
Addressing Efficiency and Reliability Challenges in Natural Language Processing

by

Neeraj Varshney

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2024 by the
Graduate Supervisory Committee:

Chitta Baral, Chair
Yezhou Yang

Nakul Gopalan
Pratyay Banerjee

ARIZONA STATE UNIVERSITY

May 2024

ABSTRACT

Recently developed large language models have achieved remarkable success on a

wide range of natural language tasks. Furthermore, they have been shown to possess

an impressive ability to generate fluent and coherent text. Despite all the notable

abilities of these models, there exist several efficiency and reliability related challenges.

For example, they are vulnerable to a phenomenon called ‘hallucination’ in which

they generate text that is not factually correct and they also have a large number of

parameters which makes their inference slow and computationally expensive. With

the objective of taking a step closer towards further enabling the widespread adoption

of the Natural Language Processing (NLP) systems, this dissertation studies the

following question: how to effectively address the efficiency and reliability related

concerns of the NLP systems?

Specifically, to improve the reliability of models, this dissertation first presents

an approach that actively detects and mitigates the hallucinations of LLMs using a

retrieval augmented methodology. Note that another strategy to mitigate incorrect

predictions is abstention from answering when error is likely, i.e., selective prediction.

To this end, I present selective prediction approaches and conduct extensive experi-

ments to demonstrate their effectiveness. Building on top of selective prediction, I also

present post-abstention strategies that focus on reliably increasing the coverage of a

selective prediction system without considerably impacting its accuracy. Furthermore,

this dissertation covers multiple aspects of improving the efficiency including ‘inference

efficiency’ (making model inferences in a computationally efficient manner without

sacrificing the prediction accuracy), ‘data sample efficiency’ (efficiently collecting

i

data instances for training a task-specific system), ‘open-domain QA reader efficiency’

(leveraging the external knowledge efficiently while answering open-domain questions),

and ‘evaluation efficiency’ (comparing the performance of different models efficiently).

In summary, this dissertation highlights several challenges pertinent to the efficiency

and reliability involved in the development of NLP systems and provides effective

solutions to address them.

ii

ACKNOWLEDGMENTS

I would like to begin by sincerely thanking my dissertation advisor Dr. Chitta

Baral for his guidance, mentorship, and support throughout my doctoral journey. Dr.

Baral’s encouragement and insightful feedback have been instrumental in every step

of my research. It has been my privilege to learn from and work under his supervision

during my PhD.

I am also thankful to the members of my dissertation committee Dr. Yezhou

Yang, Dr. Nakul Gopalan, and Dr. Pratyay Banerjee for their valuable insights and

constructive feedback which has helped me immensely in structuring my thesis.

I would also like to express my sincere gratitude to my internship mentors from

Tencent AI (Jianshu Chen, Wenlin Yao, Hongming Zhang, and Dong Yu) and Amazon

Science (Ankit Chadha, Alessandro Moschitti, Rik koncel-kedziorski, Siddhant Garg,

and Ivano Lauriola).

I am highly grateful to Swaroop Mishra under whose guidance and mentorship

my research journey began. His consistent support and encouragement have played

a very crucial role in my PhD. I would also like to thank my wonderful peers

and collaborators: Tejas Gokhale, Kuntal Pal, Man Luo, Pulkit Verma, Bhavdeep

Sachdeva, Mihir Parmar, Shailaja Sampat, Himanshu Gupta, Maitreya Patel, Agneet

Chatterjee, Pavel Dolin, Agastya Seth, Mutsumi Nakamura, Santosh Mashetty, Mirali

Purohit, Eric Robertson, Bing Liu, Nisarg Patel, Ming Shen, Yizhong Wang, Arindam

Mitra, Shrinidhi Kumbhar, Daniel Khashabi, Ashwin Kalyan, Ayushi Agarwal, Nemika

Tyagi, Aswin RRV, Md Nayem Uddin, Divij Handa, Satyam Raj, Venkatesh Mishra,

Ritika Sarkar, and Amir Saeidi.

iii

I am thankful to my friends, Karan, Rahul, Mohit, Mihir, Abhishek, Paritosh,

Deepit, Saurabh, Manan, Anmol, Aviral and my colleagues and mentors from Mi-

crosoft: Darshat, Amit, Lekshmi, Ayush, Yasir, Neethi, Deepika, Luqman, Shivangi,

Juhi, and Shubham for providing me with the confidence to pursue PhD.

I would also like to acknowledge the support of DARPA, ASU HPC, Mayo Clinic,

GPSA, Amazon Research Award, and SCAI for financial and computing resources.

Lastly, I would like to acknowledge the support of my family for their unwavering

encouragement and understanding. Their belief in me has been a constant source of

strength and motivation.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . xvii

LIST OF FIGURES . xxvii

CHAPTER

1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Solutions to Address the Efficiency and Reliability Challenges . . . 3

1.3 Impact of our Solutions . 9

1.4 Summary . 12

1.5 Related Publications . 14

2 BACKGROUND AND RELATED WORK . 17

2.1 Hallucinations of Large Language Models . 17

2.2 Selective Prediction . 20

2.2.1 Formulation . 20

2.2.2 Tasks Related to Selective Prediction . 22

2.2.2.1 Confidence Calibration . 22

2.2.2.2 Out-of-Domain Detection . 22

2.3 Efficient Decoding of Large Language Models. 22

2.4 Efficient Inference of Models . 25

2.5 Efficient Evaluations . 26

v

CHAPTER Page

3 IMPROVING RELIABILITY BY ACTIVELY DETECTING AND

MITIGATING HALLUCINATIONS OF LARGE LANGUAGE MOD-

ELS . 27

3.1 Why Do LLMs Hallucinate? . 28

3.2 Active Detection and Mitigation Approach . 30

3.2.1 Hallucination Detection . 32

3.2.1.1 STEP: Identify Key Concepts . 32

3.2.1.2 STEP: Calculate Model’s Uncertainty. 34

3.2.1.3 STEP: Create Validation Question 35

3.2.1.4 STEP: Find Relevant Knowledge 37

3.2.1.5 STEP: Answer Validation Question 37

3.2.2 Hallucination Mitigation . 38

3.2.3 Design Decisions. 38

3.3 Experiments and Results . 42

3.3.1 Motivating Findings . 46

3.3.1.1 Propagation of Hallucination . 46

3.3.1.2 Logits Provide Signal for Hallucination 47

3.3.2 Hallucination Detection and Mitigation 49

3.3.3 Active Detection and Mitigation . 51

3.4 Additional Experiments . 52

3.4.1 Efficacy with Another LLM . 53

3.4.2 Multi-hop Questions . 53

vi

CHAPTER Page

3.4.3 False Premise Questions . 54

3.5 Advantages of the Proposed Approach . 56

3.6 Limitations of the Proposed Approach . 57

3.6.1 Impact on Inference Efficiency . 57

3.6.2 Correctness of Retrieved Knowledge . 61

3.6.3 Error Propagation . 62

3.7 Further Analysis . 62

3.7.1 Active Detection and Mitigation Performance Analysis 62

3.7.2 Recall of Hallucination Detection vs Probability Threshold 63

3.7.3 Hallucination Mitigation Analysis . 64

3.7.4 Analysis of Logit Output Values . 67

3.7.4.1 Benefit of Identifying Concepts from a Sentence 67

3.7.4.2 Logit Output Values with Minimum Technique. 68

3.7.4.3 Comparing Probability Calculation Techniques 69

3.7.5 Efficacy with Another LLM . 69

3.7.6 Multi-hop QA Experiment . 71

3.7.6.1 Prompt with In-context Examples 71

3.7.6.2 Examples of Multi-hop Bridge Questions 72

3.7.6.3 Examples of Model Responses . 72

3.7.7 False Premise QA Experiment . 73

3.7.8 Effectiveness of the Method beyond the First Five Gener-

ated Sentences. 76

vii

CHAPTER Page

3.7.9 Effectiveness of Retrieval Alone . 77

3.8 Other Applications of our Approach . 78

3.9 Conclusion . 79

4 IMPROVING RELIABILITY BY ADDRESSING THE HALLUCINA-

TION PROBLEM IN TASKS INVOLVING NEGATION 80

4.1 Introduction . 80

4.2 Evaluation Tasks . 83

4.2.1 False Premise Completion (FPC) . 83

4.2.2 Constrained Fact Generation (CFG) . 85

4.2.3 Multiple-Choice QA (MCQA). 88

4.2.4 Fact Generation (FG) . 88

4.3 Experiments and Results . 89

4.3.1 False Premise Completion . 89

4.3.1.1 Performance of Models . 91

4.3.1.2 Mitigation of Hallucinations . 92

4.3.2 Constrained Fact Generation . 101

4.3.3 Multiple-Choice QA . 104

4.3.4 Fact Generation . 106

4.4 BARD Evaluations . 109

4.5 Conclusion . 109

5 IMPROVING RELIABILITY BY ABSTAINING FROM MAKING

INCORRECT PREDICTIONS VIA SELECTIVE PREDICTION 111

viii

CHAPTER Page

5.1 Introduction . 111

5.2 Approaches . 114

5.3 Experimental Setup . 115

5.3.1 Tasks and Settings: . 115

5.3.2 Training Details: . 116

5.4 Results and Analysis . 118

5.4.1 Slight Improvement in IID . 118

5.4.2 Negligible Improvement / Degradation in OOD and ADV . 119

5.4.3 Calib T Degrades Performance . 120

5.4.4 Existing Approaches Fail to Utilize Additional Resources . . 122

5.4.5 Effect of Increasing Dropout Masks in Monte-Carlo Dropout122

5.4.6 No Clear Winner . 122

5.4.7 MaxProb for Selective Prediction . 123

5.4.8 Comparing Risk-Coverage Curves of MCD and Calib C for

DNLI Dataset in IID Setting. 125

5.5 Towards Improving Selective Prediction Ability of NLP Systems . 126

5.6 Method. 127

5.6.1 Difficulty Score Computation . 128

5.6.2 Annotation Score Computation . 129

5.6.3 Calibration . 130

5.7 Experimental Setup . 131

5.7.1 Calibration Baselines . 131

ix

CHAPTER Page

5.7.2 Datasets . 132

5.8 Results and Analysis . 133

5.8.1 MaxProb Struggles in OOD Setting . 133

5.8.2 Proposed Method Outperforms All . 134

5.9 Conclusion . 135

6 RELIABLY INCREASING THE COVERAGE OF A SELECTIVE

PREDICTION SYSTEM . 136

6.1 Introduction . 137

6.2 Post-Abstention . 140

6.2.1 Background . 140

6.2.2 Task Formulation . 141

6.2.3 Approaches . 143

6.2.3.1 Ensembling using Question Paraphrases 143

6.2.3.2 Re-Examining Top N Predictions (REToP) 145

6.2.3.3 Human Intervention (HI) . 147

6.3 Experiments and Results . 149

6.3.1 Experimental Setup . 149

6.3.2 Results . 150

6.3.2.1 REToP . 150

6.3.2.2 Comparing Post-Abstention Approaches 151

6.3.2.3 Human Intervention (HI) . 152

6.3.2.4 Ensembling Using Paraphrases. 154

x

CHAPTER Page

6.4 Analysis . 154

6.5 Ensembling (Mean) Performance . 157

6.6 Dataset Statistics . 157

6.7 Differentiating REToP from Calibration . 158

6.8 Other Post-Abstention Techniques . 158

6.9 Coverage 100% for Human Intervention Methods 160

6.10 Comparison with Other Selective Prediction Methods 160

6.11 Conclusion and Discussion . 161

7 IMPROVING THE LLM INFERENCE EFFICIENCY BY ENABLING

INTERMEDIATE LAYER DECODING . 162

7.1 Introduction . 163

7.2 Instruction Tuning with LITE . 165

7.3 Making Inference Efficient . 168

7.3.1 Fixed Early Exiting . 168

7.3.2 Dynamic Confidence-Based Early Exiting 169

7.4 Experimental Setup . 171

7.5 Results and Analysis . 172

7.5.1 Generation Ability of Intermediate Layers 173

7.5.2 Impact of LITE on the Final Layer . 174

7.5.3 ‘Alignment’ of Intermediate Layers . 175

7.5.4 Token Probability and Alignment . 176

7.5.5 Effectiveness of Dynamic Early Exiting 178

xi

CHAPTER Page

7.5.5.1 Semantic Similarity of the Responses 180

7.5.5.2 Dissecting the Cost Improvements 181

7.5.5.3 Contribution of Different Exiting Layers 181

7.5.5.4 Effectiveness at Category Level . 182

7.6 Evaluation Methodology . 182

7.7 Additional Results . 184

7.7.1 Inability of the Intermediate Layers of the Model Tuned

with Standard Instruction Tuning to Generate ‘High-

Quality’ Text . 184

7.7.2 Intermediate Layers Acquire Good Generation Ability in

IT with LITE . 188

7.7.3 Poor Quality of Responses With Dynamic Early Exiting

from Model Tuned with Standard Instruction Tuning (IT) . 190

7.7.4 Examples of Responses with Dynamic Early Exiting for

Model instruction tuned with LITE . 194

7.7.5 Quality and Inference Cost Analysis at Category Level 197

7.7.6 Relationship Between Token Prediction Confidence and

Percentage Alignment of the Intermediate Layers for the

Model Tuned with Instruction Tuning (IT) 199

7.7.7 Dynamic Confidence-Based Early Exiting with Aggressive

Confidence Thresholds . 199

7.7.8 Results for 13B Model . 201

xii

CHAPTER Page

7.8 Weighted LITE . 202

7.9 Design Decisions . 203

7.10 Discussion on Other Avenues of Research using Intermediate Layer

Decoding . 204

7.10.1 Speculative Sampling . 204

7.10.2Hallucination Detection . 205

7.11 Conclusion and Discussion . 206

8 JOINTLY IMPROVING EFFICIENCY AND ACCURACY VIA

MODEL CASCADING . 207

8.1 Introduction . 207

8.2 Model Cascading . 212

8.2.1 Formulation . 212

8.2.2 Approaches . 214

8.3 Experiments . 217

8.3.1 Experimental Details . 217

8.3.2 Cascading with Two Models (K=2) . 219

8.3.2.1 Problem Setup . 219

8.3.2.2 Results . 220

8.3.3 Cascading with Three Models (K=3). 222

8.3.3.1 Problem Setup . 222

8.3.3.2 Results and Analysis . 224

8.3.4 Analysis with Other Model Combinations 226

xiii

CHAPTER Page

8.3.4.1 Medium and Large . 226

8.3.4.2 Mini and Large. 227

8.4 Conclusion and Discussion . 228

9 EFFICIENTLY UTILIZE EXTERNAL KNOWLEDGE FOR OPEN-

DOMAIN QUESTION ANSWERING VIA DYNAMIC READING . . . 230

9.1 Introduction . 231

9.2 Approach . 234

9.2.1 Mathematical Formulation . 235

9.2.2 Deciding When to Use More Knowledge. 237

9.2.3 Baseline Approaches . 238

9.2.4 Performance Comparison Metric . 239

9.3 Experiments and Results . 240

9.3.1 One Knowledge Iteration (K = 1) . 243

9.3.2 Two Knowledge Iterations (K = 2) . 246

9.3.3 Three Knowledge Iterations (K = 3) . 248

9.4 Impact of Knowledge Iterations . 249

9.5 Comparing Overall Performance . 250

9.6 Conclusion . 251

10 ACHIEVING TRAINING DATA EFFICIENCY FOR NATURAL LAN-

GUAGE INFERENCE USING PHL TRIPLET GENERATION 252

10.1 Introduction . 253

10.2 Unsupervised NLI . 256

xiv

CHAPTER Page

10.3 PHL Triplet Generation. 258

10.3.1P : Premise Generation . 258

10.3.2 T : Transformations . 259

10.3.2.1Entailment: . 259

10.3.2.2Contradiction: . 261

10.3.2.3Neutral: . 264

10.3.3Data Validation . 265

10.4 Training NLI Model . 266

10.4.1NPH-Setting . 266

10.4.2P-Setting . 267

10.4.3PH-Setting . 267

10.5 Experiments . 268

10.5.1Experimental Setup . 268

10.5.2Results . 269

10.5.3 Low-Data Regimes . 272

10.5.4Analysis . 273

10.6 Conclusion and Discussion . 275

11 ACHIEVING EVALUATION EFFICIENCY VIA INSTANCE-LEVEL

DIFFICULTY ANALYSIS OF EVALUATION DATA 277

11.1 Introduction . 278

11.2 Difficulty Score Computation . 280

11.2.1Desiderata for Difficulty Scores . 280

xv

CHAPTER Page

11.2.2Method . 281

11.3 Efficient Evaluations . 284

11.3.1Problem Statement . 284

11.3.2 Solution . 284

11.3.3Experimental Details . 286

11.3.4Related Work . 289

11.3.5Results . 289

11.3.5.1Generalization of Difficulty Scores: 290

11.3.5.2Efficient Evaluations: . 290

11.4 Improving Evaluation Datasets . 292

11.4.1Problem Statement . 292

11.4.2 Solution . 293

11.4.3Results . 296

11.5 Other Applications of ILDAE . 297

11.5.1Dataset Analysis . 297

11.5.2Model Analysis . 298

11.5.3Correlation with OOD Performance . 300

11.6 Conclusion . 301

12 CONCLUSIONS AND FUTURE WORK . 303

REFERENCES . 307

xvi

LIST OF TABLES

Table Page

1. Examples of concepts identified by different techniques. 33

2. Examples of validation questions corresponding to the identified keyphrases

generated by Instructing the Model technique. 36

3. Instructional Prompts corresponding to different steps of our approach. . . . 39

4. Statistics of the generated sentences for the article generation task. 44

5. Examples of both sentence and concept-level annotations for the input:

“Write an article about Eleanor Arnason”. Annotation for correct concepts is

represented in green while annotation for hallucinated concept is represented

in red. 45

6. Hallucination detection performance of self-inquiry and web-search tech-

niques. It also shows separate precision and recall on both hallucinated

and non-hallucinated instances. 50

7. Hallucination mitigation results after modifying the reported hallucinations. 51

8. % Hallucination with different strategies on Multi-hop bridge questions.

Lower is better. 54

9. % Hallucination with different strategies on false premise questions. *

indicates that the questions are adversarial. Lower is better. 56

10. Examples of successful mitigation of hallucinations by our mitigation tech-

nique. Original Sentence corresponds to the sentence generated by the

model and Modified Sentence corresponds to the sentence obtained on

applying our technique. 65

xvii

Table Page

11. Examples where our mitigation technique fails to mitigate complete hallu-

cination in the generated sentence. Original Sentence corresponds to the

sentence generated by the model and Modified Sentence corresponds to the

sentence obtained on applying our technique. 66

12. Examples of multihop questions from HotpotQA. 70

13. Examples of responses generated using our approach for multihop bridge

questions. 72

14. Examples of ‘false premise’ questions and their corresponding ‘true premise’

counterparts. 73

15. Instructional Prompts for rectifying the false premise questions. 74

16. Examples of original questions (both false premise and true premise) and

the questions after rectification. ✗and ✓indicate that the modified question

is incorrect and correct, respectively. 74

17. Comparing responses generated on a few false premise questions by the

GPT-3.5 model, GPT-3.5 moel leveraging the retrieved knowledge as con-

text, and our approach. 75

18. Examples of prompts for the FPC task. 85

19. Examples of keywords for the CFG task. 86

20. Examples of questions for the MCQA task. 87

21. Names of personalities from six distinct domains considered in the study

for FG task. 87

22. Performance of models on the FPC task. 90

xviii

Table Page

23. Examples of knowledge retrieved by using the corresponding prompt as the

search query. 96

24. Examples of responses of various models on the false premise prompts. 98

25. Examples of false premise prompts with corresponding correct premise

prompts. 99

26. Examples of responses after application of various mitigation strategies on

the false premise prompts.. 100

27. Examples of responses after application of ‘Know’ mitigation strategy on

the false premise prompts.. 101

28. Examples of responses after application of various mitigation strategies on

the correct premise prompts. 102

29. Hallucination % of models on the CFG task. 102

30. Examples of responses of various models on the CFG task. 103

31. Examples of responses of GPT-4 on the CFG task. 104

32. Performance of models on the MCQA task. 104

33. Examples of Orca-2 responses on the MCQA task. 105

34. Examples of facts generated by LLaMA-2 for both ‘without negation’

and ‘with negation’ prompt. (✗) and (✓) correspond to hallucinated and

factually correct statements respectively. 108

35. Examples of BARD evaluations. 110

xix

Table Page

36. Comparing selective prediction performance (AUC of risk-coverage curve)

of various approaches for Duplicate Detection datasets. Lower AUC is

better in SP. MaxProb baseline scores are underlined, best performance is

in bold, and scores that considerably outperform MaxProb are in italics. 119

37. Comparing selective prediction performance (AUC of risk-coverage curve) of

various approaches for QA datasets. Lower AUC is better in SP. MaxProb

baseline scores are underlined, best performance is in bold, and scores that

considerably outperform MaxProb are italics. 120

38. Comparing selective prediction performance (AUC of risk-coverage curve) of

various approaches for NLI datasets. Lower AUC is better in SP. MaxProb

baseline scores are underlined, best performance is in bold, and scores that

considerably outperform MaxProb are in italics. 121

39. Comparing percentage improvement of various calibration approaches on

AUC of risk-coverage curve (over MaxProb) in in-domain (SNLI) and

out-of-domain settings (MNLI, Stress Test) for NLI task. 132

40. Comparing % improvement of various calibration approaches on AUC of

risk-coverage curve in IID (MRPC) and OOD (QQP) settings for DD task. 132

xx

Table Page

41. Performance of REToP as a post-abstention method for selected abstention

thresholds. The QA model is trained using SQuAD training data and

evaluated on SQuAD (in-domain) and 10 out-of-domain datasets. The

last column corresponds to the overall improvement aggregated over all

confidences ranging from 0 to 1 at an interval of 0.02. ↓ and ↑ indicate

that lower (risk) and higher (coverage, risk improvement) values are better

respectively. 148

42. Comparing total risk improvement achieved by different post-abstention

methods. * for HI indicates that it’s results are not directly comparable as

it outputs multiple predictions while others output only one. 152

43. Comparing risk values achieved by the HI method (returns two predictions

for all abstained instances) across different abstention thresholds. 153

44. Statistics of evaluation data used in this work. 158

45. Performance of Ensembling (Mean) as a post-abstention method for selected

abstention thresholds. The QA model is trained using SQuAD training

data and evaluated on SQuAD (in-domain) and 10 out-of-domain datasets.

The last column corresponds to the overall improvement aggregated over

all confidences ranging from 0 to 1 at an interval of 0.02. ↓ and ↑ indicate

that lower (risk) and higher (coverage, risk improvement) values are better

respectively. 159

46. Percentage improvements in the inference cost (measured in FLOPs) with

dynamic early exiting. 180

xxi

Table Page

47. Semantic similarity between the final layer’s and the dynamic early exiting

responses on test sets. 181

48. Percentage improvements in the inference cost (measured in FLOPs) with

dynamic early exiting for the 13B model. On average, it achieves an

improvement of 46.35%. 201

49. Statistics of evaluation datasets: Vicuna, Koala, WizardLM, and Self-

Instruct. 202

50. Inference cost (in 109 FLOPs) of BERT variants for different input text

sequence lengths. We also specify the storage size of the models in this table.219

51. Comparing AUC values of different cascading methods in K=2 setting.

Random and Heuristic correspond to the cascading baselines. MaxProb

and DTU outperform both the baselines. 219

52. Comparing AUC values of different cascading methods in K=3 setting.

Random and Heuristic correspond to the cascading baselines. DTU out-

performs other cascading methods on average. 223

53. Comparing AUCs of accuracy-cost curves of different cascading techniques

for (CB=T5-large and OB=T5-base) configuration. 245

54. Comparing AUCs of accuracy-cost curves of different cascading techniques

for (CB=T5-large and OB=T5-large) configuration. 245

55. Comparing EM accuracy of ODQA methods. * indicates the highest

performance of the latest model. 246

xxii

Table Page

56. Comparing AUCs of accuracy-cost curves of the proposed and the baseline

methods in K=2 setting. 247

57. Comparing reader inference cost of FiD and our system at equivalent exact

match accuracies on NQ. 250

58. Illustrative examples of PHL triplets generated from our proposed trans-

formations. E,C, and N correspond to the NLI labels Entailment, Contra-

diction, and Neutral respectively. 259

59. Illustrative examples of entailment transformations. 260

60. Illustrative examples of contradiction transformations. 262

61. Illustrative examples of neutral transformations. 263

62. Sizes of PHL triplet datasets generated by our transformations for the

unsupervised settings. All numbers are in thousands. C, R, W denote

COCO, ROC Stories, and Wikipedia respectively. For P-Setting, we show

stats for SNLI dataset. We do not include PH-Setting in this table because

we leverage the PHL triplets generated using the P-Setting to solve it as

described in Section 10.4.3. 266

63. Comparing accuracy of models in the NPH-setting. C, R, and W correspond

to the premise sources COCO, ROC, and Wikipedia respectively. Results

marked with * have been taken from Cui, Zheng, and Wang 2020. 269

xxiii

Table Page

64. Comparing accuracy of various approaches in the P-Setting. Results marked

with * have been taken from Cui, Zheng, and Wang 2020. Note that we

utilize the premises of the SNLI training dataset only but evaluate on SNLI

(in-domain), and MNLI, DNLI, BNLI (out-of-domain). 270

65. Comparing accuracy of our proposed approaches in the PH-Setting. Note

that the models are trained using PH pairs only from the SNLI train-set

but evaluated on MNLI (out-of-domain dataset) also. 270

66. Comparing performance of various methods on in-domain and out-of-domain

datasets in low-data regimes (100-2000 training instances). ‘BERT’

method corresponds to fine-tuning BERT over the provided instances

from SNLI/MNLI, ‘NPH (Random)’ corresponds to further fine-tuning

our NPH model with the randomly sampled instances from SNLI/MNLI,

‘NPH (Adv.)’ corresponds to further fine-tuning our NPH model with the

adversarially selected instances from SNLI/MNLI. 271

67. Ablation Study of transformations in the NPH-Setting. Each row cor-

responds to the drop in performance on the SNLI dataset when trained

without PHL triplets created using that transformation. 273

68. Precision and Recall values achieved by our models under each unsupervised

setting. 274

69. Performance of our NPH model on Names-Changed (NC) and Roles-

Switched (RS) adversarial test sets Mitra, Shrivastava, and Baral 2020. . . . 274

70. Examples of mis-labeled PHL triplets generated by our transformations. . . 275

xxiv

Table Page

71. Kendall correlation with full evaluation dataset achieved by various instance

selection approaches for different percentage of instances. Each cell shows

the mean and standard deviation obtained from 5 different runs. − cell

indicates 0 selected instances. We show the expanded version of this table

in supplementary. 288

72. Illustrative examples of instances that receive high difficulty score but are

not erroneous. Such instances are difficult even for humans as they require

reasoning ability. 292

73. Examples of erroneous instances from SNLI, CSQA, Winogrande, and

Abductive NLI. Orange (ambiguous) and red (mislabeled) correspond to the

originally annotated answer while blue corresponds to the correct/equally

probable answer. 293

74. Illustrative examples of erroneous instances in SNLI, CSQA, Winogrande,

and Abductive NLI. Orange (ambiguous) and red (mislabeled) indicate the

originally annotated answer while blue indicates the True/equally probable

answer. 294

75. Illustrative examples of trivial instances in SNLI, CSQA, Winogrande, and

Abductive NLI. Text in blue corresponds to the ground-truth answer. 296

xxv

Table Page

76. Illustrative examples from SNLI dataset modified using our technique.

Top two correspond to trivial instances for which a human modified the

hypothesis in a label-preserving manner such that the model’s prediction

changed. Bottom two correspond to mislabeled instances where the human

rectified the label. 297

77. Kendall correlation with full dataset evaluation achieved by our proposed

instance selection approach for different percentage of instances. Each cell

shows the mean and standard deviation obtained from 5 different runs. . . . 299

xxvi

LIST OF FIGURES

Figure Page

1. Illustration of the proposed active detection and mitigation approach.

Different techniques for each step are mentioned on the left with the

preferred technique highlighted in red. 31

2. Distribution of instances across different domains in our topic set for the

article generation task. 43

3. Demonstrating relationship between ‘hallucination in a generated sentence’

and ‘hallucination in previously generated sentences’. Bars YY, NY, YN,

and NN correspond to four possibilities. 48

4. Trend of hallucination with the calculated probability score (MIN) at

concept level. As the score increases, the tendency to hallucinate decreases. 49

5. Comparing % hallucination in the output of GPT-3.5 with our active

detection and mitigation approach on the ‘article generation task’. 52

6. Comparing latency of various steps of the methodology (at a sentence level).

Note that the latency of mitigation is low as it is only conditionally called

for some sentences. We show the average mitigation latency for sentences

on which it is called in the Mitigation∗ bar. 61

7. Comparing hallucinations across different categories of text-davinci-003

and generation from our approach. 63

8. Recall of hallucination detection vs Probability threshold plot for Self

Inquiry and web search techniques at both sentence-level and concept-level. 63

xxvii

Figure Page

9. Demonstrating the benefit of identifying concepts from a sentence for

detecting hallucinations. The figure shows precision-recall curves for the

sentence level hallucination detection task corresponding to two methods

that use the probabilities calculated from the logit output values. The

blue curve corresponds to the technique in which we use the minimum

probability across all tokens of the sentence and the orange curve is for

the technique in which we use the minimum over only the tokens of the

identified concepts. 64

10. Trend of hallucination with the calculated probability score (Minimum

technique) at both the sentence and concept levels. As the score increases,

the tendency to hallucinate decreases. 68

11. PR curves for the hallucination detection task (concept-level) using the

three probability calculation techniques. ‘Minimum’ technique achieves

highest AUC. 69

12. Comparing hallucination % for Vicuna-13B and our approach on the ‘article

generation task’. 70

13. % Hallucination results on Multi-hop bridge Questions. 73

14. Results on ‘False Premise Questions’ for GPT-3.5, GPT-3.5 leveraging

knowledge (retrieved via web search) and our approach. 76

15. Illustration of the four tasks that deal with negation studied in this work.

Responses enclosed in red boxes (marked with ✗) are hallucinations while

those in green boxes (marked with ✓) are factually correct. 82

xxviii

Figure Page

16. Impact of various mitigation strategies with LLaMA-2 model on the Prompt

Completion task. We show performance on both false premise prompts and

correct premise prompts. 91

17. Performance of models on the FG task with negation (w/ neg) and without

negation (w/o neg). 106

18. Domain-wise performance of LLaMA-2 on the FG task with negation and

without negation. 107

19. Comparing AUC of risk-coverage plot of various SP approaches with Max-

Prob in IID settings. 117

20. Comparing AUC of risk-coverage plot of various approaches with MaxProb

in OOD and ADV settings. The results have been averaged over all the

task-specific OOD/ADV datasets mentioned in Section 5.3 to highlight the

general trend. 118

21. With increase in MaxProb, the accuracy usually increases. 124

22. With increase in coverage (i.e decrease in abstention threshold), the risk

usually increases. 124

23. Comparing risk-coverage curves of MCD and Calib C for DNLI dataset in

IID setting. 125

24. Trend of Model Accuracy with Confidence and Difficulty score for the NLI

task. 135

xxix

Figure Page

25. Illustrating the impact of employing a post-abstention method on top of

selective prediction system. A regular model that has an accuracy of 70%

(at coverage 100%) is first enabled with selective prediction ability that

increases the accuracy to 85% but drops the coverage to 71%. Then, on

employing a post-abstention method to the abstained instances (remaining

29%), coverage increases to 80% without a considerable drop in overall

accuracy. 138

26. Summarizing performance evaluation methodology of post-abstention.

Given a selective prediction system with coverage covth and risk riskth

at abstention threshold th, let the new coverage and risk after applying a

post-abstention method be cov′th and risk′th respectively. From the risk-

coverage curve of the given system, we calculate its risk at coverage cov′th

and compare it with risk′th (diff). For the method to have a positive impact,

risk′th should be lower than the risk of the given system at coverage cov′th. 143

