to the Task117_afs_argument_similarity_gun_control.

250

Original instruction along with its augmented variant instructions

O
R

IG
IN

A
L

IN
S

T
R

U
C

T
IO

N

Definition: Write a correct answer to the given question based on its associated fact. Make sure that your answer is contained in the associated fact. Things to

avoid: Don’t be creative and introduce any new word that is not mentioned in the associated fact! Remember that, the associated fact has been rearranged to form

the question. So, the correct answer words must lie within the associated fact. Emphasis & Caution: The correct answer can be a word, phrase, or even a sentence.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
1

Definition: Handwriting a rectify reply to the given issue based on its related fact. Make sure that your replying is contained in the associated fact. Aspects to

avoidance: Don’t be creativity and introduces any nouveau word that is not alluded in the associated doing! Recall that, the linked doing has been restructured to

forma the question. Thus, the corrects replying words needs lie within the associated doing. Focuses & Discretion: The exact replying can be a word, phrase, or even

a penalties.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
2

Definition: Write a correcting responding to the gave question bases on its associated fact. Make persuaded that your answering is contained in the associated

facto.Matters to shirk: Don’t be inventive and introduce any nouveau word that is not referred in the associated fact! Recollect that, the associated fact has been

redesigned to forma the issue. Therefore, the accurate responses words owes lying inside the associated doing. Concentrating & Circumspect: The correcting

responses can be a word, phrase, or even a punishments.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
3

Definition: Write a corrects answer to the afforded issue founded on its associated fact. Deliver sure that your replied is contain in the linked fact. Things to shirk:

Don’t be creative and introduce any novel word that is not alluded in the associated fact! Remind that, the associated doing has been redesigned to forme the

question. Accordingly, the correcting reply phrases needs lied indoors the linked fact. Concentrates & Caveat: The corrects response can be a word, phrase, or even

a condemnation.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
4

Definition: Writing a accurate responded to the yielded matter founded on its associated fact. Deliver sure that your reply is contained in the associated doing.

Aspects to avoidance: Don’t be creative and introduce any newer word that is not talked in the associated facto! Recall that, the associated fact has been rearranged

to form the issue. Thereby, the corrects responding phrase gotta lie within the related doing. Focus & Circumspect: The correct responding can be a word, expression,

or even a sentences.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
5

Definition: Writing a correct answers to the granted question bases on its associated doing. Make sure that your respond is contained in the associated doing.

Matters to shirk: Don’t be creative and introduces any novo word that is not referenced in the associated facto! Remind that, the associated fact has been reconfigured

to forms the question. So, the corrects respond words ought lies within the related doing. Concentrate & Careful: The accurate reply can be a word, phrase, or yet a

sentences.

Negative Examples:

Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:

Input: <input> Output: <output> Explanation: <explanation>

Table 9.6: Example of an Instruction for an Answer Generation Task with Its Variant

Instructions - Task018_qasc_answer_generation

251

improve performance in task-specific learning.

9.8 Multi-Task Results

The results for multi-task learning experiments are shown in Table 9.9.

9.9 Cross-Task Results

The results for cross-task learning experiments are shown in Table 9.12. Figure 9.9

compares single-instruction learning and our approach in cross-task setting.

9.10 Equal Data Analysis

We keep the original number of instances in SI learning, however, reduce the number of

instances used in MVI learning by sampling N/V number of instances randomly for each task

where N is the total number of instances in the original task and V is the number of instruction

variants for this task. We perform these experiments in both task-specific and multi-task

settings using BART-base. Table 9.10 summarizes the results of these experiments, and

we can observe that the model trained using our approach shows competitive performance

compared to single-instruction learning by using only N/V instances.

The results for cross-task learning experiments are shown in Table 9.12. Figure 9.9

compares single-instruction learning and our approach in cross-task setting.

9.11 Robustness Analysis

Is single-instruction learning robust? As Figure 9.8 illustrates, LM fine-tuned with

single-instruction learning or original setting is not robust to instructions written in a

different way; this includes transformation techniques like paraphrasing, adding spelling

mistakes, grammatical mistakes etc. Our experiment results show that model trained using

the proposed multi-variant instruction learning technique is able to perform reasonably

252

well and is robust to variant instructions in both multi-task setting, as evidenced by lower

performance difference between single instruction evaluation and multi-variant instruction

evaluation setup.

9.12 Contribution of Individual Variants

Do each of the variant instructions contribute equally towards performance gain?

To analyse the contribution of each of the variant instruction, we study the performance

gain by adding a single variant instruction at one time. We perform this analysis in TS

setting (task_010) and MT setting and summarize the results in Table 9.13 and Table 9.14

respectively. We observe that all variants do not contribute equally, e.g. MVI_All above are

often smaller than individual MVIs. Identifying optimal variants, however, will be scope for

future work.

0

10

20

30

40

50

60

70

80

1% 5% 10% 50% 100%

Ro
ug

e-
L

Number of Instances

Single Instruction Evaluation Multi-Variant Instruction Evaluation

(a) Multi-task SI learning

0

10

20

30

40

50

60

70

80

1% 5% 10% 50% 100%

Ro
ug

e-
L

Number of Instances

Single Instruction Evaluation Multi-Variant Instruction Evaluation

(b) Multi-task MVI learning

Figure 9.8: Robustness Comparison of Si Vs. Mvi in Multi-task Setting - Lm Fine-tuned

Using Mvi Learning Is More Robust to Variants as Compared to Si Learning.

253

0

20

40

60

80

100

120

1% 5% 10% 50% 100%

Ro
ug

e-
L

Number of Instances

Single Instruction Multi-Variant Instruction

(a) fixing number of tasks to 1%

0

20

40

60

80

100

120

1% 5% 10% 50% 100%

Ro
ug

e-
L

Number of Instances

Single Instruction Multi-Variant Instruction

(b) fixing number of tasks to 5%

0

20

40

60

80

100

120

1% 5% 10% 50% 100%

Ro
ug

e-
L

Number of Instances

Single Instruction Multi-Variant Instruction

(c) fixing number of tasks to 10%

0

20

40

60

80

100

120

1% 5% 10% 50% 100%

Ro
ug

e-
L

Number of Instances

Single Instruction Multi-Variant Instruction

(d) fixing number of tasks to 50%

Figure 9.9: Comparison of Performance Across Si and Mvi Learning in Cross-task Setting

by Varying Number of Instances and Tasks. Evaluation Is Performed on the Test Set of

Original Instructions.

9.13 Conclusion

We introduced instruction augmentation 4 to improve existing LMs in terms of improving

performance and usability to non-expert users. To this extent, we created multi-variant

instructions for 426 NLP tasks. Our experiment results show that instruction augmentation

improves model performance in task-specific, multi-task and cross-task learning paradigms.

We find that instruction augmentation is more effective in low-data regime. Our results
4https://github.com/Ravsehajsinghpuri/Multi-Variant-Instructions

254

further indicate that an additional instruction can be equivalent to „200 instances on

an average. We hope our work will bring more attention to developing unconventional

techniques (beyond dataset creation and model training) to empower non-expert users to

leverage NLP resources and teach a task without having domain knowledge.

255

of Instances

BART-base T5-base

SI MVI SI MVI

Original Ours Original Ours Original Ours Original Ours

task_010

1% 0.00 0.00 0.00 0.02 0.04 13.71 0.16 11.26

5% 0.00 36.75 0.06 37.07 0.01 46.44 0.14 44.69

10% 0.23 39.17 0.15 38.26 12.03 53.03 9.05 52.60

50% 37.00 43.02 25.40 42.54 48.11 64.94 46.01 64.80

100% 41.97 45.65 33.84 45.50 55.67 67.49 53.74 66.92

task_012

1% 84.48 83.54 75.45 82.66 0.07 0.00 6.20 6.17

5% 84.73 90.68 74.52 90.68 0.05 90.90 6.17 90.87

10% 84.81 90.61 75.47 90.60 79.62 90.99 62.69 90.99

50% 90.29 90.49 85.65 90.48 90.92 90.77 90.81 90.81

100% 90.84 90.50 88.47 90.52 91.02 90.75 90.87 90.80

task_018

1% 7.05 6.92 4.36 5.27 2.57 61.92 3.02 58.53

5% 4.65 79.07 3.42 79.55 2.89 89.84 3.80 89.99

10% 4.72 80.59 3.68 80.95 61.00 90.57 56.28 90.56

50% 82.43 85.23 81.36 85.20 90.63 90.76 90.86 90.79

100% 85.58 87.37 84.90 87.52 91.44 91.25 91.41 91.11

Average

1% 30.51 30.15 26.60 29.32 0.90 25.21 3.12 25.32

5% 29.79 68.83 26.00 69.10 0.98 75.72 3.37 75.18

10% 29.92 70.12 26.43 69.94 50.88 78.20 42.67 78.05

50% 69.91 72.91 64.14 72.74 76.55 82.16 75.89 82.13

100% 72.80 74.51 69.07 74.51 79.38 83.16 78.68 82.94

Table 9.7: Comparison of Performance in Single-task Setting Across Single-instruction and

Multi-variant Instruction Learning. Si: Single-instruction, Mvi: Multi-variant Instruction.

256

of Instances SI MVI SI MVI

task_210 task_113

1% 13.37 12.25 3.00 3.85

5% 13.50 25.92 4.77 15.26

10% 14.67 27.14 4.00 30.77

50% 27.88 41.06 41.72 81.80

100% 37.24 44.10 66.73 98.10

Table 9.8: Comparison of Performance in Task-specific Setting Across Single-instruction and

Multi-variant Instruction Learning. SI: Single-instruction, , MVI: Multi-Variant Instruction

of Instances

BART-base T5-base

SI MVI SI MVI

Original Ours Original Ours Original Ours Original Ours

1% 15.84 50.40 14.97 51.88 7.34 34.53 6.11 33.61

5% 45.13 56.49 44.24 57.71 32.01 62.61 19.88 62.87

10% 55.03 57.80 51.67 58.70 46.93 63.61 39.76 63.98

50% 59.01 62.21 57.37 62.06 63.38 66.16 57.11 66.76

100% 61.08 65.13 58.58 65.09 64.99 67.15 59.35 67.38

Table 9.9: Comparison of Performance in Multi-task Setting Across Single-instruction and

Multi-variant Instruction Learning. SI: Single-instruction, MVI: Multi-variant Instruction

257

of Instances
Single Task Multi Task

Original Ours Original Ours

1% 10.81 7.32 6.35 0.82

5% 20.86 19.42 4.21 6.31

10% 57.22 51.36 59.95 49.42

50% 76.53 72.75 84.54 79.74

100% 78.36 60.15 86.55 82.02

Average 48.76 42.20 48.32 43.66

Table 9.10: Comparison of Performance in Task-specific (Average Across 3 Tasks) and

Multi-task Settings.

of Instances
SI Perturbation 1 Perturbation 2 Perturbation 3

Original Ours Original Ours Original Ours Original Ours

1% 7.34 34.53 7.73 39.76 7.23 33.27 3.37 35.32

5% 32.01 62.61 25.90 60.22 29.51 63.52 23.50 69.30

10% 46.93 63.61 46.36 61.70 44.74 63.86 43.28 72.46

50% 63.38 66.16 61.63 64.50 63.73 66.40 71.79 67.99

100% 64.99 67.15 63.12 67.38 65.05 66.02 72.70 68.24

Table 9.11: Comparison of Performance in Multi-task Setting Across Single-instruction and

Multi-variant Instruction Learning.

258

of Instances

BART-base T5-base

SI MVI SI MVI

Original Ours Original Ours Original Ours Original Ours

1% tasks

1% 16.00 6.94 10.93 10.16 0.96 7.36 0.87 7.31

5% 20.04 40.14 19.51 31.09 21.87 29.07 19.89 29.60

10% 33.09 48.43 31.83 47.66 36.17 44.50 33.13 45.28

50% 61.70 78.22 58.53 78.43 64.74 73.94 61.34 73.45

100% 68.66 84.22 64.39 84.87 72.35 83.37 68.9 84.2

5% tasks

1% 16.23 22.17 3.32 18.78 1.30 7.55 1.29 7.29

5% 31.58 40.3 29.81 33.12 22.85 29.04 20.44 29.02

10% 34.73 46.02 34.38 49.15 36.01 44.83 33.75 44.93

50% 63.06 78.48 60.5 79.76 65.96 76.25 61.01 76.13

100% 69.93 85.2 67.41 86.68 74.54 83.61 70.2 83.69

10% tasks

1% 2.98 22.16 2.46 19.98 3.12 7.89 2.56 7.66

5% 29.27 30.06 28.03 30.9 24.49 29.29 23.41 29.25

10% 39.95 46.38 36.3 50.4 36.76 45.22 36.23 44.81

50% 63.58 79.13 59.98 79.81 66.07 73.49 62.56 73.54

100% 70.82 86.66 69.11 87.86 71.97 81.16 70.34 81.08

50% tasks

1% 15.18 23.06 17.08 26.2 5.58 22.26 5.44 22.21

5% 32.88 44.5 33.88 44.64 33.56 40.37 30.57 38.25

10% 43.33 51.2 42.5 54.62 45.42 44.02 39.01 44.36

50% 68.18 80.8 66.42 81.29 66.62 80.97 63.89 80.93

100% 71.35 84.52 68.85 84.65 72.72 82.82 69.94 82.02

100% tasks

1% 17.04 22 19.2 24.95 20.69 22.55 9.02 20.66

5% 35.4 42.68 36.42 45.06 35.18 38.30 30.92 39.51

10% 46.4 60 45.33 59.3 44.70 53.80 44.47 54.15

50% 69.06 84.32 67.29 84.47 71.89 79.20 68.64 79.56

100% 74.45 90.01 72.26 90.35 74.03 81.53 72.34 82.15

Table 9.12: Comparison of Performance in Cross-task Setting Across Single-instruction and

Multi-variant Instruction Learning. SI: Single-instruction, MVI: Multi-variant Instruction.

259

of Instances SI MVI_1 MVI_2 MVI_3 MVI_4 MVI_5 MVI_6 MVI_7 MVI_All

1% 0.00 17.46 0.92 0.20 0.44 6.92 5.7 6.79 0.00

5% 0.00 34.34 35.84 36.90 37.36 39.96 37.72 37.97 36.75

10% 0.23 37.31 41.03 42.30 42.95 43.59 42.4 41.23 36.75

50% 37.00 44.25 59.30 57.18 59.45 61.82 62.93 44.14 43.02

100% 41.97 44.34 71.02 75.20 80.27 81.74 86.05 53.63 45.65

Table 9.13: Contribution of Each Variant Instruction Towards Performance in Task-specific

Setting for Task010. SI: Single-instruction, MVI_k: Multi-variant Instruction Where K

Equals Number of Variant Instructions Used.

of Instances SI MVI_1 MVI_2 MVI_3 MVI_All

1% 15.84 37.03 40.93 64.08 50.4

5% 45.13 55.38 55.80 56.46 56.49

10% 55.03 58.17 58.32 57.70 57.8

50% 59.01 61.62 61.45 62.20 62.21

100% 61.08 62.90 64.08 64.10 65.13

Table 9.14: Contribution of Each Variant Instruction Towards Performance in Multi-task

Setting. SI: Single-instruction, MVI_k: Multi-variant Instruction Where K Equals Number

of Variant Instructions Used.

260

Chapter 10

HELP ME THINK: A SIMPLE PROMPTING STRATEGY FOR NON-EXPERTS TO

CREATE CUSTOMIZED CONTENT WITH MODELS

10.1 Introduction

Large language models (LLM) like GPT3 (Brown et al., 2020) and PaLM (Chowdhery

et al., 2022) have excelled in many NLP tasks, however creating customized content in the

form of long text generation using these models is a challenge (Figure 10.1), as (1) models

have not been reliable in following a list of instructions, (2) correcting model’s output post

generation by providing negative instructions (e.g. Don’t do this..) in the form of dialogue

has also not worked. More importantly, significant effort is required for non-expert users to

write instructions containing the important ingredients of a task; for example, in order to

create instructions for models to write the bio of a user, the user needs to think and provide

various personal information. Travel & event plan generation are similar to such tasks where

a non-expert user has to think and find out various information necessary to make a plan,

such as ‘number of attendees’, ‘venue selection’, ‘budget’, ‘special arrangements’, etc.

We introduce Help me Think: a simple prompting strategy for non-experts to write

customized content with models. On a broader level, the goal of Help me Thinkis similar to

Make-A-Scene (Gafni et al., 2022); the application area, however, is vastly different as we

focus on diverse applications that do not involve images and are purely based on text data.

Help me Think involves prompting models to ask relevant questions that reduce the thinking

burden of users in identifying key information specific to that task. This application is in

contrast to the dominant application of LLMs where various prompting techniques have

been developed to enable LLMs in answering a question Liu et al. (2021b). We hypothesize

261

that knowing the right question to ask is often more important than answering it, especially

in the context of personalized content generation.

We experiment with six customized content generation tasks 1 : (1) bio generation, (2)

travel plan generation, (3) dialogue generation, (4) poem generation, (5) event summary gen-

eration, and (6) story generation. We prompt GPT3 and collect 68 questions corresponding

to these tasks. We find that 100% of the generated questions are valid and relevant. We use

crowd-sourcing to collect answers; we leverage these question-answer pairs to prompt GPT3

again and get task-specific outputs e.g. bio, event plan, story, etc. With the Help me Think

prompting, we construct a dataset of „ 2k question-answer pairs with 180 task specific

outputs spanning over the 6 tasks. We develop a questionnaire-based human evaluation

scheme for crowdworkers to evaluate the quality of model generations: (1) questions and (2)

task-specific outputs.

Our results show that 100% of task-specific outputs generated by GPT3 are valid (e.g.

valid bio) and „ 94% of them do not contain any extra and irrelevant information. Moreover,

we observe that, in„ 83% of cases, GPT3 corrects typos/grammatical issues/invalid answers

present in the crowdworkers’ answers. GPT3 also adds appropriate context and generates

coherent sentences for„ 99% of cases. In 70% of cases, GPT3 performs accurate knowledge

transfer 2 by transferring all information from input question-answer pairs to task-specific

outputs. We hope the Help me Think prompting and our focus on tasks hard for average

humans will encourage the development of unconventional ways to harness the power of

LLMs and bring more attention to the under-explored tasks. This has been discussed further

in our work (Mishra and Nouri, 2022).
1We also explore an additional set of 57 tasks
2with a tolerance level of 1 question-answer pair for tasks with 4 questions (poem and dialogue tasks) and

2 question-answer pairs for tasks with more than 4 questions

262

10.2 Help me Think

In this section, we introduce the Help me Think prompting. We first present the algorithm

behind Help me Think. Next, we describe the prompts used in Help me Think and explain

the role of non-expert users in this prompting process.

Prompt: Figure 10.2 illustrates the prompt given to the model that generates a question

specific to the task of interest. Figure 10.3 shows that model generates a question and an

answer, in response to the prompt. Figure 10.4 shows how we generate multiple questions

in this process. Figure 10.5 shows where users fill in their answers. Figure 10.6 shows

the prompt that is attached with the question-answer pairs which finally gives rise to the

model-generated task-specific output.

10.3 Experiments

We conduct experiments on a diverse set of novel tasks. In this section, we first introduce

the tasks, followed by data collection and the evaluation setup.

10.3.1 Tasks:

We experiment with six customized content generation tasks: (1) bio generation, (2)

travel plan generation, (3) dialogue generation, (4) poem generation, (5) event summary

generation and (6) story generation.

10.3.2 Data Collection:

We prompt GPT3 (Figure 10.4) to generate task-specific questions automatically. We

set up a crowdsourcing task to get answers to the questions. We use a private group of

crowdworkers that leverages a set of internal tools specific to the anonymous organization;

they are instructed to write diverse outputs while collecting answers. GPT3 is prompted with

263

category # of instances

task 6

questions 68

question-answer pair 2040

task outputs 180

Table 10.1: Key Statistics of Our Collected Data.

question-answer pairs and a task-specific prompt (Figure 10.6) to generate task-specific

outputs.

10.3.3 Statistics:

We collect a total of„ 2k QA pairs. Table 10.1 shows some key statistics in our collected

data.

10.3.4 Evaluation:

We use human evaluation since content generation tasks are open-ended and are hard

to be captured by automated evaluation metrics. Each question associated with each task

is evaluated by 3 annotators. The annotators evaluate various aspects of generated text by

answering the associated questions.

Evaluation of Model Generated Questions:

The annotators evaluate the following two aspects of the questions generated by models.

Each question is evaluated by three annotators.

Validity Is it a question? (and not a statement or any other text.)

264

category bio travel plan dialogue poem event summary story avg.