27. Illustrating annotation procedure of REToP. For each training instance,

top N predictions given by the QA model are annotated conditioned on

their correctness i.e. correct predictions are annotated as ‘1’ and incorrect

predictions are annotated as ‘0’. This annotated binary classification dataset

is used to train the auxiliary model. 144

28. Improvement in risk achieved by using REToP in post-abstention on SQuAD

(in-domain) and HotpotQA (out-of-domain) datasets for all confidences. . . 151

xxx

Figure Page

29. Distribution of QA model’s confidence on SQuAD instances that get an-

swered after applying REToP at abstention threshold 0.5. 155

30. Number of correct (green) and incorrect (red) predictions on those abstained

SQuAD instances where REToP surpasses the abstention threshold of 0.5

but its prediction differs from the original system. 156

31. Venn diagram of abstained SQuAD instances answered by REToP and

Ensembling (Mean) approaches at abstention threshold 0.5. 156

32. Comparing the quality of the responses and the inference cost of (i) the

standard generation from the final layer (orange) and (ii) the dynamic early

exiting method (blue) on model tuned with LITE. The top and the bottom

rows show the effectiveness on four different test sets for the LLaMA-2 7B

and 13B models, respectively. 164

33. Loss calculation for standard instruction tuning (left) and instruction tuning

with additional explicit losses from the intermediate layers LITE (right). . . . 167

34. Demonstrating quality comparison of the output of intermediate layers

(generated via fixed exiting) against the final layer’s generation of the model

tuned with standard instruction tuning. 172

35. Comparing quality of responses of (a) model tuned using IT and (b) model

tuned using IT with LITE. The outputs of the models are of comparable

quality. 176

xxxi

Figure Page

36. Comparing percentage ‘alignment’ of intermediate layer token predictions

with the token predictions of the final layer for the model tuned using IT

(orange) and the model tuned using IT with LITE (blue). 177

37. Demonstrating trend of token prediction confidence of the intermediate

layers and the % alignment with the final layer for model tuned with LITE. 179

38. Comparing the average number of tokens generated in the final layer’s

responses and the dynamic early exiting responses for the four datasets. . . . 182

39. % of token outputs from different exiting layers in the proposed method. . . 184

40. Comparing the quality of responses and the inference cost of the standard

generation method with the dynamic early exiting method on different

categories of the Vicuna Test set. 197

41. Comparing the quality of responses and the inference cost of the standard

generation method with the dynamic early exiting method on different

categories of the WizardLM Test set. 198

42. Demonstrating relationship between token prediction confidence of the

intermediate layers and the percentage alignment with the token prediction

of the final layer for model tuned with IT. 200

xxxii

Figure Page

43. Comparing the quality of responses (evaluated using the Claude model) and

the inference cost (measured in FLOPs) of the standard generation method

from the final layer with the dynamic early exiting method. Confidence

Thresholds: Layer 8: 0.85, Layer 12: 0.85, Layer 16: 0.8, Layer 20: 0.8,

Layer 24: 0.7, and Layer 28: 0.6. This aggressive configuration results in

larger cost improvements of 49.93% but results in a slight degradation in

the generation quality. 201

44. Comparing percentage ‘alignment’ of intermediate layer token predictions

with the token predictions of the final layer for the model tuned using IT

(orange) and the model tuned using IT with weighted LITE (blue). 203

45. Comparing percentage ‘alignment’ of intermediate layer token predictions

with the token predictions of the final layer for the model tuned using IT

with LITE (orange) and the model tuned using IT with weighted LITE

(blue). 204

46. Demonstrating trend of token prediction confidence of the intermediate

layers and the % alignment with the final layer for model tuned with

weighted LITE. 204

xxxiii

Figure Page

47. Illustrating a cascading approach with three models (Mini, Med, and Base)

arranged in increasing order of capacity. An input is first passed through

the smallest model (Mini) which fails to predict with sufficient confidence.

Therefore, it is then inferred using a bigger model (Med) that satisfies the

confidence constraints and the system outputs its prediction (‘contradiction’

as dog has four legs). Thus, by avoiding inference through large/expensive

models, the system saves computation cost without sacrificing the accuracy.208

48. Accuracy-computation cost curves for cascading with MaxProb (in blue)

and Random baseline (in black) methods in K=2 setting. Red points

correspond to the accuracy-cost values of individual models M1 and M2.

Points of intersection of red dashed lines drawn from M2 on the blue curve

correspond to the evaluation parameters described in Section 8.2. MaxProb

outperforms Random baseline as it achieves considerably higher AUC. 218

49. Comparing accuracy of individual models M1 and M2 on the instances

answered by each model when used as cascade for MNLI dataset in K=2

setting. 223

50. Accuracy-computation cost curves for cascading with MaxProb (in blue)

and Random baseline (in black) methods in K=3 setting. Accuracy-cost

values of individual models M1, M2, and M3 are shown in red. Note that

M1 here is different from M1 in Figure 48. MaxProb outperforms Random

baseline as it achieves higher AUC. 224

xxxiv

Figure Page

51. Comparing accuracy of individual models M1, M2, and M3 on the instances

answered by each model when used in the cascade for MNLI dataset. 225

52. Accuracy-Cost curves for K=2 setting with M1 as BERT-medium and M2

as BERT-large models. 227

53. Accuracy-Cost curves for K=2 setting with M1 as BERT-mini and M2 as

BERT-large models. 228

54. Accuracy-cost curves of the proposed system (blue) and baseline (black)

for K=1 setting on NQ. Red points are the (cost, accuracy) values of the

individual models CB and OB1 (using S1 passages). Point of intersection

(×) of red dashed line drawn from OB1 on the blue curve corresponds to

cost at which our system achieves the same accuracy as OB1. Our method

achieves this accuracy at considerably lower reader inference cost. 241

55. Accuracy-cost curves of the proposed method (in blue) and baseline (in

black) for K=2 setting on NQ. Red points correspond to the individual

models CB, OB1 (S1 passages), and OB2 (S2 passages). 242

56. Accuracy-cost curves of the proposed method (in blue) and baseline (in

black) for K=3 setting on NQ. Red points correspond to the accuracy and

cost values of the individual CB, OB1, OB2, and OB3 models. 248

xxxv

Figure Page

57. Illustrating the impact of multiple knowledge iterations by plotting

accuracy-cost curves for K=1 and K=2 settings together. The system

using two iterations (K=2) achieves higher AUC than its counterpart using

the same amount of total knowledge (20, 25, and 50 in the three cases

respectively) but with just one iteration. 249

58. Illustrating our procedural data generation approach for unsupervised NLI.

A sentence is treated as premise, and multiple hypotheses conditioned on

each label (Entailment- E, Contradiction- C, and Neutral- N) are generated

using a set of sentence transformations. 254

59. Comparing supervised NLI with our three unsupervised settings. For

unsupervised settings, we procedurally generate PHL triplets to train the

NLI model. In NPH setting, a premise pool is collected from raw text

corpora such as Wikipedia and then used for generating PHL triplets. In P

setting, we directly apply these transformations on the available premises.

In PH setting, we leverage the P-setting model to pseudo-label and filter

the provided unlabeled PH pairs and then train the NLI model using this

pseudo-labeled dataset. 255

60. Illustrating five applications of Instance-Level Difficulty Analysis of Evalu-

ation data (ILDAE). 279

xxxvi

Figure Page

61. Comparing standard evaluation approach (top) with our proposed ‘efficient’

approach (bottom). We leverage difficulty scores to select a small subset of

evaluation instances on which the performance of models can be efficiently

compared. Our selected subset contains a majority of the instances with

moderate difficulty scores and only a few with extreme difficulty scores.

We use Kendall correlation between the performance scores to measure the

efficacy of our approach. 286

62. Demonstrating difficulty score generalization. Difficulty scores computed

using RoBERTa-large show negative correlation with accuracy averaged

over 27 other models, hence satisfying the desiderata mentioned in Section

11.2.1. Note that we depict this trend for a few datasets only to avoid

cluttering the image. Similar trend is observed for other dataset also. 287

63. Comparing accuracy (averaged over 27 models) before and after modifying

the SNLI instances using our model-and-human-in-the-loop technique. The

accuracy on trivial instances decreases as we make them more difficult while

the accuracy on erroneous instances increases as we repair them. 295

64. Comparing average difficulty of NLI labels for various datasets. 298

65. Comparing accuracy of various models in different difficulty regions for

SNLI dataset. Each line corresponds to a candidate model (27 in total).

It shows that a single model does not achieve the highest accuracy in all

difficulty regions. 300

xxxvii

Figure Page

66. Comparing Kendall correlation of standard unweighted accuracy and

weighted accuracy with OOD accuracy. Weighted accuracy achieves 5.2%

higher correlation on average. 302

xxxviii

Chapter 1

INTRODUCTION

1.1 Overview

Recent years have seen remarkable advancements in the field of Natural Language

Processing (NLP) which have led to the development of a number of pre-trained

language models such as BERT (Devlin et al. 2019), RoBERTa (Roberts, Raffel,

and Shazeer 2020), XLNET (Z. Yang et al. 2019a), BART (Lewis et al. 2020), T5

(Raffel et al. 2020a), GPT series models (Brown et al. 2020; OpenAI 2023), LLaMA

(Touvron et al. 2023), and several others. These models have been shown to perform

well on a variety of natural language tasks. Despite this impressive performance, we

note that there exist numerous reliability and efficiency related concerns with these

models such as

• They are vulnerable to ‘hallucination’ in their output as they often generate

text that is factually incorrect

• They are not absolutely perfect in their predictions, i.e., they often make

incorrect predictions

• They are not quite effective in performing tasks that involve ‘negation’

• Their inference is computationally very expensive due to the large number

of parameters in the model architecture

1

• They typically require a large number of high-quality examples for

training

• Their cost of inference considerably increases when retrieval of external

knowledge is required

• The performance comparison of the competing models is also very

expensive both in terms of computation and latency

• The decoding procedure during text generation is computationally

very expensive due to the autoregressive nature of inference where one token

is generated at a time

The above list clearly shows that developing and using an NLP system involves

numerous critical efficiency and reliability related challenges. With the objective

of taking a step closer towards enabling the widespread adoption, this dissertation

studies the following question: “how to effectively address these critical efficiency and

reliability related concerns of NLP systems? ”

We elaborate on these aspects and provide an overview of our solutions in Section

1.2. Followed by this, we highlight the impact of our solutions in Section 1.3. We

provide a summary of all the chapters of this dissertation in Section 1.4. Finally, in

Section 1.5, we list down the corresponding papers in which these research ideas have

appeared.

2

1.2 Solutions to Address the Efficiency and Reliability Challenges

In this section, we elaborate on the efficiency and reliability challenges and provide

an overview of our solution to address those challenges.

Addressing the Hallucination Problem of LLMs: Hallucination in the

context of language models refers to the generation of text that seems syntactically

sound, fluent, and natural but is factually incorrect, nonsensical, or unfaithful to

the provided source input (Maynez et al. 2020; Holtzman et al. 2020; Ji et al. 2023).

Recently developed language models often tend to ‘hallucinate’ in their output

which critically hampers their reliability. These hallucinations can lead to serious

consequences such as the spreading of misinformation and violation of privacy. It

also raises safety concerns for real-world applications. For example in medical

applications, a hallucinated report generated from a patient’s information can pose

serious risks to the patient. It can even provoke a life-threatening incident for the

patient. Hallucinations hamper the reliability and trustworthiness of the model which

makes it important to address this problem.

Addressing the above problem, we propose an approach that actively detects and

mitigates hallucinations during the generation process using a retrieval augmented

methodology in Chapter 3. This is crucial as we show that when a sentence generated

by a model is hallucinated, the chances of hallucination in the subsequently generated

sentences increase, i.e., hallucinations often propagate in the model’s output. This can

be attributed to the autoregressive nature of the LLMs and the discrepancy between

the training and inference time decoding. Specifically, during the training time, the

3

model is encouraged to predict the next token conditioned on the ground-truth prefix

tokens. However, at inference time, the model generates the next token conditioned

on the historical tokens previously generated by itself. Thus, actively detecting and

mitigating hallucinations during the generation process also facilitates in preventing

the propagation of hallucinations in the generation. Specifically, we first identify the

candidates of potential hallucination leveraging the model’s logit output values, check

their correctness through a validation procedure, mitigate the detected hallucinations

via prompting, and then continue with the generation process. This active intervention

also facilitates in preventing the propagation of hallucinations in the LLM’s output.

We demonstrate the effectiveness and wide applicability of our approach through

experiments with article generation task, multi-hop QA, and false premise QA tasks

(Varshney, Yao, et al. 2023).

The above work focuses on general tasks; however, an important component of

language is ‘negation’. Negation is important because it adds depth and nuance to

the understanding of language and is also crucial for logical reasoning and inference.

To this end, we extend the above research on hallucination and further study it in

tasks involving negation in Chapter 4. Specifically, we study four tasks with negation:

‘false premise completion’, ‘constrained fact generation’, ‘multiple choice question

answering’, and ‘fact generation’. We show that open-source state-of-the-art LLMs

such as LLaMA-2-chat, Vicuna, and Orca-2 hallucinate considerably on all these

tasks involving negation which underlines a critical shortcoming of these models.

Addressing this problem, we further study numerous strategies to mitigate these

hallucinations and demonstrate their impact.

4

Note that the models always output predictions; however, reliability can also be

improved via selective prediction in which we enable the systems to abstain from

making predictions when they are likely to be incorrect. To this end, we study this

aspect in the subsequent chapter.

Reducing Prediction Errors via Selective Prediction: As motivated above,

we note that another aspect of reliability is focused on reducing the prediction errors

of the models. This is important because NLP models are not absolutely perfect,

i.e., they often make incorrect predictions that hamper their reliability. Selective

prediction partly addresses these concerns by enabling systems to abstain from

making predictions when they are likely to be incorrect (Varshney, Mishra, and Baral

2022b; Kamath, Jia, and Liang 2020). Avoiding incorrect predictions allows them

to maintain high task accuracy and thus makes them more reliable. In Chapter 5,

we first provide mathematical formulation of the selective prediction task and then

present several selective prediction methods such as maximum softmax probability,

monte-carlo dropout, label smoothing, and calibration in in-domain, out-of-domain,

and adversarial settings.

We note that while the selective prediction approaches are advantageous, they

leave us with a pertinent question ‘what to do after abstention’. We address this

question in the subsequent chapter.

Increasing the Coverage of a Selective Prediction System via Post-

Abstention Strategies: In Chapter 6, we study the question of ‘what to do after

abstention’ and present ‘post-abstention’ approaches that allow re-attempting the

5

abstained instances with the aim of increasing coverage of the given selective prediction

system without significantly sacrificing its accuracy.

Given the scale at which the natural language processing research has reached,

developing and using an NLP system also involves a number of efficiency related

challenges. To this end, we next study approaches to jointly improve the efficiency

and accuracy.

Jointly Improving Inference Efficiency and Accuracy: The large size of

the models (number of parameters) makes their inference slow and computationally

expensive. This poses a practical challenge limiting their widespread adoption in

resource constrained real-world applications. Improving the efficiency of systems

provides multiple benefits such as it reduces the latency of predictions enabling their

use in time-sensitive applications also, it reduces the computational requirements to

use these models making them fit for low-resource settings also. Focusing on this

problem, we first study instruction tuning LLMs with additional explicit Losses from

the InTermediate layErs (LITE) and show that it enables these layers to acquire

‘good’ generation ability without affecting the generation ability of the final layer.

We then perform ‘dynamic confidence-based early exiting ’ at token level from the

intermediate layers which improves the computational efficiency of text generation

without sacrificing the quality of the generation. We conduct comprehensive ex-

periments by instruction tuning LLaMA-2 models on the Alpaca dataset (Taori

et al. 2023) and evaluate on four different instruction test sets. We show that dynamic

confidence-based early exiting achieves consistent and considerable inference cost

6

improvements while maintaining the generation quality of the outputs (Varshney,

Chatterjee, et al. 2023).

The above dynamic early exiting method requires re-training (tuning with LITE)

the model. However, this raises a question of what if we have availability of models

of varying sizes. We address this question in Chapter 8 where we propose a method

of ‘model cascading’ which utilizes a collection of models of varying capacities to

accurately yet efficiently output predictions. Cascading aims at improving the

computational efficiency of the system without sacrificing its prediction performance.

Note that this idea of cascading can be extended to a more general task of open-domain

question answering and we study this in the subsequent chapter.

Improving QA Reader Efficiency while Leveraging External Knowledge:

A typical open-domain QA system involves Retriever-reader pipeline (Danqi Chen

et al. 2017; Karpukhin et al. 2020; Khattab and Zaharia 2020; Izacard and Grave

2021) in which the retriever finds top-N relevant passages and the reader leverages

them to predict the answer. Prior work has shown that the reader’s performance tends

to improve (up to a certain extent) with the increase in the value of N . Thus, state-of-

the-art models use a large number of passages (e.g. 100). While this strategy results

in a high prediction performance, it makes the inference of the reader computationally

very expensive. For instance, Fusion-in-Decoder reader model (FiD) (Izacard and

Grave 2021) requires approximately 70 × 1011 floating-point operations (FLOPs)

for an inference with 100 passages. This high inference cost limits the widespread

adoption of such systems in applications that prefer efficient systems to be able to

achieve low response times.

7

Building on top of the concept of cascading, we propose a method of leveraging

the external knowledge efficiently while correctly answering open-domain questions in

Chapter 9. Specifically, we propose an approach that utilizes both the ‘closed-book’

(parametric knowledge) and the ‘open-book’ (external knowledge) inferences in an

efficient manner. Furthermore, instead of using a large fixed number of passages

for open-book inference, we dynamically read the external knowledge in multiple

‘knowledge iterations’. We demonstrate that our approach improves both the inference

efficiency and the prediction accuracy of the reader. In the next chapter, we focus on

improving the data sample efficiency of training.

Improving Data Sample Efficiency of Training: Training a model to per-

form a task often requires a large amount of data which is typically collected via

crowdsourcing. Crowdsourcing data presents several challenges, such as it is very

expensive, time-consuming, and often yields a large number of trivial/easy examples.

These issues hamper the quality of the data and in turn the performance of the models

trained on that data. In Chapter 10, we address these limitations and propose a

method called “PHL triplet generation” which focuses on the creation of high-quality

non-trivial examples. In this approach, we first procedurally create data instances

using a set of sentence transformations in an automated way and train a model using

these synthetically created examples. Then, for collecting the non-trivial examples,

we explore an adversarial technique of data collection. Specifically, the data creators

need to create a data instance on which the trained model fails to give the correct

prediction. Thus, it discourages the data creators from creating trivial examples as the

model is already trained on such trivial examples and will not get fooled. This explore

8

several unsupervised settings and show that our approach achieves state-of-the-art

results. This work makes the crucial step of data collection efficient and also improves

the quality of the collected data (Varshney et al. 2022). After the completion of

training, we focus on improving the efficiency of evaluations in the next chapter.

Improving Efficiency of Evaluations: Success of transformer-based models

such as BERT (Devlin et al. 2019) has fostered development of a number of other

large-scale pre-trained language models (Y. Liu et al. 2019b; K. Clark et al. 2020;

Sanh et al. 2019). Furthermore, there are numerous different pre-training objectives.

So, essentially, we have a lot of model options and comparing the performance of

such as a large number of models is very expensive. In Chapter 11, we explore the

question “can we efficiently compare the performance of models?” Addressing this

question, we propose an approach of difficulty sampling in which we first argue that

not all the evaluation examples are equally difficult, then we develop a method to

quantify the difficulty of an instance, and finally, we propose an approach to sample

examples based on the difficulty scores. This work is one of the pioneering works in

this important area of efficient evaluations.

In conclusion, this dissertation provides effective solutions to address the critical

challenges pertinent to the efficiency and reliability of NLP systems.

1.3 Impact of our Solutions

Addressing the Hallucination Problem of LLMs: On the article gener-

ation task, our active detection and mitigation approach successfully reduces the

9

hallucinations from 47.5% to 14.5%. We also show the individual efficacy of our

detection and mitigation techniques. Specifically, the detection technique achieves

a recall of ∼ 88% and the mitigation technique successfully mitigates 57.6% of the

correctly detected hallucinations. Importantly, our mitigation technique does not

introduce new hallucinations even in the case of incorrectly detected hallucinations,

i.e., false positives. We also show that our approach can be adapted to improve

the performance on multi-hop bridge questions where the percentage hallucinations

reduces from 54% to just 26%. We also demonstrate its efficacy on the adversarial

false premise question answering task where the hallucination reduces to just 24%.

Reducing Prediction Errors via Selective Prediction: Our calibration

technique results in an improvement in selective prediction performance of 15.81%

and 5.64% in the in-domain and out-of-domain settings, respectively.

Increasing the Coverage of a Selective Prediction System via Post-

Abstention Strategies: The post-abstention method results in overall risk im-

provements of up to 21.81 and 24.23 in the in-domain and out-of-domain settings

respectively.

Jointly Improving Inference Efficiency and Accuracy: We conduct com-

prehensive experiments with 10 diverse NLU datasets in multiple task settings that

differ in the number of models available for cascading (K value from Section 8.2). We

first demonstrate that cascading achieves considerable improvement in computational

efficiency. For example, in case of QQP dataset, cascading system achieves 88.93%

computation improvement over the largest model (M3) in K=3 setting i.e. it requires

just 11.07% of the computation cost of model M3 to attain equal accuracy. Then, we

10

show that cascading also achieves improvement in prediction accuracy. For example,

on CB dataset, the cascading system achieves 2.18% accuracy improvement over M3

in the K=3 setting. Similar improvements are observed in settings with different

values of K. We also show that introducing additional model in the cascade further

increases the efficiency benefits.

Improving QA Reader Efficiency while Leveraging External Knowledge:

Comparing with the top-performing Fusion-in-Decoder reader, our dynamic reading

approach matches its accuracy by utilizing just 18.32% of its reader inference cost

(measured in FLOPs) and also outperforms it by achieving up to 55.10% accuracy on

NQ Open.

Improving Data Sample Efficiency of Training: Comprehensive experiments

with several NLI datasets show that the proposed approach results in accuracies of up

to 66.75%, 65.9%, 65.39% in PH, P, and NPH settings respectively, outperforming all

existing unsupervised baselines. Furthermore, fine-tuning our model with as little as

0.1% of the human-annotated training dataset (500 instances) leads to 12.2% higher

accuracy than the model trained from scratch on the same 500 instances.

Improving Efficiency of Evaluations: Evaluation conducted using instances

selected based on difficulty scores shows high correlation with the evaluation conducted

using the entire dataset. Specifically, using just 5% instances (selected via difficulty

analysis) achieves as high as 0.93 Kendall correlation with evaluation using complete

dataset.

11

1.4 Summary

A summary of the main contributions of this thesis is provided below:

• In Chapter 2, we present the background and the related work of our research

problem. Specifically, we first describe the hallucination problem of language

models with various causes and approaches to address this phenomenon. Then,

we detail the selective prediction task and also provide the mathematical formu-

lation of the task involving coverage and risk. Finally, we provide background

for the efficiency challenges.

• In Chapter 3, we address the problem pertaining to the hallucination of lan-

guage models. We highlight how hallucinations hamper the reliability and

trustworthiness of the model and then describe our approach to address the

problem. Specifically, our approach actively detects and mitigates the halluci-

nations during the generation process using a retrieval augmented methodology.

We conduct comprehensive experiments and demonstrate the efficacy of the

approach across various tasks.

• The work in Chapter 3 focuses on general tasks; however, an important com-

ponent of language is ‘negation’. Negation is important because it adds depth

and nuance to the understanding of language. To this end, in Chapter 4, we

extend our research on hallucinations and further study it in tasks involving

negation. Specifically, we study four tasks with negation: ‘false premise com-

pletion’, ‘constrained fact generation’, ‘multiple choice question answering’,

and ‘fact generation’. We show that open-source state-of-the-art LLMs such

12

as LLaMA-2-chat, Vicuna, and Orca-2 hallucinate considerably on all these

tasks involving negation which underlines a critical shortcoming of these models.

Addressing this problem, we further study numerous strategies to mitigate these

hallucinations and demonstrate their impact.

• In Chapter 5, we note that the reliability can also be improved via selective

prediction in which we enable the systems to abstain from making predictions

when they are likely to be incorrect. We underline the advantages of selective

prediction and study various approaches such as maximum softmax probability,

monte-carlo dropout, label smoothing, and calibration in in-domain, out-of-

domain, and adversarial settings.

• In Chapter 6, we note that while the selective prediction approaches are advan-

tageous, they leave us with a pertinent question ‘what to do after abstention’.

To this end, we study this question with ‘Post-Abstention’, a task that allows

re-attempting the abstained instances with the aim of increasing coverage of

the system without significantly sacrificing its accuracy. We first provide math-

ematical formulation of this task and then explore several methods to solve it.

Then, we turn our focus to jointly improving the efficiency and accuracy.

• In Chapter 7, we address the high inference cost of LLMs and propose a dy-

namic confidence based early exiting approach that improves the computational

efficiency of the text generation without sacrificing the quality of the generation.

We present comprehensive experiments by instruction tuning LLaMA-2 models

on the Alpaca dataset and demonstrate efficacy on four different instruction

test sets.

13

• In Chapter 8, we present model cascading that focuses on efficiently yet ac-

curately output predictions. We show the efficacy of cascading on various

classification tasks. We also study the impact of introducing additional models

in the cascade and show that it further increases the efficiency improvements.

• In Chapter 9, we adapt this cascading technique for open-domain question

answering task and improve the efficiency of the reader model in the retriever-

reader pipeline. Specifically, we present a dynamic reading approach that

efficiently leverages the ‘closed-book’ and ‘open-book’ inferences.

• In Chapter 10, we focus on synthetically creating task specific training data

to reduce the requirement of collecting expensive crowdsourced data. We

present this work for the natural language inference task which requires de-

termining whether a hypothesis is true (Entailment), false (Contradiction), or

undetermined (Neutral) given a premise statement.

• In Chapter 11, we cover instance-level difficulty analysis of evaluation data.

This is motivated from the fact that not all the evaluation instances are equally

difficult, i.e., some instances are trivially easy, some are moderately difficult,

and some are extremely difficult. Thus, we propose a method to calculate the

difficulty score of an instance and demonstrate various applications of these

scores such as conducing efficient yet accurate evaluations withe fewer instances.

1.5 Related Publications

The ideas in this dissertation have appeared in the following papers:

14

• Neeraj Varshney and Chitta Baral. 2023. Post-Abstention: Towards Reliably

Re-Attempting the Abstained Instances in QA. In Proceedings of the 61st

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 967–982, Toronto, Canada. Association for Computational

Linguistics.

• Neeraj Varshney, Swaroop Mishra, and Chitta Baral. 2022. ILDAE: Instance-

Level Difficulty Analysis of Evaluation Data. In Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 3412–3425, Dublin, Ireland. Association for Computational

Linguistics.

• Neeraj Varshney and Chitta Baral. 2022. Model Cascading: Towards Jointly

Improving Efficiency and Accuracy of NLP Systems. In Proceedings of the

2022 Conference on Empirical Methods in Natural Language Processing, pages

11007–11021, Abu Dhabi, United Arab Emirates. Association for Computational

Linguistics.

• Neeraj Varshney, Pratyay Banerjee, Tejas Gokhale, and Chitta Baral. 2022.

Unsupervised Natural Language Inference Using PHL Triplet Generation. In

Findings of the Association for Computational Linguistics: ACL 2022, pages

2003–2016, Dublin, Ireland. Association for Computational Linguistics.

• Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and Chitta Baral. 2022.

Investigating Acceleration of LLaMA Inference by Enabling Intermediate Layer

Decoding via Instruction Tuning with ’LITE’. In Findings of the Association for

15

Computational Linguistics: NAACL 2024, Mexico City, Mexico. Association

for Computational Linguistics.

• Neeraj Varshney, Swaroop Mishra, and Chitta Baral. 2022. Investigating

Selective Prediction Approaches Across Several Tasks in IID, OOD, and Adver-

sarial Settings. In Findings of the Association for Computational Linguistics:

ACL 2022, pages 1995–2002, Dublin, Ireland. Association for Computational

Linguistics.

• Neeraj Varshney, Himanshu Gupta, Eric Robertson, Bing Liu, and Chitta

Baral. 2023. A Unified Evaluation Framework for Novelty Detection and

Accommodation in NLP with an Instantiation in Authorship Attribution. In

Findings of the Association for Computational Linguistics: ACL 2023, pages

1794–1818, Toronto, Canada. Association for Computational Linguistics.

• Neeraj Varshney, Swaroop Mishra, and Chitta Baral. 2022. Towards Improv-

ing Selective Prediction Ability of NLP Systems. In Proceedings of the 7th

Workshop on Representation Learning for NLP, pages 221–226, Dublin, Ireland.

Association for Computational Linguistics.

• Neeraj Varshney, Man Luo, and Chitta Baral. 2023. Can Open-Domain

QA Reader Utilize External Knowledge Efficiently like Humans? Workshop

on Knowledge Augmented Methods for NLP, Washington, DC, USA. The

Association for the Advancement of Artificial Intelligence (AAAI).

• Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, Dong Yu. 2023.

A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of LLMs

by Validating Low-Confidence Generation, Preprint.

16

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Hallucinations of Large Language Models

Advancements in the field of natural language processing have led to the devel-

opment of models that possess an impressive ability to generate fluent and coherent

text. However, these models are vulnerable to hallucinate in their output. Prior

work (Maynez et al. 2020; Huang et al. 2021; Ji et al. 2023) has categorized text

hallucinations into two classes: Intrinsic (when the generated output contradicts the

source content) and Extrinsic (when the generated output cannot be verified from the

source content, i.e., it that can neither be supported nor contradicted by the source).

One thread of research pertaining to hallucinations has focused on studying

different causes of this phenomenon such as training data quality (Wang 2019;

Katherine Lee et al. 2022), source-target divergence (Dhingra et al. 2019) (when

a model is trained on noisy data with source-reference divergence, it may learn

to generate text that is not necessarily grounded or faithful to the given source),

ill-suited modeling (Aralikatte et al. 2021; Feng et al. 2020; H. Li et al. 2018),

stochasticity during inference (Dziri et al. 2021; Tian et al. 2019; N. Lee et al. 2022)

(decoding strategies that improve the generation diversity, such as top-k sampling, top-

p, and temperature parameters, often result in increased hallucinations which could

be attributed to the introduction of “randomness/stochasticity” while selecting tokens

17

(from top-k or top-p) instead of choosing the most probable token while decoding),

and parametric knowledge bias (Longpre et al. 2021; W. Zhou et al. 2023; Michel

et al. 2019) in which Models often tend to prioritize the parametric knowledge

(knowledge acquired during pre-training and implicitly stored in the parameters of

the model) over the provided contextual knowledge resulting in hallucinations.

The other thread focuses on addressing the hallucination problem (Manakul,

Liusie, and M. J. Gales 2023; Azaria and Mitchell 2023b; N. Lee et al. 2022; Du

et al. 2023; T. Zhang et al. 2023). Manakul, Liusie, and M. J. Gales 2023 proposes a

sampling-based hallucination detection approach in which they first sample multiple

responses from the model and then measure the information consistency between the

different responses. They posit that when a language model knows a given concept

well, the sampled responses are likely to be similar and contain consistent facts; on

the other hand, for hallucinated facts, stochastically sampled responses are likely to

diverge and may completely contradict one another.

Azaria and Mitchell 2023b leverages LLM’s internal state to identify the truthful-

ness of a statement. Using an annotated dataset, they train a separate classifier that

takes the LLM’s activation values as input and predicts its truthfulness. Kadavath

et al. 2022 have shown the utility of model’s uncertainty values in detecting incorrect-

ness in the model’s responses by demonstrating that larger models are well-calibrated

on multiple-choice and true/false questions. N. Lee et al. 2022 hypothesize that the

randomness of sampling is more harmful to factuality when it is used to generate the

latter part of a sentence than the beginning of a sentence and propose a new sampling

18

algorithm named factual-nucleus sampling that dynamically adapts the ‘nucleus’ p

along the generation of each sentence.

Du et al. 2023 propose an approach motivated by The Society of Mind and

multi-agent settings in which multiple models individually propose and jointly debate

their responses and reasoning processes to arrive at a common answer.

Gou et al. 2023; A. Chen et al. 2023; Zhao et al. 2023; Chern et al. 2023 propose to

use external knowledge/tools to address the hallucination problem of LLMs. FactScore

Min et al. 2023 presents an evaluation method that breaks the model’s generation

into a series of atomic facts and computes the percentage of atomic facts supported

by a reliable knowledge source. A. Chen et al. 2023 finetunes a T5-large model as

compact editor to denoise the corruptions to detect incorrectness in a given sentence.

We also study hallucinations of LLMs in tasks involving negation. This is because

the above works investigating hallucinations lack comprehensively studying the crucial

aspect of ‘negation’. Negation is important because it adds depth and nuance to

the understanding of language. It helps understand the opposite or absence of a

statement, providing a more precise and nuanced interpretation and it is also crucial

for logical reasoning and inference. Negation also helps prevent misinterpretation of

statements, i.e., without the ability to recognize negation, one might misunderstand

the intended meaning of a sentence, leading Furthermore, we humans arguably use

affirmative expressions (without negation) more often than expressions with negation

(Hossain et al. 2020; Ettinger 2020); this implies that texts containing negation could

be underrepresented in the training/tuning data of the models making it even more

important to study.

19

Prior studies on negation have primarily focused on classification tasks like natural

language inference and masked word prediction. Hosseini et al. 2021 propose to

fine-tune BERT (Devlin et al. 2019) with an unlikelihood objective and evaluate on

negated LAMA dataset (Kassner and Schütze 2020). Hossain et al. 2020; Hossain

and Blanco 2022; Truong et al. 2023 focus on natural language inference and cloze

completion tasks with datasets like SNLI (Bowman et al. 2015), Multi-NLI (Williams,

Nangia, and Bowman 2018). Ye et al. 2023 have studied negation in logical reasoning

context. A more recent work Jang, Ye, and Seo 2023 study the performance of LLMs

on transformed prompts of various datasets where the transformation is performed by

replacing words like ‘correct’ with ‘incorrect’, ‘appropriate’ with ‘inappropriate’, and

‘natural’ with ‘unnatural’. This transformation results in prompts such as “Complete

the given sentence with the inappropriate ending”.

2.2 Selective Prediction

2.2.1 Formulation

A selective prediction system comprises of a predictor (f) that gives the model’s

prediction on an input (x), and a selector (g) that determines if the system should

output the prediction made by f i.e.

(f, g)(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(x), if g(x) = 1

Abstain, if g(x) = 0

20

Usually, g comprises of a confidence estimator g̃ that indicates f ′s prediction confi-

dence and a threshold th that controls the abstention level:

g(x) = 1[g̃(x)) > th]

An SP system makes trade-offs between coverage and risk. For a dataset D,

coverage at a threshold th is defined as the fraction of total instances answered by

the system (where g̃ > th) and risk is the error on the answered instances:

coverageth =
∑xi∈D 1[g̃(xi)) > th]

∣D∣

riskth =
∑xi∈D 1[g̃(xi)) > th]li
∑xi∈D 1[g̃(xi)) > th]

where, li is the error on instance xi.

With decrease in th, coverage will increase, but the risk will usually also increase.

The overall SP performance is measured by the area under Risk-Coverage curve (El-

Yaniv et al. 2010) which plots risk against coverage for all threshold values. Lower

the AUC, the better the SP system as it represents lower average risk across all

confidence thresholds. We note that ‘confidence calibration’ and ‘OOD detection’ are

related tasks but are non-trivially different from selective prediction as detailed in

2.2.2.

21

2.2.2 Tasks Related to Selective Prediction

2.2.2.1 Confidence Calibration

Selective Prediction is closely related to confidence calibration (Platt et al. 1999)

i.e aligning model’s output probability with the true probability of its predictions.

Calibration focuses on adjusting the overall confidence level of a model, while selective

prediction is based on relative confidence among the examples i.e systems are judged

on their ability to rank correct predictions higher than incorrect predictions.

2.2.2.2 Out-of-Domain Detection

Using OOD Detection systems for selective prediction (abstain on all detected

OOD instances) would be too conservative as it has been shown that models are able

to correctly answer a significant fraction of OOD instances (Talmor and Berant 2019;

Hendrycks et al. 2020; Mishra, Arunkumar, Bryan, et al. 2020).

2.3 Efficient Decoding of Large Language Models

Improving the inference efficiency of LLMs is an important research direction

and is receiving considerable attention from the NLP community. In this section, we

review some of the existing methods and differentiate our work from them.

Reducing model size: Since model size plays a crucial role in increasing the

22

inference cost and latency, techniques like quantization (Dettmers et al. 2022; Yao

et al. 2022; Frantar et al. 2023), knowledge distillation (Hsieh et al. 2023; Jiao

et al. 2020; Z. Li et al. 2022), model compression and network pruning (Wang,

Wohlwend, and Lei 2020; Guo, Rush, and Kim 2021) have been shown to be effective

in improving the inference efficiency.

Furthermore, during sampling, a cache of the keys and values can be maintained

for every attention layer which reduces the computations at inference time (KV

caching). However, it increases the GPU VRAM memory requirement of inference.

Another technique speculative sampling (Leviathan, Kalman, and Matias 2023;

C. Chen et al. 2023) first generates a draft of K tokens from a smaller auto-regressive

model and then scores the draft using the target model. This results in generation of

more than one token (on average) from the target model in a single pass.

Early exiting and cascading based inference techniques have been shown

to be effective for classification tasks with BERT-style models, such as DeeBERT

(Xin et al. 2020) that speeds up BERT inference by inserting extra classification

layers between each encoder layer, PoWER-BERT (Goyal et al. 2020) that focuses

on progressive word-vector elimination (based on significance computed using self-

attention) along the encoder pipeline, DynaBERT (Hou et al. 2020) that adjusts the

size of the model by selecting adaptive width and depth, and cascading (Varshney

and Baral 2022; Lei Li et al. 2021; Yue et al. 2023; Cheng, Kasai, and Yu 2023) in

which sequential inference is done through models of bigger and bigger size with

conditional exiting to output predictions efficiently. Our work is also related to

Confident Adaptive Language Modeling (CALM) (Schuster et al. 2022) and Depth-

23

Adaptive Transformers (Elbayad et al. 2020) in which early exiting is performed by

learning additional classifiers attached to the decoder layers.

Din et al. 2023 proposed to short-cut away transformer inference in between

certain layers by learning linear transformations across layers in the network, i.e.,

casting internal representations. O’Brien and Lewis 2023; Gera et al. 2023 explore

leveraging the intermediate layers for contrastive decoding to improve reasoning.

S. Yang et al. 2023 propose an approach called Predictive Pipelined Decoding

(PPD) that focuses on lowering the latency by utilizing additional compute resources.

Specifically, it accelerates the decoding by parallelizing processes, each of which

starts to decode from the top-k predicted tokens of the specific transformer layer.

Simultaneously, the main process continues to compute the output of the final layer

and predicts the next token.

N. Yang et al. 2023 propose an inference-with-reference decoding method that

exploits the overlap between an LLM’s output and available reference. Specifically, it

first selects a text span from the reference and copies its tokens to the LLM decoder

and then checks if they are acceptable based on the output token probabilities. He

et al. 2023 also uses retriever to generate the draft tokens in speculative decoding.

H. Jiang et al. 2023 propose to compress the prompts to accelerate the inference.

Santilli et al. 2023 propose a parallel decoding strategy for translation using Jacobi

and Gauss-Seidel fixed-point iteration methods

24

2.4 Efficient Inference of Models

In recent times, several techniques have been developed to improve the efficiency

of NLP systems, such as network pruning (Wang, Wohlwend, and Lei 2020; Guo,

Rush, and Kim 2021; T. Chen et al. 2020), quantization (Shen et al. 2020; W.

Zhang et al. 2020; Tao et al. 2022), knowledge distillation (K. Clark et al. 2019; Jiao

et al. 2020; Z. Li et al. 2022; Mirzadeh et al. 2020), and input reduction (Modarressi,

Mohebbi, and Pilehvar 2022). Our work is more closely related to dynamic inference

(Xin et al. 2020) and adaptive model size (Goyal et al. 2020; Kim and Cho 2021; Hou

et al. 2020; Soldaini and Moschitti 2020).

Xin et al. 2020 proposed Dynamic early exiting for BERT (DeeBERT) that speeds

up BERT inference by inserting extra classification layers between each transformer

layer. It allows an instance to choose conditional exit from multiple exit paths. All

the weights (including newly introduced classification layers) are jointly learnt during

training.

Goyal et al. 2020 proposed Progressive Word-vector Elimination (PoWER-BERT)

that reduces intermediate vectors computed along the encoder pipeline. They elimi-

nate vectors based on significance computed using self-attention mechanism. Kim and

Cho 2021 extended PoWER-BERT to Length-Adaptive Transformer which adaptively

determines the sequence length at each layer. Hou et al. 2020 proposed a dynamic

BERT model (DynaBERT) that adjusts the size of the model by selecting adaptive

width and depth. They first train a width-adaptive BERT and then distill knowledge

from full-size models to small sub-models.

25

Lastly, cascading has been studied in machine learning and vision with approaches

such as Haar-cascade (Soo 2014) but is underexplored in NLP (Lei Li et al. 2021). We

further note that cascading is non-trivially different from ‘ensembling’ as ensembling

always uses all the available models instead of carefully selecting one or more models

for inference.

In open-domain QA, especially for the retriever-reader systems, efficiency from the

perspectives of retrieval (Zhao, Lu, and Lee 2021; Luo et al. 2022) and on-disk memory

(Min et al. 2021; Izacard et al. 2020) has been explored. However, efficiently leveraging

external knowledge to improve the computation efficiency of reader inference is also

important and has remained underexplored.

2.5 Efficient Evaluations

Adaptive evaluation (Weiss 1982) is used in educational settings for evaluating

performance of students. It uses Item Response Theory (IRT) (Baker and Kim 2004)

from psychometrics that requires a large number of subjects and items to estimate

system parameters (Lalor, Wu, and Yu 2016; Lalor et al. 2018). Moreover, adaptive

evaluation is computationally very expensive as it requires calculating performance

after each response to select the next instance based on the previous responses of the

subject. Thus, it is not fit for our setting as we intend to improve the computational

efficiency. In contrast, our approach is much simpler and efficient as it does not incur

any additional cost during the evaluation.

26

Chapter 3

IMPROVING RELIABILITY BY ACTIVELY DETECTING AND MITIGATING

HALLUCINATIONS OF LARGE LANGUAGE MODELS

Recently developed large language models (LLMs) have achieved remarkable

success in generating fluent and coherent text. However, these models often tend to

‘hallucinate’ which critically hampers their reliability. Hallucination in the context

of language models refers to the generation of text that seems syntactically sound,

fluent, and natural but is factually incorrect, nonsensical, or unfaithful to the provided

source input (Maynez et al. 2020; Holtzman et al. 2020; Ji et al. 2023). Hallucinations

hamper the reliability and trustworthiness of the model which makes it important to

address this problem.

In this chapter, we address this crucial problem and propose an approach that

actively detects and mitigates hallucinations during the generation process. Specifi-

cally, we first identify the candidates of potential hallucination leveraging the model’s

logit output values, check their correctness through a validation procedure, mitigate

the detected hallucinations via prompting, and then continue with the generation

process. This active intervention also facilitates in preventing the propagation of

hallucinations in the LLM’s output. Through extensive experiments with GPT-3.5

(text-davinci-003) on the ‘article generation task’, we first show that the proposed

approach successfully reduces the hallucinations from 47.5% to 14.5%. Then, we

further demonstrate the effectiveness and wide applicability of our approach through

27

additional experiments with different types of questions (multi-hop and false premise)

and with another LLM from a different model family (Vicuna). In summary, this

work contributes to improving the reliability and trustworthiness of LLMs, a crucial

step en route to enabling their widespread adoption.

3.1 Why Do LLMs Hallucinate?

Recent research on LLM hallucinations has uncovered a variety of reasons for this

phenomenon:

Source-Reference Divergence: When a model is trained on data with source-

reference (target) divergence, it may learn to generate text that is not necessarily

grounded or faithful to the given source. While collecting the data, source-reference

divergence can happen unintentionally or intentionally.

Unintentional Source-Reference Divergence: It is possible that the data

is heuristically created and the target may contain information that is not always

supported by the source. For instance, if you take news about an incident from

two different websites as a source-reference pair then the reference may contain

information that is absent in the source causing the divergence.

Intentional Source-Reference Divergence: Some tasks by nature do not

always demand information alignment between the source and the target, especially

those that value diversity in the generated output.

Another factor is the presence of duplicates in the training corpus. Specifi-

28

cally, duplicated examples in the training corpus can bias the model towards generating

some highly frequent tokens/phrases causing hallucination.

Using such noisy data for training is one of the factors contributing to the

hallucination phenomenon.

Stochasticity in Decoding Technique: It has been shown that decoding

strategies that improve the generation diversity, such as top-k sampling, top-p, and

temperature parameters, often result in increased hallucinations. This could be

attributed to the introduction of “randomness/stochasticity” while selecting tokens

(from top-k or top-p) instead of choosing the most probable token while decoding.

Parametric Knowledge Bias: Models have been shown to often prioritize the

parametric knowledge (knowledge acquired during pre-training and implicitly stored

in the parameters of the model) over the provided contextual knowledge resulting in

hallucinations.

Discrepancy between Training-time and Inference-time Decoding: One

of the common ways of training a model uses teacher-forced maximum likelihood

estimation (MLE) method, where the decoder is encouraged to predict the next token

conditioned on the ground-truth prefix sequences. However, at inference time, the

model generates the next token conditioned on the historical sequences previously

generated by the model itself. Such a discrepancy can lead to hallucinated generation,

especially when the target sequence becomes long.

Also, generative LMs like GPT-3 are trained to model the statistical correlations

between subword tokens, and thus in reality they can only acquire a limited capability

to generate factually accurate text.

29

3.2 Active Detection and Mitigation Approach

In this work, we propose to actively ‘detect’ and ‘mitigate’ hallucinations during

the generation process. This is crucial as we will show that when a sentence generated

by a model is hallucinated, the chances of hallucination in the subsequently generated

sentences increase, i.e., hallucinations often propagate in the model’s output. This can

be attributed to the autoregressive nature of the LLMs and the discrepancy between

the training and inference time decoding. Specifically, during the training time, the

model is encouraged to predict the next token conditioned on the ground-truth prefix

tokens. However, at inference time, the model generates the next token conditioned

on the historical tokens previously generated by itself. Thus, actively detecting and

mitigating hallucinations during the generation process also facilitates in preventing

the propagation of hallucinations in the generation.

We divide our approach into two stages: Detection and Mitigation. Figure 1

illustrates the key steps of our approach. In order to address the complex task of

detecting and mitigating hallucinations, we decompose it into multiple simpler steps.

In the hallucination detection stage (Section 3.2.1), we first identify the candidates

of potential hallucination, i.e., the key ‘concepts’ of the generated sentence. Next,

leveraging the logit output values of the model, we calculate model’s ‘uncertainty’

on the identified concepts. We demonstrate that this uncertainty score provides a

signal for hallucination. However, we note that this is an additional signal and not

a necessary requirement for our approach. Then, we check the correctness of the

‘uncertain’ concepts through a validation procedure (where we retrieve the relevant

30

Write an article on Rick Mahler

Model

Rick Mahler was a Major League Baseball pitcher who
was born in 1953 in Jupiter, Florida.

Identify Key Concepts

Calculate Model’s Uncertainty

Create Validation Question

Find Relevant Knowledge

Answer Validation Question

Was Rick Mahler
born in 1953 ?

Was Rick Mahler born in
Jupiter, Florida ?

Yes

Major League Baseball 1953 Jupiter, Florida

Major League Baseball 1953 Jupiter, Florida

Validation

No

Fix Hallucinated Sentence
(using retrieved knowledge)

 Rick Mahler was a Major League Baseball pitcher who
was born in 1953 in Austin, Texas.

pitcher

pitcher

Append the repaired sentence
to the prompt and continue

generating the next sentence

Detect and Mitigate Hallucinations

LM LLM

1. Entity Extraction
2. Keyword Extraction
3. Instructing Model

1. Average
2. Minimum
3. Normalized

1. QG Model
2. Instructing Model

Question Types:
1. Yes/No
2. Wh

1. Self-Inquiry
2. Web Search

Repair by
Instructing
the Model

Leveraging
Knowledge {

Figure 1. Illustration of the proposed active detection and mitigation approach. Different techniques
for each step are mentioned on the left with the preferred technique highlighted in red.

knowledge) to detect hallucinations. This is followed by hallucination mitigation

(Section 3.2.2) where we ‘repair’ the sentence via prompting using the retrieved

knowledge as evidence. We can also utilize this knowledge as context for subsequent

generation. We conduct a systematic study exploring multiple techniques for each

step of the approach (as shown in Figure 1).

31

3.2.1 Hallucination Detection

3.2.1.1 STEP: Identify Key Concepts

We start by identifying the candidates of potential hallucination, i.e., the im-

portant concepts from the generated sentence. We identify these concepts because

validating the correctness of the entire sentence at once is infeasible as a sentence

often contains multiple different facets all of which can not be validated at once.

In contrast, individually validating correctness corresponding to the concepts pro-

vides opportunities for accurately detecting hallucinations. Note that a concept is

essentially a span of text consisting of one or more tokens. We study the following

techniques for this step:

Entity Extraction: Entities are typically important parts of a sentence, thus,

we explore using an off-the-shelf entity extraction model to identify the concepts. A

limitation of this method is that a concept need not necessarily be an entity.

Keyword Extraction: Addressing the above limitation and additionally identify

the non-entity concepts, we explore using an off-the-shelf keyword extraction model.

For keyword extraction, we explore a model1 that uses Keyphrase Boundary Infilling

with Replacement (KBIR) as its base model and is fine-tuned on the KPCrowd

dataset (Kulkarni et al. 2021).

Instructing the Model: Since state-of-the-art LLMs perform remarkably

1https://huggingface.co/ml6team/keyphrase-extraction-kbir-kpcrowd

32

Text Entity Ex-
traction

Keyword Ex-
traction

Instructing
Model

John Russell Reynolds was an En-
glish physician and neurologist who
made significant contributions to
the field of neurology.

John Russell
Reynolds,
English

John Russell
Reynolds, En-
glish, physician,
neurologist,
significant con-
tributions, field,
neurology

John Russell
Reynolds, En-
glish, physician,
neurologist,
neurology

He was born in London in 1820 and
studied medicine at the University
of London.

London,
1820, the
University of
London

born, London,
1820, studied
medicine, Univer-
sity, London

London, 1820,
medicine, Uni-
versity of
London

After college, he worked as a lawyer
for the PGA Tour, eventually be-
coming the Tour’s Deputy Commis-
sioner in 1989.

the PGA
Tour, Tour,
1989

college, worked,
lawyer, PGA,
Tour, eventually,
Tour, Deputy
Commissioner

college, lawyer,
PGA Tour,
Deputy Commis-
sioner, 1989

Table 1. Examples of concepts identified by different techniques.

well on a wide range of tasks, in this technique, we directly instruct the model to

identify the important concepts from the generated sentence.

Table 1 shows examples of concepts identified using the three methods, i.e., Entity

Extraction, Keyword Extraction, and Instructing the Model. It shows that the entity

extraction model misses many important concepts while the keyword extraction

model identifies a lot of insignificant concepts also. In contract, instruction technique

successfully identifies all the important concepts. Moreover, it doesn’t require calling

a task-specific tool (entity or keyword extraction model). Thus, we regard it as our

preferred technique for this step.

33

3.2.1.2 STEP: Calculate Model’s Uncertainty

LLMs also provide logit values in their output. Thus, we study if these values

can be utilized to detect hallucinations. Consider a concept consisting of n tokens

and having the maximum softmax probabilities as p1, p2, p3, ..., pn for the n token

positions. We study three different techniques for calculating a probability score

for a concept:

Average (AVG [p1, p2, ..., pn]) , Normalized Product ([p1 × p2 × ... × pn]1/n) ,

and *Minimum* (MIN [p1, p2, ..., pn]) . Here, ‘MIN’ is our preferred technique as

the others may average out the effect of model’s uncertainty on the tokens while low

probability in even one token of a concept provides sufficient evidence of the model

being uncertain in its generation. For e.g., if the model is uncertain about name of

the USA president then its uncertainty on the first token (‘Joe’) would be high but

on the next token (‘Biden’) would be very low as token ‘Joe’ is frequently followed by

token ‘Biden’ in raw text. Thus, Averaging or Normalizing the probabilities will have

a limited capability to capture this signal in comparison to Minimum.

In 3.3.1.2, we show that this score (especially ‘MIN’) indeed provides a signal

for hallucination, i.e., the more uncertain the model is on a concept (low probability

score), the more likely it is to be hallucinating about that concept. calculation

techniques. Thus, we utilize this signal and check for hallucinations for the uncertain

concepts using our validation procedure (3.2.1.3-3.2.1.5). Figure 11 compares the

performance of the three probability calculation techniques.

In the absence of logit output values, all or some heuristically selected

34

concepts (depending on the computational and latency budget of the system) can be

passed to the validation stage for detecting hallucinations.

3.2.1.3 STEP: Create Validation Question

Our validation procedure for a concept starts with creation of a question that

tests the correctness of the information (in the generated sentence) pertaining to

the concept. We study creating Yes/No Questions as illustrated in Table 2 using

Question Generation Tool and *Instructing the Model*.

In instruction technique, we directly prompt the model to create a validation

question checking the correctness of the information about the selected concept.

Similar to the concept identification step, it is our preferred technique as it does

not require calling a task-specific tool. We note that instead of Yes/No questions,

Wh-questions can also be used for validation. We prefer Yes/No questions as it

is relatively easier to verify their answers. We explore Wh-questions for a study in

Section 3.4.2.

Table 2 shows examples of validation questions corresponding to each concept

created via the instruction technique. It shows examples of both the question types,

i.e., Yes/No and Wh questions. We prefer Yes/No questions as it is relatively easier

to verify the answer of these questions.

We have also conducted evaluations of the efficacy of the instructions. Specifically,

for the concept identification step, we studied randomly sampled 50 sentences. The

instruction technique identified 155 concepts in total. It missed only 2 concepts (that

35

Input Generated Sen-
tence

Concept Validation Question

Write an
article
about
John
Russell
Reynolds

Reynolds was
born in London
in 1820 and
studied medicine
at the
University of
London.

London [Y/N] Was John Russell Reynolds born
in London?
[Wh] Where was John Russell Reynolds
born?

1820 [Y/N] Was John Russell Reynolds born
in 1820?
[Wh] What year was John Russell
Reynolds born?

medicine
[Y/N] Did John Russell Reynolds study
medicine?
[Wh] What did John Russell Reynolds
study at the University of London?

University
of Lon-
don

[Y/N] Did Reynolds study medicine at
the University of London?
[Wh] What university did John Russell
Reynolds study medicine at?

Table 2. Examples of validation questions corresponding to the identified keyphrases generated by
Instructing the Model technique.

too these missed concepts can only be loosely regarded as important in the context of

the sentence). Furthermore, the efficacy of the validation and mitigation instructions

is presented in Table 6 and 7, respectively.

We note that the overall efficacy of these techniques (and how well they serve

their purpose) is evaluated by the overall improvement in reducing the hallucinations.

We also note that the LLM can be prompted in a different way also to achieve the

same objective; however, the purpose of this work is to show that the complex task of

addressing hallucinations in an end-to-end manner can be decomposed into simpler

steps that can be solved via instructing the model.

36

3.2.1.4 STEP: Find Relevant Knowledge

We explore two ways of retrieving the relevant knowledge to answer the validation

question.

Web Search: Web search provides several benefits such as generality, wide

coverage, and information freshness. We use Bing search API for retrieving the

knowledge. However, we note that any other search API or knowledge corpus can

also be utilized for this purpose.

Self-Inquiry: Here, we leverage the parametric knowledge of the LLM and

directly prompt it to answer the validation question. Though it does not require

external knowledge, it has drawbacks such as lack of a reliable strategy to extract

the parametric knowledge and knowledge staleness.

Note that our proposed approach has several benefits pertaining to retrieval:

(a) it does not retrieve knowledge when it is not required, i.e., when the model is

already sufficiently confident (since we show that it is less likely to hallucinate in

such scenarios), (b) it individually retrieves knowledge pertinent to the concept(s) on

which the calculated probability score is low thus providing it sufficient and relevant

context for accurate validation and mitigation (Section 3.2.2).

3.2.1.5 STEP: Answer Validation Question

Now, we prompt the model to answer the validation question leveraging the

retrieved knowledge as context and verify its response. If the validation procedure

37

succeeds for all the uncertain concepts then we continue generating the next sentence;

otherwise, we interrupt the generation and mitigate the potential hallucination in the

sentence before continuing the subsequent generation.

3.2.2 Hallucination Mitigation

For mitigating hallucination in the generated sentence, we instruct the model to

repair the generated sentence by removing/substituting the hallucinated information

and incorporating the correct information using the retrieved knowledge as evidence

(Table 3 shows the instructional prompt).

We note that the result of our validation procedure is contingent on the retrieved

knowledge and the model’s ability to leverage that knowledge in answering the

validation question. In Section 3.3.2, we show that our approach performs well on this

task and achieves a high recall demonstrating its efficacy at detecting hallucinations.

Moreover, we show that our mitigation approach does not introduce new hallucinations

even in the case of incorrectly detected hallucinations (false positives).

Table 3 shows the instructional prompts used for different steps of the approach.

3.2.3 Design Decisions

Why the task of addressing hallucinations is broken down into multiple

steps? We note that dealing with the hallucination problem is a complex task and

prior work has shown that breaking down a complex task into simpler sub-tasks helps

38

Step Prompt

Input Prompt Write an article about {topic}
Identify Important Concepts Identify all the important keyphrases from the

above sentence and return a comma separated list.
Create Validation Question For the above sentence about {topic}, generate

a yes/no question that tests the correctness of
{concept}.

Answer Validation Question {search results} Answer the below question about
topic in Yes or No based on the above context.
{validation question}.

Repair Hallucinated Sentence The above sentence has information that can not
be verified from the provided evidence, repair
that incorrect information and create a new
sentence based on the provided evidence.

Table 3. Instructional Prompts corresponding to different steps of our approach.

the model in solving the task better and achieve higher performance (Wei et al. 2022;

D. Zhou et al. 2023; Khot et al. 2023). Thus, we break down this task into individual

sub-tasks which are considerably easier for the model. For the same reason, we also

break down the validation procedure into several steps. We also note that creating

multiple steps can increase the chances of propagation of error from one to the other;

however, the individual steps in our approach are very simple, and the models perform

remarkably well on these steps.

Why validation is done using the web search? Our preferred technique

for retrieving knowledge is web search because the web is more likely to contain

the updated knowledge in comparison to a knowledge corpus whose information can

become stale, outdated, and obsolete.

Why “active” detection & mitigation and not “post-hoc” after complete

response generation? We note that our detection and mitigation techniques can

39

also be applied in a “posthoc” manner after complete response generation. However,

it has several limitations which are addressed by our “active” approach. The “active”

approach prevents the propagation of hallucinations in the subsequently generated

sentences, i.e., if hallucination is detected in the initially generated sentences then

it would be mitigated and course correction would be done for the subsequently

generated sentences. However, the “post-hoc” approach does not provide such an

opportunity of course correction. In other words, in the “active” approach, the model

sees the mitigated / corrected sentences while generating the subsequent sentences;

thus, its output will be more correct, coherent, and fluent. In contrast, in the

“posthoc” approach, the generated sentences are based on the initially generated

previous sentences and thus the mitigated sentence will not be able to influence the

generation of subsequent sentences; thus, the output would not be as coherent and

fluent as the active approach.