Validity 100 100 100 100 100 100 100

Relevance 100 100 100 100 100 100 100

Table 10.2: Evaluation (Majority Voting of 3 Annotators) of Model Generated Questions for

Each Task.

category bio travel plan dialogue poem event summary story avg.

Validity 100 100 100 100 100 100 100

Knowledge Absorption 86.66 3.33 70 90 86.66 83.33 70

Relevance 100 93.33 76.67 96.67 96.67 100 93.89

Robustness 96.67 50 71.42 100 77.78 100 82.65

Coherence 100 100 96.15 100 100 100 99.36

Table 10.3: Model Performance on Different Evaluation Aspects for Each Task (Majority

Voting of 3 Annotators). For the ‘knowledge Absorption’ Category, a Tolerance Level

of 1 Question-answer Pair for Tasks with 4 Questions (Poem and Dialogue Tasks) and 2

Question-answer Pairs for Tasks with More than 4 Questions Are Taken.

Relevance Is it relevant to the underlying task? E.g. bio, travel plan, story, etc.

Evaluation of Model Generated Task-specific Outputs:

Furthermore, each task-specific output (e.g. bio, story, etc.) generated by GPT3 and its

corresponding input (generated by GPT3 and answered by the user) is evaluated by three

annotators. Each annotator is asked to answer a question that covers a specific part of the

evaluation as follows:

265

Validity: Is the output a valid task-specific output? E.g. is it a valid bio? (for the bio-

generation task).

Knowledge Absorption: Does the output incorporate all the facts and information from

the input?

Relevancy: Does the output have unrelated information that is not present in the input?

Robustness: Has the output fixed any typos or grammatical errors or invalid answers

present in the input, instead of copying the same?

Coherence: Can you find any example of output having additional related and contextual

information written as a coherent sentence in addition to what was already present in the

input?

10.4 Results

We report the task-wise performance of GPT3 and analyze its variation across different

aspects of evaluation.

Insights We observe that 100% of the questions generated by GPT3 are valid and relevant

to the task (Table 10.2). Table 10.3 shows the performance of GPT3 in producing task-

specific outputs. We observe that (1) 100% of the generations are valid task-specific outputs,

(2) 93.89% of the generations do not contain irrelevant content, and (3) 99.36% times,

GPT3 improves the coherence of text over the information presented to it in the form of

input-output examples. (4) 82.65% times, GPT3 fixes typo/grammatical issues present in the

user-written answers. However, we see that the knowledge absorption is low (70%), which

we analyze further.

We also ask crowdworkers to write explanations; we analyze those to better understand

the knowledge absorption in the task specific output generated by GPT3. We understand that

266

for certain tasks like travel plan generations, some question-answer pairs are not important;

they are not always necessary to be part of the plan.

Extension to Other Tasks: We apply Help me Think on 57 additional tasks and find

that Help me Think is effective in generating valid and relevant questions. This shows the

generalization of Help me Think beyond the six tasks we have analyzed (Section 10.3.1).

267

Figure 10.1: Illustration of Help me Think Prompting for a Non-expert User on the Bio

Generation Task. A Non-expert User Is Asked to Write a Biography, but This Is a Hard

Task for the User since It Demands Thinking about Key and Necessary Components for a

Biography Which He Might Not Know about or He Might Just Simply Be Dealing with

Writer’s Block When Faced with Creative Writing Tasks. The User Decides to Get Help

from an Ai Model. The User Wants to Try to Prompt an Ai Model (Using State-of-the-art

Instruction Prompting Paradigms), but the Model Produces Factually Incorrect Output for

Him. Next, the User Tries to Interact with the Model and Provide Feedback to Correct the

Model Prediction (Dialogue Paradigm), but This Approach Is Also a Failure Because It

Is a Challenge for Models to Accurately Follow Feedback Instructions. For the Majority

of Non-expert Users, Figuring out an Effective Prompting Strategy Is a Major Challenge.

Finally, Help me Think Helps the User Generate His Factually Correct Biography via

the Model by Guiding the User in the Process by Asking Questions, This Alleviates the

Cognitive Demand on the User Significantly. By Removing the Hurdles out of the Way of

the User in Writing His Biography, Help me Think Also Allows the User to Take a Step

Further and Focus on Creativity and Quality.

268

I am an expert $task-executer$. I will ask some questions to collect information and then I will use the

information to $do the task.$

Question:

Figure 10.2: Prompt given to the Model to Generate Question. $task-executer$ and $do the

Task.$ Are ‘bio Generator’ and ‘generate a Bio for You’ for the Bio Generation Task. They

Vary Across Tasks.

I am an expert $task-executer$. I will ask some questions to collect information and then I will use the

information to $do the task.$

Question: <model generates question>

Answer: <->

Figure 10.3: Model Generation in Response to the Prompt. Model Also Generates an Answer

along with the Question, but <-> Indicates That We Are Not Storing This Information.

I am an expert $task-executer$. I will ask some questions to collect information and then I will use the

information to $do the task.$

Question: <model generated question>

Answer: <->

Question: <model generated question>

Answer: <->

...

Figure 10.4: Prompt and the Generated Question-answer Pair Are Fed to the Model to

Generate New Questions for the Task.

269

I am an expert $task-executer$. I will ask some questions to collect information and then I will use the

information to $do the task.$

Question: <model generated question>

Answer: <user writes answer>

Question: <model generated question>

Answer: <user writes answer>

...

Figure 10.5: User Writes Answers to the Questions Generated by Model

I am an expert $task-executer$. I will ask some questions to collect information and then I will use the

information to $do the task.$

Question: <model generated question>

Answer: user written answer>

Question: <model generated question>

Answer: <user written answer>

...

Write a $task-specific-output$ using the questions and answers above. $task-specific-instruction$

<model generates task-specific-output>

Figure 10.6: A Task-specific Prompt Is Added after the Model Generated Question-answer

Pairs. <Model Generates Task-specific-output> In Response to the Prompt. $task-specific-

output$ for the Bio Generation Task Is ‘a Long Bio about John’. $task-specific-instruction$

Is Optional, e.g. ‘introduce Names to Represent Characters.’ for the Story Generation Task.

270

10.5 Related Work

Prompting and Learning from Instructions: The success of language models (Brown

et al., 2020; Chowdhery et al., 2022) has empowered the development of various prompting

techniques (Liu et al., 2021b). Instructions, proposed as an extension to prompts, describe

tasks in natural language (Efrat and Levy, 2020; Weller et al., 2020) and guide models to

generalize to unseen tasks (Mishra et al., 2022f; Wei et al., 2022a; Ouyang et al., 2022;

Sanh et al., 2022; Zhong et al., 2021) without requiring task-specific training. Prompts and

Instructions are shown to be helpful in low-resource settings (Le Scao and Rush, 2021; Puri

et al., 2022). Several variants of prompting such as chain of thought (Wei et al., 2022b)

or scratchpad (Nye et al., 2021), majority voting (Wang et al., 2022b), reframing (Mishra

et al., 2022e), least-to-most prompting (Zhou et al., 2022), question decomposition (Khot

et al., 2021; Patel et al., 2022) have been shown to be effective across various tasks. Efficacy

of the Prompting/Learning from Instruction techniques has been shown across diverse

applications (Wang et al., 2022d) such as dialog (Gupta et al., 2022b), NER (Wang et al.,

2022a), program synthesis (Kuznia et al., 2022), style transfer (Reif et al., 2021), tabular

question answering (Luo et al., 2022), relation extraction (Chen et al., 2021b), biomedical

applications (Parmar et al., 2022b). In contrast to prior works, we (1) focus on a diverse set

of creative tasks as our application area, (2) build a non-expert user-centric technique (3)

leverage language models for assisting users to think by asking questions (instead of just

answering questions posed by humans), and in this process engage users that subsequently

helps them learn the thinking process.

271

Creative Tasks using GPT3: GPT3 has been recently used for creative tasks such as

writing a paper 3 , poem 4 , article 5 , and book 6 . However, controlling model generation in

these creative tasks is a challenge. On a broader level, controlling content in text generated

by pretrained language models has been a challenge in NLP (Perez, 2022). The Help me

Think framework provides a model-guided approach by generating and asking questions to

assist users in thinking through various steps and at the same time controlling the content

of the text generated by the model. We further prove the efficacy of the Help me Think

approach by applying it to a set of 63 diverse tasks. These tasks are novel and creative and

can potentially form a benchmark dataset for future research.

Interactive Learning Interactive question answering has been utilized in several recent

works (Zhong et al., 2022; Zhao et al., 2022; Yao et al., 2020) around semantic parsing. In

these cases, the target output is code and the task is being decomposed into smaller sub-tasks.

Similar approach has also been used in diverse domains, e.g., robotics (Ahn et al., 2022),

symbolic model learning (Verma et al., 2021; Verma and Srivastava, 2021), differential AI

assessment (Nayyar et al., 2022), etc. Help me Think is different in two ways (1) the schema

in case of semantic parsing tasks and the set of actions in robotics tasks are fixed, whereas

in Help me Think, schema is dynamic and is derived from a high level description of the

task (2) in the approaches for semantic parsing and robotics tasks, there is a concern if the

generated output can be executed on downstream tasks (e.g. in guiding a robot), however

that concern is relaxed in Help me Think as the output itself is in natural language.
3https://www.scientificamerican.com/article/we-asked-gpt-3-to-write-an-academic-paper-about-itself-

then-we-tried-to-get-it-published/, https://hal.archives-ouvertes.fr/hal-03701250/document
4https://www.newyorker.com/culture/culture-desk/the-new-poem-making-machinery
5https://www.theguardian.com/commentisfree/2020/sep/08/

robot-wrote-this-article-gpt-3
6https://medium.com/swlh/i-wrote-a-book-with-gpt-3-ai-in-24-hours-and-got-it-published-

93cf3c96f120, https://augmentedrobot.medium.com/281-years-in-the-making-gpt-3-and-de-la-mettrie-
de03eea374e4

272

10.6 Help me Think Algorithm and Description

Algorithm: Algorithm 2 illustrates the detailed algorithm behind Help me Think. It has

3 stages: Stage 1 (Generate Questions), Stage 2 (Collect Answers) and Stage 3 (Generate

Task-specific Output). We describe each stage in detail below.

Description In figure 2, a non-expert user is asked to write a biography, but this is a

hard task for the user since it demands thinking about key and necessary components for a

biography which he might not know about or he might just simply be dealing with writer’s

block when faced with creative writing tasks. The user decides to get help from an AI

model. The user wants to try to prompt an AI model (using state-of-the-art instruction

prompting paradigms), but the model produces factually incorrect output for him. Next, the

user tries to interact with the model and provide feedback to correct the model prediction

(dialogue paradigm), but this approach is also a failure because it is a challenge for models

to accurately follow feedback instructions. For the majority of non-expert users, figuring out

an effective prompting strategy is a major challenge. Finally, Help me Think helps the user

generate his factually correct biography via the model by guiding the user in the process by

asking questions, this alleviates the cognitive demand on the user significantly. By removing

the hurdles out of the way of the user in writing his biography, Help me Think also allows

the user to take a step further and focus on creativity and quality.

Role of Non-expert User: Figure 10.1 illustrates the role of a non-context user in per-

forming bio generation tasks. It requires a lot of thinking for the non-expert user to write a

bio by himself as it demands the identification of key ingredients corresponding to the bio

generation task. Help me Think in contrast to other prompting techniques helps the user

perform the task via the model with minimal effort, as they just need to answer the questions

generated by the model (Figure 10.5).

273

Algorithm 2: Help me Think algorithm
1: Generate question-generation prompt by replacing task-specific variables in the prompt

(figure 10.2) Ź Start of Stage 1 (Generate Questions)

2: Setup stop condition (e.g. ?, ‘Answer:’, newline) and ask GPT3 to complete with

‘Question: ’ prompt

3: Repeat Step 2 until the model starts generating repetitive, redundant, or irrelevant

content.

4: If default settings are not producing the expected output, then try these (1) control

temperature, (2) control max output size, (3) add additional task-specific instruction or

(4) add an example question. Ź End of Stage 1 (Generate Questions)

5: Ask user to answer each of the questions and pose customization requirements

(Figure 10.5) Ź Stage 2 (Collect Answers)

6: Generate task-specific output generation prompt by replacing task-specific variables in

the prompt (figure 10.6) Ź Start of Stage 3 (Generate Task-specific Output)

7: If question-answer pairs are dependent on each other, collect all of them to feed them

all at once to model, else feed them batch by batch

8: Setup appropriate stop condition and ask GPT3 to complete output after the prompt

9: Concatenate task-specific output if step 6 was done in batches

10: If default settings are not producing valid output, then try these (1) control temperature,

(2) control max output size or (3) add additional task-specific instruction. Ź End of

Stage 3 (Generate Task-specific Output)

274

10.7 Detailed Prompts and Hyperparameters

In this section, we describe the initial prompts (Figure 10.2) we use across tasks. Fig-

ures 10.7, 10.8, 10.9, 10.10, 10.11, 10.12 show the prompts for bio, travel plan, dialogue,

poem, event summary and story generation tasks respectively.

Figure 10.4 illustrates all questions generated by GPT3 for various tasks in response to

our prompting (Figure 10.3,10.4).

Figure 10.13, 10.14, 10.15, 10.16, 10.17, 10.18 show the prompt used to generate

task-specific output from GPT3 (as in figure 10.6).

We use the following hyper-parameters while querying GPT3 for various tasks:

engine=text-davinci-002, temperature=0.7, max_tokens=512,top_p=1,

frequency_penalty=0, presence_penalty=0.

I am an expert in generating Bio of people. I ask questions to gather information. Then I use these information

to generate bio.

Question:

Figure 10.7: Prompt given to Model to Generate Question about the Bio Generation Task.

I am a famous travel planner. I will ask clarifying question to collect information and then I will write an

awesome travel plan and schedule for you.

Question:

Figure 10.8: Prompt given to Model to Generate Question about the Travel Plan Generation

Task.

275

I am a famous event planner. I will ask clarifying question to collect information and then I will write an

awesome event plan for you.

Question:

Figure 10.11: Prompt given to Model to Generate Question about the Event Summary

Generation Task.

I am an expert script writer. I will ask some simple questions to collect information and then I will write a

story of your choice.

Question:

Figure 10.12: Prompt given to Model to Generate Question about the Story Generation Task.

I am a famous dialogue writer. I will ask simple questions to collect information and then I will write a

dialogue series specially for you.

Question:

Figure 10.9: Prompt given to Model to Generate Question about the Dialogue Generation

Task.

I am a famous poet. I will ask clarifying question to collect information and then I will write a poem.

Question:

Figure 10.10: Prompt given to Model to Generate Question about the Poem Generation

Task.

10.8 User Inputs and GPT3 Outputs

For each of the tasks, we illustrate a sample user input and GPT3 output.

Table 10.5, 10.6, 10.7, 10.8, 10.9, 10.10 shows sampler user input and task-specific

output generated by GPT3 for bio, travel plan, dialogue, poem, event summary and story

generation task respectively.

276

task questions task questions

bio

What do you do?

story

What type of story would you like me to write?

What are your interests? What is the main plot of your story?

What are your skills? What is the ending of your story?

What are your experiences? What are the main characters in your story?

What is your education? Where does the story take place?

What is your work history? Why does the story end the way it does?

What are your awards? What is the main conflict in your story?

What is your family background? What message do you want your story to send?

What are your hobbies? ——————————————————-

What is your favorite thing to do?

event

plan

What type of event are you looking to plan?

What is your favorite food? What is the purpose of the event?

What is your favorite color? Who is the target audience for the event?

What is your favorite animal? When is the event taking place?

What is your favorite sport? Where is the event taking place?

What is your favorite team? What is the budget for the event?

What is your favorite movie? What is the expected headcount for the event?

What is your favorite book? What is the theme of the event?

What is your favorite music? What activities do you want to include in the event?

What is your favorite TV show? Do you have any specific requests for the event?

What is your favorite vacation spot? What is the timeline for the event?

What is your favorite thing to do on a weekend? What is the expected outcome of the event?

What is your favorite thing to wear? ——————————————————

What is your favorite thing to do for fun?

dialogue

What is the most important thing in your life?

What is your favorite thing to do with friends? What are your hopes and dreams for the future?

What is your favorite thing to do alone? What makes you happy?

What is your favorite place to go? What is your favorite thing about life?

What is your favorite thing to do on a date? ——————————————————

What is your favorite thing to do when you’re feeling down?

travel

plan

How many people are in your party?

What is your favorite thing to do when you’re happy? What are the ages of the members of your party?

What is your favorite thing to do when you’re bored? What is the budget for your trip?

What is your favorite thing to do when you’re stressed? What are your preferred travel dates?

What is your favorite thing to do when you’re tired? What is your preferred mode of transportation?

—————————————————— What are your preferred accommodation options?

poem

What is the occasion? What are your preferred activities while on vacation?

What is the mood? What are your preferred food options while on vacation?

What is the theme?

What is the tone?

Table 10.4: Questions Generated by GPT3 for Various Tasks in Response to Our Prompting

(Figure 10.3,10.4).

277

I am an expert in generating Bio of people. I ask questions to gather information. Then I use these information

to generate bio.

Question: <model generated question>

Answer: user written answer>

Question: <model generated question>

Answer: <user written answer>

...

Write a long bio about John using the questions and his answers above.

<model generates task-specific-output>

Figure 10.13: Prompt given to Model to Generate Task-specific Output about the Bio

Generation Task.

I am a famous travel planner. I will ask clarifying question to collect information and then I will write an

awesome travel plan and schedule for you.

Question: <model generated question>

Answer: user written answer>

Question: <model generated question>

Answer: <user written answer>

...

Based on the information provided, I would recommend the following travel schedule and budget for your

trip:

<model generates task-specific-output>

Figure 10.14: Prompt given to Model to Generate Task-specific Output about the Travel

Plan Generation Task.

278

I am a famous dialogue writer. I will ask simple questions to collect information and then I will write a

dialogue series specially for you.

Question: <model generated question>

Answer: user written answer>

Question: <model generated question>

Answer: <user written answer>

...

Write a nice dialogue series using all the questions and answers above.

Person 1:

<model generates task-specific-output>

Figure 10.15: Prompt given to Model to Generate Task-specific Output about the Dialogue

Generation Task.

I am a famous poet. I will ask clarifying question to collect information and then I will write a poem.

Question: <model generated question>

Answer: user written answer>

Question: <model generated question>

Answer: <user written answer>

...

Write a poem using the question and answers above.

<model generates task-specific-output>

Figure 10.16: Prompt given to Model to Generate Task-specific Output about the Poem

Generation Task.

279

I am a famous event planner. I will ask clarifying question to collect information and then I will write an

awesome event plan for you.

Question: <model generated question>

Answer: user written answer>

Question: <model generated question>

Answer: <user written answer>

...

Write a detailed event plan based on the questions and answers above.

<model generates task-specific-output>

Figure 10.17: Prompt given to Model to Generate Task-specific Output about the Event

Summary Generation Task.

I am an expert script writer. I will ask some simple questions to collect information and then I will write a

story of your choice.

Question: <model generated question>

Answer: user written answer>

Question: <model generated question>

Answer: <user written answer>

...

Write a long story using the questions and answers above. Introduce names to represent characters.

<model generates task-specific-output>

Figure 10.18: Prompt given to Model to Generate Task-specific Output about the Story

Generation Task.

280

task questions answers task-specific outputs

bio

What are your hobbies? Cooking John is a avid hobbyist who loves to cook and ride bikes. His favorite food is

pizza, and his favorite color is black. John is a very friendly person who loves

to meet new people. He is a very outgoing person and loves to have fun. John is

a very hard worker and is always looking to improve himself. He is a very

dedicated person and is always willing to help others.

John is a highly accomplished individual who has made a significant impact in

his field. He holds a Bachelor of Commerce from a prestigious university and

has worked his way up through the ranks to become a Junior Executive. John

has been recognised for his outstanding work with numerous awards, including

Employee of the Month. John comes from a strong family background; his

family belongs to South Indian origin and he is extremely proud of his heritage.

John is a highly motivated individual who always strives to achieve the best

possible results. He is a true asset to any organisation and has a bright future

ahead of him.

John is a fun-loving guy who loves spending time with his friends. He enjoys

doing things like going out for a day, mimicry, and just having a good time. He

loves to dress up and look his best, and he enjoys wearing dresses and other fun

clothes. When it comes to fun, John is definitely the life of the party!

John is a fun-loving guy who loves to dance. When he’s feeling down, he likes

to rest up and when he’s feeling up, he loves to go tubing. Rome is his favorite

place to go and he loves to explore new places.

John is a voracious reader, and his favorite book is To Kill a Mockingbird. He

loves all genres of music, but his favorite is As it Was. He is a huge fan of The

Boys, and his favorite vacation spot is Bali, Indonesia.