Also, applying it in a post-hoc manner will fix the sentences individually thus,

redundant information could be present in multiple sentences hampering the quality

of the response.

For example, for the topic “Twila Shively”, the model generated “Twila Shively

is a renowned American artist and sculptor who has been creating art for over four

decades. She is best known for her large-scale sculptures, which often feature abstract

shapes and forms. . . . ” which is completely hallucinated.

After applying our approach in a post-hoc manner gives “Twila Shively was an

American competitive baseball player who played from 1945 through 1950 in the All-

40

American Girls Professional Baseball League. Twila Shively is known for playing

baseball. . . . ”

In contrast, active approach results in “Twila Shively was an American compet-

itive baseball player who played from 1945 through 1950 in the All-American Girls

Professional Baseball League. She was born in Decatur, Illinois on March 20, 1922

and passed away on November 25, 1999. Twila began playing softball at the age of

eight and quickly moved up in the softball ranks in Chicago. . . . ”

Thus, the active approach results in an output of much higher quality and doesn’t

suffer from issues such are incoherence, consistency, repetition, etc.

Why the unit of generation is a sentence? We select a unit as a sentence

over multiple sentences and (also over just a few words instead of a sentence) because

of the following reasons:

Why not multiple sentences? In autoregressive generation, the generation

depends on the context including the model’s previously generated text. Thus, if we

consider multiple sentences as a unit in our approach (let’s say 3 sentences) and if one

of the initial sentences is hallucinated (and thus replaced with the corrected sentence),

the subsequent sentences (i.e., the remaining sentences of the unit) may not stand

relevant (as they were based on a sentence that has been replaced) and it may make

the generation incoherent. Furthermore, the propagation of hallucination is another

negative contributor as the next sentences may carry forward the hallucination of

the previous incorrect sentences. Thus, the subsequent sentences in the unit would

need to be regenerated. This implies that using multiple sentences as a unit may not

41

return that benefit (that too at the extra cost of generating multiple sentences at

once).

Why not a phrase or a set of words? We note that using a few words (i.e., a

window of text) may not have sufficient information to test the correctness of the

concepts in the generation. For instance, if the window is of the following words:

“Rick Mahler won three gold medals and 2 silver medals at the”, it doesn’t have

sufficient information to validate the correctness of the individual concepts. On the

other hand, a sentence typically provides richer context to validate the correctness of

the concepts of the sentence.

Because of the above two reasons, we use a sentence as the unit in our method.

Order of Validation of Concepts Validation of different concepts can be done

in a sequence (in ascending order of their calculated probability score) or in parallel.

However, running this in parallel would require starting multiple threads which may

not be supported by all machines. Thus, in this work, we study only the sequential

validation strategy but note that it can be made more efficient by running it in

parallel. We regard this sequential validation as a greedy exiting strategy as we

proceed to the mitigation stage on detection of the first hallucinated concept.

3.3 Experiments and Results

We first highlight the two findings that motivate our approach (in 3.3.1.1). Then,

we show the individual efficacy of our detection and mitigation techniques in 3.3.2.

42

Sports

Music

Po
liti

cs

Fil
m

 &
 T

V
History

Services

Science
ArtsLiterature

Ot
he

rs

19%

13%

11%

11%

9%

7%

5%

5%

4%

15%

Figure 2. Distribution of instances across different domains in our topic set for the article generation
task.

Finally, in 3.3.3, we show the effectiveness of our proposed active detection and

mitigation approach.
Data and Annotation: In our experimental setup, we prompt the LLM to write

about a given topic. We use topics from diverse domains as shown in Figure 2. In
each domain, we include different

kinds of topics; for instance, Sports includes sportspersons, teams, and games;

Music includes musicians, songs, music labels, and bands; Politics includes politicians,

political parties, and elections, etc. We use a total of 150 topics in our data. For

selecting the names of people, we randomly sample from the top 20% of longest

articles in WikiBio dataset (Lebret, Grangier, and Auli 2016) as done in Manakul,

Liusie, and M. J. Gales 2023. Similarly, we sample from the longest Wikipedia articles

for the other topics. This is done to avoid obscure or ambiguous topics.

For each topic, we give the following input prompt to the models: ‘Write an

43

article about <topic>’. Then, we (the authors) annotate the correctness of the

first five generated sentences. For this annotation, we look at search results from the

web to find the relevant knowledge that either supports or contradicts the information

in the sentence. In some cases, multiple web searches were required to check the

correctness of different facets of a sentence. Furthermore, in a small number of cases,

we could not find information supporting or contradicting the information in the

generated sentence, we marked it as a case of extrinsic hallucination. We opt for this

expert annotation strategy because despite the annotation task being a simple

binary classification task, it requires considerable effort to check the correctness which

can not reliably be collected via crowdsourcing. In addition to the sentence-level

annotation, we also annotate correctness at concept-level (detailed in 3.3.1.2).

Table 4 shows the statistics of the sentences generated by the GPT-3.5 (text-

davinci-003 with temperature 0) model. A sentence has ∼ 18 words on average and

each sentence has ∼ 3.2 key concepts that are identified by our instruction technique.

Statistic Mean ± Std

Words in a Sentence 18.6 ± 5.55
Key Concepts in a Sentence 3.27± 1.63
Words in a Key Concept 1.79 ± 1.02

Table 4. Statistics of the generated sentences for the article generation task.

Table 5 shows examples of sentence-level and concept-level hallucination annota-

tions.

Human Annotation and Agreement with Expert Annotation We addition-

ally compile human annotations from two annotators on randomly sampled 10 topics

44

Sentence # Sentence Sentence-level
Correctness

Sentence 1 Eleanor Arnason is an award-winning
science fiction and fantasy author who has been
writing since the 1970s .

Correct

Sentence 2 She is best known for her novel
A Woman of the Iron People , which won
the James Tiptree Jr. Award in 1991 .

Correct

Sentence 3 Her work has been praised for its exploration
of gender , race , and identity , as well as its
imaginative world-building .

Correct

Sentence 4 Arnason was born in Minneapolis , Minnesota in
1942 .

Hallucination

Sentence 5 She attended the University of Minnesota , where
she earned a degree in English literature .

Hallucination

Table 5. Examples of both sentence and concept-level annotations for the input: “Write an article
about Eleanor Arnason”. Annotation for correct concepts is represented in green while annotation
for hallucinated concept is represented in red.

(50 sentences). Specifically, we asked them to mark the correctness of the sentence by

searching over the web, the same annotation procedure followed for expert annotation

detailed in Section 3.3. Cohen’s kappa of the annotators with the expert annotation

is 0.84 and 0.92 respectively and the kappa within themselves is 0.84. This shows the

high agreement and correctness of our annotations. We note that we use our expert

annotations for all the results as they are more accurate and reliable.

Since the generation is for a variety of topics of different domains and would be

beyond the common knowledge of a typical human, thus, we use web search to gather

the relevant information to check the correctness of the generation. Multiple web

45

searches were required in some cases because a generation can contain multiple facets

of information all of which can not be validated in a single web search.

For example, sentences like “Steven Threet is best known for his time at the

University of Michigan, where he was a three-year starter and led the Wolverines to a

Big Ten Championship in 2008.”, “Rick Mahler was a Major League Baseball pitcher

who played for the Atlanta Braves, Cincinnati Reds, and St. Louis Cardinals from

1979 to 1994.” contain multiple facets that need to be validated separately because a

single web search may not return all the information that is necessary to validate the

correctness of all the facets of such sentences.

3.3.1 Motivating Findings

3.3.1.1 Propagation of Hallucination

Since we consider five sequentially generated sentences generated by the model

for each topic, we investigate the relationship between ‘hallucination in a generated

sentence’ and ‘hallucination in any previously generated sentences’ for an input.

Since there are two binary variables, there exist four possibilities in this relationship,

represented by YY, NY, YN, and NN in Figure 3. The figure demonstrates this

relationship for sentences 2, 3, 4, and 5 (since no previously generated sentence for

sentence 1) aggregated over all the topics in our dataset. Observations are as follows:

(a) YY > NY: Cases YY and NY correspond to the scenario when there is a

previous hallucination. It can be observed that YY is considerably greater than NY

46

implying that when there is hallucination in the previously generated sentences, a

sentence is more often hallucinated.

(b) YY > YN: In YY and YN, the generated sentence is hallucinated. Here, YY

is greater than YN implying that a generated sentence is hallucinated more when

there is hallucination in the previously generated sentences as compared to when there

is no previous hallucination.

(c) NN > YN: When there is no hallucination in the previously generated sen-

tences, a generated sentence is more likely to be correct, i.e., it is less often hallucinated.

(d) NN > NY: A generated sentence is ‘correct’ more when there is no previous

hallucination as compared to when there is a previous hallucination.

This shows that hallucination in a sentence increases the chances of hallucinations

in the subsequently generated sentences, i.e., hallucination often propagates and thus

actively detecting and mitigating them can fix the current hallucination and also

prevent its propagation in the output.

3.3.1.2 Logits Provide Signal for Hallucination

To study the relationship between logit values and hallucination, we annotate

correctness at concept-level also (in addition to sentence-level annotations described

earlier). Specifically, for each identified concept, we mark whether the information

about it in the generated sentence is hallucinated or not. Table 5 shows examples of

both sentence and concept-level annotations. Figure 4 shows the trend of hallucination

with our calculated probability scores. For sentence-level (Figure 10), we use the

47

✓ ✗Sentence Hallucinated

Previous Hallucination ✓ ✓
✓ ✗
✗ ✗

Sentence 2 Sentence 3 Sentence 4 Sentence 5

YY NY YN NN

Figure 3. Demonstrating relationship between ‘hallucination in a generated sentence’ and ‘hallucina-
tion in previously generated sentences’. Bars YY, NY, YN, and NN correspond to four possibilities.

minimum across tokens of all its identified concepts as the probability score, and for

concept-level, we use the minimum across the concept’s tokens as the probability

score. The figure shows that as the probability score increases (or uncertainty

decreases), the tendency to hallucinate decreases. This shows that the probability

values can be utilized as a signal for hallucination, i.e., the low probability concepts

can be considered as candidates of potential hallucination and their correctness in

the sentence can be validated for detecting hallucinations.

We compare efficacy of different probability calculation techniques at detecting

48

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability Score of Concept
(Minimum across tokens of

the concept)

30

35

40

45

50

55

60

65

70

%
 H

al
lu

cin
at

io
n

Concept-level
Hallucination

Figure 4. Trend of hallucination with the calculated probability score (MIN) at concept level. As
the score increases, the tendency to hallucinate decreases.

hallucinations (in Section 3.7.4) and show that the ‘MIN’ technique achieves the

highest area under the Precision-Recall curve.

3.3.2 Hallucination Detection and Mitigation

Detection: In Table 6a and 6b, we compare the detection performance of
self-inquiry and web search techniques at both sentence and concept-levels. For
sentence-level results, we predict the sentence to be hallucinated if the validation
procedure fails for any identified concept. Note that in these results, we do not
leverage the uncertainty score to select concepts for validation, instead we validate all
the identified concepts. We study the relationship of recall with probability thresholds
in

Figure 8. The tables show that web-search technique achieves considerably

high recall and precision in detecting the hallucinations. Here, we emphasize

49

(a) Sentence level

Technique Accuracy Hallucinated Not Hallucinated
Prec. Rec. Prec. Rec.

Self-Inquiry 0.62 59.89 63.76 65.23 61.42
Web-Search 0.681 61.82 85.96 80.39 52.03

(b) Concept level

Technique Accuracy Hallucinated Not Hallucinated
Prec. Rec. Prec. Rec.

Self-Inquiry 0.65 47.96 45.85 73.37 74.98
Web-Search 0.75 58.17 87.68 91.69 68.30

Table 6. Hallucination detection performance of self-inquiry and web-search techniques. It also
shows separate precision and recall on both hallucinated and non-hallucinated instances.

on the high ‘recall’ as we show that our mitigation approach does not introduce

new hallucinations even in the case of incorrectly detected hallucinations, i.e., false

positives.

Mitigation: On sentences where our validation procedure (using Web search)

reports hallucinations, we apply our mitigation technique. We note that a sentence

that is reported as hallucination can either be actually hallucinated (true positive) or

not hallucinated (false positive). Table 7 shows the result of our method. It successfully

mitigates the hallucination on 57.6% of the correctly detected hallucinations (True

Positives). Furthermore, it achieves this at minimal ‘deterioration’ (3.06%), i.e., it

incorrectly converts a minimal 3.06% of the non-hallucinated instances to sentences

having incorrect information (hallucinated).

Analyzing Mitigation Failures: Table 10 and 11 show examples where our

mitigation technique successfully mitigates and fails to mitigate the hallucinations,

respectively. We observe that in many of the failure cases, our technique fixes some

50

Is Hallucinated?
Before After Percentage

✓ ✗ 40.81%
✓ ✓ 30.04%
✗ ✗ 28.26%
✗ ✓ 0.89%

Table 7. Hallucination mitigation results after modifying the reported hallucinations.

hallucinated content of the sentences but fails to fix ALL the hallucinated content from

them. Examples 1 and 2 in Table 11 correspond to this type of failure. Furthermore,

in some of the failure cases, our technique results in a sentence that is no longer

hallucinated but is not completely related to the topic. For instance, the fourth

example in Table 11 about the topic ‘Harry S. Kennedy’; the model generates “Harry

S. Kennedy was ... 35th President ...” which is wrong and our mitigation technique

modifies it to “John F. Kennedy was ...” which is factually correct but not related

to the topic ‘Harry S. Kennedy’. We attribute this to the mitigation step which is

contingent on the information in the retrieved knowledge.

3.3.3 Active Detection and Mitigation

The two findings in 3.3.1 motivate our approach in which we actively detect

hallucinations leveraging the logit values and mitigate them during the generation

process which further helps in preventing their propagation. Specifically, we iteratively

generate sentences and when our detection method reports hallucination (by validating

51

GPT-3.5
 (text-davinci-003)

Active Detection
and Mitigation

0

10

20

30

40

50

60

%
 H

al
lu

cin
at

io
n

47.5

14.5

 lower is better

Figure 5. Comparing % hallucination in the output of GPT-3.5 with our active detection and
mitigation approach on the ‘article generation task’.

uncertain concepts), we repair the sentence using our mitigation method and then

continue generating the next sentence. We demonstrated separate detection and

mitigation efficacy in 3.3.2. Figure 5 compares the hallucination percentage in GPT-

3.5’s output and our “active” approach. It reduces the hallucination percentage from

47.4% to 14.53% which proves that the active intervention indeed successfully prevents

hallucination propagation. In Figure 7, we plot this comparison for different categories

of hallucinations and show that our approach does well in all the categories.

3.4 Additional Experiments

To further demonstrate our approach’s wide applicability, we present three addi-

tional studies and discuss other usecases in Section 3.8.

52

3.4.1 Efficacy with Another LLM

Here, we compare hallucination % in the output of Vicuna-13B (on the ‘article

generation task’) and with our proposed active detection and mitigation approach.

We select Vicuna (v1.5) because it is the SOTA open-source model. Our approach

considerably reduces the hallucinations (from 56% to just 18%) similar to the case

with GPT-3.5 model. This study is conducted on 10 randomly sampled topics (i.e., 50

generated sentences) from the topic set described in Section 3.3. We note that similar

to the setup with GPT-3.5 where we used instructional prompts with GPT-3.5 itself

for all the steps of the approach (i.e., identifying key concepts, creating validation

questions, etc.), following the same, here we use Vicuna-13B for all those steps. This

result demonstrates generality and applicability of our approach in reducing

hallucinations of LLMs.

3.4.2 Multi-hop Questions

We show that our approach can be adapted to improve the performance on

multi-hop bridge questions (Table 12). Recall that our approach works by mitigating

hallucination/incorrectness in the sentences generated by the model. Thus, if we can

enable the model to answer these multi-hop questions step by step, then our active

detection and mitigation approach can be applied to these steps, leading to correct

predictions. To this end, we prompt the model and provide in-context examples

demonstrating it to answer a given multi-hop question step by step. Section 3.7.6

53

GPT-3.5 GPT-3.5 few-shot GPT-3.5 w/ know Our Approach

54% 50% 38% 26%

Table 8. % Hallucination with different strategies on Multi-hop bridge questions. Lower is better.

shows the corresponding prompt used for this purpose. Specifically, for a test question,

the model generates the answer in multiple steps (one step at a time) and for each

step, we apply our technique in which we first identify the low probability concepts

from the sentence, validate their correctness using web search results, mitigate the

hallucination (if detected), and then proceed to generate the next step. In our case

study, we sample 50 multi-hop bridge questions from the validation set of HotpotQA

(Z. Yang et al. 2018).
Main Result (Table 8): First, we show the performance of GPT-3.5 which

answers 54% of the questions incorrectly. GPT-3.5 with in-context examples results
in a slight improvement over the zero-shot performance. GPT-3.5 leveraging the
knowledge retrieved from the web (using the question as search query) as context
improves the performance and results in fewer incorrect predictions. Finally, we
show the performance of our active detection and mitigation approach which results
in considerably fewer hallucinations (just 26%), i.e., a higher percentage of correct
answers. Table 13 shows examples of responses generated using our approach. This
demonstrates our approach’s effectiveness in improving performance on multi-hop
QA.

3.4.3 False Premise Questions

LLMs perform remarkably well on a wide range of questions that are factually

correct and make the right assumptions. However, users in real world often ask

questions that are based on false premises such as “Why energy is absorbed in

54

exothermic reactions?” and “Why do floppy disks have higher storage capacity than

USB drives?”. We observe that SOTA models often struggle to appropriately respond

to such questions; thus, they serve as another challenging evaluation setting. This

is also a result of ‘sycophancy’ (Jerry Wei et al. 2023) demonstrated by LLMs. To

this end, we conduct a study and compile a set of 50 such adversarial questions, i.e.,

questions for which GPT-3.5 gives incorrect response. Furthermore, we also create a

true premise question corresponding to each false premise question (Table 14).

Approach: An ideal response to such questions is application dependent; some

applications may require identifying such questions and then abstaining on them

like the selective prediction systems (Kamath, Jia, and Liang 2020; Xin et al. 2021;

Varshney and Baral 2023) while some applications may also require suggesting a

‘rectified’ question and providing response to that rectified question like the search

engines. Our approach supports these requirements by using the validation and

mitigation step on the given question.

Specifically, we first retrieve knowledge (via Bing Search using the question as

query). Then, we apply our validation and mitigation technique, i.e., conditioned

on the retrieved knowledge, we prompt the model to respond ‘Yes’ if the question

makes factually correct assumptions, otherwise respond ‘No’. If the response is No,

then we proceed to modify the question using the mitigation step. Table 15 shows

the corresponding instructional prompts. This step enables identifying false premise

questions and rectifying them to facilitate the system in providing an appropriate

response. Importantly, we also show that our approach does not incorrectly modify a

55

GPT-3.5 GPT-3.5 w/ know Our Approach

100%* 78% 24%

Table 9. % Hallucination with different strategies on false premise questions. * indicates that the
questions are adversarial. Lower is better.

true premise question. This is crucial because if the user’s question is correct then

the system’s response must be pertinent to that.

Main Result (Table 9): As mentioned above, the questions in our evaluation

set are adversarially collected, i.e., GPT-3.5 gives incorrect response to all of them.

We evaluate the performance of GPT-3.5 when retrieved knowledge (via bing search)

is given as additional context. We find that even with the knowledge, it manages to

answer only 24% false premise questions correctly, i.e., hallucinates on the remaining

76%. In contrast, our approach answers 76% questions correctly and hallucinates

only on 24%. Furthermore, we note that even in some of these 24% hallucinated

responses, some of the individual sentences in the responses are correct. However,

since we focus on complete answer correctness, we consider them as incorrect. Table

17 shows examples of responses on false premise questions generated by the GPT-3.5,

GPT-3.5 with retrieved knowledge, and our active detection and mitigation approach.

3.5 Advantages of the Proposed Approach

In addition to the effectiveness and wide applicability of our approach in addressing

hallucinations of LLMs (as demonstrated through extensive experiments), it has

numerous other advantages:

56

1. It circumvents the need for modifying the internals of LLMs to address

their hallucination problem making it a plug-and-play yet effective solution.

2. It improves the explainability and interpretability of the LLM’s output

as the generation can be attributed back to the retrieved knowledge.

3. The knowledge retrieval step allows opportunities to use proprietary/domain-

specific knowledge during the generation process. Thus, allowing it access

to the updated information.

4. Our retrieval method retrieves knowledge pertinent to the sentence and thus

enables accurate hallucination detection and mitigation.

5. Active intervention allows opportunities for course correction during the

generation process.

3.6 Limitations of the Proposed Approach

3.6.1 Impact on Inference Efficiency

Our approach results in improvements in the form of reduced hallucinations and

thus makes the model more reliable; however, it comes at the expense of increased

inference cost. However, we believe that at current time, to enable the widespread

adoption of LLMs, it is more important to address their reliability and trustworthiness

concerns because computational advancements are ongoing at a rapid pace. Moreover,

even larger models with multi-fold times more parameters such as PaLM (540B)

(Chowdhery et al. 2022), Gopher (280B) (Rae et al. 2021), and MT-NLG (530B)

57

(Smith et al. 2022) are also being developed which have even higher inference cost

showcasing a larger focus of the community on developing better performing systems.

Though it may not be a problem for all use cases, we provide a detailed discussion on

it for all the steps with suggestions on their lower-cost alternatives.

Identifying Important Concepts: Firstly, we note the importance of this step

because validating the correctness of the entire sentence at once is infeasible as a

sentence can contain multiple different facets all of which can not be validated at

once. In contrast, individually validating correctness corresponding to the concepts

provides opportunities for accurately detecting incorrectness. Thus, if we skip this

step and directly proceed to the validation step for the entire sentence then it will

have limitations. For example, sentences like “Steven Threet is best known for his

time at the University of Michigan, where he was a three-year starter and led the

Wolverines to a Big Ten Championship in 2008.” contain multiple facets that need to

be validated separately because a single web search may not return all the information

that is required to validate the entire correctness.

This step incurs the cost of inference in which the input is the instruction (provided

in Table 3) and the sentence. We mention the benefits of “instructing the model”

technique in Section 3.2.1.1.

We discuss other lower-cost alternatives for this step below: A simple yet efficient

method is to leverage a relatively smaller LLM for this step. This is feasible because

identifying the concepts is an “easy” step and even smaller LLMs are typically very

effective in this. Moreover, even a more smaller model such as T5 can also be finetuned

for this particular task which can considerably reduce the cost. Smaller models have

58

low inference cost (both in terms of FLOPs and latency). Furthermore, the other

techniques already discussed in the paper, namely Entity Extraction and keyword

extraction are other lower-cost alternatives. Specifically, the KBIR model is built on

top of RoBERTa architecture which is even more efficient.

In summary, smaller models (smaller LLMs or task-specific finetuned models) can

be utilized for this task to make it more efficient.

Calculating Model’s Uncertainty: This is not a resource intensive task as it

just requires calculating the score from the logit values.

Creating Validation Question: Similar to the first step, creating a validation

query for a concept is also a task at which even smaller models (that even have

only a few million parameters) do quite well. A lot of existing research on question

generation uses the T5 models. Creating a validation question using an LLM requires

taking the instruction (filled with the concept) (Table 3) and the sentence as input.

Another cost-effective alternative for this step is to simply mask out the selected

concept from the sentence and use it as the validation query for the web search.

Though, it requires some heuristics to create an appropriate validation query (such

as selecting only a window of tokens on both sides of the concept after masking as

the validation query, this would be required because using the entire sentence would

have many different facets, and web search may not return relevant results). This

would definitely make it much more efficient but it will lose effectiveness in creating

“high-quality” queries pertinent to the concept and thus may not result in slight

degradation in the validation procedure.

Answering Validation Question and Mitigation Steps: These steps are

59

more costly than the others because they also take the retrieved knowledge as input.

We note that these are crucial steps of the method. They can be made more efficient

(though it will compromise the effectiveness) by combining them into a single step, i.e.,

validation and mitigation can be done using a single instructional prompt. However,

we note that this is a relatively difficult task as compared to the previous steps and

thus decomposing it into two individual steps provides better results. Thus, making

this step more efficient will have tradeoffs with the performance.

Overall, these steps can be made more efficient (in terms of both computation

cost and latency) using smaller LLMs or external task-specific tools. In contrast, the

methodology highlighted in red in Figure 1 uses the same model for all the steps.

Furthermore, we note that in resource-constrained applications, the suggested efficient

alternatives can be utilized.

We present an empirical analysis of the latency where we compare the latency of

all the steps of the methodology. Figure 6 shows the comparison of latency of various

steps (at a sentence level). We note that the latency of the mitigation step is low as

it is only conditionally called for some sentences. We show the average mitigation

latency for sentences on which it is called in the Mitigation∗ bar. We conduct this

study for 10 topics (i.e., 50 sentences) for the GPT-3.5 (text-davinci-003) model.

Comparison of Overall Latency with the Generation: The overall latency

of the method is 2.58 times that of the regular generation (5354.20 against 2071.69).

Why the latency of the generation step is high? This is because for the

later sentences, it also takes the context in the input.

Why the latency of validation is high? This is because validation procedure

60

Generation Identify
Uncertain
Concepts

Validation Mitigation Mitigation * Overall
0

1000

2000

3000

4000

5000

Av
g.

 L
at

en
cy

 a
t S

en
te

nc
e

Le
ve

l (
m

s)

Figure 6. Comparing latency of various steps of the methodology (at a sentence level). Note that
the latency of mitigation is low as it is only conditionally called for some sentences. We show the
average mitigation latency for sentences on which it is called in the Mitigation∗ bar.

includes three steps (validation question creation, retrieval, and answering validation

question). Furthermore, validation could be required for multiple concepts.

What does Mitigation∗ represent? Note that the mitigation step is only

conditionally executed for some sentences. We show the average mitigation latency

for sentences on which it is called in the Mitigation∗ bar.

3.6.2 Correctness of Retrieved Knowledge

Web searches can sometimes return information that is fabricated. Though we

use the top web search results as our context (primarily from the reliable sources),

61

there remains a chance that the knowledge is incorrect which can result in incorrect

hallucination detection.

3.6.3 Error Propagation

Multiple sequential steps can increase the chances of propagation of error from

one to the other; however, we note that the individual steps in our approach are

very simple, and the LLMs perform remarkably well on these steps. Furthermore,

our mitigation technique does not introduce new hallucinations even in the case of

incorrectly detected hallucinations, i.e., false positives.

3.7 Further Analysis

3.7.1 Active Detection and Mitigation Performance Analysis

Figure 5 compares the percentage of hallucination in the output of GPT-3.5 model

and our approach. It reduces the hallucination percentage from 47.4% to 14.53%.

This proves that the active intervention during the generation process also does well

in preventing the propagation of hallucination in the model’s output. In Figure 7,

we plot this comparison for different categories of hallucination and show that our

approach does well in all the categories.

62

Date Number Not
Related

Other
 Factual
 Errors

No
 Evidence

0

20

40

60

80

100

120

140

Ha
llu

cin
at

io
n

Co
un

t

text-davinci-003
Our Approach

Figure 7. Comparing hallucinations across different categories of text-davinci-003 and generation
from our approach.

(a) Sentence-level

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability Threshold

0

20

40

60

80

100

Re
ca

ll

Self-Inquiry
Web Search

(b) Concept-level

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability Threshold

0

20

40

60

80

100

Re
ca

ll

Self-Inquiry
Web Search

Figure 8. Recall of hallucination detection vs Probability threshold plot for Self Inquiry and web
search techniques at both sentence-level and concept-level.

3.7.2 Recall of Hallucination Detection vs Probability Threshold

Figure 8 compares the recall of hallucination detection for self-inquiry and web

search techniques at different probability thresholds. Web search considerably

outperforms self-inquiry at all thresholds and hence is better at detecting

63

0.2 0.4 0.6 0.8 1.0
Recall

0.50

0.55

0.60

0.65

0.70

Pr
ec

isi
on

Minimum across All tokens
(AUC=0.568)
Minimum across Concept tokens
(AUC=0.623)

Figure 9. Demonstrating the benefit of identifying concepts from a sentence for detecting hallucina-
tions. The figure shows precision-recall curves for the sentence level hallucination detection task
corresponding to two methods that use the probabilities calculated from the logit output values.
The blue curve corresponds to the technique in which we use the minimum probability across all
tokens of the sentence and the orange curve is for the technique in which we use the minimum over
only the tokens of the identified concepts.

hallucinations. Selecting the probability threshold depends on the tolerance level of

the application. For instance, in a high-risk application domain like biomedical, we

can keep a very high threshold, and in a low-risk domain like movie recommendation,

we can relatively lower threshold. In this work, we use a probability threshold of 0.55.

However, we note that it can be adjusted as per the application requirements.

3.7.3 Hallucination Mitigation Analysis

Tables 10 shows examples where our mitigation technique successfully mitigates

the hallucinations. Table 11 shows examples where our technique fails to mitigate

64

Topic Rick Mahler
Original Sentence Mahler was born in San Diego, California in 1956 . (✗)
Hallucination Reason He was born in Austin in 1953.
Modified Sentence Rick Mahler was born in Austin, Texas on August 5, 1953.

(✓)

Topic Matthew Aylmer, 1st Baron Aylmer
Original Sentence Baron Aylmer, was an English naval officer and politician

who served as a Member of Parliament and later as a peer
in the House of Lords . (✗)

Hallucination Reason He was in House of Commons not House of Lords.
Modified Sentence Baron Aylmer was an Anglo-Irish Royal Navy officer and

Whig politician who sat in the English and British House of
Commons between 1695 and 1720. (✓)

Topic Derek King
Original Sentence In 2014, Derek King released his debut single “Let’s Go,”

which quickly became a hit in Canada. (✗)
Hallucination Reason “Let’s Go” was not his song.
Modified Sentence In 2014, Derek King released his debut mixtape Fake I.D.,

which featured fellow Bay Area artists Rayven Justice and
IAMSU!, among others. (✓)

Topic Marshall Manesh
Original Sentence Marshall Manesh is an Iranian-American actor best known

for his roles on the television shows How I Met Your Mother
and The Middle . (✗)

Hallucination Reason He was not in The Middle.
Modified Sentence Marshall Manesh is an Iranian-American actor best known

for his recurring roles on the television shows Will & Grace,
Scrubs, Andy Barker, P.I., Hot in Cleveland, Boston Legal,
and How I Met Your Mother, where he played taxi driver
Ranjit. (✓)

Topic William J. Flanagan, Jr.
Original Sentence He is the founder and CEO of Flanagan Financial Group ,

a financial services firm based in New York City . (✗)
Hallucination Reason The complete sentence is hallucinated as he is a retired US

Navy admiral.
Modified Sentence He is a retired four-star admiral who served as Commander

in Chief, United States Atlantic Fleet from 1994 to 1996
and is the recipient of numerous military awards. (✓)

Table 10. Examples of successful mitigation of hallucinations by our mitigation technique. Original
Sentence corresponds to the sentence generated by the model and Modified Sentence corresponds to
the sentence obtained on applying our technique.