John is a huge animal lover, and his favorite animal is a dog. He’s also a big fan

of cricket, and his favorite team is Real Madrid. He loves watching Bhool

Bhulaiyaa, and it’s one of his favorite movies.

John is an avid exerciser who loves to stay active when he’s feeling happy.

When bored, he enjoys working on puzzles to keep his mind sharp. And when

feeling stressed, he finds that some breathing exercises help him to relax. Yoga

is one of his favorite things to do when tired, as it helps him to stretch and wind

down after a long day.

John is a writer who is interested in trekking and has great time management

skills. He has been promoted in the past and is looking to continue his writing

career.

What is your favorite thing to do? Riding bikes

What is your favorite food? Pizza

What is your favorite color? Black

What is your education? Bachelor of Com-

merce

What is your work history? Junior Executive

What are your awards? Employee of the

month

What is your family background? Family belongs to

South Indian origin

What is your favorite thing to do on a week-

end?

Day out with friends

What is your favorite thing to wear? Dress

What is your favorite thing to do for fun? Mimicry

What is your favorite thing to do with

friends?

Outing

What is your favorite thing to do alone? Dance

What is your favorite place to go? Rome, Italy

What is your favorite thing to do on a date? Go tubing

What is your favorite thing to do when

you’re feeling down?

Rest up

What is your favorite book? To Kill a Mocking-

bird

What is your favorite music? As it was

What is your favorite TV show? The Boys

What is your favorite vacation spot? Bali, Indonesia

What is your favorite animal? Dog

What is your favorite sport? Cricket

What is your favorite team? Real Madrid, Foot-

ball

What is your favorite movie? Bhool Bhulaiyaa

What is your favorite thing to do when

you’re happy?

Exercise

What is your favorite thing to do when

you’re bored?

Work on Puzzle

What is your favorite thing to do when

you’re stressed?

Do some breathing

exercise

What is your favorite thing to do when

you’re tired?

Yoga

What do you do? Write

What are your interests? Trekking

What are your skills? Time management

What are your experiences? Being promoted

Table 10.5: A Sample from the Bio Generation Task Containing Model Generated Questions,

User Written Answers and Model Generated Task-specific Output.

281

task questions answers task-specific outputs

travel

plan

How many people are in

your party?

6 Day 1: Arrive in Mumbai and check into your 7-star hotel.

Spend the day relaxing and exploring the hotel amenities.

Day 2: Head out for a day of sightseeing in Mumbai.

Visit the Gateway of India, the Taj Mahal Palace Hotel,

and the Elephanta Caves.

Day 3: Take a day trip to Gujarat to explore the state’s

famous Gujarati cuisine.

Day 4: Fly to Delhi and check into your 7-star hotel.

Spend the day relaxing and exploring the hotel amenities.

Day 5: Head out for a day of sightseeing in Delhi. Visit

the Red Fort, the Gandhi Memorial, and the Jama Masjid.

Day 6: Take a day trip to Agra to see the Taj Mahal.

Day 7: Fly back to Mumbai and spend the day relaxing at

your hotel.

Day 8: Check out of your hotel and head home.

What are the ages of the

members of your party?

72, 70, 44,

41, 16, 10,

10

What is the budget for

your trip?

60 lacs

What are your preferred

travel dates?

October 1

to Decem-

ber 31

What is your preferred

mode of transportation?

Aeroplane

What are your preferred

accommodation options?

7-star hotel

What are your preferred

activities while on vaca-

tion?

Sightseeing

What are your preferred

food options while on va-

cation?

Gujarati

cuisine

Table 10.6: A Sample from the Travel Plan Generation Task Containing Model Generated

Questions, User Written Answers and Model Generated Task-specific Output.

282

task questions answers task-specific outputs

dialogue

What is the most

important thing in

your life?

Education Person 1: What is the most important thing in your life?

Person 2: Education is the most important thing in my life. It’s what

helps me get ahead and achieve my dreams.

Person 1: What are your hopes and dreams for the future?

Person 2: I hope to achieve great things in my future. I want to be

wealthy and successful.

Person 1: What makes you happy?

Person 2: I find happiness in many things. I love movies, spending time

with my friends and family, and just enjoying life.

Person 1: What is your favorite thing about life?

Person 2: My favorite thing about life is its liveliness. There is always

something new and exciting happening. It’s never dull or boring.

What are your

hopes and dreams

for the future?

Enough

Wealth

What makes you

happy?

Movie

What is your fa-

vorite thing about

life?

Liveliness

Table 10.7: A Sample from the Dialogue Generation Task Containing Model Generated

Questions, User Written Answers and Model Generated Task-specific Output.

283

task questions answers task-specific outputs

poem

What is the occasion? Golden Ju-

bilee cele-

bration

Golden Jubilee celebration

A time to look back

On all the happy moments

And all the love we’ve shared

We’ve been through good times and bad

But our love has always stayed strong

As we look back on all we’ve shared

We know that our love will last forever

What is the mood? Romantic

What is the theme? Retro

What is the tone? Friendly

Table 10.8: A Sample from the Poem Generation Task Containing Model Generated Ques-

tions, User Written Answers and Model Generated Task-specific Output.

10.9 Additional Analysis

We also conduct a stricter evaluation where the model gets a score of 1 for sample

only if information from all the question-answer pairs are incorporated in the generated

task-specific output. Table 10.12 shows that this happens only in 41.11% of the generated

task-specific outputs.

Additionally, we conduct a separate analysis to understand how frequently GPT3 is

required to fix typos/grammatical issues (improve robustness) and add appropriate context

by expanding user input (improve coherence). The results (Table 10.11) signify that the

number of times GPT3 has to improve robustness is relatively lower as users do not do

typos/grammatical incorrectness frequently, however the coherence improvement is more

often necessary as users often write short answers which is required to be expanded in the

form of a coherent text.

284

task questions answers task-specific outputs

event

summary

What type of event are you

looking to plan?

musical Diwali Musical Marketing Event

Purpose:To market the musical institute to youngsters in the

lead up to Diwali.

Target audience:Youngsters aged between 15-25.

Date and time:The event will take place on Diwali, from 2pm

to 7pm.

Location:The event will be held at the musical

institute.##Budget:The budget for the event is $800.

Headcount:The expected headcount for the event is 400.

Theme:The theme of the event is casual dressing and musical

decoration.

Activities:The activities planned for the event include a

musical competition.

Specific requests:Loud speakers are required for the event.

Timeline:The event will last for 5 hours.

Outcome:The expected outcome of the event is increased

marketing for the musical institute.

What is the purpose of the

event?

to do marketing of

musical institute

Who is the target audience

for the event?

yongsters

When is the event taking

place?

on Diwali

Where is the event taking

place?

At musical insti-

tute

What is the budget for the

event?

$800

What is the expected head-

count for the event?

400

What is the theme of the

event?

casual dressing

and musical

decoration

What activities do you want

to include in the event?

Musical competi-

tion

Do you have any specific re-

quests for the event?

Loud speakers

What is the timeline for the

event?

5 Hrs

What is the expected out-

come of the event?

Marketing

Table 10.9: A Sample from the Event Details Generation Task Containing Model Generated

Questions, User Written Answers and Model Generated Task-specific Output.

285

task questions answers task-specific outputs

story

What type of story would

you like me to write?

on global

warming

As the sun began to set, the politician knew he had to act fast. He was in

India, a country that was already feeling the effects of global warming.

The politician knew that if he didn’t act soon, the effects of global

warming would only get worse.##The politician knew he had to make a

speech that would alert the people of the world to the dangers of global

warming. He also knew he had to make a plan to help stop global

warming.##The politician got up in front of the crowd and began to

speak. He talked about how global warming was affecting India and

how it would affect the rest of the world if something wasn’t done to

stop it. He talked about how the world needed to come together to stop

global warming.##The politician’s speech was a success. The people of

the world were alerted to the dangers of global warming. The politician

had given them a plan to help stop global warming.

What is the main plot of

your story?

future

warming

What is the ending of

your story?

alerting

What are the main char-

acters in your story?

politician

Where does the story take

place?

india

Why does the story end

the way it does?

to con-

vey the

message

What is the main conflict

in your story?

Man vs.

Nature

What message do you

want your story to send?

awareness

about

future

warming

Table 10.10: A Sample from the Story Generation Task Containing Model Generated

Questions, User Written Answers and Model Generated Task-specific Output.

Improving Knowledge Absorption via Decomposition: We observe that reducing the

number of question-answer pairs fed to a model increases knowledge absorption. For

example, in the case of travel plan generation (where the knowledge absorption rate is

the least), feeding 8 questions instead of the default 12 questions, increases knowledge

absorption significantly. However, there is a trade-off, as decreasing the number of questions

decreases the details captured.

286

category bio travel plan dialogue poem event summary story avg.

Robustness 96.67 3.33 50 6.67 46.67 23.34 37.78

Coherence 100 100 83.34 96.67 33.34 100 85.56

Table 10.11: Model Performance Without Incorporating the ‘not Applicable’ Option in

Evaluation. Each Sample Is Evaluated Using the Majority Voting of 3 Annotators. The

Results Signify That the Number of times Gpt3 Has to Improve Robustness Is Relatively

Lower as Users Do Not Do Typos/Grammatical Incorrectness Frequently, However, the

Coherence Improvement Is More Often Necessary as Users Often Write Short Answers

Which Are Required to Be Expanded in the Form of a Coherent Text.

category bio travel plan dialogue poem event summary story avg.

Knowledge Absorption 43.33 0 50 73.33 56.67 23.34 41.11

Table 10.12: Model Performance with Strict Evaluation (Model Gets a Score of 1 for Sample

Only If All Question-answer Pairs Are Incorporated in the Generated Task-specific Output).

Each Sample Is Evaluated Using the Majority Voting of 3 Annotators.

10.10 Additional Tasks

We also show efficacy of Help me Think on 57 additional tasks. Figure 10.19 shows the

summary of the 57 additional tasks. Table 10.13-10.69 illustrate the questions generated by

GPT3 for each of the 57 tasks respectively.

287

element taskname/input prompt/model predictions

task cricket team formation

prompt I am a famous cricket expert. I will ask clarifying question to collect

information and then I will build an awesome franchise cricket team for

you.

questions What is your budget for this team?

What is your preferred region for this team?

What is the level of competition you are looking to compete in?

What is your preferred style of play?

What kind of players are you looking for?

Do you have any specific players in mind?

Are you looking to build a team from scratch or do you want to buy an

existing team?

Do you want to be involved in the day-to-day operations of the team or do

you want to delegate that to someone else?

What is your timescale for this project?

What are your long-term aspirations for this team?

Do you have any other requirements that you think are relevant?

Table 10.13: Generated Questions for Additional Task-1 along with the Prompt Fed to

GPT3.

288

element taskname/input prompt/model predictions

task making a cricket bat

prompt I am a famous cricket bat manufacturer. I will ask clarifying question to

collect information and then I will make plan of an awesome cricket bat for

you.

questions What is your budget for the cricket bat?

How many cricket bats do you need?

What is the preferred size of the cricket bat?

What is the preferred weight of the cricket bat?

What is the preferred material for the cricket bat?

What is the preferred finish for the cricket bat?

What is the preferred handle style for the cricket bat?

What is the preferred grip for the cricket bat?

What is the preferred bat profile for the cricket bat?

What is the preferred sweet spot location for the cricket bat?

What is the preferred spine profile for the cricket bat?

What is the preferred edge profile for the cricket bat?

What is the preferred toe profile for the cricket bat?

What is the preferred willow grade for the cricket bat?

What is the preferred knocking-in method for the cricket bat?

What is the preferred bat cover for the cricket bat?

What is the preferred bat label for the cricket bat?

Table 10.14: Generated Questions for Additional Task-2 along with the Prompt Fed to Gpt3.

289

element taskname/input prompt/model predictions

task cricket pitch curator

prompt I am a famous cricket pitch curator. I will ask clarifying question to collect

information and then I will make plan of an awesome cricket pitch for you.

questions What type of cricket are you playing? Test, one-day, or Twenty20?

What is the climate like in the area where the cricket pitch will be located?

What is the soil type in the area where the cricket pitch will be located?

What is the size of the cricket pitch that you need?

What type of grass do you want on the cricket pitch?

What is your budget for the cricket pitch?

What is the timeline for the construction of the cricket pitch?

What type of drainage do you want for the cricket pitch?

What type of irrigation system do you want for the cricket pitch?

Are there any other special requirements that you have for the cricket pitch?

Table 10.15: Generated Questions for Additional Task-3 along with the Prompt Fed to Gpt3.

290

Figure 10.19: Summary of 57 additional tasks.

291

element taskname/input prompt/model predictions

task cricket stadium builder

prompt I am a famous cricket stadium builder. I will ask clarifying question to collect information

and then I will make plan of building an awesome stadium for you.

question What is the seating capacity that you desire for the stadium?

What is the budget that you have set for the construction of the stadium?

What is the timeline that you have set for the construction of the stadium?

What is the location that you have chosen for the construction of the stadium?

What is the size of the land that you have chosen for the construction of the stadium?

What are the facilities that you desire for the stadium?

What is the design that you have chosen for the stadium?

What is the material that you have chosen for the construction of the stadium?

What is the type of roof that you desire for the stadium?

What is the lighting system that you desire for the stadium?

What is the sound system that you desire for the stadium?

What is the security system that you desire for the stadium?

What is the ventilation system that you desire for the stadium?

What is the water supply system that you desire for the stadium?

What is the power supply system that you desire for the stadium?

What is the waste management system that you desire for the stadium?

What is the communication system that you desire for the stadium?

What is the signage system that you desire for the stadium?

What is the advertising system that you desire for the stadium?

What is the ticketing system that you desire for the stadium?

What is the catering system that you desire for the stadium?

What is the medical system that you desire for the stadium?

What is the entertainment system that you desire for the stadium?

What is the cleanup system that you desire for the stadium?

What is the maintenance system that you desire for the stadium?

What is the security system that you desire for the stadium?

What is the insurance that you desire for the stadium?

What is the licensing that you desire for the stadium?

What is the zoning that you desire for the stadium?

What are the hours of operation that you desire for the stadium?

Table 10.16: Generated Questions for Additional Task-4 along with the Prompt Fed to Gpt3.

292

element taskname/input prompt/model predictions

task scheduling cricket world cup

prompt I am a famous cricket world cup schedule maker. I will ask clarifying

question to collect information and then I will make schedule of the cricket

world cup for you.

questions How many teams are participating in the cricket world cup?

When does the cricket world cup start?

Where is the cricket world cup being held?

Which teams are playing in the cricket world cup?

How long does the cricket world cup last?

What is the format of the cricket world cup?

Table 10.17: Generated Questions for Additional Task-5 along with the Prompt Fed to Gpt3.

293

element taskname/input prompt/model predictions

task managing cricket team

prompt I am a famous cricket team manager. I will ask clarifying question to collect information

and then I will make schedule of the cricket team for you.

questions What is the name of your cricket team?

When does your cricket season start?

How many matches do you play in a season?

Where do you play your matches?

Who are your opponents in the season?

What is the format of the matches?

How many players are in each team?

What is the duration of each match?

When do you practice?

Where do you practice?

What is the duration of each practice session?

When is the break between each practice session?

When do you have your meals?

What do you eat during your meals?

When do you rest?

When do you sleep?

What is the duration of your sleep?

When do you wake up?

What do you do after you wake up?

What are your morning activities?

When do you have your breakfast?

What do you eat for breakfast?

When do you go to the stadium?

Table 10.18: Generated Questions for Additional Task-6 along with the Prompt Fed to Gpt3.

294

element taskname/input prompt/model predictions

task setting field in a cricket game

prompt I am a famous cricket team captain. I will ask some questions to collect

information and then I will set the field for you.

questions How many wickets have fallen?

What is the score?

Which batsman is currently batting?

What is the current run rate?

What is the required run rate?

How many overs are remaining?

What is the current bowling attack?

Who is the next batsman?

Who is the next bowler?

What is the field?

What is the weather like?

What is the pitch like?

What is the light like?

What is the outfield like?

Table 10.19: Generated Questions for Additional Task-7 along with the Prompt Fed to Gpt3.

295

element taskname/input prompt/model predictions

task deciding delivery to bowl in a cricket match

prompt I am a famous bowler. I will ask some questions to collect information

about the match situation, pitch condition and the opponent batsman. Then

I will decide what type of delivery should I bowl in my next over.

questions What is the current score?

What is the current run rate?

What is the required run rate?

How many overs are remaining?

What is the pitch condition?

Who is the batsman?

What is the batsman’s score?

What is the batsman’s strike rate?

What is the batsman’s average?

What is the batsman’s current form?

What is the batsman’s weaknesses?

What is the batsman’s strengths?

What is the batsman’s approach?

What is the batsman’s aggression level?

What is the batsman’s footwork like?

What is the batsman’s bat speed like?

What is the batsman’s timing like?

What is the batsman’s shot selection like?

What is the batsman’s placement like?

What is the batsman’s power like?

What is the batsman’s ability to clear the boundary like?

What is the batsman’s running between the wickets like?

What is the batsman’s ability to rotate the strike like?

What is the batsman’s ability to build an innings like?

Table 10.20: Generated Questions for Additional Task-8 along with the Prompt Fed to Gpt3.

296

element taskname/input prompt/model predictions

task creating advertisement with cricketers

prompt I am a famous brand manager with experience in creating advertisement

with cricketers. I will ask some questions to collect information and then I

will design an advertisement for you.

questions What is the name of your company?

What are the products that your company manufactures?

Who is your target audience?

What is your budget for this advertisement?

What is the name of the cricketer that you would like to feature in the

advertisement?

What is the message that you would like to convey through the advertise-

ment?

What is the tone of the advertisement that you would like to create?

What are some of the specific details that you would like to include in the

advertisement?

Do you have any preference as to how the advertisement is designed?

Is there anything else that you would like to include in the advertisement?

Table 10.21: Generated Questions for Additional Task-9 along with the Prompt Fed to Gpt3.

297

element taskname/input prompt/model predictions

task designing jersey for a cricket team

prompt I am a famous clothing brand designer with experience in designing jersey for professional

cricketers. I will ask some questions to collect information and then I will design an

awesome jersey for your team.

questions What colors do you want your team’s jersey to be?

What colors do you NOT want your team’s jersey to be?

What design elements would you like to see on the jersey?

What design elements would you NOT like to see on the jersey?

What type of jersey do you want? (Polo, T-shirt, etc.)

What do you want your team’s jersey to say? (Team name, player names, etc.)

Anything else you want to include?

Do you have any specific requests?

What is your budget?

When do you need the jersey?

How many jerseys do you need?

What size jerseys do you need?

Would you like me to design a mock-up of the jersey for you?

Would you like me to send you a sample of the jersey?

Would you like me to make any changes to the design before finalizing it?

Would you like me to handle the printing and shipping of the jerseys?

Would you like me to provide you with a digital file of the design?

Would you like me to provide you with a physical copy of the design?

Would you like me to sign a non-disclosure agreement?

Would you like me to sign a contract?

Would you like to pay in full upfront, or in installments?

Would you like to pay by check, PayPal, or credit card?

Would you like a refund if you are not satisfied with the final product?

Would you like to leave a deposit?

How did you hear about me?

Have you worked with a clothing designer before?

Do you have any questions for me?

Is there anything else you would like to add?

Would you like to schedule a consultation?

Would you like to provide me with your contact information?

Would you like me to provide you with my contact information?

What is your name?

What is your email address?

What is your phone number?

What is your mailing address?

What is your team’s name?

What is your team’s colors?

What is your team’s mascot?

What is your team’s home stadium?

What is your team’s home city?

What is your team’s home state?

What is your team’s home country?

What is your team’s division?

What is your team’s league?

What is your team’s website?

What is your team’s Facebook page?

What is your team’s Twitter handle?

What is your team’s Instagram handle?

What is your team’s YouTube channel?

What is your favorite thing about your team?

What is your least favorite thing about your team?

What are your team’s strengths?

What are your team’s weaknesses?

What is your team’s biggest accomplishment?

Table 10.22: Generated Questions for Additional Task-10 along with the Prompt Fed to

Gpt3.

298

element taskname/input prompt/model predictions

task managing relocation

prompt I am a famous manager in a packer’s and mover’s company. I will ask some

questions to collect information and then I will design a relocation plan for

you.

questions What is the approximate size of your current home?

What is the approximate size of your new home?

What is the approximate distance between your current home and your new

home?

What is the approximate number of belongings that you need to move?

Do you have any special items that require extra care during the move (e.g.

pianos, antique furniture, etc)?

What is your budget for the move?

When do you need to be moved by?

Do you have any pets that will need to be moved with you?

Do you have any plants that will need to be moved with you?

Do you have any other special requirements or requests for your move?

Table 10.23: Generated Questions for Additional Task-11 along with the Prompt Fed to

Gpt3.

299

element taskname/input prompt/model predictions

task booking flight

prompt I am a famous flight booking agent. I will ask some questions to collect

information and then I will book appropriate flights for you.

questions What is your name?

What is your travel destination?

When do you plan to travel?

How many people are traveling?

What is your budget for this trip?

What is your preferred airline?

Do you have any preferred times for your flights?

Do you have any preferences for your seat on the plane?

Would you like to add any extra amenities to your flight?

Do you have any special requests?

Table 10.24: Generated Questions for Additional Task-12 along with the Prompt Fed to

Gpt3.

300

element taskname/input prompt/model predictions

task verifying packing for a trip

prompt I am here to check if you have packed every-thing for your upcoming trip. I

will ask some questions to collect information and then I will tell you what

else you need to pack.

questions Have you packed your clothes?

Have you packed your toothbrush and toothpaste?

Have you packed your shampoo and conditioner?

Have you packed your sunscreen?

Have you packed your insect repellent?

Have you packed your first-aid kit?

Have you packed your camera?

Have you packed your phone charger?

Have you packed your sunglasses?

Have you packed your hat?

Have you packed your bathing suit?

Have you packed your flip flops?

Have you packed your books?

Have you packed your laptop?

Have you packed your chargers?

Have you packed your snacks?

Table 10.25: Generated Questions for Additional Task-13 along with the Prompt Fed to

Gpt3.

301

element taskname/input prompt/model predictions

task booking hotel for a trip

prompt I am a famous hotel booking agent. I will ask some questions to collect

information and then I will book an awesome hotel for your trip.

questions What is the name of the city you are traveling to?

What is the name of the hotel you are interested in?

What are the dates of your stay?

What is your budget?

What kind of room are you interested in?

What are your preferred amenities?

Do you have any special requests?

What is your name?

What is your contact information?

Is there anything else you would like me to know?

Table 10.26: Generated Questions for Additional Task-14 along with the Prompt Fed to

Gpt3.

302

element taskname/input prompt/model predictions

task wedding planning

prompt I am a famous wedding planner. I will ask some questions to collect

information and then I will plan an awesome wedding for you.

questions What is the budget for the wedding?

What is the date of the wedding?

What is the venue for the wedding?

What is the bride’s vision for the wedding?

What is the groom’s vision for the wedding?

What is the theme of the wedding?

What is the color scheme of the wedding?

What is the style of the wedding?

What is the number of guests expected at the wedding?

What is the menu for the wedding?

What is the cake for the wedding?

What is the entertainment for the wedding?

What are the flowers for the wedding?

What is the photographer for the wedding?

What is the videographer for the wedding?

What is the transportation for the wedding?

What is the wedding dress?

What is the groom’s attire?

What are the bridesmaids’ dresses?

What are the groomsmen’s attire?

What is the flower girl’s dress?

What is the ring bearer’s attire?

What is the rehearsal dinner?

What is the honeymoon?

What are the wedding favors?

What is the wedding cake topper?

What is the music for the wedding?

What is the first dance?

What is the father/daughter dance?

What is the mother/son dance?

Is there anything else you would like to include?

Table 10.27: Generated Questions for Additional Task-15 along with the Prompt Fed to

Gpt3.

303

element taskname/input prompt/model predictions

task wedding invitation verification

prompt I am here to check if you have invited everyone to your wedding. I will ask

some questions to collect information and then I will tell you who else you

need to invite.

questions How many guests are you expecting?

Have you invited your immediate family members?

Have you invited your extended family members?

Have you invited your friends?

Have you invited your colleagues?

Have you invited your neighbors?

Is there anyone else you would like to invite?

Do you have a final guest list?

Table 10.28: Generated Questions for Additional Task-16 along with the Prompt Fed to

Gpt3.

304

element taskname/input prompt/model predictions

task wedding dinner menu preparation

prompt I am a famous chef who cooks at wedding dinners. I will ask some questions

to collect information and then I will tell the menu for your wedding.

questions What is the bride and groom’s favorite food?

What is the bride and groom’s favorite drink?

What type of wedding are you having?

What is your budget for the catering?

Are there any guests with dietary restrictions?

What is the theme of the wedding?

What is the date of the wedding?

What is the time of the wedding?

Where is the wedding taking place?

Table 10.29: Generated Questions for Additional Task-17 along with the Prompt Fed to

Gpt3.

305

element taskname/input prompt/model predictions

task wedding match maker

prompt I am a famous wedding match maker. I will ask some questions to collect

information and then I will find a perfect match for you.

questions How old are you?

Do you want a traditional or modern wedding?

What is your budget?

What is your favorite color?

What is your favorite flower?

What is your favorite season?

What is your favorite food?

What is your favorite music genre?

What is your dream wedding venue?

Do you have any specific themes or ideas in mind?

What is the most important thing to you on your wedding day?

Do you have any allergies or dietary restrictions?

What is your religion?

Do you have any cultural or family traditions that you would like to incor-

porate into your wedding?

Do you have any other special requirements or requests?

Is there anything else you would like me to know?

Table 10.30: Generated Questions for Additional Task-18 along with the Prompt Fed to

Gpt3.

306

element taskname/input prompt/model predictions

task bridge construction planning

prompt I am a famous project planner of a construction company. I will ask some questions to

collect information and then I will make a perfect plan for constructing a bridge.

questions What is the purpose of the bridge?

How long does the bridge need to be?

How many lanes does the bridge need to have?

What is the maximum weight that the bridge can support?

What is the expected lifespan of the bridge?

What is the budget for the project?

When does the project need to be completed?

What are the dimensions of the bridge?

What is the height of the bridge?

What is the clearance under the bridge?

What is the soil type in the area?

What is the water depth in the area?

What is the tide range in the area?

What is the wind speed in the area?

What is the temperature in the area?

What is the weather like in the area?

What is the traffic volume in the area?

What is the terrain in the area?

What is the geology in the area?

What is the topography in the area?

What is the vegetation in the area?

What is the land use in the area?

What are the restrictions in the area?

Is the area accessible?

What is the soil stability in the area?

What is the rock quality in the area?

What is the foundation depth in the area?

What is the water table in the area?

What is the water pressure in the area?

What is the seismic activity in the area?

What is the wind loading in the area?

What is the snow load in the area?

What is the ice load in the area?

What are the construction materials available in the area?

What is the construction method that will be used?

What is the estimated cost of the project?

When is the project scheduled to be completed?

What are the risks associated with the project?

What are the mitigation measures that will be taken?

What are the benefits of the project?

What are the drawbacks of the project?

What is the expected traffic volume?

What are the expected traffic patterns?

Table 10.31: Generated Questions for Additional Task-19 along with the Prompt Fed to

Gpt3.

307

element taskname/input prompt/model predictions

task hospital setup planning

prompt I am a famous planner with a lot of experience in setting up hospitals. I will

ask some questions to collect information and then I will make a perfect

plan setting up a hospital in your area.

questions What is the current state of healthcare in your area?

What are the biggest challenges that need to be addressed in terms of

healthcare in your area?

What is the population of your area?

What is the average income of residents in your area?

What is the land area of your area?

Is there a need for a new hospital in your area?

What type of hospital do you think would be most beneficial for your area?

What services do you think should be offered at the new hospital?

Do you have any ideas about where the new hospital should be located?

Do you have any ideas about how the new hospital should be funded?

Do you have any other ideas or suggestions about setting up a new hospital

in your area?

Table 10.32: Generated Questions for Additional Task-20 along with the Prompt Fed to

Gpt3.

308

element taskname/input prompt/model predictions

task water supply route setup

prompt I am a famous planner with a lot of experience in setting up water supply routes. I will ask

some questions to collect information and then I will make a perfect plan for setting up

water supply routes in your area.

questions What is the size of your area?

What is the population density of your area?

What is the average rainfall in your area?

What is the average temperature in your area?

What is the terrain like in your area?

What is the soil type in your area?

What is the available water resources in your area?

What is the demand for water in your area?

What are the restrictions on water use in your area?

What are the potential sources of pollution in your area?

What are the existing water treatment facilities in your area?

What is the capacity of the existing water treatment facilities in your area?

What are the existing sewer and stormwater infrastructure in your area?

What is the capacity of the existing sewer and stormwater infrastructure in your area?

What are the existing roads and transportation infrastructure in your area?

What is the existing power infrastructure in your area?

What are the existing communication infrastructure in your area?

What are the existing buildings and structures in your area?

What is the land use in your area?

What are the zoning regulations in your area?

What are the building codes in your area?

What are the existing environmental conditions in your area?

What are the existing social conditions in your area?

What is the existing economic conditions in your area?

What is the government support in your area?

What are the legal restrictions in your area?

What are the cultural restrictions in your area?

What are the financial restrictions in your area?

What are the infrastructure restrictions in your area?

What are the land use restrictions in your area?

What are the water use restrictions in your area?

What are the potential sources of new water supply in your area?

Table 10.33: Generated Questions for Additional Task-21 along with the Prompt Fed to

Gpt3.

309

element taskname/input prompt/model predictions

task plan for running school

prompt I have a lot of experience in running schools. I am joining your school as the principal

today. I will ask some questions to collect information and then I will make a perfect plan

for running this school.

questions What are the main goals of the school?

What are the current methods for achieving these goals?

What are the challenges facing the school?

What resources does the school have available to achieve its goals?

What are the stakeholders in the school and what are their expectations?

What is the school’s budget?

What are the school’s fundraising goals?

What are the school’s marketing goals?

What are the school’s admissions goals?

What are the school’s retention goals?

What are the school’s graduation goals?

What are the school’s post-graduation goals?

What are the school’s accreditation goals?

What are the school’s facilities goals?

What are the school’s safety goals?

What are the school’s technology goals?

What are the school’s transportation goals?

What are the school’s food service goals?

What are the school’s extracurricular goals?

What are the school’s community outreach goals?

What are the school’s alumni relations goals?

What are the school’s media relations goals?

What are the school’s government relations goals?

What are the school’s international relations goals?

What are the school’s legal compliance goals?

What are the school’s privacy goals?

What are the school’s data security goals?

What are the school’s emergency preparedness goals?

What are the school’s sustainability goals?

What are the school’s equity and inclusion goals?

What are the school’s human resources goals?

What are the school’s finance goals?

What are the school’s information technology goals?

What are the school’s facilities management goals?

What are the school’s risk management goals?

What are the school’s security goals?

What are the school’s transportation goals?

What are the school’s food service goals?

What are the school’s environmental health and safety goals?

Table 10.34: Generated Questions for Additional Task-22 along with the Prompt Fed to

Gpt3.

310

element taskname/input prompt/model predictions

task course curriculum design

prompt I am a famous course curriculum designer. I will ask some questions to

collect information and then I will design a perfect curriculum for the course

you want to teach.

questions What course do you want to teach?

What are your goals for the course?

What do you hope your students will gain from the course?

What are your requirements for the course?

What resources will you need for the course?

What is the format of the course?

What are the assessment methods for the course?

What are the grading criteria for the course?

What is the schedule for the course?

What are the policies for the course?

Do you have any other information that you think would be helpful?

Table 10.35: Generated Questions for Additional Task-23 along with the Prompt Fed to

Gpt3.

311

element taskname/input prompt/model predictions

task meeting agenda development

prompt I have a lot of experience in developing agenda for meetings. I will ask some questions to

collect information and then I will design a perfect agenda for your meeting.

questions How long will the meeting be?

What is the purpose of the meeting?

Who will be attending the meeting?

What topics need to be covered in the meeting?

Are there any other specific instructions or requirements?

What is the format of the meeting?

What is the meeting location?

What is the date and time of the meeting?

Who will be chairing the meeting?

Who will be taking minutes?

Is there anything else you would like to add?

Would you like me to send you a draft agenda?

When do you need the agenda?

What is your email address?

What is your name?

What is the name of the project?

What is the project number?

What is the name of the client?

What is the name of the project manager?

What is the name of the company?

Table 10.36: Generated Questions for Additional Task-24 along with the Prompt Fed to

Gpt3.

312

element taskname/input prompt/model predictions

task award acceptance speech preparation

prompt I have a lot of experience in writing award acceptance speech. I will ask some questions to

collect information and then I will design a perfect award acceptance speech for you.

questions What is the occasion?

What is the award for?

What is the name of the award?

Who is the award being presented by?

What is your name?

What is the name of the movie you won the award for?

What are your thoughts on winning the award?

Who are you dedicating the award to?

What is your speech going to be about?

What is the tone of your speech?

What is the main point of your speech?

Are you going to thank anyone in your speech?

Is there anything else you would like to add?

Would you like me to write your speech for you?

When do you need the speech by?

Do you have any other instructions?

Would you like me to send you a draft of the speech before the final version?

What is your email address?

What is your phone number?

Table 10.37: Generated Questions for Additional Task-25 along with the Prompt Fed to

Gpt3.

313

element taskname/input prompt/model predictions

task examination schedule preparation

prompt I am an expert in preparing examination schedule. I will ask some questions

to collect information and then I will prepare an examination schedule for

your school.

questions How many students are in your school?

How many classrooms do you have?

How many teachers do you have?

What is the average class size?

What is the length of each class period?

What is the number of class periods in a day?

What is the start time and end time of the school day?

How many days are in a school week?

What are the school holidays?

How many examinations do you have in a year?

What is the duration of each examination?

What is the maximum number of students that can be accommodated in a

classroom?

Table 10.38: Generated Questions for Additional Task-26 along with the Prompt Fed to

Gpt3.

314

element taskname/input prompt/model predictions

task news summarizing

prompt I am a famous news editor. I will ask some questions to collect information

on the foreign policy of US and then I will summarize the articles for you.

questions What are the top three priorities of the United States when it comes to

foreign policy?

What are the top three countries that the United States has diplomatic

relations with?

What are the top three issues that the United States is currently facing in its

foreign policy?

What are the top three ways that the United States has been involved in

foreign policy in the past?

What are the top three ways that the United States can be involved in foreign

policy in the future?

What are the top three benefits of the United States’ current foreign policy?

What are the top three drawbacks of the United States’ current foreign

policy?

Table 10.39: Generated Questions for Additional Task-27 along with the Prompt Fed to

Gpt3.

315

element taskname/input prompt/model predictions

task news channel recommendation

prompt I have an experience in watching news on various channels. I will ask some

questions to collect information and then I will suggest which news source

is appropriate for you.

questions How frequently do you watch news?

How much time do you spend watching news every day?

What kind of news do you prefer?

What is your favorite news source?

What do you think of the news sources available to you?

Do you have any concerns about the news you are watching?

What do you think of the objectivity of the news you are watching?

What do you think of the fairness of the news you are watching?

Do you think the news you are watching is representative of the diversity of

opinions in the world?

Do you think the news you are watching is reflective of your own values

and beliefs?

Table 10.40: Generated Questions for Additional Task-28 along with the Prompt Fed to

Gpt3.

316

element taskname/input prompt/model predictions

task news article generation

prompt I am a famous journalist. I will ask some questions to collect information

on the event happened with you and then I will write a nice article for you.

questions What is your name?

What is your age?

What is the name of the event?

When did the event happen?

Where did the event happen?

What was the purpose of the event?

Who organized the event?

How many people participated in the event?

What was your experience at the event?

Would you recommend the event to others?

Table 10.41: Generated Questions for Additional Task-29 along with the Prompt Fed to

Gpt3.

317

element taskname/input prompt/model predictions

task post match presentation interview (with the wining team captain)

prompt I am a famous sports journalist. Congratulations on winning today’s match.

I am going to interview you as part of the post-match presentation ceremony.

questions What do you think was the key to your success today?

What was your game plan coming into today’s match?

What do you think the team can improve on going forward?

What was your favorite part of today’s match?

What are your thoughts on your opponent’s performance today?

What’s next for you and the team?

Table 10.42: Generated Questions for Additional Task-30 along with the Prompt Fed to

Gpt3.

318

element taskname/input prompt/model predictions

task post match press-conference (with the losing team captain)

prompt I am a famous sports journalist. Tough luck for you today. I am going to

interview you as part of the post-match press conference.

questions How do you think you played today?

What do you think was the key to the game?

What are your thoughts on the team’s performance?

What do you think the team needs to work on?

What was your favorite part of the game?

What are your thoughts on the fans?

Do you have any final thoughts?

Table 10.43: Generated Questions for Additional Task-31 along with the Prompt Fed to

Gpt3.

319

element taskname/input prompt/model predictions

task customized history snippet generation

prompt I am a famous historian. I will ask some questions to collect information on

the situation you are in and then I will generate a history snippet for you.

questions Who are you?

What is the situation you are in?

What year is it?

What is your favorite color?

In your opinion, what is the most important event in history?

Why do you think that is the most important event in history?

What is your favorite historical moment?

Why is that your favorite historical moment?

If you could go back in time and witness any event, what would it be?

What do you think the future holds for humanity?

What is your favorite thing about history?

What do you think is the most important lesson that history can teach us?

If you could change one thing about history, what would it be?

What do you think is the most significant event of the 21st century?

What do you think will be the most important event of the 22nd century?

What is your favorite historical figure?

Table 10.44: Generated Questions for Additional Task-32 along with the Prompt Fed to

Gpt3.

320

element taskname/input prompt/model predictions

task political speech generation

prompt I am an expert in writing political speeches. I will ask some questions to

collect information and then I will write an awesome speech for you.

questions What is the main purpose of the speech?

What are the main points that you would like to communicate?

Is there anything else you would like me to know?

Who is the audience for this speech?

What is the occasion for this speech?

Where will the speech be given?

When will the speech be given?

What is the tone of the speech?

What is the length of the speech?

Are there any specific things you would like me to mention?

Table 10.45: Generated Questions for Additional Task-33 along with the Prompt Fed to

Gpt3.

321

element taskname/input prompt/model predictions

task political manifesto generation

prompt I am an expert in creating manifesto for politicians. I will ask some questions

to collect information and then I will create a manifesto for you.

questions What are your top three priorities if elected?

What are your thoughts on taxation?

What are your thoughts on education?

What are your thoughts on healthcare?

What are your thoughts on the environment?

What are your thoughts on crime?

What are your thoughts on the economy?

What are your thoughts on infrastructure?

What are your thoughts on government spending?

What are your thoughts on national security?

What are your thoughts on immigration?

What are your thoughts on gun control?

What are your thoughts on foreign policy?

What are your thoughts on the budget deficit?

What are your thoughts on jobs and the economy?

Table 10.46: Generated Questions for Additional Task-34 along with the Prompt Fed to

Gpt3.

322

element taskname/input prompt/model predictions

task managing election campaign

prompt I am an expert in managing election campaigns. I will ask some questions

to collect information and then I will design an election campaign for you.

questions What is your budget for this campaign?

Who is your target audience?

What are your campaign goals?

What is your timeline for this campaign?

What type of election is this?

What is the geographical scope of your campaign?

What type of media do you want to use for your campaign?

What is your message?

What are your key issues?

Who is your competition?

What are your strengths?

What are your weaknesses?

What are your risks?

What are your opportunities?

What are your threats?

What is your plan B?

What is your contingency plan?

Do you have any additional information that you would like to share?

Table 10.47: Generated Questions for Additional Task-35 along with the Prompt Fed to

Gpt3.

323

element taskname/input prompt/model predictions

task lawyer for a land dispute case

prompt I am a famous lawyer. Sorry to hear about your land dispute case. I will ask some questions

to collect information necessary to fight your case.

questions What are the facts of your case?

Who is your opponent in the case?

What is your legal argument?

What is the relief that you are seeking?

What is your opponent’s legal argument?

What is the relief that your opponent is seeking?

What is the status of the case?

What is the most recent development in the case?

What is the next scheduled hearing in the case?

What is your trial strategy?

What is your opponent’s trial strategy?

What is the likely outcome of the case?

What are the risks of going to trial?

What are the benefits of going to trial?

What are the risks of settling the case?

What are the benefits of settling the case?

What is your bottom line settlement demand?

What is your opponent’s bottom line settlement demand?

What are the chances of settlement?

What is the most likely outcome if the case goes to trial?

What are the risks and benefits of each option?

What is your recommendation?

Table 10.48: Generated Questions for Additional Task-36 along with the Prompt Fed to

Gpt3.

324

element taskname/input prompt/model predictions

task flight refund application

prompt I have a lot of experience in getting refunds for flight delays. I will ask

some questions to collect information and then I will contact the airline

authority on your behalf requesting refund.

questions What was the airline?

What was the flight number?

What was the date of the flight?

What was the origin of the flight?

What was the destination of the flight?

What was the scheduled departure time of the flight?

What was the actual departure time of the flight?

What was the scheduled arrival time of the flight?

What was the actual arrival time of the flight?