65

Topic Matthew Aylmer, 1st Baron Aylmer
Original Sen-
tence

Aylmer joined the Royal Navy in 1790 and served in the
French Revolutionary Wars and the Napoleonic Wars . (✗)

Hallucination
Reason

He did not serve in these wars.

Modified Sen-
tence

Aylmer entered the Royal Navy under the protection of the
Duke of Buckingham as a Lieutenant in 1678 and served in the
French Revolutionary Wars and the Napoleonic Wars . (✗)

Hallucination
Reason

It rectified the date but failed to correct the hallucination about wars.

Topic K. S. Manilal
Original Sen-
tence

Manilal was a prolific writer and translator, having written more than
50 books and translated over 100 works from English, Sanskrit , and
other languages into Malayalam. (✗)

Hallucination
Reason

He has not written 50 books and translated works to English and Malay-
alam.

Modified Sen-
tence

Manilal was a prolific researcher and translator, having translated Hendrik
van Rheede’s 17th century Latin botanical treatise, Hortus Malabaricus,
into English, Sanskrit , and Malayalam. (✗)

Hallucination
Reason

The information about Hortus Malabaricus is correct but he translated it
into English and Malayalam only and not Sanskrit.

Topic Harry S. Kennedy
Original Sen-
tence

Harry S. Kennedy was an American politician who served as the 35th
President of the United States from 1961 to 1963 . (✗)

Hallucination
Reason

This sentence is true for John F. Kennedy not Harry S. Kennedy.

Modified Sen-
tence

John F. Kennedy was an American politician who served as the 35th
President of the United States from 1961 to 1963. (✗)

Hallucination
Reason

This sentence is not hallucinated but it is not related to the topic.

Table 11. Examples where our mitigation technique fails to mitigate complete hallucination in the
generated sentence. Original Sentence corresponds to the sentence generated by the model and
Modified Sentence corresponds to the sentence obtained on applying our technique.

66

hallucinations. We observe that in many of the failure cases, our technique fixes some

hallucinated content of the sentences but fails to fix ALL the hallucinated content

from them. Furthermore, in some of the failure cases, our technique results in a

sentence which is no longer hallucinated but it not completely related to the topic.

Clarification on Percentage Numbers specified for Mitigation Perfor-

mance in Section 3.3.2: Table 7 shows the percentage of the four scenarios for

(Before Modification, After Modification). We mention that “It successfully mitigates

the hallucination on 57.6% of the correctly detected hallucinations (True Positives)”.

Therefore, this number corresponds to (40.81/ (40.81 + 30.04) = 57.6%).

3.7.4 Analysis of Logit Output Values

3.7.4.1 Benefit of Identifying Concepts from a Sentence

Now, we demonstrate the benefit of identifying concepts from a sentence and

leveraging the logit output values corresponding to their tokens for detecting halluci-

nations. To this end, we plot precision-recall curves for the hallucination detection

task corresponding to two methods that use the probabilities calculated from the

logit output values. The blue curve corresponds to the technique in which we use the

minimum probability across all tokens of the sentence and the orange curve is for

the technique in which we use the minimum over only the tokens of the identified

concepts. Figure 9 shows the two curves. The orange curve achieves higher area

under the precision-recall curve implying that utilizing the probabilities of the

67

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability Score of Sentence
(Minimum across tokens of
all concepts of sentence)

45

50

55

60

65

70

75

80

%
 H

al
lu

cin
at

io
n

Sentence-level
Hallucination

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability Score of Concept
(Minimum across tokens of

the concept)

30

35

40

45

50

55

60

65

70

%
 H

al
lu

cin
at

io
n

Concept-level
Hallucination

Figure 10. Trend of hallucination with the calculated probability score (Minimum technique) at
both the sentence and concept levels. As the score increases, the tendency to hallucinate decreases.

concept tokens provides a stronger signal for hallucination as compared to

the probabilities corresponding to all the tokens.

3.7.4.2 Logit Output Values with Minimum Technique

Figure 10 shows the trend of hallucination with our calculated probability scores

at both sentence and concept levels. For sentence-level, we use the minimum across

tokens of all its identified concepts as the probability score, and for concept-level, we

use the minimum across the concept’s tokens as the probability score. The figure

shows that as the probability score increases (or uncertainty decreases), the tendency

to hallucinate decreases.

68

0.2 0.4 0.6 0.8 1.0
Recall

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Pr
ec

isi
on

Miniumum
Average
Normalized

Figure 11. PR curves for the hallucination detection task (concept-level) using the three probability
calculation techniques. ‘Minimum’ technique achieves highest AUC.

3.7.4.3 Comparing Probability Calculation Techniques

Figure 11 shows the Precision-Recall curves for the hallucination detection task

(at concept-level) using the three probability calculation techniques, i.e., Minimum,

Average, and Normalized (described in 3.2.1.2). The ‘Minimum’ technique

achieves the highest area under the curve and hence is better at the

hallucination detection task.

3.7.5 Efficacy with Another LLM

Figure 12 compares hallucination % in the output of Vicuna-13B (on the ‘article

generation task’) and with our proposed active detection and mitigation approach.

69

Vicuna 13B Active Detection
and Mitigation

0

10

20

30

40

50

60

70

%
 H

al
lu

cin
at

io
n

56

18

 lower is better

Figure 12. Comparing hallucination % for Vicuna-13B and our approach on the ‘article generation
task’.

Question Answer

The football manager who recruited David Beckham man-
aged Manchester United during what timeframe?

from 1986 to 2013

The Vermont Catamounts men’s soccer team currently com-
petes in a conference that was formerly known as what from
1988 to 1996?

the North Atlantic
Conference

Ralph Hefferline was a psychology professor at a university
that is located in what city?

New York City

What is the county seat of the county where East Lempster,
New Hampshire is located?

Newport

Blackfin is a family of processors developed by the company
that is headquartered in what city?

Norwood, Mas-
sachusetts

Table 12. Examples of multihop questions from HotpotQA.

70

3.7.6 Multi-hop QA Experiment

3.7.6.1 Prompt with In-context Examples

Question: Which team does the player named 2015 Diamond Head Classic’s MVP

play for?

Answer: The 2015 Diamond Head Classic’s MVP was Buddy Hield. Buddy Hield

plays for the Sacramento Kings of the NBA. So, the answer is Sacramento

Kings.

Question: The Dutch-Belgian television series that “House of Anubis” was

based on first aired in what year?

Answer: “House of Anubis” was based on is Het Huis Anubis. Het Huis Anubis

was first aired in 2006. So, the answer is 2006.

Question: What is the birth date of the coach of the 2014-15 Michigan

Wolverines men’s basketball team?

Answer: The coach of the 2014-15 Michigan Wolverines men’s basketball team

was John Beilein. John Beilein’s birth date is February 5, 1953.

Question: {question} Answer:

Prompt with in-context examples used for prompting the model to answer ‘bridge’

multi-hop questions step by step.

71

Question: Kent Dairy Round Barn is near the city in what Montana county?
Response: The Kent Dairy Round Barn is located near Red Lodge, Montana. Red Lodge
is located in Carbon County, Montana. So, the answer is Carbon County .

Question: What political party was the 6th governor of Hawaii that passed bills to help
with global warming in Hawaii?
Response: The 6th governor of Hawaii was Linda Lingle. Linda Lingle was a member
of the Republican Party and passed bills to help with global warming in Hawaii. So, the
answer is Republican Party .

Question: In what city is the mortgage lending company, founded by Dan Gilbert, head-
quartered?
Response: The mortgage lending company founded by Dan Gilbert is Quicken Loans.
Quicken Loans is headquartered in Detroit, Michigan. So, the answer is Detroit, Michigan .

Question: Actor David Lee Stenstrom played the character Waldo the inventor in a TV
show that ran on Nickelodeon during what yeras?
Response: The TV show was Out of Control (1984). David Lee Stenstrom played the
character Waldo the inventor in the show. The show ran on Nickelodeon from 1984 to 1985.
So, the answer is 1984 to 1985 .

Question: What music school did the singer of The Search for Everything: Wave One
attend?
Response: The singer of The Search for Everything: Wave One is John Mayer. John
Mayer attended the Berklee College of Music in Boston, Massachusetts. So, the answer is
Berklee College of Music .

Table 13. Examples of responses generated using our approach for multihop bridge questions.

3.7.6.2 Examples of Multi-hop Bridge Questions

Table 12 shows examples of multi-hop bridge questions from HotpotQA dataset.

3.7.6.3 Examples of Model Responses

Table 13 shows examples of responses generated using our approach for multi-hop

bridge questions.

72

GPT-3.5 GPT-3.5
few-shot

GPT-3.5 w/
Knowledge

Our
Approach

0

10

20

30

40

50

60

%
 H

al
lu

cin
at

io
n

(In
co

rre
ct

) 54
50

38

26

Figure 13. % Hallucination results on Multi-hop bridge Questions.

False Premise Question True Premise Question

Why does Mars have three moons? Why does Mars have two moons?
Why are golf balls bigger than basketballs? Why are golf balls smaller than basketballs?
What are some papers on the relationship
between homeschooling and neuroplastic-
ity?

What are some papers on the relationship
between homeschooling and college prepared-
ness?

Why do migrant workers never leave their
home?

Why do migrant workers leave their home?

When a diver swims deeper, why does the
water pressure declines?

When a diver swims deeper, why does the
water pressure increases?

Why does Mars have higher gravity than
Earth?

Why does Mars have lower gravity than
Earth?

Why is baseball the most popular sport
in the world?

Why is soccer the most popular sport in the
world?

How does Earth make up over 99% of
the solar system’s mass?

How does Sun make up over 99% of the solar
system’s mass?

Why does Helium have atomic number
of 1?

Why does Hydrogen have atomic number of
1?

Table 14. Examples of ‘false premise’ questions and their corresponding ‘true premise’ counterparts.

3.7.7 False Premise QA Experiment

Table 14 shows examples of false premise and true premise question pairs. Table

17 shows responses generated on a few false premise questions by the GPT-3.5 (text-

73

Step Prompt

I Context: {search results} Question: {question} Based on the above context,
does the above question make factually correct assumptions?

II Context: {response_of_Step_I} Question: {question} Rectify the incorrect
information in the given question based on the context.

Table 15. Instructional Prompts for rectifying the false premise questions.

Original Question After Modification

False Premise Questions
Why does Mars have three moons? Why does Mars have two moons? (✓)
Why are golf balls bigger than basket-
balls?

Why are golf balls smaller than basketballs? (✓)

What are some papers on the relation-
ship between homeschooling and neu-
roplasticity?

What are some papers on the relationship between
homeschooling and learning outcomes? (✓)

Why USA has the lowest happiness
index?

What factors have contributed to the decline in
happiness among Americans? (✓)

How many metres does a typical apple
weigh?

How many grams or ounces does a typical apple
weigh? (✓)

Why do all rabbits have red eyes? Why do some rabbits have red eyes? (✓)
Why does Helium have atomic number
of 1?

Why does Helium have atomic number of 2? (✓)

Why does Bangladesh have the highest
population in the world?

Why does Bangladesh have the highest population
growth rate in the world? (✗)

Why are tigers’ eggs bigger than
chicken’s eggs?

Why do some breeds of chickens lay larger eggs than
others? (✗)

True Premise Questions
Why gases are shapeless? Why are gases shapeless? (✓)
How did USA become a developed
country?

How did the United States become a developed
country (✓)

Why Afghanistan has a low happiness
index?

What factors contribute to Afghanistan’s low hap-
piness index? (✓)

Why are golf balls smaller than basket-
balls?

Why are golf balls typically smaller than basket-
balls? (✓)

How were the 2020 USA presidential
election?

What were the results of the 2020 USA presidential
election? (✓)

Table 16. Examples of original questions (both false premise and true premise) and the questions
after rectification. ✗and ✓indicate that the modified question is incorrect and correct, respectively.

74

False Premise Q. Why are golf balls bigger than basketballs?
GPT-3.5 Golf balls are bigger than basketballs because they need to be able to

travel farther distances and have a larger surface area to create more
spin and control. The larger size also helps to reduce air resistance,
allowing the ball to travel farther. (✗)

GPT-3.5 w/
Knowledge

Golf balls are bigger than basketballs because they need to be heavier
and denser in order to travel farther when hit with the same amount of
force. The larger size allows for more mass-density, which gives the ball
more momentum and distance when hit. (✗)

Our Approach Golf balls are smaller than basketballs because they are optimized for
golfers to provide the most ball velocity and distance possible, along
with a controllable spin rate. The diameter of a golf ball must reach
1.68 inches, or 42.67 mm, in diameter, and a weight of no more than
1.62 ounces, or 45. (✓)

False Premise Q. Why do deserts have higher soil moisture than grasslands?
GPT-3.5 Deserts have higher soil moisture than grasslands because they re-

ceive more rainfall. Deserts typically receive less rainfall than grasslands,
but the rain that does fall is more concentrated and intense. This causes
the soil to absorb more moisture than in grasslands, where the rainfall
is more spread out and less intense. (✗)

GPT-3.5 w/
Knowledge

Deserts have higher soil moisture than grasslands because they re-
ceive more precipitation than grasslands. Deserts are located in areas
where the demand for water by the atmosphere (evaporation) and plants
(transpiration) is much greater than precipitation. This means that the
soil in deserts is able to retain more moisture than the soil in grasslands.
(✗)

Our Approach Deserts have lower soil moisture than grasslands because they have
less water vapor in the air, which makes it harder to trap heat or
cold in a desert. Additionally, deserts typically have less precipitation
than grasslands, which further contributes to lower soil moisture levels.
(✓)

Table 17. Comparing responses generated on a few false premise questions by the GPT-3.5 model,
GPT-3.5 moel leveraging the retrieved knowledge as context, and our approach.

davinci-003) model, GPT-3.5 (text-davinci-003) using the retrieved knowledge as

context, and our approach.

Efficacy of Question Rectification: We analyze the performance of our

approach in rectifying questions; it successfully repairs 76% false premise

questions while not incorrectly modifying any true premise question.

Though this step makes modifications in a small number of true premise questions (6

75

76

24

100

Adversarial
Questions

Figure 14. Results on ‘False Premise Questions’ for GPT-3.5, GPT-3.5 leveraging knowledge
(retrieved via web search) and our approach.

instances), it does not change their semantics as shown in Table 16. Not incorrectly

modifying a true premise question is an important characteristic of this approach.

3.7.8 Effectiveness of the Method beyond the First Five Generated Sentences

Our study on the article generation task is conducted on the first five generated

sentences. After applying our method, the correctness at sentence number level

(averaged over all the inputs) is as follows (Sentence 1: 90.0%, Sentence 2: 82.67%,

Sentence 3: 86.67%, Sentence 4: 82.67%, Sentence 5: 85.34%). These values are

indeed close and do not considerably reduce as the sentence number increases. With

this result, we show that our method of active detection and mitigation successfully

mitigates the hallucination throughout the generation (not restricted to any specific

76

sentence number). Furthermore, it shows that the ability to address hallucinations

does not considerably diminish as the sentence number increases. Thus, even increasing

the number of sentences is not expected to considerably impact the improvement that

our method would bring

3.7.9 Effectiveness of Retrieval Alone

For a fair comparison, we also compare the performance of retrieval alone with

our active intervention approach. We also underline the advantages of our active

intervention method over the retrieval alone method.

Figure 13 shows this comparison for the MultihopQA settings. Specifically, using

the retrieved knowledge alone (retrieved using the question as the search query),

the model’s hallucination is at 38%. Using our approach of active intervention the

hallucination is at 26%. We attribute our performance improvement to the active

correction in the intermediate steps which eventually leads to improved answers.

Similarly, in the false premise QA setting, we show this comparison in Figure 14.

We note that in this case, the improvement is even larger (76% vs 24%). This is

because of a recently studied concept of sycophancy, where LLMs tend to generate

responses that favor the user’s perspective rather than providing correct or truthful

answers, which can result in hallucinations. Our approach addresses this problem

and reduces the hallucination.

Advantages of our active intervention over the retrieval alone baseline:

Firstly, active retrieval retrieves the knowledge that is pertinent to the current sentence

77

in the generation. In contrast, single retrieval retrieves only once and does not have

the opportunity of retrieving knowledge pertinent to the current sentence.

Also, active intervention allows opportunities for course correction during the

generation process i.e. if a sentence is hallucinated then it is fixed and then the

subsequent sentences are generated. This prevents the propagation of hallucinations

and also drives the generation in the right direction.

Furthermore, single retrieval can constrain the generation to be dependent on

what has been retrieved initially. In contrast, active intervention allows the model to

follow its course of generation and retrieve the knowledge based on that, unlike single

retrieval where the generation is based on the retrieved knowledge

3.8 Other Applications of our Approach

Our approach has utility in a variety of other applications also such as Abstractive

Summarization and Claim Verification. In abstractive summarization where the

generated summary has been shown to be often hallucinated (Cao, Dong, and Cheung

2022; Zhao, Cohen, and Webber 2020; S. Chen et al. 2021) can be improved using our

approach. Here, the relevant knowledge during validation will be retrieved from the

original document instead of the web. Our approach can be adapted for the claim

verification task also as we can first identify the key sub-claims and then verify each

sub-claim using the validation procedure. Here, the mitigation step will also be useful

for providing explanations behind the model’s decision. We leave exploring these

other usecases of our approach for future work.

78

3.9 Conclusion

We proposed an approach called active detection and mitigation to address the

problem pertaining to the factual hallucinations of large language models. We

demonstrate the phenomenon of propagation of hallucination which motivates our

active intervention approach. Through systematic and extensive experiments on

several tasks such as article generation, multi-hop QA, and false premise QA, we

showed that our approach considerably reduces the hallucinations of LLMs. We

also demonstrated the individual efficacy of our detection and mitigation techniques.

Specifically, our detection technique achieves a high recall and the mitigation technique

successfully mitigates a large fraction of the correctly detected hallucinations. Notably,

the mitigation technique does not introduce new hallucinations even in the case of

incorrectly detected hallucinations, i.e., false positives. We further demonstrated

the effectiveness and wide applicability of our approach through several interesting

studies including evaluation with another LLM from a different model family and on

answering multi-hop questions and false premise questions. Overall, by addressing

the hallucination problem, our work contributes to improving LLMs’ reliability and

trustworthiness, a crucial step en route to enabling their widespread adoption in

real-world applications.

79

Chapter 4

IMPROVING RELIABILITY BY ADDRESSING THE HALLUCINATION

PROBLEM IN TASKS INVOLVING NEGATION

Prior research has focused on investigating and addressing this problem for a variety

of tasks such as biography generation, question answering, abstractive summarization,

and dialogue generation. However, the crucial aspect pertaining to ‘negation’ has

remained considerably underexplored. Negation is important because it adds depth

and nuance to the understanding of language and is also crucial for logical reasoning

and inference. In this chapter, we address the above limitation and particularly focus

on studying the impact of negation in LLM hallucinations. Specifically, we study four

tasks with negation: ‘false premise completion’, ‘constrained fact generation’, ‘multiple

choice question answering’, and ‘fact generation’. We show that open-source state-of-

the-art LLMs such as LLaMA-2-chat, Vicuna, and Orca-2 hallucinate considerably

on all these tasks involving negation which underlines a critical shortcoming of these

models. Addressing this problem, we further study numerous strategies to mitigate

these hallucinations and demonstrate their impact.

4.1 Introduction

Prior work has studied hallucination of LLMs in various scenarios such as open-

ended text generation (Manakul, Liusie, and M. J. Gales 2023; Varshney, Yao,

80

et al. 2023), question answering (Adlakha et al. 2023), abstractive summarization

(Chrysostomou et al. 2023; Aralikatte et al. 2021; Cao, Dong, and Cheung 2022),

machine translation (Feng et al. 2020), and dialogue generation (Dziri et al. 2021;

Sun et al. 2023). While the above studies are important, investigating the impact of

‘negation’ in LLM hallucinations has remained underexplored. Negation is important

because it adds depth and nuance to the understanding of language. It helps

understand the opposite or absence of a statement, providing a more precise and

nuanced interpretation and it is also crucial for logical reasoning and inference (Clark,

Tafjord, and Richardson 2020; Talmor et al. 2020; Nakamura et al. 2023; Banerjee

et al. 2020; Luo et al. 2023). Furthermore, we humans arguably use affirmative

expressions (without negation) more often than expressions with negation (Hossain

et al. 2020; Ettinger 2020); this implies that texts containing negation could be

underrepresented in the training/tuning data of the models making it even more

important to study.

With the aforementioned motivation, in this work, we focus on ‘negation’ and

study its impact on LLM hallucinations. Prior work on negation has primarily studied

classification tasks such as natural language inference and masked word prediction

(Hosseini et al. 2021; Hossain et al. 2020; Hossain, Chinnappa, and Blanco 2022;

Truong et al. 2023; Kassner and Schütze 2020). However, it is also important to study

generative tasks with state-of-the-art LLMs. To this end, we study negation in four

tasks: (i) False Premise Completion (FPC), (ii) Constrained Fact Generation (CFG),

(iii) Multiple-Choice Question Answering (MCQA), and (iv) Fact Generation (FG).

81

Ronaldinho has
not been awarded

the FIFA World
Player of the Year.

(✗)

Golf balls are not
smaller than

basketballs because

Write five statements about
Rabindranath Tagore, each
containing a negation and

presenting factual
information.

False Premise
Completion

Multiple-Choice Question Answering

Select all footballers who were not part of the 2010 world
cup winning team (A) Iker Casillas, (B) David Navas,
(C) Sergio Javi, (D) David Villa, (E) Marcos Senna

(A) Iker Casillas (✗)

(D) David Villa (✗)

(B) David Navas (✔)

Rabindranath Tagore was not the first Asian to
win Nobel…in Literature. (✗)

He did not compose the national anthems of both
India and Bangladesh (✗)

He was not a politician, but he was a key figure
in the Indian independence movement (✔)

Rabindranath Tagore was not born in Kolkata, but in
a place called Jorasanko, which is …in present-day

Bangladesh. (✗)

He was not a political activist, but he did write a poem called "Chitto Jetha Bhayo Shunno" (...), which was
adopted as the anthem of the Indian National Congress (✗)

Fact Generation

Golf balls are not smaller than
basketballs because golf balls are

actually larger in diameter than
basketballs. …. So, golf balls are

about 25% larger in diameter
than basketball

(✗)

Constrained Fact
Generation

Compose one concise fact
based on the following

keywords: Ronaldinho, FIFA
World Player of the Year, not

Figure 15. Illustration of the four tasks that deal with negation studied in this work. Responses
enclosed in red boxes (marked with ✗) are hallucinations while those in green boxes (marked with
✓) are factually correct.

Figure 15 illustrates examples of all four tasks. We provide a detailed description

and the rationale behind studying these tasks in Section 4.2.

We comprehensively study the performance of various open-source state-of-the-

art LLMs including LLaMA-2-chat (Touvron et al. 2023), Vicuna-v1.5 (Chiang et

al. 2023), and Orca-2 (Mitra et al. 2023). We show that these models hallucinate

considerably on all the tasks. On average, they hallucinate 63.77%, 72.33%, 36.6%,

and 62.59% on FPC, CFG, MCQA, and FG tasks respectively. This underlines a

critical limitation of these LLMs in effectively dealing with negation.

To address this hallucination problem, we further study various mitigation strate-

gies such as providing a ‘cautionary instruction’, demonstration via ‘in-context

exemplars’, ‘self-refinement’ by leveraging the LLM’s parametric knowledge, and

82

‘knowledge-augmented generation’. Our study results in numerous important findings

such as (a) providing a ‘cautionary instruction’ along with ‘in-context exemplars’

performs the best in mitigating the hallucinations though there remains a considerable

room for improvement, (b) providing contextual knowledge to the LLM when answer-

ing false premise prompts, coerces it to hallucinate even more instead of mitigation,

(c) ‘self-refinement’ indeed mitigates the hallucinations to a certain extent; how-

ever, in some cases, it incorrectly transforms the output by introducing hallucinated

information in the output.

Overall, our work underlines a critical shortcoming of existing LLMs and studies

ways to mitigate it. We will release our work to further facilitate future research in

developing robust LLMs that can effectively deal with negation.

4.2 Evaluation Tasks

In this section, we provide a detailed description and the rationale behind studying

all the tasks.

4.2.1 False Premise Completion (FPC)

This task consists of prompts that involve negation (not) and are based on false

premises, i.e., incorrect presuppositions. We (the authors) first compile a list of

fundamental facts from various domains such as Science, Geography, Sports, Animals,

and Astronomy and then introduce a negation (not) while ensuring the grammatical

83

correctness to create false premise prompts. Table 18 shows examples of this task and

the distribution of prompts across the different domains. For inference, we instruct

the models to ‘complete the given prompt by providing factually correct information’.

Since the correct facts are negated, prompts in this task are factually incorrect; thus,

a model needs to identify the false premise of the prompt and appropriately provide

its response.

Consider a false premise prompt: “Saturn is not the second largest planet in our

solar system because”, we show that models often falter on such false premise prompts

and generate hallucinated responses such as “ because it is actually the sixth largest

planet in our solar system”; however a robust model should respond to this false

premise prompt with something like “The statement in the prompt is incorrect because

Saturn is indeed the second largest planet in our solar system, after Jupiter ”. Note

that we additionally study the performance on the corresponding correct premise

prompts also as detailed in Section 4.3.1.

Rationale: We study this task because state-of-the-art models have been shown

to perform well on a wide range of tasks that are based on correct presuppositions.

However, users in real-world applications often tend to provide inputs that are based

on false premises due to either the lack of relevant knowledge or to adversarially attack

the system. Thus, the efficacy on this task is critical in preventing misinformation

resulting from the hallucinated responses of the LLMs (Y. Pan et al. 2023). We

attribute this kind of hallucination to the sycophantic behavior exhibited by LLMs

(Sharma et al. 2023; Ranaldi and Pucci 2023).

84

Domain Prompts

Science (39%)

The speed of sound is not affected by the medium through which it
travels because
Heat energy does not transfer from a warmer substance to a colder one
because
Hydrogen does not have atomic number of 1 because

Astronomy (20%) Saturn is not the second largest planet in our solar system because
Jupiter is not bigger than Earth because

Geography (13%)
The Sahara Desert does not have sand dunes because
The Arctic region does not experience extreme cold temperatures be-
cause

Animals (8%) Chickens do not lay eggs because
Tigers are not carnivorous predators because

Sports (4%) India did not win the 2011 world cup of cricket because
Golf balls are not smaller than basketballs because

Tech. (3%) Floppy disks do not have lower storage capacity than USB drives be-
cause

Others (9%) Inflation does not decrease the purchasing power of money because
The square root of 64 is not 8 because

Table 18. Examples of prompts for the FPC task.

4.2.2 Constrained Fact Generation (CFG)

This task requires composing a fact based on the given keywords one of which is

a negation (not). Specifically, we use the following task instruction “Compose one

concise fact based on the following keywords”. Note that despite the presence of ‘not’

as a keyword, in all the instances of this task, there does indeed exist ways to compose

factually correct responses from the provided keywords; however, a statement created

by simply connecting ‘not’ with the other keywords (in a syntactically sound manner)

will result in a factually incorrect sentence.

85

Domain Keywords

Sports (40%)
Chris Froome, not, Tour de France Winner
Sachin Tendulkar, not, Cricket World Cup, 2011
not, Luka Modric, Ballon d’Or Winner

Entertain (16%) Luke Combs, not, Entertainer of the Year, CMA Awards
not, Michael Jackson, Grammy Awards

Award (11%) not, Ardem Patapoutian, Nobel Prize, 2021

Politics (13%) Barack Obama, US Presidential Election, not, 2008

Others (13%) The African Renaissance Monument, Senegal, tallest statue, not

Table 19. Examples of keywords for the CFG task.

Consider an example in which the keywords are “The African Renaissance Mon-

ument, Senegal, tallest statue, not”, simply creating a sentence by combining the

keywords would result in “The African Renaissance Monument statue in Senegal

is not the tallest statue in Africa” which is factually incorrect; however, a possible

correct output is “The African Renaissance Monument in Senegal, while being the

tallest statue in Africa, is not the tallest statue in the world”.

Thus, it poses an important challenge for the models and requires true under-

standing of negation to compose a factually correct statement. Here, we focus on

historical facts from the domains of Sports, Awards such as Nobel prizes, Politics,

and Entertainment. We particularly select these domains because information in

these domains is unambiguously accurate and also easy to obtain and verify. Table

19 shows examples of this task. Note that we also vary the position of ‘not’ in the

keyword list to avoid any bias in the models’ outputs.

Rationale: This task has numerous applications in information retrieval and

86

Domain Question

Sports (20%)

Choose the countries that have not hosted the Winter Olympics. Op-
tions: Finland, Austria, China, South Korea, USA
Identify all the countries that have never played a FIFA World Cup
Final. Options: Portugal, Belgium, USA, Germany, Argentina

Entertain (12%)

Pick the musicians who have not won a Grammy Award for Album of
the Year. Options: Babyface, John Mayer, Ed Sheeran, Alanis Moris-
sette, Taylor Swift
Identify the films that have not won an Oscar for Best Film. Options:
Anthony Adverse, The Irishman, Arrival The Lord of the Rings: The
Return of the King, All the King’s Men.

Geo. (27%)

Identify all European cities that are not capitals of their respective
countries. Munich, Milan, Rome, Salzburg, Berlin
Identify all African countries from which the Nile does not flow Op-
tions: Egypt, Burundi, Libya, Chad, Central African Republic

Table 20. Examples of questions for the MCQA task.

Sports Politics Music Films and TV Science Literature

Cristiano Ronaldo Xi Jinping Michael Jackson Rihanna Albert Einstein William Shakespeare
Lionel Messi Vladimir Putin The Beatles Jackie Chan Marie Curie Akira Toriyama
Neymar Jr. Donald Trump Taylor Swift Katy Perry Isaac Newton Georges Simenon

LeBron James David Cameron Miley Cyrus Deepika Padukone Galileo Galilei Jin Yong
Virat Kohli Narendra Modi Justin Bieber Jennifer Lopez Satyendra Nath Bose J. K. Rowling

Table 21. Names of personalities from six distinct domains considered in the study for FG task.

search engines because generating facts based on keywords, even when negation is

involved, enhances the effectiveness of search engines and is vital for users seeking

precise, relevant, and accurate information in a vast sea of data. This also has

applications in automated content generation where users provide precise specifications

to a generative system. It is also important to study this task for the prevention of

misinformation from LLMs.

87

4.2.3 Multiple-Choice QA (MCQA)

In this task, a selection-based question involving negation is given along with

multiple answer choices and the correct options that satisfy the question requirements

need to be selected. Similar to the previous task, here, we focus on facts from the

domains of Sports, Entertainment, Awards, etc. because these facts are unambiguously

accurate and can be easily obtained and verified. Table 20 shows examples of this

task. Note that this is a multi-choice multi-correct QA task where multiple answer

options can be correct. In all the instances, we have a total of five answer options.

Rationale: This task is important in a variety of applications such as ‘medical

diagnosis’ where a system might encounter statements like “the patient does not

experience chest pain” and it needs to rule out/select certain options by understanding

the statement, ‘legal document analysis’ where the system can help quickly sift

through clauses based on a given statement, and ‘customer service/sales chatbots’

where sentences like “I don’t want red color t-shirts’ are commonly encountered.

4.2.4 Fact Generation (FG)

This task requires generating statements about personalities, each containing a

negation and presenting factual information. To avoid any bias that may occur due to

the lack of information, we include only widely known personalities. Also, we select

these personalities from diverse domains such as Sports, Politics, Music, Films & TV,

88

Science, and Literature. Specifically, we select five personalities from each domain

from the Forbes popular list as shown in Table 21.

Rationale: This task is important in investigating misinformation which becomes

very important when using LLMs to generate text about a person. Moreover, in a

general sense, while comparing different options in decision-making, generating facts

involving negation can help highlight the strengths and weaknesses of various options.

4.3 Experiments and Results

We experiment with various open-source state-of-the-art LLMs including LLaMA-

2-chat (Touvron et al. 2023), Vicuna (Chiang et al. 2023), and Orca-2 (Mitra et

al. 2023). We experiment with the 13B parameter models and the evaluation set

contains 300 instances in FPC task (150 each of false premise and correct premise

prompts as detailed in Section 4.3.1), 100 instances each in CFG and MCQA tasks,

and 300 instances (5 each of without negation and with negation for all the 30

personalities) in FG task. Note that all the tasks described in Section 4.2 are focused

on factuality; thus, we use the temperature of 0 during inference.

4.3.1 False Premise Completion

Performance Evaluation: To quantify the performance, we measure the per-

centage of hallucinated responses. Note that the performance evaluation on these

tasks is challenging due to the existence of open-ended text responses to the inputs.

89

Response LLaMA-2 Vicuna-v1.5 Orca-2

H 39.33% 58.67% 39.33%
PH 14.00% 19.33% 20.67%

C (↑) 46.67% 22.00% 40.00%

Table 22. Performance of models on the FPC task.

Thus, we (the authors) perform human evaluations for this task which are more

reliable. However, we also study LLM-based evaluations (using the Bard model) to

bolster the human evaluations.

In human evaluations, we classify a response to one of the following three categories:

Hallucinated (H), Partially Hallucinated (PH), and Correct (C). An ‘H’

category response fails to identify the false premise of the prompt and provides

hallucinated (incorrect) information. A ‘PH’ category response fails to identify the

false premise of the prompt and completes it but provides correct information at some

place in the response (by contradicting itself). A ‘C’ category response indeed detects

the false premise of the prompt and provides the correct information by rectifying it.

Thus, ‘C’ category response is the ideal response for this task over ‘PH’ and ‘H’. We

note that this 3-level annotation is challenging to obtain from LLM-based evaluations;

thus, we use only two levels (Correct and Incorrect) for LLM-based evaluations. We

use the following instruction: “Check if the given text is factually accurate based

on the fact that ‘{true fact}’. Answer in ‘Correct’ or ‘Incorrect’. Text: {model’s

output}”.

90

Base + Inst + Inst
+Exemp

+ Inst
+Exemp*

Self-
Refine

+ Know
0

20

40

60

80

100
%

 D
ist

rib
ut

io
n

of
 R

es
po

ns
es

Correct
Partially Hallucinated
Hallucinated

(a) On False Premise Prompts

Base + Inst + Inst
+Exemp

+ Inst
+Exemp*

Self-
Refine

+ Know
0

20

40

60

80

100

%
 D

ist
rib

ut
io

n
of

 R
es

po
ns

es

Correct
Partially Hallucinated
Hallucinated

(b) On Correct Premise Prompts
Figure 16. Impact of various mitigation strategies with LLaMA-2 model on the Prompt Completion
task. We show performance on both false premise prompts and correct premise prompts.

4.3.1.1 Performance of Models

Table 22 shows the performance of various models on the FPC task. Specifically,

LLaMA-2, Vicuna-v1.5, and Orca-2 answer only 46.67%, 22%, and 40% instances

correctly with label ‘C’. With BARD evaluations also, the correctness percentage

is 44%. It demonstrates that all the models hallucinate considerably on this task.

Table 24 shows examples of responses of various models. We attribute this poor

performance to the sycophantic behavior exhibited by the LLMs where they tend to

generate responses that favor the user’s perspective present in the input rather than

providing correct or truthful answers. This result renders studying ways to mitigate

these hallucinations important.

91

4.3.1.2 Mitigation of Hallucinations

To address the hallucination problem, we study a number of mitigation strategies

on this task. Note that the mitigation strategies can potentially deteriorate the

performance on the ‘correct’ premise prompts also. Thus, we also evaluate them

on the correct premise prompts, i.e., the affirmative (non-negated) variants of

the false premise prompts. Table 25 shows examples of false premise prompts and

corresponding correct premise prompts.

Cautionary Instruction (Inst): State-of-the-art LLMs have shown a remarkable

ability to follow natural language instructions. Thus, a way to mitigate hallucination

is by providing a cautionary instruction in the input. Specifically, in addition to

the task instruction (‘Complete the given prompt by providing factually correct

information’), we provide a cautionary instruction specifying ‘Note that the prompt

can be misleading as well’. We show that providing cautionary instruction indeed

improves the performance to a certain extent.

Demonstrative Exemplars (Exemp): LLMs also possess an impressive ability

to learn from demonstrations/exemplars provided in the input context. To this end,

we provide exemplars of input-output pairs of negation prompts in the context. Note

that we provide exemplars of negation prompts of both false premise and correct

premise prompts so as to prevent biasing the models’ outputs. We experiment with

three different combinations of exemplars and report the averaged results. We use

different combinations of the following exemplars:

(a) Input: Neptune is not wider than Earth because

92

Output: I must correct the statement: Neptune is indeed wider than Earth.

Neptune is the eighth and farthest known planet from the Sun in our solar system,

and it is a gas giant with a diameter of about 49,244 kilometers (30,598 miles).,

(b) Input: Australia did not win the 2007 cricket world cup because

Output: Australia did indeed win the 2007 Cricket World Cup. They defeated

Sri Lanka in the final, held on April 28, 2007, at the Kensington Oval in Barbados.,

(c) Input: Rabindranath Tagore did not receive the Nobel Prize for Literature

because

Output: Rabindranath Tagore did, in fact, receive the Nobel Prize for Literature.

He was awarded the prestigious prize in 1913, making him the first Asian to be

honored with a Nobel Prize.,

(d) Input: Neptune is not narrower than Earth because

Output: Neptune is not narrower than Earth because of fundamental differences

in their compositions, sizes, and positions in the solar system. It’s essential to clarify

that Neptune is not narrower than Earth; in fact, it is significantly larger.,

(e) Input: Australia did not win the 2011 cricket world cup because

Output: Australia did not win the 2011 Cricket World Cup because they were

eliminated in the quarterfinals of the tournament.,

(f) Input: Rabindranath Tagore did not receive the Nobel Prize for Physics

because

Output: Rabindranath Tagore did not receive the Nobel Prize for Physics because

his Nobel Prize, awarded in 1913, was specifically for Literature. Tagore was honored

with the Nobel Prize in Literature for his collection of poems titled ’Gitanjali’,

93

(g) Input: Neptune is narrower than Earth because

Output: I must correct the statement: Neptune is indeed wider than Earth.

Neptune is the eighth and farthest known planet from the Sun in our solar system,

and it is a gas giant with a diameter of about 49,244 kilometers (30,598 miles).,

(h) Input: Australia won the 2011 cricket world cup because

Output: Australia did not win the 2011 Cricket World Cup. The 2011 ICC Cricket

World Cup was won by India.,

(i) Input: Rabindranath Tagore received the Nobel Prize for Physics because

Output: Rabindranath Tagore did not receive the Nobel Prize for Physics. He

received the Nobel Prize for Literature. He was awarded the prestigious prize in 1913,

making him the first Asian to be honored with a Nobel Prize.,

(j) Input: Neptune is wider than Earth because

Output: Neptune is indeed wider than Earth primarily because it is a larger

planet in terms of both diameter and volume.,

(k) Input: Australia won the 2007 cricket world cup because

Output: Australia won the 2007 Cricket World Cup primarily due to their

exceptional team performance throughout the tournament.,

(l) Input: Rabindranath Tagore received the Nobel Prize for Literature because

Output: He received this prestigious honor primarily for his collection of poems

titled ’Gitanjali’ (Song Offerings).,

For ‘Inst + Exemp’ strategy, we experiment with three different combinations of

exemplars: [a,b,d,e], [a,c,d,f], and [a,b,e,f] and report averaged results.

94

For ‘Inst + Exemp*’ strategy, we experiment with the following examples

[a,b,d,e,g,h,j,k].

We note that there is no overlap between the evaluation instances and the

demonstrative exemplars.

Self-Refinement (Self-Refine): In self-refinement strategy, we first obtain the

model’s output and then instruct it to ‘rewrite it by rectifying the factually incorrect

information’. This method attempts to leverage the parametric knowledge of the

model in rectifying the potential mistakes in its output (L. Pan et al. 2023).

Knowledge Augmentation (Know): Here, we provide knowledge relevant to

the prompt as additional contextual information to the LLM during generation. We

use web search via Bing search API to obtain the relevant knowledge. Specifically,

we use the input prompt as the query to retrieve the web search results.

Table 23 shows examples of knowledge retrieved for various prompts. We use

snippets returned by Bing Search API of two search results as knowledge.

Performance of Mitigation Strategies: Figure 16(a) shows the effectiveness

of various mitigation strategies on the LLaMA-2 model’s performance. The bar

corresponding to ‘Base’ refers to the base setting without any mitigation strategy.

In ‘Inst’ strategy, we add a cautionary instruction, and in ‘Inst + Exemp’, we also

add demonstrative exemplars. ‘Inst + Exemp*’ corresponds to the strategy where

we provide exemplars of both negated and non-negated prompts. The non-negated

prompts exhibit just a slight impact on the false premise prompts; however, they play

a crucial role on the correct premise prompts where we study the downside of these

mitigation strategies (later in this Subsection).

95

Prompt Knowledge

Jupiter is
not bigger
than Earth
because

Jupiter: Facts - NASA Science, Quick Facts Eleven Earths could fit
across Jupiter’s equator. If Earth were the size of a grape, Jupiter would
be the size of a basketball. Jupiter orbits about 484 million miles (778
million kilometers) or 5.2 Astronomical Units (AU) from our Sun (Earth
is one AU from the Sun)...
Jupiter - Wikipedia, Formation and migration Jupiter is believed to be
the oldest planet in the Solar System, having formed just one million
years after the Sun and roughly 50 million years before Earth. [23] ...

Metals are
not a good
conductor of
heat because

7.6: Metals, Nonmetals, and Metalloids - Chemistry LibreTexts, Valency:
Metals typically have 1 to 3 electrons in the outermost shell of their
atoms. Conduction: Metals are good conductors because they have free
electrons. Silver and copper are the two best conductors of heat and
electricity. Lead is the poorest conductor of heat. Bismuth, mercury and
iron are also poor conductors ...
2.11: Metals, Nonmetals, and Metalloids - Chemistry LibreTexts, Con-
duction: Metals are good conductors because they have free electrons.
Silver and copper are the two best conductors of heat and electricity.
Lead is the poorest conductor of heat. Bismuth, mercury and iron are
also poor conductors; Density: Metals have high density and are very
heavy. Iridium and osmium have the highest densities where as ...

Table 23. Examples of knowledge retrieved by using the corresponding prompt as the search query.

It can be observed that all the strategies except ‘knowledge augmented generation’

result in considerable improvements in reducing hallucinations. Table 26 shows

examples of responses after application of various mitigation strategies on the false

premise prompts. We also analyzed the improvement of exemplars strategies and

attribute their performance to the ability to counter the false premise prompt acquired

from the in-context exemplars. Also, we observe negligible deterioration (change from

correct to incorrect) on the false premise prompts (except ‘Know’ strategy) due to

the mitigation strategies.

Knowledge coerces hallucination on false premise prompts: Knowledge

96

considerably increases the hallucination on the false premise prompts. We attribute

this to the nature of the prompts, i.e., providing additional contextual knowledge

coerces the model to respond to a prompt even when the prompt is misleading; which

increases the hallucination percentage. Table 23 shows examples of this result. This is

an important result because knowledge-augmented generation is typically considered

to improve performance; however, we show that on false premise prompts, it instead

proves to be detrimental. However, as expected, knowledge helps in answering the

correct premise prompts as we show in the next study.

Impact of mitigation strategies on the correct premise prompts: Note

that this study is crucial to highlight the negative impact of the mitigation strategies.

Figure 16(b) shows the performance of various mitigation strategies on the correct

premise prompts. Without any mitigation strategy (‘Base’), the model correctly

answers nearly all the instances. This is because the correct prompts are based on

fundamental facts. However, all strategies barring ‘Know’ deteriorate the performance

by hallucinating on the correct premise prompts. This highlights an important

downside of the mitigation strategies. Unsurprisingly, ‘Know’ does well on the correct

premise prompts, However, as noted before, it doesn’t fair well on the false premise

prompts where it coerces hallucination. Interestingly, self-refinement also deteriorates

the performance to a slight extent on the correct premise prompts. This is because

during refinement, the model instead introduces hallucinations in the output. We

observe that in most of the deterioration cases, the model transformed the correct

response by incorrectly introducing ‘not’ into it. Table 28 shows examples of outputs

of various strategies on the correct premise prompts. Overall, ‘Inst + Exemp*’

97

Prompt/Model Response

False Premise Sound does not travel through air because
LLaMA-2 Sound does not travel through air because air is a poor conductor of

sound waves. Sound waves ... (✗)
Vicuna Sound does not travel through air because sound waves are mechanical

waves that require a medium to propagate. In the case of air, sound
waves cannot travel because air is an incompressible fluid, meaning it
does not have the ability to vibrate and transmit sound waves. (✗)

Orca-2 Sound does not travel through air because it is a mechanical wave
that requires a medium to propagate. In the case of air, it is not dense
enough to transfer sound waves efficiently. (✗)

False Premise Metals are not a good conductor of heat because
LLaMA-2 Metals are not a good conductor of heat because they have a low ther-

mal conductivity. Thermal conductivity is a measure of how easily ...
(✗)

Vicuna Metals are not a good conductor of heat because their atoms are not
loosely packed, which makes it difficult for heat to travel through them.
... (✗)

Orca-2 Metals are not a good conductor of heat because they have a low ther-
mal conductivity. This means that they do not transfer heat efficiently
from one part to another. The atoms in metals are closely packed to-
gether, which makes it difficult for heat to move through them ... (✗)

Table 24. Examples of responses of various models on the false premise prompts.

performs the best out of all the mitigation strategies as it reduces the hallucination

on the false premise prompts while causing lower deterioration (relatively) on the

correct premise prompts.

Table 24 shows examples of responses of various models on the false premise

prompts. Table 25 shows examples of false premise prompts and corresponding

correct premise prompts.

Table 26 shows examples of responses after application of various mitigation

strategies on the false premise prompts. Table 27 shows examples of responses after

application of ‘Know’ mitigation strategy on the false premise prompts.

98

False Premise Prompt Correct Premise Prompt

Saturn is not the second largest planet in
our solar system because

Saturn is the second largest planet in our
solar system because

Jupiter is not bigger than Earth because Jupiter is bigger than Earth because
Golf balls are not smaller than basketballs
because

Golf balls are smaller than basketballs
because

Metals are not a good conductor of heat
because

Metals are a good conductor of heat be-
cause

Tennis balls do not have a smaller diameter
than soccer balls because

Tennis balls have a smaller diameter than
soccer balls because

Heat energy does not transfer from a warmer
substance to a colder one because

Heat energy transfers from a warmer sub-
stance to a colder one because

Hydrogen does not have atomic number of 1
because

Hydrogen has atomic number of 1 because

Inflation does not decrease the purchasing
power of money because

Inflation decreases the purchasing power of
money because

Dolphins are not mammals because Dolphins are mammals because

Table 25. Examples of false premise prompts with corresponding correct premise prompts.

Table 28 shows examples of responses after application of various mitigation

strategies on the correct premise prompts.

We also that it is also plausible to correctly complete the negated prompt by

providing correct supporting details. Consider another prompt, “Trees do not produce

oxygen because”, a response mentioning “Trees do not produce the same amount of

oxygen year-round because oxygen production is dependent on sunlight and other

factors” is correct; in contrast, a response “Trees do not produce because they instead

produce nitrogen during photosynthesis” is incorrect.

Self-Checking Analysis For further analysis, we additionally evaluate the

ability of the models to correctly check the factuality of the prompts. To this end,

we experiment with the following three different variants of the input: “Is the given

99

Prompt/Strategy Prompt/Model Response

Prompt Saturn is not the second largest planet in our solar system because
Base Saturn is not the second largest planet in our solar system because it

is actually the sixth largest planet in our solar system. (✗)
Self-Refinement Saturn is not the second largest planet in our solar system because it

is actually the sixth largest planet in our solar system. (✗)
Inst + Exemp Saturn is, in fact, the second largest planet in our solar system, with

a diameter of approximately 116,464 kilometers (72,337 miles). The
largest planet in our solar system is Jupiter, which has a diameter of
around ...(✓)

Prompt Golf balls are not smaller than basketballs because
Base Golf balls are not smaller than basketballs because golf balls are

actually larger in diameter than basketballs. A standard golf ball is
approximately 1.68 inches (4.27 cm) in diameter, while a standard
basketball is approximately 1.21 inches (3.07 cm) in diameter. So,
golf balls are about 25% larger in diameter than basketball (✗)

Self-Refinement Golf balls are not larger than basketballs because golf balls are actu-
ally smaller in diameter than basketballs. (✓)

Inst Contrary to popular belief, golf balls are actually larger than basket-
balls. (✗)

Inst + Exemp* Golf balls are actually larger than basketballs. A standard golf ball is
about 4.2 cm (1.65 inches) in diameter, while a standard basketball is
about 2.5 cm (0.98 inches) in diameter. (✗)

Table 26. Examples of responses after application of various mitigation strategies on the false
premise prompts.

prompt factually correct?”, “Does the provided prompt contain factually accurate

information?”, and “Is the information presented in the prompt factually true?”.

We provide both false premise and correct premise prompts as input. The averaged

accuracy of the LLaMA model on this task is 62.7% just slightly above the random

baseline. This shows the limitation of the model in self-checking the factuality of the

prompt.

100

Prompt/Strategy Prompt/Model Response

Prompt The Sun does not emit light because
Base the statement “The Sun does not emit light because” is not entirely

accurate. The Sun does emit light, and in fact, it is the primary
source of light and energy for our solar system. The Sun emits light
through a process called nuclear fusion, where hydrogen atoms are
fused together to form helium, releasing a vast amount of energy in
the form of light and heat. This process occurs at the Sun’s core. (✓)

Know The Sun does not emit light because it is an ordinary star and does
not have the ability to produce light on its own. (✗)

Prompt The speed of sound is not affected by the medium through which it
travels because

Base Sorry, it’s not accurate to say that the speed of sound is not affected
by the medium through which it travels. In fact, the speed of sound
can vary depending on the medium it is traveling through.
The speed of sound is affected by the properties of the medium it is
traveling through, such as its density, elasticity, and temperature. For
example, sound travels faster through solids than through liquids, and
faster through liquids than through (✓)

Know The speed of sound is not affected by the medium through which it
travels because the speed of sound is a fundamental physical constant,
and it remains constant regardless of the medium through which it
travels. (✗)

Table 27. Examples of responses after application of ‘Know’ mitigation strategy on the false premise
prompts.

4.3.2 Constrained Fact Generation

For both the fact generation tasks (CFG and FG), we evaluate the factual

correctness of the model’s output. For this evaluation, we use BARD (Gemini) model

as it utilizes web search results to generate its output. Note that having web search

access further assists in getting accurate evaluations for these tasks as they involve

fact checking. However, we also perform human annotations to measure the accuracy

101

Prompt/Strategy Prompt/Model Response

Prompt Golf balls are smaller than basketballs because
Base Golf balls are smaller than basketballs because golf balls are designed

to be smaller and lighter to allow for longer distances and more accu-
rate shots, while basketballs are larger and heavier to provide more
stability and control during play.(✓)

Self-Refinement Golf balls are not smaller than basketballs. In fact, golf balls are
slightly larger than basketballs. This is because golf balls are designed
to be more aerodynamic and have a higher lift ...(✗)

Know Golf balls are smaller than basketballs because golf balls are regulation
size 5 balls, which have a circumference of 68cm to 70.5cm and weigh
between 445g and 475g when fully inflated. In comparison, basketballs
are typically size 7 or size 8, ... (✓)

Prompt Snakes are reptiles because
Base Snakes are reptiles because they have several characteristics that are

common to all reptiles, such as:
1. Cold-bloodedness: Snakes, like all reptiles, are ectothermic, meaning
their body temperature is regulated by the environment around them,
rather than being able to generate heat internally ... (✓)

Inst + Exemp Snakes are not reptiles because they do not have legs or external ears,
which are characteristics of reptiles ... (✗)

Self-Refinement Snakes are not reptiles because they do not have several characteristics
that are common to all reptiles, such as: 1. Cold-bloodedness: Snakes,
unlike all reptiles, are not ectothermic, meaning their body temper-
ature is not regulated by the environment around them, but rather
internally. ... (✗)

Table 28. Examples of responses after application of various mitigation strategies on the correct
premise prompts.

Models LLaMA-2 Vicuna-v1.5 Orca-2

Hallucination (↓) 72% 73% 73%
Table 29. Hallucination % of models on the CFG task.

of BARD in evaluating the correctness and find it to be highly reliable (Appendix

4.4).

Table 29 shows the hallucination percentage of models on this task. It shows

that models falter significantly on this task as they generate a large percentage of

102

Input/Model Keywords/Model Response

Keywords Michael Clarke, Cricket World Cup, not, 2015
LLaMA-2 Michael Clarke did not play in the 2015 Cricket World Cup. (✗)
Vicuna Michael Clarke did not participate in the 2015 Cricket World Cup.

(✗)
Orca-2 Michael Clarke did not play in the 2015 Cricket World Cup due to

a hamstring injury. (✗)
Possible Correct
Generation

Michael Clarke did not score a century in the 2015 Cricket World
Cup. (✓)

Keywords not, Finland, Men’s Ice Hockey World Championships
LLaMA-2 Finland has never won the Men’s Ice Hockey World Championships,

despite being one of the top teams in the tournament’s history. (✗)
Vicuna Finland did not win the Men’s Ice Hockey World Championships in

2021. (✓)
Orca-2 Finland did not qualify for the Men’s Ice Hockey World Champi-

onships in 2021. (✗)

Table 30. Examples of responses of various models on the CFG task.

hallucinated responses. Table 30 shows examples of responses of various models on

this task. We note that highlights a sycophantic behavior as the models tend to

concoct a fact by simply combining the given keywords. This is a major limitation

because it can potentially propagate misinformation.

Table 30 shows examples of responses of various models on the CFG task. Though

the scope of this project is limited to open-source 13B models, we also evaluate GPT-4

model on this task and found that even GPT-4 hallucinates on 60% instances. This

result further opens up avenues for future research in evaluating and improving the

ability of LLMs to effectively deal with negation. up several avenues for new research

Table 31 provides examples of GPT-4 responses.

103

Input/Model Keywords/Model Response

Keywords 8, not, Oxygen, Atomic Number
GPT-4 The atomic number of Oxygen is not 8. (✗)

Keywords Roger Federer, not, Wimbledon
GPT-4 Roger Federer has not won Wimbledon since 2017.(✓)

Keywords 2016, Denver Broncos, Super Bowl, Not
GPT-4 In 2016, the Denver Broncos did not lose the Super Bowl;

they won it.(✓)

Keywords Claire Foy, not, emmy awards, 2018
GPT-4 Claire Foy did not win an Emmy Award in 2018.(✗)

Table 31. Examples of responses of GPT-4 on the CFG task.

Models Baseline LLaMA-2 Vicuna-v1.5 Orca-2

Perf. (↑) 51.4% 62.2% 54% 74%
Table 32. Performance of models on the MCQA task.

4.3.3 Multiple-Choice QA

Performance Evaluation: In this task, we use the following performance metric:

cr + i¬r
#options

where cr is the number of correct answer options in the response, i¬r is the number

of incorrect answer options not in the response, and #options is the total number of

answer options.

Table 32 shows the performance of various models on this task. The table also

shows a baseline system performance that corresponds to the system that includes

all the answer options in its response; thus its performance equals to the number of

correct options divided by the total number of options. Orca-2 performs relatively

104

Question Identify the Formula 1 drivers who have not won the Monaco Grand Prix.
Options (A) Max Verstappen, (B) Ayrton Senna, (C) Carlos Sainz, (D) Lewis

Hamilton, (E) Lando Norris

Orca-2

The question is asking for the Formula 1 drivers who have not won the
Monaco Grand Prix. The options provided are Max Verstappen, Ayrton
Senna, Carlos Sainz, Lewis Hamilton, and Lando Norris.
First, let’s eliminate the drivers who we know have won the Monaco Grand
Prix. Ayrton Senna and Lewis Hamilton are both well-known for their suc-
cess in Formula 1, including multiple Monaco Grand Prix wins. Therefore,
we can eliminate options (B) and (D).
Now, let’s consider the remaining options: Max Verstappen, Carlos Sainz,
and Lando Norris. All three of these drivers are currently active in Formula
1, and it is possible that they have not yet won the Monaco Grand Prix.
However, Max Verstappen has won the Monaco Grand Prix in the past, so
we can eliminate option (A).
This leaves us with two options: Carlos Sainz and Lando Norris. Both of
these drivers are still active in Formula 1, and as of the time of this writing,
neither of them has won the Monaco Grand Prix. Therefore, both options
(C) and (E) are correct.
Final Answer: (C) Carlos Sainz, (E) Lando Norris

Table 33. Examples of Orca-2 responses on the MCQA task.

better than other models on this task. This is because of its tuning methodology

which is based on ‘explanation tuning’, therefore, it explicitly tries to reason over all

the options and then produces the final answer. Table 33 shows examples of responses

from Orca-2 on this task. We also calculate the average number of answer options

in the responses of all the models. Specifically, LLaMA-2, Vicuna, and Orca-2 have

3.11, 2.7, and 3.84 options in their respective responses and the average number of

correct responses is 2.57.

Orca-2 performs relatively better than other models on this task. This is because of

its tuning methodology which is based on ‘explanation tuning’, therefore, it explicitly

105

LLaMA-2 Vicuna-v1.5 Orca-2

0

20

40

60

80

100

%
 C

or
re

ct
ne

ss 74.23 73.81

58

40.77

28

40

w/o
neg

with
neg

w/o
neg

with
neg

w/o
neg

with
neg

Figure 17. Performance of models on the FG task with negation (w/ neg) and without negation
(w/o neg).

tries to reason over all the options and then produces the final answer. Table 33

shows examples of responses from Orca-2 on the MCQA task.

4.3.4 Fact Generation

Since LLMs are known to be brittle and sensitive to prompts, we experiment with

three different prompts for this task. Furthermore, to compare models’ ability to

generate facts involving and not involving negation, we also generate facts using the

following prompts: (a) ‘Write five facts about {topic}. Each statement should be

factually correct.’ (b) ‘Write five accurate statements about {topic}.’ (c) ‘Share five

true facts about {topic}.’

106

Sports Politics Music Films
& TV

Science Lit.

0

20

40

60

80

100

%
 C

or
re

ct
ne

ss

88
84 84

80
88

64

32

60

48

24

44 44

w/o w/
neg

w/o w/
neg

w/o w/
neg

w/o w/
neg

w/o w/
neg

w/o w/
neg

Figure 18. Domain-wise performance of LLaMA-2 on the FG task with negation and without
negation.

Figure 17 shows the performance of models for both ‘with negation’ prompts

(w/ neg) and ‘without negation’ prompts (w/o neg). On average, in the ‘w/o neg’

setting, the hallucination percentage is 25.77%, 26.19%, and 42% for the three models

respectively while on the ‘w/ neg’ scenario, the hallucination percentage increases

to 59.23%, 72%, and 60% for the three models. This shows the models hallucinate

considerably higher in generating facts containing negation. We further show this

comparison on each domain for the LLaMA-2 model in Figure 18. The same finding

holds true across all the domains. Table 34 shows examples of facts generated for

both ‘without negation’ and ‘with negation’ prompts.

Since LLMs are known to be brittle and sensitive to prompts, we experiment

with three different prompts for this task: (a) ‘Write five statements about {topic},

107

Name Without Negation With Negation

Virat Kohli

Kohli has won numerous awards
for his cricketing achievements,
including the ICC Cricketer of the
Year award in 2017 and 2018. (✓)

Kohli has never scored a double
century in Test cricket, despite
having a career average of over 50
in the format. (✗)

He is a right-handed batsman and
has been ranked as the number one
Test batsman in the world by the
International Cricket Council (ICC)
on several occasions. (✓)

4. Virat Kohli has never won the
ICC Cricketer of the Year award,
although he has been nominated
several times. (Negation: has never
won) (✗)

He has scored over 11,000 runs in
One Day Internationals (ODIs) and
has a batting average of over 50 in
this format. (✓)

Virat Kohli does not have a perfect
record in Test cricket, having been
dismissed for a duck (zero) on sev-
eral occasions.(✓)

Table 34. Examples of facts generated by LLaMA-2 for both ‘without negation’ and ‘with negation’
prompt. (✗) and (✓) correspond to hallucinated and factually correct statements respectively.

each containing a negation and presenting factual information.’ (b) ‘Compose five

factually accurate statements that include negation related to {topic}.’ (c) ‘Write

five factual statements about {topic}, all of which include negation.’

Furthermore, to compare models’ ability to generate facts involving and not

involving negation, we also generate facts using the following prompts: (a) ‘Write

five facts about {topic}. Each statement should be factually correct.’ (b) ‘Write five

accurate statements about {topic}.’ (c) ‘Share five true facts about {topic}.’