How long was the flight delayed?

Table 10.49: Generated Questions for Additional Task-37 along with the Prompt Fed to

Gpt3.

325

element taskname/input prompt/model predictions

task movie story customization

prompt I am a famous storyteller. I specialize in editing popular movie stories and

customizing them for users. I will ask some questions and edit storyline of

the movie ’Titanic’ based on your answers.

questions How would you like the story to end?

What kind of ending would you like?

What other changes would you like to see in the story?

Would you like to see the two main characters end up together?

Is there anything else you would like to change about the story?

Table 10.50: Generated Questions for Additional Task-38 along with the Prompt Fed to

Gpt3.

326

element taskname/input prompt/model predictions

task music composition

prompt I am a famous music composer. I will ask some questions to collect your

music requirements and then I will compose a song specially for you.

questions What is the occasion for which you need the song?

What is the mood or feeling that you would like the song to convey?

What specific elements would you like the song to include?

Would you like the song to be in a particular style or genre?

Is there anything else you would like me to know about your song request?

Table 10.51: Generated Questions for Additional Task-39 along with the Prompt Fed to

Gpt3.

327

element taskname/input prompt/model predictions

task movie transcript generation

prompt I am an expert in generating movie transcripts. I will ask some questions to

collect your music requirements and then I will write transcript for you.

questions What kind of movie are you looking for a transcript for?

What is the name of the movie?

What is the plot of the movie?

What is the genre of the movie?

What is the budget for the movie?

What is the release date for the movie?

What is the running time for the movie?

Who are the cast members for the movie?

Who is the director of the movie?

Who is the producer of the movie?

Who is the writer of the movie?

Table 10.52: Generated Questions for Additional Task-40 along with the Prompt Fed to

Gpt3.

328

element taskname/input prompt/model predictions

task novel publication

prompt I am a novel publisher. I will ask some questions to collect information about your novel

and then tell if I can publish it.

questions What is the title of your novel?

What is the genre of your novel?

What is the plot of your novel?

What is the target audience for your novel?

Is your novel complete?

What is the word count of your novel?

Do you have a marketing plan for your novel?

Do you have any publishing experience?

Do you have any literary agent representation?

Do you have a platform?

Do you have any writing awards?

Do you have any previous publications?

What are your writing credentials?

What are your professional credentials?

Do you have a personal website?

Do you have a blog?

Do you have an active social media presence?

Do you have any other professional experience?

Why do you think your novel would be a good fit for my publishing company?

Do you have any questions for me?

Table 10.53: Generated Questions for Additional Task-41 along with the Prompt Fed to

Gpt3.

329

element taskname/input prompt/model predictions

task food preparation

prompt I am a famous chef. I will ask some questions to collect your requirements

and then I will prepare a dish of your choice.

questions What is your name?

What is your favorite type of food?

What are your dietary restrictions?

What is your favorite type of cuisine?

What are your favorite dishes?

What ingredients do you not like?

Is there anything else you would like me to know?

Table 10.54: Generated Questions for Additional Task-42 along with the Prompt Fed to

Gpt3.

330

element taskname/input prompt/model predictions

task restaurant menu preparation

prompt I am an expert in running restaurants. I will ask some questions to collect

your requirements and then I will prepare a restaurant menu of your choice.

questions What type of restaurant menu do you want?

What type of food do you want to serve?

What is your budget?

What are your dietary restrictions?

What is your target audience?

What is your restaurant’s theme?

What is the occasion?

What is the atmosphere of your restaurant?

What is the location of your restaurant?

What is the ambiance of your restaurant?

What is the service style of your restaurant?

What is the dress code of your restaurant?

What is the price range of your restaurant?

What is the cuisine of your restaurant?

What is the name of your restaurant?

What is the seating capacity of your restaurant?

What is the contact information of your restaurant?

What are the hours of operation of your restaurant?

What are the days of operation of your restaurant?

What is the speciality of your restaurant?

What is the history of your restaurant?

What are the awards of your restaurant?

What is the website of your restaurant?

What is the Facebook page of your restaurant?

What is the Instagram of your restaurant?

What is the Twitter of your restaurant?

Table 10.55: Generated Questions for Additional Task-43 along with the Prompt Fed to

Gpt3.

331

element taskname/input prompt/model predictions

task diet plan

prompt I am a famous dietitian. I will ask some questions to collect information

and then I will suggest diet plan for you.

questions What is your weight?

What is your height?

What is your activity level?

What are your food preferences?

What are your health concerns?

What medications are you currently taking?

Are you trying to lose, gain, or maintain your weight?

How many meals per day do you typically eat?

How many snacks per day do you typically eat?

Table 10.56: Generated Questions for Additional Task-44 along with the Prompt Fed to

Gpt3.

332

element taskname/input prompt/model predictions

task physics problem solving

prompt I am a famous physicist. I am here to help you solve the physics problem you have on

mechanics. I will ask some questions in this process.

questions What is the physics problem you have on mechanics?

What are the objects involved in the problem?

What are the forces acting on the objects?

What is the goal of the problem?

What are the constraints of the problem?

What is the starting configuration of the problem?

What is the ending configuration of the problem?

What is the time frame of the problem?

What are the units of measurement for the problem?

Is there any friction in the problem?

Are the objects in the problem moving in a straight line or in a circle?

What is the mass of the objects in the problem?

What is the velocity of the objects in the problem?

What is the acceleration of the objects in the problem?

What is the resulting force on the objects in the problem?

What is the resulting torque on the objects in the problem?

What is the resulting energy on the objects in the problem?

What is the resulting momentum on the objects in the problem?

What are the conditions for equilibrium in the problem?

What is the period of the problem?

What is the frequency of the problem?

What is the wavelength of the problem?

What is the wave function of the problem?

What is the amplitude of the problem?

What is the phase of the problem?

What is the wave vector of the problem?

What is the group velocity of the problem?

What is the phase velocity of the problem?

What is the energy of the problem?

What is the momentum of the problem?

What is the position of the objects in the problem?

What is the displacement of the objects in the problem?

What is the distance traveled by the objects in the problem?

What is the time of the problem?

What is the speed of the objects in the problem?

What is the power of the problem?

What is the kinetic energy of the objects in the problem?

What is the potential energy of the objects in the problem?

What is the total energy of the objects in the problem?

What is the angular momentum of the objects in the problem?

What is the angular velocity of the objects in the problem?

What is the angular acceleration of the objects in the problem?

What is the moment of inertia of the objects in the problem?

What is the rotational kinetic energy of the objects in the problem?

What is the gravitational potential energy of the objects in the problem?

What is the elastic potential energy of the objects in the problem?

What is the magnetic potential energy of the objects in the problem?

What is the electric potential energy of the objects in the problem?

What is the nuclear potential energy of the objects in the problem?

What is the thermal energy of the objects in the problem?

What is the chemical energy of the objects in the problem?

Table 10.57: Generated questions for additional task-45 along with the prompt fed to GPT3.

333

element taskname/input prompt/model predictions

task chemistry problem solving

prompt I am a famous chemistry teacher. I am here to help you find the appropriate

chemical equation to solve the chemistry problem you have on stoichiometry.

I will now ask clarifying questions to better understand your problem.

questions What is the problem you are trying to solve?

What is the molarity of the acid?

What is the volume of the acid?

What is the molarity of the base?

What is the volume of the base?

What is the desired molarity of the solution?

What is the desired volume of the solution?

Table 10.58: Generated Questions for Additional Task-46 along with the Prompt Fed to

Gpt3.

334

element taskname/input prompt/model predictions

task painting house

prompt I have a lot of experience in painting houses. I will ask questions to collect

information and then I will make a plan for painting your house.

questions What is the size of your house?

What is the condition of your house?

What is your budget for painting your house?

What is your timeline for painting your house?

What is your preferred color scheme for painting your house?

What is your preferred type of paint for painting your house?

Are you planning on painting your house yourself or hiring a professional?

Do you have any other specific requests or instructions for painting your

house?

Table 10.59: Generated Questions for Additional Task-47 along with the Prompt Fed to

Gpt3.

335

element taskname/input prompt/model predictions

task car mechanic

prompt I am a famous car mechanic. I will ask questions to collect information and

then I will tell you what needs to be fixed in your car.

questions What seems to be the problem with your car?

When did you first notice the problem?

Have you noticed the problem happening more frequently?

Is the problem happening all the time or only intermittently?

What are the circumstances under which the problem occurs?

What have you done to try to fix the problem?

What other information can you tell me about the problem?

Table 10.60: Generated Questions for Additional Task-48 along with the Prompt Fed to

Gpt3.

336

element taskname/input prompt/model predictions

task assistance in filling bank deposit form

prompt I have a lot of experience in banking and have helped people in filling

forms. I will ask questions to collect information and then I will fill the

bank deposit form for you.

questions What is your name?

What is the name of your bank?

What is the account number?

What is the amount of money you would like to deposit?

Do you have a check or cash?

What is the date?

Is this a savings or checking account?

Would you like a receipt?

Table 10.61: Generated Questions for Additional Task-49 along with the Prompt Fed to

Gpt3.

10.11 Conclusion

We introduce Help me Think to help non-expert users prompt models for the relatively

under-explored customized content generation tasks. We demonstrate the efficacy of Help

me Think on 6 different tasks. Our results show that (1) questions generated by GPT3 are

valid and relevant, and (2) task-specific outputs generated by GPT3 are valid, relevant, robust,

coherent, and have significant knowledge absorption. We hope this will bring more attention

to the development of methods for LLMs to handle tasks that are hard for non-expert users.

337

element taskname/input prompt/model predictions

task electricity bill payment

prompt I have a lot of experience in paying electricity bills online. I will ask

questions to collect information and then I will pay the electricity bill for

you.

questions What is the account number for the electricity bill?

What is the amount of the electricity bill?

What is the due date for the electricity bill?

What is the website for the electricity company?

What is your username for the electricity company website?

What is your password for the electricity company website?

What is your email address?

What is your phone number?

What is your full name?

What is the name of the electricity company?

Table 10.62: Generated Questions for Additional Task-50 along with the Prompt Fed to

Gpt3.

338

element taskname/input prompt/model predictions

task creating todo list

prompt I have a lot of experience in generating ToDo list. I will ask questions to

collect information and then I will create a todo list for you.

questions What is the goal of the todo list?

What are the main tasks that need to be completed in order to achieve the

goal?

What are the deadlines for each task?

Who is responsible for each task?

What is the priority level for each task?

Is there anything else that needs to be taken into account when creating the

todo list?

Are there any dependencies between tasks?

What is the expected outcome of the todo list?

What are the risks and potential roadblocks associated with the todo list?

What are the possible ways to overcome the risks and roadblocks?

Are there any other considerations that need to be taken into account?

Table 10.63: Generated Questions for Additional Task-51 along with the Prompt Fed to

Gpt3.

339

element taskname/input prompt/model predictions

task creating post travel report

prompt I have a lot of experience in generating post travel report. I will ask questions

to collect information and then I will prepare your post travel report.

questions How did you find the overall experience?

What were the good points of the trip?

What were the bad points of the trip?

How much did you spend in total?

Would you recommend this trip to others? Why or why not?

Is there anything you would have done differently?

What was your favorite part of the trip?

What was your least favorite part of the trip?

How was the accommodation?

How was the food?

How were the locals?

Did you feel safe during the trip?

Would you like to visit this destination again? Why or why not?

Is there anything else you would like to add?

Table 10.64: Generated Questions for Additional Task-52 along with the Prompt Fed to

Gpt3.

340

element taskname/input prompt/model predictions

task creating child monitoring report

prompt I have a lot of experience in monitoring child. I will ask questions to collect

information and then I will prepare your child-monitoring report.

questions How often do you check in on your child when they are home alone?

How do you feel when you are away from your child and they are home

alone?

What worries you the most about your child being home alone?

What have you done to ensure your child knows what to do if there is an

emergency while you are away?

What are your child’s favorite activities to do when they are home alone?

Has your child ever had any problems while home alone? If so, what

happened and how did they handle it?

Do you have any other concerns or questions about your child being home

alone?

Table 10.65: Generated Questions for Additional Task-53 along with the Prompt Fed to

Gpt3.

341

element taskname/input prompt/model predictions

task treating mental illness

prompt I have a lot of experience in handling mental problem. I will ask questions to collect

information and then I will suggest a treatment for you.

questions What is your name?

What is your age?

What is your occupation?

What are your hobbies?

Do you have any medical conditions?

Do you have any mental health conditions?

Do you have any history of mental illness in your family?

What is your current mental state?

What are your current stressors?

What are your current coping mechanisms?

What are your current support systems?

What are your current treatment options?

What are your goals for treatment?

What are your thoughts on medication?

What are your thoughts on therapy?

What are your thoughts on self-care?

What are your thoughts on support groups?

What are your thoughts on lifestyle changes?

What are your thoughts on relapse prevention?

What are your thoughts on long-term treatment?

What are your thoughts on medication compliance?

What are your thoughts on therapy attendance?

What are your thoughts on self-care consistency?

What are your thoughts on support group participation?

Table 10.66: Generated Questions for Additional Task-54 along with the Prompt Fed to

Gpt3.

342

element taskname/input prompt/model predictions

task career counselling

prompt I am an expert in career counselling. I will ask questions to collect information and then I

will prepare a suitable career plan for you.

questions What are your long-term career goals?

What are your educational qualifications?

What is your work experience?

What are your skills and strengths?

What are your interests?

What are your values?

What are your goals for the next five years?

What are your plans for further education or training?

What are your plans for your personal life?

What are your plans for your financial future?

What are your plans for your retirement?

What other factors are important to you in choosing a career?

What are your thoughts on changing careers?

What are your thoughts on starting your own business?

What are your thoughts on working for someone else?

What are your thoughts on working abroad?

What are your thoughts on taking a break from your career?

What other questions do you have about your career?

Are you ready to start working on your career plan?

Do you have any concerns or questions that you would like to discuss before we start?

Are you sure that you are ready to commit to this career plan?

Would you like me to review your career plan with you on a regular basis?

Is there anything else that you would like to discuss about your career plan?

Table 10.67: Generated Questions for Additional Task-55 along with the Prompt Fed to

Gpt3.

343

element taskname/input prompt/model predictions

task child tutoring

prompt I am an expert in child tutoring I will ask questions to collect information

and then I will decide if I can tutor your child.

questions What is your child’s name?

What is your child’s grade level?

What are the subjects your child needs help with?

How often would you like tutoring sessions to be?

What days and times are best for you?

What is your child’s learning style?

Does your child have any special needs?

Is your child behind, at grade level, or ahead in school?

How do you feel about your child’s progress in school?

What are your goals for your child’s education?

What are your child’s strengths and weaknesses?

Is there anything else you feel I should know about your child?

Would you like me to assess your child before we begin tutoring?

Do you have any questions for me?

When would you like to start?

Table 10.68: Generated Questions for Additional Task-56 along with the Prompt Fed to

Gpt3.

344

element taskname/input prompt/model predictions

task paper writing

prompt I am a famous researcher with a lot of experience in writing papers. I will

ask questions to collect information about your research and then I will

suggest a plan to write your paper.

questions What is the topic of your research?

How much experience do you have with writing papers?

What is your writing style?

What is the format of your paper?

What is the deadline for your paper?

What is the word count for your paper?

What is the purpose of your paper?

Who is your audience?

What are your expectations for this project?

What is your budget for this project?

What is the timeline for this project?

What are the deliverables for this project?

What are your research methods?

What sources will you be using for your research?

What are your thoughts on the research process?

What are your thoughts on writing papers?

Table 10.69: Generated Questions for Additional Task-57 along with the Prompt Fed to

Gpt3.

345

Chapter 11

DISCUSSION

In this section, we outline some of the discussion points that are beyond the scope of this

thesis.

The observations made in §3.4.3 indicate that there are likely benefits to repeating our

study with a larger set of datasets. We hope the future work expands our work with a larger

and broader range of tasks.

We use automatic evaluation, in order to facilitate the replicability of the follow-up work

on Natural Instructions. Admitting the limitations of automatic evaluations, we hope future

work will provide an easy-to-reproduce human evaluation for the tasks studied here, based on

the recent proposals for streamlining human evaluation of text generation models (Khashabi

et al., 2021).

Towards a sustainable alternative to model training In the context of fast prototyping

using massive LMs, we hypothesize that further development of reframing can lead to

pragmatic alternative to fine-tuning. In applications where task definitions can quickly

change, model designers can come up with new reframed prompts, in a matter of minutes.

Generalization to future models Would the reframed prompts remain competitive on

future LMs? While it is impossible to decidedly respond to this counterfactual question,

extrapolating from Fig.5.2 is a likely evidence that the proposed approach will remain

superior, at least in the near term. However, on a longer horizon, the gains depend on the

progress of LMs. If models have little difficulty in understanding language, there will be

346

little gain in reframing the instructions.

Opportunities for improvement While reframing enables model development in a human-

centric manner, it needs to be applied by model designers. Therefore, an algorithmic solution

to reframe tasks will likely be useful progress forward. This will be part of our future work.

Some knowledge of the domain is required to be able to design these reframed prompts.

Nonetheless, we believe that making this observation and operationalizing it is really

important and impactful to the NLP community to fully take advantage of the pre-trained

language models, especially in real-world applications.

We hope that this study will inspire further investigation of potentially-unconventional

approaches to exploit the knowledge harnessed by increasingly large LMs where fine-tuning

and its alternatives are prohibitively expensive.

Instruction Programming Future work can extend our reframing work and develop a

programming paradigm for instructional prompts. This paradigm will be based on finding

some basic instructions that can act as building blocks over which tasks corresponding to

complex instructions can be expressed. In this way, complex tasks can be made easier for

models to solve.

The outline of a programming paradigm for instructional prompts is as follows:

1. Find the strengths of models, i.e., list down the set of tasks/subtasks on which models

excel: This is analogous to variable declaration, variable assignment, if-else conditions,

and other operations that are well defined in python.

2. Find connectives to connect strengths of models: This is analogous to newline in most

programming languages, for/while loop etc.

3. Find hard problems to evaluate: This is analogous to real-world problems that are

solved by writing programs (e.g. in python), after composing (1) and (2) above.

347

A gauge of model strength, as mentioned in (1), can be thought of as the sets of basic

instructions that define various tasks that the model can reliably solve. (2) can similarly be

expressed as building on those basic instructions, to create complex instructions that can be

used to solve a task with high accuracy.

Here are some more details for each of the steps from the above outline.

1. Inspired by Prolog, where a model’s strength is answering simple factual questions

with respect to a knowledge base of facts and rules, we find that fill in the blank

questions represent the primary strength of neural language models. This is because

such models have been pre-trained with language modeling objectives, and the fill in

the blank format resembles these pretraining objective functions. We have further per-

formed probing experiments, and find that questions with True/False output comprise

another strength of neural language models. We also observe empirically, that GPT3

achieves high accuracy in a zeroshot setting for the following tasks:

Sentiment Analysis

Instruction: Given a tweet, classify it into one of 4 categories: Positive, Negative,

Neutral, or Mixed. Tweet: “I thought the new Spiderman game was good, but I really

didn’t like the animation.” Sentiment:

Extractive QA from Context (Context is provided)

Instruction: Given a context and a question, generate an answer to the given question

from the provided context. Context: Delhi is the capital of India. Delhi has an airport

called Indira Gandhi International Airport. Delhi gets extremely hot in summer and

extremely cold in winter. Question: What is the capital of India?

Story Writing/Review Writing

348

Instruction: Explain the moon landing to a 6 year old in a few sentences. Instruction:

Write a product review about a wireless keyboard.

2. Compose by expressing a new task in terms of strengths of the model as listed in (1).

Here are some connectives we have empirically found to be helpful.

Use bullet points (itemized reframing (Mishra et al., 2022e))

Explain difficult concepts when needed (Depending on the engine some explanations

may not be needed - do trial error on the dev set)

Provide additional knowledge if you have any.

Connect decomposed tasks in series by using output of previous subtask as the input

to the next or in parallel by concatenating all task outputs.

3. Propara (Dalvi et al., 2019), ARC (Bhakthavatsalam et al., 2021), and MATH (Hendrycks

et al., 2021b) are some of the hard datasets.

Following is a potential hierarchy of tasks in an increasing order of complexity; these

can be leveraged to systematically evaluate the instruction programming paradigm.

(1) Direct extraction from text (this often can be syntactic tasks)

(2) Extraction using background knowledge.

(3) Classification with fixed choices (make sure to specify choices explicitly in the

question and also mention the expected output format)

(4) Question answering (this can be broken down into a fixed number of steps)

(5) Generation Tasks

(6) Creative Writing tasks e.g. story, poem writing

(7) Unconventional tasks e.g. incorrect answer generation

349

Other Applications: There are several aspects of instruction learning which are of impor-

tance for future work.

We demonstrate that scaling up the number of instruction tasks (Wang et al., 2022d)

significantly improve model performance. The performance benefits also can be achieved

by synthetic creation of instruction tasks (Wang et al., 2022c). Examples in instructions

can potentially possess a form of bias (instruction bias) that overestimates model perfor-

mance (Parmar et al., 2022a). This needs to be carefully managed while learning from

instructions. Incorporating output style instructions e.g. chain of thought (Wei et al., 2022b)

in instruction learning is seen (Lu et al., 2022a) to significantly improve model performance.

Instruction learning also help improve model performance in biomedical domain (Parmar

et al., 2022b; Luo et al., 2022). Instruction learning is also seen to be helpful in other tasks

such as aspect based sentiment analysis (Scaria et al., 2023) and contextual NER (Gupta

et al., 2021a). Real world tools such as InstructExcel (Mishra et al., 2023), which is

intended to allow users to use excel just by providing instructions are useful applications of

the instruction learning framework.

Instruction-data interplay is another important aspect to investigate further in future

work. There is evidence (Gupta et al., 2023) that instruction learning helps in learning a

task quickly from less data. An interesting avenue to study is to see if instructions also help

in learning efficiently with training data (Mishra and Sachdeva, 2020; Arunkumar et al.,

2023)and test data (Varshney et al., 2022a). Can learning from instructions help improve

generalization (Mishra et al., 2020a,b), robustness (Gokhale et al., 2022; Mishra et al.,

2022h) and reliability via selective answering (Varshney et al., 2022b,d, 2021; Mishra et al.,

2022a) over learning from examples?

Another avenue for future research is to create data automatically using instructions. It

is worth investigating if the data created with instructions are of higher quality (Mishra and

Arunkumar, 2022; Mishra et al., 2022b) than the ones created using crowdsourcing. Further-

350

more, more analysis is needed to analyze if instructions can help perform complex reasoning

tasks such as numerical reasoning (Gupta et al., 2022a), commonsense reasoning (Banerjee

et al., 2021) more efficiently.

Role of instruction learning with other learning paradigms such as curriculum learn-

ing (Varshney et al., 2022c), learning algorithms (Mishra and Arunkumar, 2021) can

potentially be interesting. Expanding instruction learning to solve hard tasks (Srivastava

et al., 2022) across complex domains such as security (Pal et al., 2021), cyber-physical

systems (Mishra et al., 2019; Korukonda et al., 2018, 2017, 2016; Mishra et al., 2015) and

disaster management (Mishra et al., 2022d) will be part of future work.

351

Chapter 12

CONCLUSION & FUTURE WORK

In chapter 3, we studied the goal of building models that generalize to new tasks by encoding

and understanding crowdsourcing instructions. We introduced Natural Instructions, which

is built based on existing crowdsourced datasets, that enables building such models and

systematically evaluating them. To the best of our knowledge, this is the first work to show

the benefit of instructions towards improved cross-task generalization. Additionally, we

observe that our proposed task has a large room for improvement, which we believe will

bring more attention to building stronger models that can generalize to a wider range of

tasks.

In chapter 4, we propose NumGLUE, a multi-task benchmark to test for arithmetic

understanding. Our benchmark consists of eight tasks including four new ones. While some

of the tasks require external knowledge like commonsense or domain-specific information

in addition to arithmetic reasoning, some are self-contained e.g. arithmetic word problems.

Further, we demonstrate that our benchmark is far from being solved – with state-of-

the-art large scale models achieving considerably lower performance than humans. This

indicates that current AI systems are incapable of performing simple arithmetic reasoning

in a general setting – indicating a fundamental hurdle towards AI systems that understand

complex mathematical concepts like differential equations or combinatorics. Finally, we

present various baselines including a novel architecture (memory augmented Ex-NumNet)

that demonstrates the advantages of various modeling choices (e.g. end-to-end vs neuro-

symbolic models). Specifically, we show that training in the multi-task setting leads to

meaningful sharing of knowledge across tasks as evidenced by an average gain of 3.4%

on tasks compared to task-specific modeling. We also see that instruction-based training

352

improves performance by 2.7% over the multi-task learning baseline. Finally, we hope

that our benchmark not only leads to AI systems that are capable of performing simple

arithmetic reasoning in a fairly general setting but also results in progress towards more

complex mathematical reasoning capability.

In chapter 5, Inspired by GPT3’s poor performance in following task instructions, we

study reframing them. We introduce five approaches that reformulate task instructions to

make them easier, while maintaining their human readability. Manually applying reframing

on 12 tasks, we study their benefits compared to using raw instructions or fine-tuning

mid-sized models. Reframing can be particularly helpful in applications where task

definitions are evolving (making it difficult to crowdsource and fine-tune models), where

model designers can come up with new reframed prompts, in a matter of minutes.

In chapter 6, we introduce Līla, a unified mathematical reasoning benchmark for a holis-

tic evaluation of AI agents. Līla consists of 23 tasks across 4 dimensions (i) mathematical

abilities, (ii) language format, (iii) language complexity, and (iv) external knowledge. It

builds on 20 existing mathematical reasoning datasets to collect instructions and Python pro-

grams. Further, it also supports measuring out-of-distribution performance and robustness

to language perturbations via Līla-OOD and Līla-Robust respectively. We also introduce

Bhāskara, a 2.7B-parameter fine-tuned multi-task model. We find that multi-tasking im-

proves over single-task performance by 21.83% F1 score on average, and that our model is a

strong starting point for further fine-tuning on new math reasoning tasks. The best perform-

ing model we evaluate achieves only 60.40% F1 indicating the potential for improvement

on the proposed benchmark.

Limitations : One drawback of our unified format is the difficulty of evaluating models.

In our work we use F1 for lack of a better alternative. F1 likely over-estimates performance,

e.g., given the gold answer “2 apples”, the predicted answers “2” and “apples” receive the

353

same score, though the former is better.

Līla contains 23 tasks which are created from 20 datasets and 44 sub-datasets. There is

scope to add more mathematical reasoning datasets (theorem proving.) The flexible unified

format of Līla allows for future extensions. Additionally, our categorization provides a way

to identify areas for extension. For instance, we only have 1 dataset for linear algebra, which

happens to not use natural language, and takes the form of generative QA. Our benchmark

will benefit from future linear algebra additions, perhaps with word problems formatted as

fill-in-the-blank questions.

Chapter 7 introduces a summarization-based approach for efficient program synthesis.

Experimental results show that the proposed approach improves the performance of the

Codex model by on average „ 8% across various levels of programming questions provided

by the APPS and „ 11% on the CodeContests. Further, our work proposes a meta-dataset

consisting of „ 450 human-generated basic and expert-level summaries as well as „ 8k

synthetically generated summaries by GPT-3 and Studio21; this can be helpful for future

research on writing better instructions for the program synthesis. We show that program

synthesis models benefit from concise prompts, hence, we believe that less number of

high-quality instances are better than more low-quality data instances.

Future Extensions The decomposition of prompts has been shown to improve accuracy

Mishra et al. (2022e); Patel et al. (2022); splitting up the summarization task the resulting

summary can potentially result in higher accuracy for the Codex model in future. Addi-

tionally, the PEGASUS model could be used in conjunction with other models to improve

performance.

Limitations Our summary-based approach shows improved performance on program

synthesis models, however, it shows competitive performance on synthetic summaries. We

354

believe that the generation of high-quality summaries can improve performance, hence,

designing efficient prompts to improve synthetic summaries can be the scope of further

research. Furthermore, human-generated summaries show competitive performance on

competition-level problems. These problems require reasoning with multiple logical leaps

and knowledge of advanced algorithms and data structures. Hence, exploring new techniques

for summarization can be a future research direction. In addition, this work only analyzes

the codex model, hence, exploring the effect of summarization on other program synthesis

models can be interesting.

In chapter 8, we argue that the recent trend of building large LMs may not be sustainable

to solve evolving benchmarks. We believe that modifying data samples can significantly

help the model improve performance. We study the effect of Question Decomposition (QD)

on a diverse set of tasks. We decompose questions manually and significantly improve

model performance (24% for GPT3 and 29% for RoBERTa-SQuAD along with a symbolic

calculator). Our findings indicate that Human-in-the-loop Question Decomposition (HQD)

can potentially provide an alternate path to building large LMs. Our approach provides

a viable option to involve people in NLP research. We hope our work will encourage

the community to develop human-centric solutions that actively involve humans while

leveraging NLP resources.

Limitations Our human-in-the-loop methodology shows promising results by decompos-

ing questions, however, certain questions are still difficult to decompose for humans as

well. For instance, the question "Which country is New York in?", is hard to decompose

further. Determining which questions to decompose is also an important challenge and

under-explored in this work. Furthermore, decomposed questions in the chain which have

more than one correct answer might lead to an incorrect final answer. Automating the

process of decomposition while addressing these issues is a promising area for future work.

355

In chapter 9, we introduced instruction augmentation to improve existing LMs in terms

of improving performance and usability for non-expert users. To this extent, we created

multi-variant instructions for 426 NLP tasks. Our experiment results show that instruction

augmentation improves model performance in task-specific, multi-task and cross-task learn-

ing paradigms. We find that instruction augmentation is more effective in low-data regime.

Our results further indicate that an additional instruction can be equivalent to„200 instances

on an average. We hope our work will bring more attention to developing unconventional

techniques (beyond dataset creation and model training) to empower non-expert users to

leverage NLP resources and teach a task without having domain knowledge.

Limitations We use BART-base and T5-base for all our experiments, however, we wish

to experiment with different language models in future to show the benefit of our approach.

Our analysis includes only tasks in English language, hence, it is important to see that if

our approach can be extended to non-English tasks as well. We feel that developing diverse

instruction augmentation techniques will be pivotal to achieve more improvements as future

research.

In chapter 10, We introduce Help me Think to help non-expert users prompt models

for the relatively under-explored customized content generation tasks. We demonstrate the

efficacy of Help me Think on 6 different tasks. Our results show that (1) questions generated

by GPT3 are valid and relevant, and (2) task-specific outputs generated by GPT3 are valid,

relevant, robust, coherent, and have significant knowledge absorption. We hope this will

bring more attention to the development of unconventional applications of LLMs in helping

humans perform the tasks that are hard for non-expert users, in contrast to conventional

tasks like question-answering where models chase human baseline.

356

REFERENCES

Adda, G., B. Sagot, K. Fort and J. Mariani, “Crowdsourcing for language resource develop-
ment: Critical analysis of amazon mechanical turk overpowering use”, in “5th Language
and Technology Conference”, (2011).

Aghajanyan, A., A. Gupta, A. Shrivastava, X. Chen, L. Zettlemoyer and S. Gupta, “Muppet:
Massive multi-task representations with pre-finetuning”, in “Proceedings of EMNLP”, pp.
5799–5811 (2021).

Ahn, M., A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakr-
ishnan, K. Hausman, A. Herzog et al., “Do as i can, not as i say: Grounding language in
robotic affordances”, arXiv preprint arXiv:2204.01691 (2022).

Ali, A. M., “The use of positive and negative examples during instruction”, Journal of
instructional development 5, 1, 2–7 (1981).

Amari, S. et al., The handbook of brain theory and neural networks (MIT press, 2003).

Amini, A., S. Gabriel, P. Lin, R. Koncel-Kedziorski, Y. Choi and H. Hajishirzi, “Mathqa:
Towards interpretable math word problem solving with operation-based formalisms”,
arXiv preprint arXiv:1905.13319 (2019).

ANDERSON, D. I. and R. A. MAGILL, Motor learning and control: concepts and applica-
tions (McGraw-Hill, 2021).

Arunkumar, A., S. Mishra, B. Sachdeva, C. Baral and C. Bryan, “Real-time visual feedback
to guide benchmark creation: A human-and-metric-in-the-loop workflow”, arXiv preprint
arXiv:2302.04434 (2023).

Austin, J., A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai,
M. Terry, Q. Le et al., “Program synthesis with large language models”, arXiv preprint
arXiv:2108.07732 (2021).

Balog, M., A. L. Gaunt, M. Brockschmidt, S. Nowozin and D. Tarlow, “Deepcoder: Learning
to write programs”, arXiv preprint arXiv:1611.01989 (2016).

Banerjee, P., S. Mishra, K. K. Pal, A. Mitra and C. Baral, “Commonsense reasoning with
implicit knowledge in natural language”, in “3rd Conference on Automated Knowledge
Base Construction”, (2021).

Beltagy, I., M. E. Peters and A. Cohan, “Longformer: The long-document transformer”,
arXiv preprint arXiv:2004.05150 (2020).

Bhakthavatsalam, S., D. Khashabi, T. Khot, B. D. Mishra, K. Richardson, A. Sabharwal,
C. Schoenick, O. Tafjord and P. Clark, “Think you have solved direct-answer ques-
tion answering? try arc-da, the direct-answer ai2 reasoning challenge”, arXiv preprint
arXiv:2102.03315 (2021).

357

Black, S., L. Gao, P. Wang, C. Leahy and S. Biderman, “Gpt-neo: Large scale autoregressive
language modeling with mesh-tensorflow”, If you use this software, please cite it using
these metadata 58 (2021).

Bras, R. L., S. Swayamdipta, C. Bhagavatula, R. Zellers, M. E. Peters, A. Sabharwal and
Y. Choi, “Adversarial filters of dataset biases”, arXiv preprint arXiv:2002.04108 (2020).

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever
and D. Amodei, “Language models are few-shot learners”, in “NeurIPS”, edited by
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan and H. Lin (2020).

Caruana, R., “Multitask learning”, Machine learning 28, 1, 41–75 (1997).

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. Ponde, J. Kaplan, H. Edwards, Y. Burda, N. Joseph,
G. Brockman et al., “Evaluating large language models trained on code”, arXiv preprint
arXiv:2107.03374 (2021a).

Chen, X., X. Xie, N. Zhang, J. Yan, S. Deng, C. Tan, F. Huang, L. Si and H. Chen,
“Adaprompt: Adaptive prompt-based finetuning for relation extraction”, arXiv e-prints pp.
arXiv–2104 (2021b).

Chowdhery, A., S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling language modeling with pathways”,
arXiv preprint arXiv:2204.02311 (2022).

Clark, C., K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins and K. Toutanova,
“Boolq: Exploring the surprising difficulty of natural yes/no questions”, arXiv preprint
arXiv:1905.10044 (2019).

Clark, P., I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick and O. Tafjord, “Think
you have solved question answering? try arc, the ai2 reasoning challenge”, arXiv preprint
arXiv:1803.05457 (2018).

Clark, P., O. Tafjord and K. Richardson, “Transformers as soft reasoners over language”, in
“Proceedings of IJCAI”, (2020).

Cobbe, K., V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse and J. Schulman,
“Training verifiers to solve math word problems”, arXiv preprint arXiv:2110.14168 (2021).

Colebrooke, H. T., “Arithmetic and mensuration of brahmegupta and bhaskara”, (1817).

Dalvi, B., N. Tandon, A. Bosselut, W. tau Yih and P. Clark, “Everything happens for a
reason: Discovering the purpose of actions in procedural text”, ArXiv abs/1909.04745
(2019).

Dasigi, P., N. F. Liu, A. Marasovic, N. A. Smith and M. Gardner, “Quoref: A reading
comprehension dataset with questions requiring coreferential reasoning”, in “Proceedings
of EMNLP-IJCNLP”, pp. 5927–5934 (2019).

358

Devlin, J., J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed and P. Kohli, “Robustfill:
Neural program learning under noisy i/o”, in “International conference on machine
learning”, pp. 990–998 (PMLR, 2017).

Dhole, K. D., V. Gangal, S. Gehrmann, A. Gupta, Z. Li, S. Mahamood, A. Mahendiran,
S. Mille, A. Srivastava, S. Tan et al., “Nl-augmenter: A framework for task-sensitive
natural language augmentation”, arXiv preprint arXiv:2112.02721 (2021).

Dua, D., A. Gottumukkala, A. Talmor, S. Singh and M. Gardner, “Orb: An open reading
benchmark for comprehensive evaluation of machine reading comprehension”, arXiv
preprint arXiv:1912.12598 (2019a).

Dua, D., Y. Wang, P. Dasigi, G. Stanovsky, S. Singh and M. Gardner, “Drop: A reading
comprehension benchmark requiring discrete reasoning over paragraphs”, in “Proceedings
of NAACL”, pp. 2368–2378 (2019b).

Efrat, A. and O. Levy, “The turking test: Can language models understand instructions?”,
arXiv preprint arXiv:2010.11982 (2020).

Feng, S. Y., V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura and E. Hovy, “A survey
of data augmentation approaches for nlp”, arXiv preprint arXiv:2105.03075 (2021).

Fort, K., G. Adda and K. B. Cohen, “Amazon mechanical turk: Gold mine or coal mine?”,
Computational Linguistics pp. 413–420 (2011).

Gafni, O., A. Polyak, O. Ashual, S. Sheynin, D. Parikh and Y. Taigman, “Make-
a-scene: Scene-based text-to-image generation with human priors”, arXiv preprint
arXiv:2203.13131 (2022).

Gao, L., S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, S. Presser and C. Leahy, “The Pile: An 800gb dataset of diverse text for
language modeling”, arXiv preprint arXiv:2101.00027 (2020).

Ge, R. and R. Mooney, “A statistical semantic parser that integrates syntax and semantics”,
in “Proceedings of the Ninth Conference on Computational Natural Language Learning
(CoNLL-2005)”, pp. 9–16 (2005).

Geva, M., Y. Goldberg and J. Berant, “Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language understanding datasets”, in “Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)”, pp.
1161–1166 (Association for Computational Linguistics, Hong Kong, China, 2019), URL
https://aclanthology.org/D19-1107.

Geva, M., D. Khashabi, E. Segal, T. Khot, D. Roth and J. Berant, “Did aristotle use a laptop?
a question answering benchmark with implicit reasoning strategies”, Transactions of the
Association for Computational Linguistics 9, 346–361 (2021).

359

https://aclanthology.org/D19-1107

Gokhale, T., S. Mishra, M. Luo, B. Sachdeva and C. Baral, “Generalized but not robust?
comparing the effects of data modification methods on out-of-domain generalization and
adversarial robustness”, in “Findings of the Association for Computational Linguistics:
ACL 2022”, pp. 2705–2718 (2022).

Gulwani, S., O. Polozov, R. Singh et al., “Program synthesis”, Foundations and Trends® in
Programming Languages 4, 1-2, 1–119 (2017).

Guo, J., Z. Zhan, Y. Gao, Y. Xiao, J.-G. Lou, T. Liu and D. Zhang, “Towards complex
text-to-sql in cross-domain database with intermediate representation”, arXiv preprint
arXiv:1905.08205 (2019).

Gupta, H., S. A. Sawant, S. Mishra, S. M. Mashetty, A. Mitra, M. Nakamura and C. Baral,
“Instruction-tuned models are quick learners”, arXiv preprint (2023).

Gupta, H., N. Varshney, S. Mishra, K. K. Pal, S. A. Sawant, K. Scaria, S. Goyal and C. Baral,
“" john is 50 years old, can his son be 65?" evaluating nlp models’ understanding of
feasibility”, arXiv preprint arXiv:2210.07471 (2022a).

Gupta, H., S. Verma, T. Kumar, S. Mishra, T. Agrawal, A. Badugu and H. S. Bhatt, “Context-
ner: Contextual phrase generation at scale”, arXiv preprint arXiv:2109.08079 (2021a).

Gupta, N. and M. Lewis, “Neural compositional denotational semantics for question answer-
ing”, arXiv preprint arXiv:1808.09942 (2018).

Gupta, P., C. Jiao, Y.-T. Yeh, S. Mehri, M. Eskenazi and J. P. Bigham, “Improving zero
and few-shot generalization in dialogue through instruction tuning”, arXiv preprint
arXiv:2205.12673 (2022b).

Gupta, T., A. Kamath, A. Kembhavi and D. Hoiem, “Towards general purpose vision
systems”, ArXiv abs/2104.00743 (2021b).

Gururangan, S., S. Swayamdipta, O. Levy, R. Schwartz, S. R. Bowman and N. A. Smith,
“Annotation artifacts in natural language inference data”, arXiv preprint arXiv:1803.02324
(2018).

Han, J. M., J. M. Rute, Y. Wu, E. W. Ayers and S. Polu, “Proof artifact co-training for
theorem proving with language models”, ArXiv abs/2102.06203 (2021).

Hase, P. and M. Bansal, “When can models learn from explanations? a formal framework
for understanding the roles of explanation data”, arXiv preprint arXiv:2102.02201 (2021).

Hendrycks, D., S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik,
H. He, D. Song et al., “Measuring coding challenge competence with apps”, arXiv
preprint arXiv:2105.09938 (2021a).