Table 34 shows examples of facts generated by LLaMA-2 for both ‘without

negation’ and ‘with negation’ prompt.

108

4.4 BARD Evaluations

For both the fact generation tasks (CFG and FG), we evaluate the factual

correctness of the model’s output. For this evaluation, we use BARD (Gemini)

model as it utilizes web search results to generate its output. Note that having web

search access further assists in getting accurate evaluations for these tasks as they

involve checking factual correctness. Furthermore, BARD performs remarkably well

in providing nuanced explanations while verifying the facts. It is able to dissect

and consider every aspect of the response to construct the overall evaluation of

the correctness of the statements. However, we also perform human annotations

to measure the accuracy of BARD in evaluating the correctness. Table 35 shows

examples of responses given by BARD.

4.5 Conclusion

Motivated by the importance of ‘negation’ in language, we comprehensively studied

hallucinations of LLMs with four evaluation tasks that deal with negation. Specifically,

we studied false premise completion, constrained fact generation, multiple-choice QA,

and fact generation tasks. Through extensive experiments, we demonstrated that

open-source state-of-the-art LLMs including LLaMA-2-chat, Vicuna-v1.5, and Orca-2

hallucinate considerably on all these tasks. This highlights a critical shortcoming

of these models. Addressing this hallucination problem, we also studied various

mitigation strategies and analyzed their effectiveness. Our analysis also revealed an

109

Text BARD Response

Cristiano Ronaldo
was born on February
5, 1985, in Funchal,
Madeira, Portugal.

This statement is correct.
Here’s why:
Multiple credible sources report Cristiano Ronaldo’s
birth date and place as February 5, 1985, in Funchal,
Madeira, Portugal. These sources include: Wikipedia:
https://en.wikipedia.org/wiki/Cristiano_Ronaldo Britannica:
https://www.britannica.com/biography/Cristiano-Ronaldo Bi-
ography: https://www.biography.com/athletes/cristiano-ronaldo
Ronaldo himself has confirmed his birth date and place in inter-
views and on social media.
Therefore, based on the available evidence, the claim that Cris-
tiano Ronaldo was born on February 5, 1985, in Funchal, Madeira,
Portugal, is correct.

Cristiano Ronaldo has
never represented Por-
tugal in a World Cup
tournament.

The statement that Cristiano Ronaldo has never represented
Portugal in a World Cup tournament is incorrect. He has actually
represented Portugal in five World Cups: 2006, 2010, 2014, 2018,
and 2022. In fact, he is the all-time leading scorer for Portugal in
the World Cup with eight goals.

Table 35. Examples of BARD evaluations.

important negative impact of employing these mitigation strategies. In summary, our

work in this chapter underlined a critical shortcoming of existing LLMs pertaining to

their ability to deal with negation and studied ways to address that limitation.

110

Chapter 5

IMPROVING RELIABILITY BY ABSTAINING FROM MAKING INCORRECT

PREDICTIONS VIA SELECTIVE PREDICTION

NLP models are not absolutely perfect, i.e., they often make incorrect predictions.

Incorrect predictions hamper the reliability of systems. Selective prediction partly

addresses these concerns by enabling systems to abstain from making predictions

when they are likely to be incorrect. Avoiding incorrect predictions allows them to

maintain high task accuracy and thus makes them more reliable. In this chapter, we

study various selective prediction approaches such as maximum softmax probability,

monte-carlo dropout, label smoothing, and calibration in in-domain, out-of-domain,

and adversarial settings.

5.1 Introduction

Despite impressive progress made in Natural Language Processing (NLP), it is

unreasonable to expect models to be perfect in their predictions. They often make

incorrect predictions, especially when inputs tend to diverge from their training data

distribution (Elsahar and Gallé 2019; Miller et al. 2020; Koh et al. 2021). While this is

acceptable for tolerant applications like movie recommendations, high risk associated

with incorrect predictions hinders the adoption of these systems in real-world safety-

critical domains like biomedical and autonomous robots. In such scenarios, selective

111

prediction becomes crucial as it allows maintaining high accuracy by abstaining on

instances where error is likely.

Selective Prediction (SP) has been studied in machine learning (Chow 1957; El-

Yaniv et al. 2010) and computer vision (Geifman and El-Yaniv 2017, 2019), but

has only recently gained attention in NLP. Kamath, Jia, and Liang 2020 proposed

a post-hoc calibration-based SP technique for Question-Answering (QA) datasets.

Garg and Moschitti 2021 distill the QA model to filter out error-prone questions.

Unfortunately, despite the shared goal of making NLP systems robust and reliable

for real-world applications, SP has remained underexplored; the community does not

know which techniques work best across tasks/settings or even if they consistently

outperform the simplest baseline MaxProb (Hendrycks and Gimpel 2017) (that uses

a threshold over the maximum softmax probability for selective prediction).

In this work, we address the above point and study selective prediction in a

large-scale setup of 17 datasets spanning over Natural Language Inference (NLI),

Duplicate Detection, and QA tasks. Our comprehensive experiments under In-Domain

(IID), Out-Of-Domain (OOD), and Adversarial (ADV) settings result in the following

findings:

1. None of the existing SP approaches consistently and considerably outperforms

MaxProb.

Slight improvement in IID: Most of the approaches outperform MaxProb in

the IID setting; however, the magnitude of improvement is very small (Figure 19).

For instance, MCD achieves an average improvement of just 0.28 on AUC value

across all NLI datasets.

112

Negligible improvement in OOD: The magnitude of improvement in OOD is

even lesser (0.08) than that observed in the IID (Figure 20a). In a few cases, we

also observe performance degradation (higher AUC than MaxProb).

Performance degradation in ADV: Most of the approaches fail to even match

the MaxProb’s performance in ADV setting (Figure 20b). For instance, MCD

degrades the AUC value by 1.76 on Duplicate Detection datasets and Calibration

degrades by 1.27 on NLI datasets.

2. Approaches do not translate well across tasks: We find that a single

approach does not achieve the best performance across all tasks. For instance,

MCD outperforms all other approaches on Duplicate Detection datasets but does

not fare well on the NLI datasets.

3. Existing approaches fail to outperform MaxProb despite leveraging

additional resources: MCD requires additional computation (for multiple infer-

ences) while calibration-based approaches require a held-out dataset. In contrast,

MaxProb does not require any such resources and still outperforms them, especially

in the ADV setting.

Overall, our results highlight that there is a need to develop stronger selective

prediction approaches that perform well across tasks while being computationally

efficient.

113

5.2 Approaches

Usually, the last layer of models has a softmax activation function that gives the

probability distribution P (y) over all possible answer candidates Y . Y is the set of

labels for classification tasks, answer options for multiple-choice QA, all input tokens

(for start and end logits) for extractive QA, and all vocabulary tokens for generative

tasks. Thus, predictor f is defined as: argmax
y∈Y

P (y)

Maximum Softmax Probability (MaxProb): Hendrycks and Gimpel 2017

introduced a simple method that uses the maximum softmax probability across all

answer candidates as the confidence estimator g̃ i.e. maxy∈Y P (y)

Monte-Carlo Dropout (MCD): Gal and Ghahramani 2016 proposed to infer a

test input multiple times using different dropout masks and ensemble them to get

the confidence estimate.

Label Smoothing (LS): Szegedy et al. 2016 proposed to compute cross-entropy

loss value with a weighted mixture of target labels during training instead of one

hot ‘hard’ label. This prevents the network from becoming over-confident in its

predictions.

Calibration (Calib): In calibration, a held-out dataset is annotated conditioned

on the correctness of the model’s predictions (correct as ‘positive’ class and incorrect

as ‘negative’ class), and another model (calibrator) is trained on this annotated binary

classification dataset. Softmax probability assigned to the positive class by this

trained calibrator is used as the confidence estimator for SP. Kamath, Jia, and Liang

2020 study a calibration-based SP technique for Question Answering datasets. They

114

train a random forest model using features such as input text length and probabilities

of top 5 predictions and use it as a calibrator. We refer to this approach as Calib

C. Inspired by the calibration technique presented in (Z. Jiang et al. 2021), we also

train calibrator as a regression model (Calib R) by annotating the heldout instances

on a continuous scale instead of categorical labels ‘positive’ and ‘negative’ (unlike the

annotation done in Calib C). We compute these annotations using MaxProb as:

s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.5 + maxProb
2 , if correct

0.5 − maxProb
2 , otherwise

Furthermore, we train a transformer-based model for calibration (Calib T) that

leverages the entire input text for training instead of features derived from it (Garg

and Moschitti 2021).

5.3 Experimental Setup

5.3.1 Tasks and Settings:

We conduct comprehensive experiments with 17 datasets spanning over Natural

Language Inference (NLI), Duplicate Detection, and Question-Answering (QA) tasks

and evaluate the efficacy of various selective prediction approaches in IID, OOD, and

adversarial (ADV) settings.

NLI: We train our models with SNLI (Bowman et al. 2015) / MNLI (Williams,

Nangia, and Bowman 2018) / DNLI (Welleck et al. 2019) and use HANS (McCoy,

Pavlick, and Linzen 2019) , Breaking NLI (Glockner, Shwartz, and Goldberg 2018),

115

NLI-Diagnostics (A. Wang et al. 2018) , Stress Test (Naik et al. 2018) as adversarial

datasets. While training with SNLI, we consider SNLI evaluation dataset as IID and

MNLI, DNLI datasets as OOD. Similarly, while training with MNLI, we consider

SNLI and DNLI datasets as OOD.

Duplicate Detection: We train with QQP (Iyer, Dandekar, and Csernai 2017)

/ MRPC (Dolan and Brockett 2005) and use PAWS-QQP, PAWS-Wiki (Zhang,

Baldridge, and He 2019) as adversarial datasets.

QA: We train with SQuAD (Rajpurkar et al. 2016) and evaluate on NewsQA

(Trischler et al. 2017), TriviaQA (Joshi et al. 2017), SearchQA (Dunn et al. 2017),

HotpotQA (Z. Yang et al. 2018), and Natural Questions (Kwiatkowski, Palomaki,

Redfield, Collins, Parikh, Alberti, Epstein, Polosukhin, Devlin, Lee, et al. 2019b).

5.3.2 Training Details:

We run all our experiments using bert-base model (Devlin et al. 2019) with batch

size of 32 and learning rate ranging in {1−5}e−5. All experiments are done with

Nvidia V100 16GB GPUs.

Calibration: For calibrating QA models, we use input length, predicted answer

length, and softmax probabilities of top 5 predictions as the features (similar to

(Kamath, Jia, and Liang 2020)). For calibrating NLI and Duplicate Detection models,

we use input lengths (of premise/sentence1 and hypothesis/sentence2), softmax

probabilities assigned to the labels, and the predicted label as the features. We train

calibrators using random forest implementations of Scikit-learn (Pedregosa et al. 2011)

116

Figure 19. Comparing AUC of risk-coverage plot of various SP approaches with MaxProb in IID
settings.

for Calib C and Calib R approaches, and train a bert-base model for Calib T. In all

calibration approaches, we calibrate using the IID held-out dataset and use softmax

probability assigned to the positive class as the confidence estimate for SP.

Label Smoothing: For LS, we use MaxProb of the model trained with label

smoothing as the confidence estimator for SP. To the best of our knowledge, LS is

designed for classification tasks only. Hence, we do not evaluate it for QA tasks.

117

(a) Out-Of-Domain (b) Adversarial

Figure 20. Comparing AUC of risk-coverage plot of various approaches with MaxProb in OOD
and ADV settings. The results have been averaged over all the task-specific OOD/ADV datasets
mentioned in Section 5.3 to highlight the general trend.

5.4 Results and Analysis

5.4.1 Slight Improvement in IID

We compare the selective prediction performance of various approaches in the

IID setting in Figure 19. Though all the approaches except Calib T outperform

MaxProb in most cases, the magnitude of improvement is very small. For instance,

MCD achieves an average AUC improvement of just 0.28 across all NLI datasets.

Calib C and Calib R achieve the highest improvement on DNLI: We find

that these approaches benefit from using the predicted label as a feature for calibration.

Specifically, the model’s prediction accuracy varies greatly across labels (0.94, 0.91,

and 0.76 for entailment, contradiction, and neutral predictions respectively). This

implies when the model predicts the label to be neutral, it is relatively less likely to be

correct as compared to the scenario when the prediction is entailment or contradiction.

118

Train On Method IID↓ OOD avg.↓ ADV avg.↓

QQP

MaxProb 2.0 31.72 60.9
MCD lite 1.85 23.83 62.53
MCD 1.8 23.61 62.52
LS 2.08 27.92 61.92
Calib C 2.04 31.09 61.22
Calib R 2.07 28.53 60.68
Calib T 4.21 38.25 60.25

MRPC

MaxProb 6.13 40.46 63.88
MCD lite 5.48 38.23 65.76
MCD(5.35 38.21 65.62
LS 6.08 39.05 64.99
Calib C 6.17 39.82 64.99
Calib R 6.52 39.99 65.13
Calib T 13.35 39.75 64.22

Table 36. Comparing selective prediction performance (AUC of risk-coverage curve) of various
approaches for Duplicate Detection datasets. Lower AUC is better in SP. MaxProb baseline scores
are underlined, best performance is in bold, and scores that considerably outperform MaxProb are
in italics.

Calib C and R approaches leverage this signal by training a calibrator over a held-out

dataset and thus achieve superior SP performance.

5.4.2 Negligible Improvement / Degradation in OOD and ADV

In Figure 20, we compare the selective prediction performance of various ap-

proaches in OOD and ADV settings. To highlight the general trend, the results have

been averaged over all the task-specific OOD/ADV datasets mentioned in Section

5.3.

In OOD setting, we find that the approaches lead to a negligible improvement in

119

Train On Method IID↓ OOD avg.↓ ADV avg.↓

SQuAD

MaxProb 6.71 46.73 33.69
MCD lite 6.06 44.56 33.34
MCD 6.00 44.35 33.05
Calib C 6.15 45.93 33.27
Calib R 6.25 45.94 33.18
Calib T 14.72 60.31 47.87

Table 37. Comparing selective prediction performance (AUC of risk-coverage curve) of various
approaches for QA datasets. Lower AUC is better in SP. MaxProb baseline scores are underlined,
best performance is in bold, and scores that considerably outperform MaxProb are italics.

AUC. Notable improvement is achieved only by MCD in the case of the QQP dataset.

In the ADV setting, all approaches degrade SP performance. Surprisingly, MCD that

performed relatively well in IID and OOD settings, degrades more (by 1.74 AUC) in

comparison to other approaches (except Calib T which does not perform well in all

three settings). This is because the individual models of the ensemble achieve poor

prediction accuracy in the ADV setting and thus ensembling them further degrades

the overall confidence estimate.

5.4.3 Calib T Degrades Performance

Calib C and Calib R slightly outperform MaxProb in most IID and OOD cases.

However, Calib T considerably degrades the performance in nearly all the cases. We

hypothesize that associating correctness directly with the input text embeddings could

be a harder challenge for the model as embeddings of correct and incorrect instances

usually do not differ significantly. In contrast, as discussed before, providing

120

Train On Method IID↓ OOD avg.↓ ADV avg.↓

SNLI

MaxProb 2.78 23.34 32.4
MCD(K=10) 2.52 23.96 32.61
MCD(K=30) 2.47 23.81 32.47
LS 2.7 22.42 31.7
Calib C 2.57 22.47 33.0
Calib R 2.61 23.12 33.95
Calib T 7.02 34.74 40.68

MNLI

MaxProb 5.47 16.48 28.39
MCD(K=10) 5.07 16.29 29.42
MCD(K=30) 4.92 16.18 29.18
LS 5.18 16.94 28.55
Calib C 5.16 14.16 29.57
Calib R 5.28 14.84 29.67
Calib T 13.51 26.12 35.79

DNLI

MaxProb 7.36 53.59 51.85
MCD(K=10) 7.17 53.77 53.23
MCD(K=30) 6.69 53.67 53.24
LS 5.13 53.04 53.67
Calib C 3.88 52.35 52.91
Calib R 3.9 53.08 52.83
Calib T 5.46 53.58 58.13

Table 38. Comparing selective prediction performance (AUC of risk-coverage curve) of various
approaches for NLI datasets. Lower AUC is better in SP. MaxProb baseline scores are underlined,
best performance is in bold, and scores that considerably outperform MaxProb are in italics.

features such as predicted label and softmax probabilities explicitly assists Calib C

and R approaches in finding some distinguishing patterns that improve the selective

prediction performance.

121

5.4.4 Existing Approaches Fail to Utilize Additional Resources

Unlike typical ensembling, MCD does not require training or storing multiple

models but, it requires making multiple inferences (using different dropout masks)

and can still become practically infeasible for large models such as BERT as their

inference cost is high. Calibration-based approaches need additional held-out data

and careful feature engineering to train the calibrator. Despite being computationally

expensive, these approaches fail to consistently outperform MaxProb that does not

require any such additional resources.

5.4.5 Effect of Increasing Dropout Masks in Monte-Carlo Dropout

With the increase in number of dropout masks used in MCD, the SP performance

improves (from MCD lite with 10 masks to MCD with 30 masks). This is due to the

ensembling effect as combining more predictions on the same input results in a more

accurate overall output. However, we note that both MCD lite and MCD degrade SP

performance in the ADV setting as discussed in 5.4.2.

5.4.6 No Clear Winner

None of the approaches consistently and considerably outperforms MaxProb in all

three settings. Most approaches do not fare well in OOD and ADV settings. Further-

more, a single approach does not achieve the highest performance across all tasks.

122

For instance, MCD outperforms all other approaches on Duplicate Detection datasets

but does not perform well on NLI datasets (Calib C achieves better performance,

especially in the OOD setting). This reveals that the existing selective prediction

approaches do not translate well across tasks.

Table 36 compares SP performance (AUC of risk-coverage curve) of various

approaches for Duplicate Detection datasets. Table 37 compares SP performance

(AUC of risk-coverage curve) of various approaches for QA datasets. Table 38

compares SP performance (AUC of risk-coverage curve) of various approaches for

NLI datasets.

5.4.7 MaxProb for Selective Prediction

Figure 21 shows the trend of accuracy against maxProb for various models in

the IID setting. It can be observed that with the increase in MaxProb the accuracy

usually increases. This implies that a higher value of MaxProb corresponds to more

likelihood of the model’s prediction being correct. Hence, MaxProb can be directly

used as the confidence estimator for selective prediction. We plot the risk-coverage

curves using MaxProb as the SP technique in Figure 22. As expected, the risk

increases with the increase in coverage for all the models. We plot such curves for all

techniques and compute area under them to compare their SP performance. This

shows that MaxProb is a simple yet strong baseline for selective prediction.

123

Figure 21. With increase in MaxProb, the accuracy usually increases.

Figure 22. With increase in coverage (i.e decrease in abstention threshold), the risk usually increases.

124

Figure 23. Comparing risk-coverage curves of MCD and Calib C for DNLI dataset in IID setting.

5.4.8 Comparing Risk-Coverage Curves of MCD and Calib C for DNLI Dataset in

IID Setting

We compare the risk-coverage curves of MCD and Calib C approaches on DNLI

in Figure 23. We observe that at all coverage points, Calib C achieves lower risk

than MCD and hence is a better SP technique. We find that they benefit from using

the predicted label as a feature for calibration. Specifically, the model’s prediction

accuracy varies greatly across labels (0.94, 0.91, and 0.76 for entailment, contradiction,

and neutral labels respectively). This implies that when the model’s prediction is

neutral, it is relatively less likely to be correct (at least in the IID setting). Calib

C and R approaches leverage this signal and tune the confidence estimator using a

held-out dataset and thus achieve superior SP performance.

125

5.5 Towards Improving Selective Prediction Ability of NLP Systems

Hendrycks and Gimpel 2017 proposed ‘MaxProb’ that uses the maximum softmax

probability across all answer candidates as the confidence estimate to selectively make

predictions. While performing reasonably well in the in-domain setting, MaxProb

and other existing selective prediction techniques fail to translate that performance

in the out-of-domain setting (Varshney, Mishra, and Baral 2022b; Kamath, Jia, and

Liang 2020).

In this work, we propose a selective prediction method that improves probability

estimates of models in both in-domain and out-of-domain settings by learning strong

representations via calibration. Specifically, we calibrate models’ outputs using a

held-out dataset and use the calibrator as confidence estimator for selective prediction.

To this end, we first argue that “all instances are not equally difficult and the model

is not equally confident in all its predictions” and then through extensive experiments,

we show that prediction confidence is positively correlated with correctness while

difficulty score is negatively correlated (5.8.2). We leverage the above finding to

calibrate models’ outputs using these two signals.

For computing the difficulty scores, we use a model-based technique (5.6.1) be-

cause human perception of difficulty may not always correlate well with machine

interpretation. To calibrate a model, we annotate instances of a held-out dataset

conditioned on the model’s predictive correctness (computed using difficulty score

and prediction confidence) and then train a calibrator using these instances. This

annotation score represents the likelihood of correctness of the model’s prediction.

126

Finally, the trained calibrator predicts this likelihood value for test instances and is

used as the confidence estimator for selective prediction.

To evaluate the efficacy of our method, we conduct comprehensive experiments in

In-Domain (IID) and Out-of-Domain (OOD) settings for Natural Language Inference

(NLI) and Duplicate Detection (DD) tasks. We also compare its performance with

existing calibration techniques. On the NLI task, our method achieves 15.81% and

5.64% improvement on AUC of risk-coverage curve over MaxProb in IID and OOD

setting respectively. Furthermore, on the DD task, it achieves 6.19% and 13.9%

improvement in IID and OOD setting respectively. Finally, we hope that our work

will facilitate development of more robust and reliable AI systems making their wide

adoption in real-world applications possible.

5.6 Method

We propose to train a confidence estimator that can assign higher scores to

correctly predicted instances than incorrectly predicted ones. To this end, we leverage

a held-out dataset and annotate it’s instances conditioned on the model’s predictive

correctness. Specifically, we infer the model on the held-out dataset and annotate

instances with a score such that correctly predicted instances get assigned a higher

score than incorrectly predicted instances. This annotation score models the likelihood

of the prediction being correct and is computed using the model’s prediction confidence

and difficulty level of the instance. Finally, a calibrator (regression model) is trained

127

using this annotated held-out dataset and used as the confidence estimator for selective

prediction.

We detail each component of our method and the intuition behind it in the

following subsections.

5.6.1 Difficulty Score Computation

To compute difficulty score of an instance, we evaluate it after every training

epoch and subtract the aggregated softmax probability assigned to the ground-truth

answer from 1 i.e. for an instance i, difficulty score di is calculated as:

si =
∑E

j=1 cji
E

di = 1 − si

where the model is trained till E epochs and cji is prediction confidence of

the correct answer given by the model after jth training epoch. Note that cji is

probability assigned to the correct answer not the maximum probability across all

answer candidates. The intuition behind this procedure is that the instances that can

be consistently answered correctly from the early stages of training are inherently easy

and should receive lower difficulty score than the ones that require a large number of

training steps. A similar method has been explored in (Swayamdipta et al. 2020) for

analyzing “training dynamics” but here we use it to quantify difficulty of the held-out

instances.

128

5.6.2 Annotation Score Computation

We define annotation score for the held-out instances as a function of softmax

probability outputted by the model and the difficulty score. We show that softmax

score is positively correlated while difficulty score is negatively correlated with the

predictive correctness i.e the system is more likely to be correct if the softmax score

is high and difficulty score is low. Furthermore, in order to justifiably separate the

scores for correct and incorrect prediction scenarios in the range 0 to 1, we push

the scores above 0.5 in case of correct and below 0.5 in case of incorrect scenarios.

Concretely, we use the following functions to compute this:

AS1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.5 + maxProb
2 , if correct

0.5 − maxProb
2 , otherwise

AS2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.5 + si
2 , if correct

0.5 − si
2 , otherwise

AS3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.5 + max(si,maxProb)
2 , if correct

0.5 − min(si,maxProb)
2 , otherwise

AS1 uses only softmax, AS2 uses only difficulty score and AS3 uses a combination of

both. These annotation strategies assign a relatively higher score when the model’s

prediction is correct and a lower score when it is incorrect. This gold score ranges

from 0 to 1 as both si and maxProb lie in the same range and better captures the

likelihood of correctness unlike the categorical labels (1 for correct and 0 for incorrect)

129

used in typical calibration approaches. Note that this annotation computation

is only required for training the calibrator and not at test time. Therefore,

difficulty score of the test instances need not be computed.

Both difficulty score and annotation score computation procedures are generic

and are widely applicable since NLP systems usually make probabilistic predictions

for all kinds of tasks ranging from Classification to Question Answering.

5.6.3 Calibration

Equipped with annotation scores, we extract syntactic features, namely, lengths,

Semantic Textual Similarity (STS) value, number of common words between given

sentences, and presence of negation words / numbers from the held-out instances

to train the calibrator model. These features along with maxProb and prediction

outputted by the model serve as inputs for the calibrator. Finally, we use a simple

random forest implementation of Scikit-learn (Pedregosa et al. 2011) to train our

calibrator that learns strong representations for the inputs. We note that these

syntactic features are general and applicable for all language understanding tasks and

any regression model can be used as the calibrator. We compare our method with

other calibration techniques described in Section 5.7.1.

130

5.7 Experimental Setup

5.7.1 Calibration Baselines

Kamath, Jia, and Liang 2020 study a calibration-based selective prediction tech-

nique for Question Answering datasets where they annotate a held-out dataset such

that correctly predicted instances are assigned class label ‘1’ and incorrect ones

are assigned label ‘0’. Then, a calibrator is trained using this annotated binary

classification dataset using features such as input length and probabilities of top 5

predictions. The softmax probability assigned to class ‘1’ by this calibrator is used as

the confidence estimator for selective prediction. We refer to this approach as Calib

C. We also train a transformer-based model for calibration (Calib T) that leverages

the entire input text for this classification task instead of the syntactic features (Garg

and Moschitti 2021).

Our proposed calibration method differs from these approaches as we quantify

the correctness on a continuous scale (instead of categorical labels ‘1’ and ‘0’) using

prediction confidence and difficulty of the instances and use explicitly provided

general syntactic features described in Section 5.6.3 for training. Our annotation

procedure provides more flexibility for the calibrator to look for fine-grained features

distinguishing various annotation scores. We note that our simplest annotation

strategy (AS1) that does not incorporate difficulty score is similar to Calib R method

described in (Varshney, Mishra, and Baral 2022b) but our calibration method uses

more general syntactic features.

131

Method SNLI MNLI Stress Test
Matched Mismatched Avg Competence Distraction Noise Avg

MaxProb (AUC) 2.78 14.00 14.44 14.22 47.87 26.49 20.34 31.57

Calib T (%) -181.2 -129.55 -127.86 -128.69 -48.65 -81.3 -91.17 -68.93
Calib C (%) +8.97 +2.15 -1.36 +0.40 -3.75 +8.27 -0.80 +0.55
Proposed (%) +15.81 +2.35 +2.04 +2.19 +8.01 +6.60 +0.22 +5.64

Table 39. Comparing percentage improvement of various calibration approaches on AUC of risk-
coverage curve (over MaxProb) in in-domain (SNLI) and out-of-domain settings (MNLI, Stress Test)
for NLI task.

Method MRPC QQP

MaxProb (AUC) 6.13 40.46

Calib T (%) -148.87 +2.21
Calib C (%) -0.82 +2.0
Proposed (%) +6.19 +13.9

Table 40. Comparing % improvement of various calibration approaches on AUC of risk-coverage
curve in IID (MRPC) and OOD (QQP) settings for DD task.

Note that for fair estimation of abilities of the proposed method, we compare it

with other calibration-based techniques only. Other techniques such as Monte-Carlo

dropout (Gal and Ghahramani 2016) and Error Regularization (Xin et al. 2021) are

complementary and can further improve our performance.

5.7.2 Datasets

We conduct experiments with Natural Language Inference and Duplicate Detection
datasets and compare the performance of various calibration techniques in in-domain
and out-of-domain settings.

NLI Datasets: SNLI (Bowman et al. 2015), MNLI (Williams, Nangia, and

Bowman 2018) (Matched and Mismatched), and Stress Test (Naik et al. 2018)

(Competence, Distraction, and Noise).

132

Duplicate Detection Datasets: QQP (Iyer, Dandekar, and Csernai 2017) and

MRPC (Dolan and Brockett 2005).

For NLI task, we train 3-way classification model (NLI has three labels) on SNLI

and evaluate the selective prediction performance on SNLI (IID) and MNLI, Stress

Test (OOD) datasets. For the DD task, we train model on MRPC and evaluate

on MRPC (IID) and QQP (OOD) datasets. We use BERT-BASE model (Devlin

et al. 2019) with a linear layer on top of [CLS] token representation for training the

model for these tasks. We train these models with the default learning rate of 5e − 5

for 3 epochs. We use the same experimental setup as (Varshney, Mishra, and Baral

2022b) for calibration methods.

5.8 Results and Analysis

5.8.1 MaxProb Struggles in OOD Setting

First rows in Table 39 and 40 show the AUC values achieved by MaxProb in

NLI and DD tasks respectively. Note that in selective prediction, low AUC values of

risk-coverage curves are preferred. We find that MaxProb performs well in the IID

setting as it achieves low AUC values (2.78 on SNLI and 6.13 on MRPC). However,

it fails to translate that in the OOD setting (AUC of 14.22 on MNLI, 31.57 on Stress

Test, and 40.46 on QQP). This implies that the model makes a significant number of

incorrect predictions with relatively high MaxProb and thus needs to be calibrated.

133

For calibration methods, we compare the performance improvement achieved over

MaxProb w.r.t the minimum possible AUC.

5.8.2 Proposed Method Outperforms All

Our method shows a clear benefit over existing calibration techniques as it leads

to a considerable improvement in all the cases. The proposed method achieves

15.81% and 6.19% improvement in the IID setting on SNLI and MRPC respectively.

Furthermore, it achieves 2.19% on MNLI, 5.64% on Stress Test, and 13.9% on QQP

in the OOD setting. Calib T considerably degrades performance in both IID and OOD

settings. However, Calib C results in a minor improvement in the IID setting (8.97%

for SNLI) but does not consistently improve in the OOD setting (especially on MNLI

Mismatched and Competence Stress Test). We attribute this to the limited signal

that is given to the calibrator by annotating the held-out dataset with categorical

labels ‘1’ and ‘0’. Thus, it learns weak representations.

Comparing Annotation Functions: We find that the improvement using our

method comes from using AS3 as the annotation score which outperforms AS1 and

AS2. This is expected as it leverages useful signals provided by both maxProb and

difficulty score for annotation computation.

Relationship With Predictive Correctness: To further analyze our method,

we plot the relationship of predictive correctness with prediction confidence and

difficulty score in Figure 24. It shows that prediction confidence is positively correlated

134

Figure 24. Trend of Model Accuracy with Confidence and Difficulty score for the NLI task.

while the difficulty score is negatively correlated with correctness. This further justifies

our annotation score computation procedure.