Hendrycks, D., C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song and J. Steinhardt,
“Measuring massive multitask language understanding”, in “International Conference on
Learning Representations”, (2020a).

360

Hendrycks, D., C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song and J. Stein-
hardt, “Measuring mathematical problem solving with the math dataset”, arXiv preprint
arXiv:2103.03874 (2021b).

Hendrycks, D., X. Liu, E. Wallace, A. Dziedzic, R. Krishnan and D. Song, “Pretrained
transformers improve out-of-distribution robustness”, in “Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics”, pp. 2744–2751 (2020b).

Hosseini, M. J., H. Hajishirzi, O. Etzioni and N. Kushman, “Learning to solve arithmetic
word problems with verb categorization”, in “In Conference on Empirical Methods in
Natural Language Processing (EMNLP”, (2014).

Huang, D., S. Shi, C.-Y. Lin, J. Yin and W.-Y. Ma, “How well do computers solve math
word problems? large-scale dataset construction and evaluation”, in “Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers)”, pp. 887–896 (2016).

Huang, L., R. Le Bras, C. Bhagavatula and Y. Choi, “Cosmos qa: Machine reading compre-
hension with contextual commonsense reasoning”, in “Proceedings of EMNLP-IJCNLP”,
pp. 2391–2401 (2019).

Iyyer, M., W.-t. Yih and M.-W. Chang, “Search-based neural structured learning for se-
quential question answering”, in “Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers)”, pp. 1821–1831
(Association for Computational Linguistics, Vancouver, Canada, 2017), URL https:
//aclanthology.org/P17-1167.

Jia, R., A. Raghunathan, K. Göksel and P. Liang, “Certified robustness to adversarial word
substitutions”, in “Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP)”, pp. 4129–4142 (2019).

Jindal, P. and D. Roth, “Learning from negative examples in set-expansion”, in “2011 IEEE
11th International Conference on Data Mining”, pp. 1110–1115 (IEEE, 2011).

Khashabi, D., S. Chaturvedi, M. Roth, S. Upadhyay and D. Roth, “Looking beyond the
surface: A challenge set for reading comprehension over multiple sentences”, in “Pro-
ceedings of NAACL”, pp. 252–262 (2018).

Khashabi, D., T. Khot, A. Sabharwal and D. Roth, “Learning what is essential in questions”,
in “Proceedings of CoNLL”, pp. 80–89 (2017).

Khashabi, D., S. Min, T. Khot, A. Sabharwal, O. Tafjord, P. Clark and H. Hajishirzi,
“UnifiedQA: crossing format boundaries with a single qa system”, in “Proceedings of
EMNLP: Findings”, pp. 1896–1907 (2020).

Khashabi, D., G. Stanovsky, J. Bragg, N. Lourie, J. Kasai, Y. Choi, N. A. Smith and D. S.
Weld, “GENIE: A leaderboard for human-in-the-loop evaluation of text generation”, arXiv
preprint arXiv:2101.06561 (2021).

361

https://aclanthology.org/P17-1167
https://aclanthology.org/P17-1167

Khot, T., P. Clark, M. Guerquin, P. Jansen and A. Sabharwal, “Qasc: A dataset for question
answering via sentence composition”, in “Proceedings of the AAAI Conference on
Artificial Intelligence”, vol. 34, pp. 8082–8090 (2020).

Khot, T., D. Khashabi, K. Richardson, P. Clark and A. Sabharwal, “Text modular networks:
Learning to decompose tasks in the language of existing models”, in “Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies”, pp. 1264–1279 (Association for Computational
Linguistics, Online, 2021), URL https://aclanthology.org/2021.naacl-main.99.

Khot, T., A. Sabharwal and P. Clark, “What’s missing: A knowledge gap guided approach
for multi-hop question answering”, arXiv preprint arXiv:1909.09253 (2019).

Kim, H., B.-H. So, W.-S. Han and H. Lee, “Natural language to sql: Where are we today?”,
Proceedings of the VLDB Endowment 13, 10, 1737–1750 (2020).

Kolachana, A., K. Mahesh and K. Ramasubramanian, “Use of calculus in hindu mathe-
matics”, in “Studies in Indian Mathematics and Astronomy”, pp. 345–355 (Springer,
2019).

Koncel-Kedziorski, R., H. Hajishirzi, A. Sabharwal, O. Etzioni and S. D. Ang, “Parsing alge-
braic word problems into equations”, Transactions of the Association for Computational
Linguistics 3, 585–597 (2015).

Koncel-Kedziorski, R., S. Roy, A. Amini, N. Kushman and H. Hajishirzi, “Mawps: A
math word problem repository”, in “Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies”, pp. 1152–1157 (2016).

Korukonda, M. P., S. R. Mishra, K. Rajawat and L. Behera, “Hybrid adaptive framework
for coordinated control of distributed generators in cyber-physical energy systems”, IET
Cyber-Physical Systems: Theory & Applications 3, 1, 54–62 (2018).

Korukonda, M. P., S. R. Mishra, A. Shukla and L. Behera, “Improving microgrid voltage
stability through cyber-physical control”, in “2016 National Power Systems Conference
(NPSC)”, pp. 1–6 (IEEE, 2016).

Korukonda, M. P., S. R. Mishra, A. Shukla and L. Behera, “Handling multi-parametric
variations in distributed control of cyber-physical energy systems through optimal com-
munication design”, IET Cyber-Physical Systems: Theory & Applications 2, 2, 90–100
(2017).

Kushman, N., Y. Artzi, L. Zettlemoyer and R. Barzilay, “Learning to automatically solve
algebra word problems”, in “Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers)”, pp. 271–281 (2014).

Kuznia, K., S. Mishra, M. Parmar and C. Baral, “Less is more: Summary of long in-
structions is better for program synthesis”, in “Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing”, pp. 4532–4552 (Associa-
tion for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2022), URL
https://aclanthology.org/2022.emnlp-main.301.

362

https://aclanthology.org/2021.naacl-main.99
https://aclanthology.org/2022.emnlp-main.301

Lake, B. and M. Baroni, “Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks”, in “International Conference on Machine
Learning”, pp. 2873–2882 (PMLR, 2018).

Le Scao, T. and A. M. Rush, “How many data points is a prompt worth?”, in “Proceedings
of NAACL-HLT”, pp. 2627–2636 (2021).

Lester, B., R. Al-Rfou and N. Constant, “The power of scale for parameter-efficient prompt
tuning”, in “Proceedings of EMNLP”, (2021).

Lewis, M., Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov
and L. Zettlemoyer, “BART: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension”, in “Proceedings of ACL”, (2019).

Li, W., L. Yu, Y. Wu and L. C. Paulson, “Isarstep: a benchmark for high-level mathematical
reasoning”, in “International Conference on Learning Representations”, (2021), URL
https://openreview.net/forum?id=Pzj6fzU6wkj.

Li, Y., D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling,
F. Gimeno, A. D. Lago et al., “Competition-level code generation with alphacode”, arXiv
preprint arXiv:2203.07814 (2022).

Lieber, O., O. Sharir, B. Lenz and Y. Shoham, “Jurassic-1: Technical details and evaluation”,
White Paper. AI21 Labs (2021).

Lin, B. Y., S. Lee, R. Khanna and X. Ren, “Birds have four legs?! numersense: Probing
numerical commonsense knowledge of pre-trained language models”, in “Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)”,
pp. 6862–6868 (2020).

Lin, C.-Y., “Rouge: A package for automatic evaluation of summaries”, in “Text summa-
rization branches out”, pp. 74–81 (2004).

Lin, K., O. Tafjord, P. Clark and M. Gardner, “Reasoning over paragraph effects in situa-
tions”, in “Proceedings of the 2nd Workshop on Machine Reading for Question Answer-
ing”, pp. 58–62 (2019).

Lin, W., R. Yangarber and R. Grishman, “Bootstrapped learning of semantic classes from
positive and negative examples”, in “Proceedings of ICML Workshop on The Continuum
from Labeled to Unlabeled Data”, vol. 1, p. 21 (2003).

Lin, X. V., C. Wang, L. Zettlemoyer and M. D. Ernst, “Nl2bash: A corpus and semantic
parser for natural language interface to the linux operating system”, in “Proceedings of
LREC”, (2018).

Ling, W., D. Yogatama, C. Dyer and P. Blunsom, “Program induction by rationale generation:
Learning to solve and explain algebraic word problems”, arXiv preprint arXiv:1705.04146
(2017).

Liu, J., D. Shen, Y. Zhang, B. Dolan, L. Carin and W. Chen, “What makes good in-context
examples for gpt-3?”, arXiv preprint arXiv:2101.06804 (2021a).

363

https://openreview.net/forum?id=Pzj6fzU6wkj

Liu, P., W. Yuan, J. Fu, Z. Jiang, H. Hayashi and G. Neubig, “Pre-train, prompt, and predict:
A systematic survey of prompting methods in natural language processing”, arXiv preprint
arXiv:2107.13586 (2021b).

Liu, X., Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang and J. Tang, “Gpt understands, too”,
arXiv preprint arXiv:2103.10385 (2021c).

Liu, Y., M. Ott, N. Goyal, J. Du, M. S. Joshi, D. Chen, O. Levy, M. Lewis, L. S. Zettlemoyer
and V. Stoyanov, “RoBERTa: A robustly optimized bert pretraining approach”, arXiv
URL http://arxiv.org/abs/1907.11692 (2019).

Logan IV, R. L., I. Balažević, E. Wallace, F. Petroni, S. Singh and S. Riedel, “Cutting down
on prompts and parameters: Simple few-shot learning with language models”, arXiv
preprint arXiv:2106.13353 (2021).

Lourie, N., R. Le Bras, C. Bhagavatula and Y. Choi, “Unicorn on rainbow: A universal
commonsense reasoning model on a new multitask benchmark”, in “Proceedings of the
AAAI Conference on Artificial Intelligence”, vol. 35, pp. 13480–13488 (2021).

Lu, P., R. Gong, S. Jiang, L. Qiu, S. Huang, X. Liang and S.-C. Zhu, “Inter-gps: Interpretable
geometry problem solving with formal language and symbolic reasoning”, in “The 59th
Annual Meeting of the Association for Computational Linguistics (ACL)”, (2021a).

Lu, P., S. Mishra, T. Xia, L. Qiu, K.-W. Chang, S.-C. Zhu, O. Tafjord, P. Clark and
A. Kalyan, “Learn to explain: Multimodal reasoning via thought chains for science
question answering”, in “The 36th Conference on Neural Information Processing Systems
(NeurIPS)”, (2022a).

Lu, P., L. Qiu, K.-W. Chang, Y. N. Wu, S.-C. Zhu, T. Rajpurohit, P. Clark and A. Kalyan,
“Dynamic prompt learning via policy gradient for semi-structured mathematical reason-
ing”, arXiv preprint arXiv:2209.14610 (2022b).

Lu, P., L. Qiu, J. Chen, T. Xia, Y. Zhao, W. Zhang, Z. Yu, X. Liang and S.-C. Zhu, “Iconqa:
A new benchmark for abstract diagram understanding and visual language reasoning”, in
“The 35th Conference on Neural Information Processing Systems Track on Datasets and
Benchmarks (NeurIPS 2021)”, (2021b).

Lu, S., D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain,
D. Jiang, D. Tang et al., “Codexglue: A machine learning benchmark dataset for code
understanding and generation”, arXiv preprint arXiv:2102.04664 (2021c).

Lu, Y., M. Bartolo, A. Moore, S. Riedel and P. Stenetorp, “Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt order sensitivity”, arXiv preprint
arXiv:2104.08786 (2021d).

Luo, M., S. Saxena, S. Mishra, M. Parmar and C. Baral, “Biotabqa: Instruction learning for
biomedical table question answering”, arXiv preprint arXiv:2207.02419 (2022).

McCann, B., N. S. Keskar, C. Xiong and R. Socher, “The natural language decathlon:
Multitask learning as question answering”, arXiv preprint arXiv:1806.08730 (2018).

364

http://arxiv.org/abs/1907.11692

Miao, S.-y., C.-C. Liang and K.-Y. Su, “A diverse corpus for evaluating and developing
English math word problem solvers”, in “Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics”, pp. 975–984 (Association for Computational
Linguistics, Online, 2020), URL https://aclanthology.org/2020.acl-main.92.

Min, S., V. Zhong, L. Zettlemoyer and H. Hajishirzi, “Multi-hop reading comprehension
through question decomposition and rescoring”, arXiv preprint arXiv:1906.02916 (2019).

Mishra, S. and A. Arunkumar, “Front contribution instead of back propagation”, arXiv
preprint arXiv:2106.05569 (2021).

Mishra, S. and A. Arunkumar, “A proposal to study" is high quality data all we need?"”,
arXiv preprint arXiv:2203.06404 (2022).

Mishra, S., A. Arunkumar and C. Baral, “Investigating the failure modes of the auc metric
and exploring alternatives for evaluating systems in safety critical applications”, arXiv
preprint arXiv:2210.04466 (2022a).

Mishra, S., A. Arunkumar, C. Bryan and C. Baral, “Our evaluation metric needs an update
to encourage generalization”, arXiv preprint arXiv:2007.06898 (2020a).

Mishra, S., A. Arunkumar, C. Bryan and C. Baral, “A survey of parameters associated with
the quality of benchmarks in nlp”, arXiv preprint arXiv:2210.07566 (2022b).

Mishra, S., A. Arunkumar, B. Sachdeva, C. Bryan and C. Baral, “Dqi: Measuring data
quality in nlp”, arXiv preprint arXiv:2005.00816 (2020b).

Mishra, S., M. Finlayson, P. Lu, L. Tang, S. Welleck, C. Baral, T. Rajpurohit, O. Tafjord,
A. Sabharwal, P. Clark and A. Kalyan, “LILA: A unified benchmark for mathematical
reasoning”, in “Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing”, pp. 5807–5832 (Association for Computational Linguistics,
Abu Dhabi, United Arab Emirates, 2022c), URL https://aclanthology.org/2022.
emnlp-main.392.

Mishra, S., M. K. Jena and A. K. Tripathy, “Towards the development of disaster manage-
ment tailored machine learning systems”, in “2022 IEEE India Council International
Subsections Conference (INDISCON)”, pp. 1–6 (IEEE, 2022d).

Mishra, S., D. Khashabi, C. Baral, Y. Choi and H. Hajishirzi, “Reframing instructional
prompts to GPTk’s language”, in “Findings of the Association for Computational Lin-
guistics: ACL 2022”, pp. 589–612 (Association for Computational Linguistics, Dublin,
Ireland, 2022e), URL https://aclanthology.org/2022.findings-acl.50.

Mishra, S., D. Khashabi, C. Baral and H. Hajishirzi, “Cross-task generalization via natural
language crowdsourcing instructions”, in “Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)”, pp. 3470–3487
(2022f).

365

https://aclanthology.org/2020.acl-main.92
https://aclanthology.org/2022.emnlp-main.392
https://aclanthology.org/2022.emnlp-main.392
https://aclanthology.org/2022.findings-acl.50

Mishra, S., A. Mitra, N. Varshney, B. Sachdeva, P. Clark, C. Baral and A. Kalyan, “Numglue:
A suite of fundamental yet challenging mathematical reasoning tasks”, in “Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers)”, pp. 3505–3523 (2022g).

Mishra, S. and E. Nouri, “Help me think: A simple prompting strategy for non-experts to
create customized content with models”, arXiv preprint arXiv:2208.08232 (2022).

Mishra, S., J. Payan, C. Negreanu, C. Poelitz, C. Baral, S. Roy, R. Chakravarthy, B. V.
Durme and E. Nouri, “Instructexcel: A benchmark for natural language instruction in
excel”, arXiv preprint (2023).

Mishra, S. and B. S. Sachdeva, “Do we need to create big datasets to learn a task?”,
in “Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language
Processing”, pp. 169–173 (Association for Computational Linguistics, Online, 2020),
URL https://aclanthology.org/2020.sustainlp-1.23.

Mishra, S., B. S. Sachdeva and C. Baral, “Pretrained transformers do not always improve
robustness”, arXiv preprint arXiv:2210.07663 (2022h).

Mishra, S. R., M. P. Korukonda, L. Behera and A. Shukla, “Enabling cyber-physical demand
response in smart grids via conjoint communication and controller design”, IET Cyber-
Physical Systems: Theory & Applications 4, 4, 291–303 (2019).

Mishra, S. R., N. V. Srinath, K. M. Preetam and L. Behera, “A generalized novel framework
for optimal sensor-controller connection design to guarantee a stable cyber physical smart
grid”, in “2015 IEEE 13th International Conference on Industrial Informatics (INDIN)”,
pp. 424–429 (IEEE, 2015).

Nayyar, R. K., P. Verma and S. Srivastava, “Differential assessment of black-box ai agents”,
in “Proceedings of the AAAI Conference on Artificial Intelligence”, vol. 36, pp. 9868–
9876 (2022).

Nogueira, R., Z. Jiang and J. Li, “Investigating the limitations of the transformers with
simple arithmetic tasks”, arXiv preprint arXiv:2102.13019 (2021).

Nye, M., A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan et al., “Show your work: Scratchpads for intermediate
computation with language models”, arXiv preprint arXiv:2112.00114 (2021).

Ouyang, L., J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agar-
wal, K. Slama, A. Ray et al., “Training language models to follow instructions with
human feedback”, Preprint (2022).

Pal, K. K., K. Kashihara, P. Banerjee, S. Mishra, R. Wang and C. Baral, “Constructing
flow graphs from procedural cybersecurity texts”, in “Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021”, pp. 3945–3957 (2021).

Papineni, K., S. Roukos, T. Ward and W.-J. Zhu, “Bleu: a method for automatic evaluation
of machine translation”, in “Proceedings of the 40th annual meeting of the Association
for Computational Linguistics”, pp. 311–318 (2002).

366

https://aclanthology.org/2020.sustainlp-1.23

Parmar, M., S. Mishra, M. Geva and C. Baral, “Don’t blame the annotator: Bias already
starts in the annotation instructions”, arXiv preprint arXiv:2205.00415 (2022a).

Parmar, M., S. Mishra, M. Purohit, M. Luo, M. Mohammad and C. Baral, “In-BoXBART:
Get instructions into biomedical multi-task learning”, in “Findings of the Association for
Computational Linguistics: NAACL 2022”, pp. 112–128 (Association for Computational
Linguistics, Seattle, United States, 2022b), URL https://aclanthology.org/2022.
findings-naacl.10.

Patel, A., S. Bhattamishra and N. Goyal, “Are NLP models really able to solve simple math
word problems?”, in “Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies”, pp.
2080–2094 (Association for Computational Linguistics, Online, 2021), URL https:
//aclanthology.org/2021.naacl-main.168.

Patel, P., S. Mishra, M. Parmar and C. Baral, “Is a question decomposition unit all we
need?”, EMNLP 2022, Abu Dhabi (2022).

Perez, E., Finding and Fixing Undesirable Behaviors in Pretrained Language Models., Ph.D.
thesis, New York University, USA (2022).

Perez, E., P. Lewis, W.-t. Yih, K. Cho and D. Kiela, “Unsupervised question decomposition
for question answering”, arXiv preprint arXiv:2002.09758 (2020).

Peters, M. E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee and L. Zettlemoyer,
“Deep contextualized word representations”, in “Proceedings of NAACL-HLT”, pp. 2227–
2237 (2018).

Puri, R. S., S. Mishra, M. Parmar and C. Baral, “How many data samples is an additional
instruction worth?”, arXiv preprint arXiv:2203.09161 (2022).

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models
are unsupervised multitask learners”, OpenAI blog 1, 8, 9 (2019).

Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li and P. J.
Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer”,
Journal of Machine Learning Research 21, 140, 1–67, URL http://jmlr.org/papers/
v21/20-074.html (2020).

Rajpurkar, P., R. Jia and P. Liang, “Know what you don’t know: Unanswerable questions
for squad”, arXiv preprint arXiv:1806.03822 (2018).

Ran, Q., Y. Lin, P. Li, J. Zhou and Z. Liu, “Numnet: Machine reading comprehension with
numerical reasoning”, arXiv preprint arXiv:1910.06701 (2019).

Ravichander, A., A. Naik, C. Rose and E. Hovy, “Equate: A benchmark evaluation
framework for quantitative reasoning in natural language inference”, arXiv preprint
arXiv:1901.03735 (2019).

367

https://aclanthology.org/2022.findings-naacl.10
https://aclanthology.org/2022.findings-naacl.10
https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2021.naacl-main.168
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Reif, E., D. Ippolito, A. Yuan, A. Coenen, C. Callison-Burch and J. Wei, “A recipe for
arbitrary text style transfer with large language models”, arXiv preprint arXiv:2109.03910
(2021).

Reynolds, L. and K. McDonell, “Prompt programming for large language models: Beyond
the few-shot paradigm”, in “Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems”, pp. 1–7 (2021).

Ribeiro, M. T., T. Wu, C. Guestrin and S. Singh, “Beyond accuracy: Behavioral testing of nlp
models with checklist”, in “Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics”, pp. 4902–4912 (2020).

Rogers, A., M. Gardner and I. Augenstein, “Qa dataset explosion: A taxonomy of
nlp resources for question answering and reading comprehension”, arXiv preprint
arXiv:2107.12708 (2021).

Ross, A., T. Wu, H. Peng, M. E. Peters and M. Gardner, “Tailor: Generating and perturbing
text with semantic controls”, arXiv preprint arXiv:2107.07150 (2021).

Roy, S. and D. Roth, “Solving general arithmetic word problems”, in “Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing”, pp. 1743–1752
(2015).

Roy, S. and D. Roth, “Unit dependency graph and its application to arithmetic word problem
solving”, in “Thirty-First AAAI Conference on Artificial Intelligence”, (2017).

Roy, S. and D. Roth, “Mapping to declarative knowledge for word problem solving”,
Transactions of the Association for Computational Linguistics 6, 159–172 (2018).

Roy, S., T. Vieira and D. Roth, “Reasoning about quantities in natural language”, Transac-
tions of the Association for Computational Linguistics 3, 1–13 (2015).

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge”,
International journal of computer vision 115, 3, 211–252 (2015).

Sakaguchi, K., R. Le Bras, C. Bhagavatula and Y. Choi, “Winogrande: An adversarial
winograd schema challenge at scale”, in “Proceedings of the AAAI”, (2020).

Sanh, V., A. Webson, C. Raffel, S. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler,
A. Raja, M. Dey, M. S. Bari, C. Xu, U. Thakker, S. S. Sharma, E. Szczechla, T. Kim,
G. Chhablani, N. Nayak, D. Datta, J. Chang, M. T.-J. Jiang, H. Wang, M. Manica, S. Shen,
Z. X. Yong, H. Pandey, R. Bawden, T. Wang, T. Neeraj, J. Rozen, A. Sharma, A. Santilli,
T. Fevry, J. A. Fries, R. Teehan, T. L. Scao, S. Biderman, L. Gao, T. Wolf and A. M. Rush,
“Multitask prompted training enables zero-shot task generalization”, in “Proceedings of
ICLR”, (2022).

Sarkar, B. K., Hindu Achievements in Exact Science: A Study in the History of Scientific
Development (Longmans, Green and Company, 1918).

368

Saxton, D., E. Grefenstette, F. Hill and P. Kohli, “Analysing mathematical reasoning abilities
of neural models”, arXiv preprint arXiv:1904.01557 (2019).

Scaria, K., H. Gupta, S. A. Sawant, S. Mishra and C. Baral, “Instructabsa: Instruction
learning for aspect based sentiment analysis”, arXiv preprint arXiv:2302.08624 (2023).

Schick, T. and H. Schütze, “Few-shot text generation with natural language instructions”, in
“Proceedings of EMNLP”, (2021).

Sellam, T., D. Das and A. Parikh, “Bleurt: Learning robust metrics for text generation”, in
“Proceedings of ACL”, pp. 7881–7892 (2020).

Shao, Y. and N. Nakashole, “Chartdialogs: Plotting from natural language instructions”, in
“Proceedings of ACL”, pp. 3559–3574 (2020).

Shridhar, M., J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer and
D. Fox, “Alfred: A benchmark for interpreting grounded instructions for everyday tasks”,
in “Proceedings of the IEEE/CVF”, pp. 10740–10749 (2020).

Srivastava, A., A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown,
A. Santoro, A. Gupta, A. Garriga-Alonso et al., “Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models”, arXiv preprint arXiv:2206.04615
(2022).

Stepputtis, S., J. Campbell, M. Phielipp, S. Lee, C. Baral and H. B. Amor,
“Language-conditioned imitation learning for robot manipulation tasks”, arXiv preprint
arXiv:2010.12083 (2020).

Swayamdipta, S., R. Schwartz, N. Lourie, Y. Wang, H. Hajishirzi, N. A. Smith and Y. Choi,
“Dataset cartography: Mapping and diagnosing datasets with training dynamics”, in “Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP)”, pp. 9275–9293 (2020).

Tafjord, O., P. Clark, M. Gardner, W.-t. Yih and A. Sabharwal, “Quarel: A dataset and
models for answering questions about qualitative relationships”, in “Proceedings of the
AAAI Conference on Artificial Intelligence”, vol. 33, pp. 7063–7071 (2019).

Talmor, A. and J. Berant, “The web as a knowledge-base for answering complex questions”,
arXiv preprint arXiv:1803.06643 (2018).

Tam, D., R. R. Menon, M. Bansal, S. Srivastava and C. Raffel, “Improving and simplifying
pattern exploiting training”, arXiv preprint arXiv:2103.11955 (2021).

Upadhyay, S. and M.-W. Chang, “Draw: A challenging and diverse algebra word problem
set”, Tech. rep., Citeseer (2015).

Upadhyay, S., M.-W. Chang, K.-W. Chang and W.-t. Yih, “Learning from explicit and
implicit supervision jointly for algebra word problems”, in “Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing”, pp. 297–306 (2016).

369

Varshney, N., S. Mishra and C. Baral, “Interviewer-candidate role play: Towards developing
real-world nlp systems”, arXiv preprint arXiv:2107.00315 (2021).

Varshney, N., S. Mishra and C. Baral, “ILDAE: Instance-level difficulty analysis of evalua-
tion data”, in “Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers)”, pp. 3412–3425 (Association for Compu-
tational Linguistics, Dublin, Ireland, 2022a), URL https://aclanthology.org/2022.
acl-long.240.

Varshney, N., S. Mishra and C. Baral, “Investigating selective prediction approaches across
several tasks in iid, ood, and adversarial settings”, in “Findings of the Association for
Computational Linguistics: ACL 2022”, pp. 1995–2002 (2022b).

Varshney, N., S. Mishra and C. Baral, “Let the model decide its curriculum for multitask
learning”, in “Proceedings of the Third Workshop on Deep Learning for Low-Resource
Natural Language Processing”, pp. 117–125 (2022c).

Varshney, N., S. Mishra and C. Baral, “Towards improving selective prediction ability of
nlp systems”, in “Proceedings of the 7th Workshop on Representation Learning for NLP”,
pp. 221–226 (2022d).

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and
I. Polosukhin, “Attention is all you need”, Advances in neural information processing
systems 30 (2017).

Verma, P., S. R. Marpally and S. Srivastava, “Asking the right questions: Learning inter-
pretable action models through query answering”, in “Proceedings of the AAAI Confer-
ence on Artificial Intelligence”, vol. 35, pp. 12024–12033 (2021).

Verma, P. and S. Srivastava, “Learning causal models of autonomous agents using interven-
tions”, in “IJCAI 2021 Workshop on Generalization in Planning”, (2021).

Wang, A., Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy and S. R.
Bowman, “Superglue: A stickier benchmark for general-purpose language understanding
systems”, Proceedings of NeurIPS 32 (2019).

Wang, A., A. Singh, J. Michael, F. Hill, O. Levy and S. R. Bowman, “Glue: A multi-task
benchmark and analysis platform for natural language understanding”, arXiv preprint
arXiv:1804.07461 (2018).

Wang, L., R. Li, Y. Yan, Y. Yan, S. Wang, W. Wu and W. Xu, “Instructionner: A
multi-task instruction-based generative framework for few-shot ner”, arXiv preprint
arXiv:2203.03903 (2022a).

Wang, X., J. Wei, D. Schuurmans, Q. Le, E. Chi and D. Zhou, “Self-consistency im-
proves chain of thought reasoning in language models”, arXiv preprint arXiv:2203.11171
(2022b).

Wang, Y., Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi and H. Hajishirzi, “Self-
instruct: Aligning language model with self generated instructions”, arXiv preprint
arXiv:2212.10560 (2022c).

370

https://aclanthology.org/2022.acl-long.240
https://aclanthology.org/2022.acl-long.240

Wang, Y., S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A. Arunkumar, A. Ashok,
A. S. Dhanasekaran, A. Naik, D. Stap et al., “Benchmarking generalization via in-context
instructions on 1,600+ language tasks”, arXiv preprint arXiv:2204.07705 (2022d).

Wang, Y., W. Wang, S. Joty and S. C. Hoi, “Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation”, arXiv preprint
arXiv:2109.00859 (2021).

Wei, J., M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai and Q. V. Le,
“Finetuned language models are zero-shot learners”, in “Proceedings of ICLR”, (2022a).

Wei, J., X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le and D. Zhou, “Chain of thought
prompting elicits reasoning in large language models”, arXiv preprint arXiv:2201.11903
(2022b).

Welleck, S., J. Liu, R. L. Bras, H. Hajishirzi, Y. Choi and K. Cho, “Naturalproofs: Math-
ematical theorem proving in natural language”, in “Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1)”, (2021),
URL https://openreview.net/forum?id=Jvxa8adr3iY.

Welleck, S., P. West, J. Cao and Y. Choi, “Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics”, in “AAAI”, (2022), URL https:
//arxiv.org/pdf/2109.13986.pdf.

Weller, O., N. Lourie, M. Gardner and M. Peters, “Learning from task descriptions”, in
“Proceedings of EMNLP”, pp. 1361–1375 (2020).

Weston, J., A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer, A. Joulin and T. Mikolov,
“Towards ai-complete question answering: A set of prerequisite toy tasks”, arXiv preprint
arXiv:1502.05698 (2015).

Wolf, T., L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz et al., “Huggingface’s transformers: State-of-the-art natural language
processing”, arXiv preprint arXiv:1910.03771 (2019).

Wolfson, T., M. Geva, A. Gupta, M. Gardner, Y. Goldberg, D. Deutch and J. Berant, “Break
it down: A question understanding benchmark”, Transactions of the Association for
Computational Linguistics 8, 183–198 (2020).

Wu, Y., A. Jiang, J. Ba and R. B. Grosse, “{INT}: An inequality benchmark for eval-
uating generalization in theorem proving”, in “International Conference on Learning
Representations”, (2021), URL https://openreview.net/forum?id=O6LPudowNQm.

Xie, K., S. Wiegreffe and M. Riedl, “Calibrating trust of multi-hop question answering
systems with decompositional probes”, URL https://arxiv.org/abs/2204.07693
(2022).

Xuan, H., A. Stylianou, X. Liu and R. Pless, “Hard negative examples are hard, but useful”,
in “Proceedings of ECCV”, pp. 126–142 (Springer, 2020).

371

https://openreview.net/forum?id=Jvxa8adr3iY
https://arxiv.org/pdf/2109.13986.pdf
https://arxiv.org/pdf/2109.13986.pdf
https://openreview.net/forum?id=O6LPudowNQm
https://arxiv.org/abs/2204.07693

Yang, Z., P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov and C. D. Manning,
“Hotpotqa: A dataset for diverse, explainable multi-hop question answering”, CoRR
abs/1809.09600, URL http://arxiv.org/abs/1809.09600 (2018).

Yao, Z., Y. Tang, W.-t. Yih, H. Sun and Y. Su, “An imitation game for learning semantic
parsers from user interaction”, in “Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP)”, pp. 6883–6902 (Association for
Computational Linguistics, Online, 2020), URL https://aclanthology.org/2020.
emnlp-main.559.

Ye, Q., B. Y. Lin and X. Ren, “Crossfit: A few-shot learning challenge for cross-task
generalization in nlp”, in “Proceedings of EMNLP”, (2021).

Ye, Q. and X. Ren, “Zero-shot learning by generating task-specific adapters”, arXiv preprint
arXiv:2101.00420 (2021).

Yin, P., B. Deng, E. Chen, B. Vasilescu and G. Neubig, “Learning to mine aligned code
and natural language pairs from stack overflow”, in “International Conference on Mining
Software Repositories”, MSR, pp. 476–486 (ACM, 2018).

Zamir, A. R., A. Sax, W. Shen, L. J. Guibas, J. Malik and S. Savarese, “Taskonomy:
Disentangling task transfer learning”, in “Proceedings of the IEEE conference on computer
vision and pattern recognition”, pp. 3712–3722 (2018).

Zhang, J., Y. Zhao, M. Saleh and P. J. Liu, “Pegasus: Pre-training with extracted gap-
sentences for abstractive summarization”, (2019).

Zhang, X., D. Ramachandran, I. Tenney, Y. Elazar and D. Roth, “Do language embeddings
capture scales?”, arXiv preprint arXiv:2010.05345 (2020).

Zhao, W., K. Arkoudas, W. Sun and C. Cardie, “Compositional task-oriented parsing as
abstractive question answering”, arXiv preprint arXiv:2205.02068 (2022).

Zhao, Z., E. Wallace, S. Feng, D. Klein and S. Singh, “Calibrate before use: Improving
few-shot performance of language models”, in “Proceedings of ICML”, pp. 12697–12706
(2021).

Zheng, K., J. M. Han and S. Polu, “Minif2f: a cross-system benchmark for formal olympiad-
level mathematics”, arXiv preprint arXiv:2109.00110 (2021).

Zhong, R., K. Lee, Z. Zhang and D. Klein, “Adapting language models for zero-shot learning
by meta-tuning on dataset and prompt collections”, in “Findings of the Association for
Computational Linguistics: EMNLP 2021”, pp. 2856–2878 (2021).

Zhong, R., C. Snell, D. Klein and J. Eisner, “Active programming by example with a natural
language prior”, URL https://arxiv.org/abs/2205.12422 (2022).

Zhou, B., D. Khashabi, Q. Ning and D. Roth, ““going on a vacation” takes longer than
“going for a walk”: A study of temporal commonsense understanding”, in “Proceedings
of EMNLP-IJCNLP”, pp. 3354–3360 (2019).

372

http://arxiv.org/abs/1809.09600
https://aclanthology.org/2020.emnlp-main.559
https://aclanthology.org/2020.emnlp-main.559
https://arxiv.org/abs/2205.12422

Zhou, D., N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet,
Q. Le and E. Chi, “Least-to-most prompting enables complex reasoning in large language
models”, arXiv preprint arXiv:2205.10625 (2022).

373

APPENDIX A

RELATED PUBLICATION DETAILS

374

Most ideas in this dissertation have appeared in the following publications, with consent
of my co-authors.

• Mishra, S., Khashabi, D., Baral, C., Hajishirzi, H. (2022, May). Cross-Task General-
ization via Natural Language Crowdsourcing Instructions. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers) (pp. 3470-3487).

• Mishra, S., Mitra, A., Varshney, N., Sachdeva, B., Clark, P., Baral, C., Kalyan, A.
(2022, May). NumGLUE: A Suite of Fundamental yet Challenging Mathematical
Reasoning Tasks. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 3505-3523).

• Mishra, S., Khashabi, D., Baral, C., Choi, Y., Hajishirzi, H. (2022, May). Refram-
ing Instructional Prompts to GPTk’s Language. In Findings of the Association for
Computational Linguistics: ACL 2022 (pp. 589-612).

• Mishra, S., Finlayson, M., Lu, P., Tang, L., Welleck, S., Baral, C., ... Kalyan,
A. (2022). Lila: A unified benchmark for mathematical reasoning. In Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 5807–5832, Abu Dhabi, United Arab Emirates. Association for Computational
Linguistics.

• Kuznia, K., Mishra, S., Parmar, M., Baral, C. (2022). Less is more: Summary of long
instructions is better for program synthesis. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pages 4532–4552, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.

• Patel, P., Mishra, S., Parmar, M., Baral, C. (2022). Is a Question Decomposition
Unit All We Need?. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 4553–4569, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

• Puri, R. S., Mishra, S., Parmar, M., Baral, C. (2022). How Many Data Samples is an
Additional Instruction Worth?. arXiv preprint arXiv:2203.09161.

• Mishra, S., Nouri, E. (2022). HELP ME THINK: A Simple Prompting Strat-
egy for Non-experts to Create Customized Content with Models. arXiv preprint
arXiv:2208.08232.

375

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

30313219

2023

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	CROSS-TASK GENERALIZATION BY LEARNING FROM INSTRUCTIONS
	Introducing Cross-Task Generalization
	Natural Instructions
	Instruction Schema
	Constructing Natural Instructions

	Problem Setup and Models
	Task Splits and Generalizations Types
	Models

	Experiments
	Generalization Under Various Task Splits
	Generalization Under Instruction Encoding and Task Categories
	Generalization vs. Number of Seen Tasks
	Analyses
	Error Analysis

	Analysis of Datasets and their Templates
	Division of Crowdsourcing Instructions into Minimal Tasks
	Analysis of Crowdsourcing Templates
	Qualitative Analysis
	Data Curation Effort
	Qualitative Comparison to PromptSource

	Additional Analysis of Results
	Comparison to Raw Instructions
	T0pp baseline for Natural Instructions

	Conclusion

	NUMGLUE: MULTITASKING IN NUMERICAL REASONING
	Introduction
	NumGLUE
	Novel Datasets
	Existing Datasets
	Data Quality Analysis:

	Experiments
	Baselines

	Results and Discussion
	Error Analysis

	Additional Analysis
	NumGLUE vs Other Datasets:
	Construction of NumGLUE :
	GPT3-Instruct's Response
	Data Quality Analysis of NumGLUE
	Ex-NumNet
	Proposed Memory-Augmented Model
	Hyper Parameters Used
	Additional Examples

	Conclusion

	REFRAMING INSTRUCTIONAL PROMPTS
	Introduction
	Prompt Reframing
	Reframing Principles
	Reframing Techniques

	Experimental Setup
	Empirical Results
	Main Results
	Analyses

	Additional Analysis
	Examples of Error Types

	Conclusion

	Lila: A Unified Benchmark for Mathematical Reasoning
	Introduction
	Lila
	Dataset Construction
	Categories and Tasks
	Lila-OOD
	Lila-Robust
	Statistics

	Experiments
	Results and Analysis
	Results: Fine-tuned Models
	Results: Category-wise Analysis
	Results: Few-shot Prompting

	Qualitative Examples
	Dataset Collection
	Expert annotation

	Dataset Statistics
	Additional Results
	Conclusion

	Less is More: Summary of Long Instructions is Better for Program Synthesis
	Introduction
	Method
	Dataset
	Model

	Experimental Setup
	Results and Analysis
	Human Generated Summaries
	Synthetic Summaries
	Analysis

	Additional Analysis
	Example of removing fake information
	Original Prompt
	Basic Summary
	Expert Summary

	Prompt templates
	Strict Accuracy
	Codex Configuration
	Worst Problems and Statistics
	Average length of Problems and Solutions
	Abbreviated Synthetic Results
	Generated Code
	StudioAI21 Generated Code
	StudioAI21 Generated Code
	GPT Generated Summaries
	Human Generated Instructions
	Summarization
	Expert Summary

	Superfluous Information Confusing the Model
	Original Prompt
	Basic Summary
	Expert Summary
	Generated Code

	Made Up Information Confusing the Model
	Original Prompt
	Expert Summary

	Conclusion

	Is a Question Decomposition Unit All We Need?
	Introduction
	Methods
	Datasets
	Decomposition Process

	Experimental Setup
	Results and Analysis
	Experimental Results
	Analysis

	Prompts
	HotpotQA, DROP, Break
	MATHQA
	SVAMP
	StrategyQA
	QASC
	MultiRC

	Error Examples
	Examples, Results and Details for Automation
	Results
	Conclusion

	How Many Data Samples is an Additional Instruction Worth?
	Introduction
	Multi-Variant Instruction Dataset
	Variant Instruction Task
	Dataset Creation Process
	Dataset Properties and Statistics

	Experimental Setup
	Models
	Experiments

	Results and Analysis
	Experimental Results
	Analysis

	Multi-Variant Dataset Additional Details
	Semantic Textual Similarity
	Word-Level Dissimilarity
	Length Diversity

	Example of Variants
	Task-Specific Results
	Multi-Task Results
	Cross-Task Results
	Equal Data Analysis
	Robustness Analysis
	Contribution of Individual Variants
	Conclusion

	Help me Think: A Simple Prompting Strategy for Non-experts to Create Customized Content with Models
	Introduction
	Help me Think
	Experiments
	Tasks:
	Data Collection:
	Statistics:
	Evaluation:

	Results
	Related Work
	Help me Think Algorithm and Description
	Detailed Prompts and Hyperparameters
	User Inputs and GPT3 Outputs
	Additional Analysis
	Additional Tasks
	Conclusion

	DISCUSSION
	CONCLUSION & FUTURE WORK

	REFERENCES
	RELATED PUBLICATION DETAILS