5.9 Conclusion

We proposed a selective prediction method that calibrates the model outputs

using prediction confidence and difficulty level of the instances. Through comprehen-

sive experiments, we demonstrated that it achieves considerable improvement over

MaxProb on NLI and Duplicate Detection tasks in both IID and OOD settings. We

hope that our work will facilitate development of more robust and reliable AI systems

making their wide adoption in real-world applications possible.

135

Chapter 6

RELIABLY INCREASING THE COVERAGE OF A SELECTIVE PREDICTION

SYSTEM

Despite remarkable progress made in natural language processing, even the state-

of-the-art models often make incorrect predictions. Such predictions hamper the

reliability of systems and limit their widespread adoption in real-world applications.

Selective prediction partly addresses the above concern by enabling models to abstain

from answering when their predictions are likely to be incorrect. While selective

prediction is advantageous, it leaves us with a pertinent question ‘what to do after

abstention’. To this end, we present an explorative study on ‘Post-Abstention’, a

task that allows re-attempting the abstained instances with the aim of increasing

coverage of the system without significantly sacrificing its accuracy. We first provide

mathematical formulation of this task and then explore several methods to solve

it. Comprehensive experiments on 11 QA datasets show that these methods lead

to considerable risk improvements –performance metric of the Post-Abstention task–

both in the in-domain and the out-of-domain settings. We also conduct a thorough

analysis of these results which further leads to several interesting findings.

136

6.1 Introduction

Despite remarkable progress made in Natural Language Processing (NLP), even

the state-of-the-art systems often make incorrect predictions. This problem becomes

worse when the inputs tend to diverge from the training data distribution (Elsahar

and Gallé 2019; Miller et al. 2020; Koh et al. 2021). Incorrect predictions hamper the

reliability of systems and limit their widespread adoption in real-world applications.

Selective prediction partly addresses the above concern by enabling models

to abstain from answering when their predictions are likely to be incorrect. By

avoiding potentially incorrect predictions, it allows maintaining high task accuracy

and thus improves the system’s reliability. Selective prediction has recently received

considerable attention from the NLP community leading to development of several

methods (Kamath, Jia, and Liang 2020; Garg and Moschitti 2021; Xin et al. 2021;

Varshney, Mishra, and Baral 2022c). While these contributions are important,

selective prediction leaves us with a pertinent question: what to do after abstention?

In this work, we address the above question and present an explorative study

on ‘Post-Abstention’, a task that allows re-attempting the abstained instances

with the aim of increasing coverage of the given selective prediction system without

significantly sacrificing its accuracy. Figure 25 illustrates the benefit of employing a

post-abstention method; a model that achieves an accuracy of 70% is first enabled with

the selective prediction ability that increases the accuracy to 85% but answers only

71% instances. Then, a post-abstention method is employed (for the 29% abstained

instances) that assists the system in answering 9% more instances raising the coverage

137

Figure 25. Illustrating the impact of employing a post-abstention method on top of selective
prediction system. A regular model that has an accuracy of 70% (at coverage 100%) is first enabled
with selective prediction ability that increases the accuracy to 85% but drops the coverage to 71%.
Then, on employing a post-abstention method to the abstained instances (remaining 29%), coverage
increases to 80% without a considerable drop in overall accuracy.

to 80% without considerably dropping the overall accuracy. We note that this task

allows re-attempting all the abstained instances but does not require the system to

necessarily output predictions for all of them i.e. the system can abstain even after

utilizing a post-abstention method (when it is not sufficiently confident even in its

new prediction). This facet not only allows the system to maintain its performance

but also provides opportunities of sequentially applying stronger post-abstention

methods to reliably and optimally increase the coverage in stages.

We provide mathematical formulation of the post-abstention task and explore

several baseline methods to solve it (Section 6.2). To evaluate the efficacy of these

methods, we conduct comprehensive experiments with 11 Question-Answering datasets

from MRQA shared task (Fisch et al. 2019) in both in-domain and out-of-domain

settings (Section 6.3). Our post-abstention methods lead to overall risk improvements

(performance metric of the proposed task) of up to 21.81 in the in-domain setting

and 24.23 in the out-of-domain setting. To further analyze these results, we study

138

several research questions, such as ‘what is the extent of overlap between the instances

answered by different post-abstention methods’, ‘what is the distribution of model’s

original confidence on instances that get answered in the post-abstention stage’, and

‘how often do the system’s predictions change after applying post-abstention methods’.

In Section 6.4, we show that these investigations lead to numerous important and

interesting findings.

In summary, our contributions are as follows:

1. We present an explorative study on ‘Post-Abstention’, a task that aims at

increasing the coverage of a given selective prediction system without significantly

sacrificing its accuracy.

2. We explore several baseline post-abstention methods and evaluate them in

an extensive experimental setup spanning 11 QA datasets in both in-domain and

out-of-domain settings.

3. We show that the proposed post-abstention methods result in overall risk value

improvements of up to 21.81 and 24.23 in the in-domain and out-of-domain

settings respectively.

4. Our thorough analysis leads to several interesting findings, such as (a) instances

answered by different post-abstention methods are not mutually exclusive i.e.

there exist some overlapping instances, (b) instances that get answered in the

post-abstention stage are not necessarily the ones on which the given system was

initially most confident, etc.

We believe our work will encourage further research in Post-Abstention, an important

step towards improving the reliability of NLP systems.

139

6.2 Post-Abstention

In this section, we first provide background for post-abstention (6.2.1) and then

describe the task (6.2.2) and its approaches (6.2.3).

6.2.1 Background

Post-abstention, as the name suggests, is applicable for a system that abstains

from answering i.e. a selective prediction system. A system can typically abstain

when its prediction is likely to be incorrect. This improves the reliability of the

system. Such a system typically consists of two functions: a predictor (f) that gives

the model’s prediction on an input (x) and a selector (g) that determines if the system

should output the prediction made by f :

(f, g)(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(x), if g(x) = 1

Abstain, if g(x) = 0

Typically, g comprises of a prediction confidence estimator g̃ and a threshold th that

controls the level of abstention for the system:

g(x) = 1[g̃(x)) > th]

A selective prediction system makes trade-offs between coverage and risk. Coverage

at a threshold th is defined as the fraction of total instances answered by the system

(where g̃ > th) and risk is the error on the answered instances.

140

With decrease in threshold, coverage will increase, but the risk will usually also

increase. The overall selective prediction performance is measured by the area under

Risk-Coverage curve (El-Yaniv et al. 2010) which plots risk against coverage for all

confidence thresholds. Lower AUC is better as it represents lower average risk across

all confidence thresholds.

In NLP, approaches such as Monte-Carlo Dropout (Gal and Ghahramani 2016),

Calibration (Kamath, Jia, and Liang 2020; Varshney, Mishra, and Baral 2022b, 2022c;

Zhang, Gong, and Choi 2021), Error Regularization (Xin et al. 2021) and Label

Smoothing (Szegedy et al. 2016) have been studied for selective prediction. In this

work, we consider MaxProb (Hendrycks and Gimpel 2017), a technique that uses

the maximum softmax probability across all answer candidates as the confidence

estimator. We use this simple technique because the focus of this work is on post-

abstention i.e. the next step of selective prediction. However, we note that the task

formulation and the proposed methods are general and applicable to all selective

prediction approaches.

6.2.2 Task Formulation

We define the post-abstention task as follows:

Given a selective prediction system with an abstention threshold, the post-abstention

task allows re-attempting the abstained instances with the aim of improving the coverage

without considerably degrading the accuracy (or increasing the risk) of the given

141

system. Next, we mathematically describe the task and its performance evaluation

methodology.

Let the coverage and risk of the given selective prediction system at abstention

threshold th be covth and riskth respectively. A post-abstention method re-attempts

the originally abstained instances (where g̃ < th) and outputs the new prediction for

the ones where it is now sufficiently confident. This typically leads to an increase in

the coverage of the system with some change in the risk value; let the new coverage

and risk be cov′th and risk′th respectively. From the risk-coverage curve of the given

system, we calculate its risk at coverage cov′th and compare it with risk′th to measure

the efficacy of the post-abstention method (refer to Figure 26).

For a method to have a positive impact, its risk (risk′th) should be lower

than the risk of the given system at coverage cov′th. We summarize this performance

evaluation methodology in Figure 26. To get an overall performance estimate of a

post-abstention method, we compile these differences in risk values for all confidence

thresholds and calculate an aggregated value. The higher the overall improvement

value, the more effective the method is. We note that this evaluation methodology is

fair and accurate as it conducts pair-wise comparisons at equal coverage points. An

alternative performance metric could be AUC but it computes the overall area ignoring

the pair-wise comparisons which are crucial for our task because the coverage points

of the original system would be different from those achieved by the post-abstention

method.

142

Figure 26. Summarizing performance evaluation methodology of post-abstention. Given a selective
prediction system with coverage covth and risk riskth at abstention threshold th, let the new
coverage and risk after applying a post-abstention method be cov′th and risk′th respectively. From
the risk-coverage curve of the given system, we calculate its risk at coverage cov′th and compare it
with risk′th (diff). For the method to have a positive impact, risk′th should be lower than the risk of
the given system at coverage cov′th.

6.2.3 Approaches

6.2.3.1 Ensembling using Question Paraphrases

It is well known that even state-of-the-art NLP models are often brittle i.e. when

small semantic-preserving changes are made to the input, their predictions tend to

fluctuate greatly (Jia and Liang 2017; Belinkov and Bisk 2018; Iyyer et al. 2018;

Ribeiro, Singh, and Guestrin 2018; Wallace et al. 2019). Ensembling the predictions

of the model on multiple semantically equivalent variants of the input is a promising

143

Figure 27. Illustrating annotation procedure of REToP. For each training instance, top N predictions
given by the QA model are annotated conditioned on their correctness i.e. correct predictions are
annotated as ‘1’ and incorrect predictions are annotated as ‘0’. This annotated binary classification
dataset is used to train the auxiliary model.

approach to address this issue (Anantha et al. 2021; Vakulenko et al. 2021) as it can

reduce the spread or dispersion of the predictions.

We leverage the above technique in re-attempting the abstained questions i.e.

we first generate multiple paraphrases of the input instance and then aggregate the

model’s predictions on them. We use BART-large (Lewis et al. 2019) model fine-

tuned on Quora Question Corpus (Iyer, Dandekar, and Csernai 2017), PAWS (Zhang,

Baldridge, and He 2019), and Microsoft Research Paraphrase Corpus (Dolan and

Brockett 2005) for paraphrasing and explore the following strategies for aggregating

the model predictions:

• Mean: In this strategy, we calculate the average confidence assigned to each answer

candidate across all predictions. Then, we select the candidate with the highest

average confidence as the system’s prediction. Note that the system will output

this prediction only if its confidence surpasses the abstention threshold.

• Max: Here, like the mean strategy, we select the answer candidate with the highest

average confidence but we use the maximum confidence assigned to that candidate

144

as its prediction confidence. This is done to push the most confident prediction

above the abstention threshold.

6.2.3.2 Re-Examining Top N Predictions (REToP)

State-of-the-art models have achieved impressive performance on numerous NLP

tasks. Even in cases where they fail to make a correct prediction, they are often

able to rank the correct answer as one of their top N predictions. This provides

opportunities for re-examining the top N predictions to identify the correct answer

in case of abstention. To this end, a model that can estimate the correctness of

a prediction can be leveraged. Following this intuition, we develop an auxiliary

model that takes the context, question, and a prediction as input and assigns a score

indicating the likelihood of that prediction to be correct. This model can be used for

each of the top N predictions given by the QA model to select the one that is most

likely to be the correct answer.

Training Auxiliary Model: We first create data instances by annotating

(context, question, prediction) triplets conditioned on the correctness of the QA

system’s predictions and then train a classification model using this data. This model

is specific to the given QA system and essentially learns to distinguish its correct and

incorrect predictions.

• Annotate (context, question, prediction) triplets: We utilize the trained QA

model to get its top N predictions for each training instance. Then, we annotate

each (context, question, prediction) triplet based on the prediction’s correctness i.e.

145

a correct prediction is annotated as ‘1’ and an incorrect prediction is annotated as

‘0’. Figure 27 illustrates this annotation step.

• Train a classification model: Then, a binary classification model is trained

using the annotated dataset collected in the previous step. This model specifically

learns to distinguish the correct predictions of the QA model from the incorrect

ones. Softmax probability assigned to the label ‘1’ corresponds to the likelihood of

correctness for each prediction.

Note that we use the QA model’s top N predictions to collect the ‘0’ annotations

instead of randomly selecting candidates because this procedure results in highly

informative negative instances (that are probable predictions and yet incorrect) and

not easy/obvious negatives. This can help the auxiliary model in learning fine-grained

representations distinguishing correct and incorrect predictions.

Leveraging Auxiliary Model: For an abstained instance, we compute the

likelihood value for each of the top N predictions given by the QA model using

our trained auxiliary model. Then, we calculate the overall confidence (c) of each

prediction (p) as a weighted average of the QA model’s probability (sq) and the

auxiliary model’s likelihood score (sa) i.e. cp is calculated as:

cp = α ∗ spq + (1 − α) ∗ spa

where α is a weight parameter.

We incorporate QA model’s probability as it provides more flexibility to compute the

overall confidence. Finally, prediction with the highest overall confidence is selected

146

as the new prediction. We differentiate this method from existing methods such as

calibration in Section 6.7.

6.2.3.3 Human Intervention (HI)

In intolerant application domains such as biomedicals where incorrect predictions

can have serious consequences, human intervention is the most reliable technique

to answer the abstained instances. Human intervention can be in various forms

such as providing relevant knowledge to the model, asking clarifying questions (Rao

and Daumé III 2018) or simplifying the input question. In this work, we explore a

simple human intervention approach in which the system provides multiple predictions

instead of only one prediction for the abstained instances. The human can then

select the most suitable prediction from the provided predictions. Performance of

this method can be approximated based on the presence of the correct answer in the

predictions provided to the human. Note that the above approach would answer all

the abstained instances and hence the coverage would always be 100%. This implies

that with the increase in abstention threshold, the risk would monotonically decrease

as multiple predictions would be returned for a larger number of instances.

In addition to the above approach, we also explore a REToP-centric HI approach

in which the system returns multiple predictions only when REToP surpasses the

confidence threshold in the post-abstention stage. Similar to REToP, it abstains on

the remaining instances. Finally, we note that comparing the performance of HI

147

approaches with other post-abstention approaches would be unfair as other approaches

return only a single prediction. Therefore, we present HI results separately.

Dataset Model 0.2 0.32 0.36 0.48 0.54 0.60 0.68 Total Risk
Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Improvement↑

Given (G) 96.65 32.45 87.24 28.10 83.34 26.69 69.94 21.91 62.57 19.91 56.23 17.98 47.92 15.43
SQuAD REToP 99.73 33.75 97.27 31.93 95.08 30.85 80.88 24.84 72.44 21.82 63.73 19.19 52.65 16.43
(in-domain) G@REToPcov - 34.00 - 32.77 - 31.67 - 25.82 - 22.59 - 20.24 - 16.83 21.81

HotpotQA
Given (G) 97.54 67.65 89.56 65.88 85.39 65.13 71.75 62.71 64.77 61.56 58.19 60.34 49.25 58.29
REToP 99.93 68.17 98.63 67.39 96.9 66.61 82.88 63.61 73.55 61.89 64.36 60.53 52.96 58.34
G@REToPcov - 68.30 - 67.92 - 67.47 - 64.52 - 63.04 - 61.55 - 59.01 21.54

RE
Given (G) 97.59 44.49 89.01 40.51 85.41 39.04 74.08 34.16 66.86 30.54 60.58 27.94 54.10 24.20
REToP 99.93 45.38 98.95 44.39 97.52 43.79 85.89 38.67 77.61 34.57 69.54 31.12 59.33 25.39
G@REToPcov - 45.47 - 45.01 - 44.43 - 39.22 - 35.51 - 32.10 - 27.33 20.42

RACE
Given (G) 89.02 80.5 71.07 77.04 66.17 75.56 51.34 72.54 43.47 69.62 36.2 68.85 29.97 63.86
REToP 99.41 82.24 92.28 80.71 86.94 79.35 62.91 73.82 51.48 71.76 42.28 69.47 33.09 65.92
G@REToPcov - 81.94 - 81.00 - 80.00 - 75.00 - 72.54 - 69.72 - 66.37 15.10

NewsQA
Given (G) 93.90 69.76 80.91 66.40 75.5 64.91 60.30 60.79 53.30 58.8 47.17 56.62 39.32 54.11
REToP 99.48 71.03 96.13 70.24 93.21 69.64 70.85 63.71 60.73 60.67 52.04 58.07 42.09 54.94
G@REToPcov - 71.31 - 70.36 - 69.61 - 63.81 - 61.01 - 58.33 - 55.02 5.10

SearchQA
Given (G) 96.15 86.68 81.77 85.67 75.77 85.34 58.64 84.08 50.22 83.58 42.67 83.33 34.46 82.55
REToP 99.92 87.06 97.58 86.81 93.92 86.48 71.49 84.76 59.46 84.04 48.6 83.48 37.08 82.75
G@REToPcov - 87.04 - 86.79 - 86.52 - 85.07 - 84.15 - 83.56 - 82.77 1.78

TriviaQA
Given (G) 96.67 67.31 86.89 65.05 82.54 63.82 68.81 60.39 61.44 58.39 55.11 56.48 47.12 54.03
REToP 99.86 68.07 97.07 67.33 93.72 66.23 76.72 62.40 67.93 60.25 59.55 57.77 49.29 54.89
G@REToPcov - 68.09 - 67.42 - 66.60 - 62.32 - 60.12 - 57.95 - 54.83 0.70

NQ
Given (G) 92.37 63.78 79.04 59.99 74.87 58.77 60.60 53.51 54.03 51.00 47.94 48.31 41.70 45.27
REToP 98.71 65.34 93.04 63.39 89.30 62.62 70.65 56.90 61.68 53.54 53.24 50.10 43.75 46.44
G@REToPcov - 65.67 - 63.93 - 63.02 - 57.43 - 53.80 - 50.68 - 46.45 10.70

DROP
Given (G) 95.74 88.46 81.17 87.38 76.11 87.33 62.34 86.23 53.69 85.38 48.77 84.45 43.05 85.01
REToP 99.53 88.64 92.95 87.83 88.42 88.04 69.00 86.31 58.55 85.57 51.90 84.49 44.18 85.09
G@REToPcov - 88.63 - 88.19 - 87.88 - 86.69 - 85.91 - 84.87 - 84.94 3.63

DuoRC
Given (G) 97.20 68.68 87.87 66.41 84.21 65.82 71.09 62.42 64.16 61.47 57.16 59.91 50.03 58.46
REToP 99.87 69.45 98.33 69.17 96.14 68.68 80.75 64.69 71.95 62.59 62.56 60.70 52.90 58.69
Original@cov - 69.51 - 69.02 - 68.4 - 64.77 - 62.74 - 60.92 - 59.32 4.32

TBQA
Given (G) 94.34 67.14 80.9 63.32 75.65 61.92 57.49 56.02 49.63 52.14 41.45 51.04 34.07 50.00
REToP 99.53 68.38 95.01 67.23 91.68 66.18 68.20 58.34 58.55 54.77 47.37 51.26 37.26 49.64
G@REToPcov - 68.56 - 67.30 - 66.23 - 59.41 - 56.02 - 52.60 - 50.71 24.23

Table 41. Performance of REToP as a post-abstention method for selected abstention thresholds.
The QA model is trained using SQuAD training data and evaluated on SQuAD (in-domain) and 10
out-of-domain datasets. The last column corresponds to the overall improvement aggregated over
all confidences ranging from 0 to 1 at an interval of 0.02. ↓ and ↑ indicate that lower (risk) and
higher (coverage, risk improvement) values are better respectively.

148

6.3 Experiments and Results

6.3.1 Experimental Setup

Datasets: We experiment with SQuAD 1.1 (Rajpurkar et al. 2016) as the source

dataset and the following 10 datasets as out-of-domain datasets: NewsQA (Trischler

et al. 2017), TriviaQA (Joshi et al. 2017), SearchQA (Dunn et al. 2017), HotpotQA

(Z. Yang et al. 2018), and Natural Questions (Kwiatkowski, Palomaki, Redfield,

Collins, Parikh, Alberti, Epstein, Polosukhin, Devlin, Lee, et al. 2019b), DROP (Dua

et al. 2019), DuoRC (Saha et al. 2018), RACE (Lai et al. 2017), RelationExtraction

(Levy et al. 2017), and TextbookQA (Kim, Kim, and Kwak 2019). We use the

preprocessed data from the MRQA shared task (Fisch et al. 2019) for our experiments.

Implementation Details: We run all our experiments using the huggingface

(Wolf et al. 2020) implementation of transformers on Nvidia V100 16GB GPUs with a

batch size of 32 and learning rate ranging in {1−5}e−5. We generate 10 paraphrases

of the question in Ensembling method, re-examine top 10 predictions, vary α in the

range 0.3− 0.7 for REToP method, and vary the number of predictions in the range 2

to 5 for HI methods. Since the focus of this work is on post-abstention, it’s crucial

to experiment with models that leave sufficient room for effectively evaluating the

ability of post-abstention methods. For that reason, we experiment with a small size

model (BERT-mini having just 11.3M parameters) from (Turc et al. 2019) for our

experiments. However, we note that our methods are general and applicable for all

models.

149

6.3.2 Results

6.3.2.1 REToP

Table 41 shows the post-abstention performance of REToP for selected abstention

thresholds. The last column (‘Total Risk Improvement ’) in this table corresponds to

the overall improvement aggregated over all confidence thresholds. It can be observed

that REToP achieves considerable risk improvements both in the in-domain setting

(21.81 on SQuAD) and the out-of-domain settings (24.23 on TextbookQA, 21.54 on

HotpotQA, 20.42 on RE, etc). Next, we analyze these results in detail.

Higher improvement on moderate confidences: In Figure 28, we plot
risk improvements achieved by REToP on SQuAD (in-domain) and HotpotQA
(out-of-domain) datasets for all confidence thresholds. These plots reveal that the
improvement is more on moderate thresholds as compared to low thresholds. We
attribute this to the high difficulty of instances that remain to be re-attempted at low
thresholds i.e. only the instances on which the given system was highly underconfident
are left for the post-abstention method. It has been shown that model’s confidence is
negatively correlated with difficulty (Swayamdipta et al. 2020; Rodriguez et al. 2021;
Varshney, Mishra, and Baral 2022a; Mishra, Arunkumar, Bryan, et al. 2022) implying
that the remaining instances are tough to be answered correctly. This justifies the
lesser improvement in performance observed at low thresholds.

In-Domain vs Out-of-Domain Improvement: REToP achieves higher per-

formance improvement on the in-domain dataset than the out-of-domain datasets

(on average). This is expected as the auxiliary model in REToP is trained using the

in-domain training data. However, it still has good performance on out-of-domain

datasets as the auxiliary model learns fine-grained representations to distinguish

150

Figure 28. Improvement in risk achieved by using REToP in post-abstention on SQuAD (in-domain)
and HotpotQA (out-of-domain) datasets for all confidences.

between correct and incorrect predictions. Furthermore, the improvement on out-

of-domain data varies greatly across datasets (from 0.7 on TriviaQA to 24.23 on

TextbookQA).

6.3.2.2 Comparing Post-Abstention Approaches

We provide the performance tables for other post-abstention approaches. However,

we compare their total risk improvement values in Table 42. In the in-domain

setting, REToP achieves higher improvement than Ensembling method. This is

because the auxiliary model in REToP has specifically learned to distinguish the

correct and incorrect predictions from the training data of this domain. However, in

some out-of-domain cases, Ensembling outperforms REToP (SearchQA, TriviaQA,

NewsQA). Overall, REToP leads to a consistent and higher risk improvement on

average. Ensembling also leads to a minor degradation in a few out-of-domain datasets

151

Dataset Ens. REToP REToP *HI on
(α = 0.6) (α = 0.65) (REToP)

SQuAD 0.29 21.81 20.02 47.85

HotpotQA 0.93 21.54 19.00 37.88
RE 21.72 20.42 17.61 46.65
RACE 16.72 15.10 14.17 36.26
NewsQA 11.92 5.10 5.10 26.41
SearchQA 17.05 1.78 2.23 20.08
TriviaQA 9.50 0.70 1.47 17.21
NQ 13.40 10.70 10.89 31.95
DROP 1.57 3.63 2.99 8.08
DuoRC -1.69 4.32 5.90 20.26
TBQA -6.93 24.23 23.73 45.18

Total 84.48 129.33 123.11 337.81

Table 42. Comparing total risk improvement achieved by different post-abstention methods. * for
HI indicates that it’s results are not directly comparable as it outputs multiple predictions while
others output only one.

(DuoRC and TextbookQA). Next, we analyze the performance of human intervention

(HI) methods.

6.3.2.3 Human Intervention (HI)

We study two variants of HI method. In the first variant, multiple predictions

(n=2) are returned for all the abstained instances. This makes the coverage to be

100% for all the confidences; therefore, we present only the risk values in Table

43. As expected, with increase in abstention threshold, the risk decreases because

multiple predictions get outputted for a larger number of instances. Selection of

operating threshold for an application depends on the trade-off between risk that can

152

Dataset 0.0 0.2 0.4 0.6 0.8

SQuAD 34.15 33.72 30.9 28.05 26.3

HotpotQA 68.33 68.19 66.56 63.65 61.57
RE 45.52 45.35 43.39 41.28 39.31
RACE 82.05 81.6 80.12 78.19 77.15
NewsQA 71.46 71.2 69.42 67.21 65.29
SearchQA 87.06 86.92 85.64 83.98 82.94
TriviaQA 68.13 67.9 66.62 64.21 62.47
NQ 66.09 65.67 63.63 61.06 59.31
DROP 88.69 88.69 87.56 86.36 85.7
DuoRC 69.55 69.42 68.15 66.42 65.22
TBQA 68.73 68.46 67.07 64.74 64.01

Table 43. Comparing risk values achieved by the HI method (returns two predictions for all abstained
instances) across different abstention thresholds.

be tolerated and human effort required to select the most suitable prediction from

a set of predictions returned by the system. For example, a low threshold can be

selected for tolerant applications like movie recommendations and a high threshold

for tolerant applications like house robots.

In the second variant of HI method, we study a REToP-centric approach in which

the system returns multiple predictions only when REToP surpasses the confidence

threshold in the post-abstention stage. The last column in Table 42 shows the risk

improvements achieved by this approach (n=2). Note that REToP re-examines the

top N predictions and selects one while this method outputs multiple predictions and

requires a human to select the most suitable one. These results indicate that though

REToP achieves good performance, there is still some room for improvement.

153

6.3.2.4 Ensembling Using Paraphrases

Comparing the performance of Mean and Max Ensembling strategies reveals that

Max increases the coverage more than the Mean strategy but it also increases the

risk considerably. Thus, pushing the instance’s confidence to surpass the abstention

threshold fails to provide risk improvements. However, such a technique could be

employed in scenarios where risk degradation can be tolerated.

6.4 Analysis

What is the distribution of model’s original confidence on the instances
that get answered after applying post-abstention method? In Figure 29,
we show the distribution of model’s original confidence on SQuAD instances that
get answered by REToP at abstention threshold 0.5. Green-colored bars represent
the number of instances answered from each confidence bucket. We found that
REToP answers a large number of instances from the high confidence buckets; however,
instances from even low confidence buckets get answered. This can further be controlled
using the weight parameter (α) in the overall confidence computation.

How often do the system’s predictions change after applying REToP

and what is its impact? REToP can either boost the confidence of the top most

prediction of the given model or can select a different answer by re-examining its

top N predictions. In Figure 30, we specifically analyze the latter scenario i.e. the

instances on which REToP’s prediction differs from the original model’s prediction.

At a threshold of 0.5, the original system abstains on 3411 SQuAD instances and after

applying REToP, it answers 1110 of those instances. Out of these 1110 instances, the

REToP changes the prediction on 186 instances. The original prediction is incorrect

154

Figure 29. Distribution of QA model’s confidence on SQuAD instances that get answered after
applying REToP at abstention threshold 0.5.

in more cases (99 vs 87) and after applying REToP, the system gives 116 correct

predictions and only 70 incorrect. This implies that by overriding the original system’s

prediction, REToP improves the system’s accuracy. However, in some cases, it also

changed a correct prediction to incorrect but such cases are lesser than the former.

To what extent do the instances answered by different post-abstention

methods overlap? In Figure 31, we demonstrate the Venn diagram of SQuAD

instances answered by REToP and Ensembling (Mean) approaches at abstention

threshold 0.5. REToP answers 1110 instances while Ensembling answers 277 and

there 127 common instances between the two approaches. This indicates that the two

sets are not mutually exclusive i.e. there are some instances that get targeted by both

155

Figure 30. Number of correct (green) and incorrect (red) predictions on those abstained SQuAD
instances where REToP surpasses the abstention threshold of 0.5 but its prediction differs from the
original system.

Figure 31. Venn diagram of abstained SQuAD instances answered by REToP and Ensembling
(Mean) approaches at abstention threshold 0.5.

the approaches; however, there are a significant number of instances that are not in

the intersection. This result motivates studying composite or sequential application of

different post-abstention methods to further improve the post-abstention performance.

156

6.5 Ensembling (Mean) Performance

Table 45 shows the performance of using Ensembling (Mean) as a post-abstention

method for a few selected abstention threshold values. For each dataset, we pro-

vide three rows: the first row (‘Given’) shows the coverage and risk values of the

given selective prediction system at specified abstention thresholds, the second row

(‘Ens’) shows the coverage and risk after applying the post-abstention method on

the abstained instances of the given selective prediction system, and the final row

(‘G@Enscov’) shows the risk of the given selective system at the coverage achieved by

Ens method. For the post-abstention method to be effective the risk in the second row

should be less than that in the third row and the magnitude of difference corresponds

to the improvement. The last column ‘Total Risk Improvement ’ shows the overall

improvement aggregated over all confidence thresholds ranging between 0 and 1 at

an interval of 0.02.

6.6 Dataset Statistics

Table 44 shows the statistics of all evaluation datasets used in this work. SQuAD

corresponds to the in-domain dataset while the remaining 10 datasets are out-of-

domain. We use the pre-processed data from the MRQA shared task (Fisch et

al. 2019).

157

Dataset Size Dataset Size

SQuAD 10507 HotpotQA 5901
RE 2948 RACE 674
NewsQA 4212 SearchQA 16980
TriviaQA 7785 NQ 12836
DROP 1503 DuoRC 1501
TBQA 1503

Table 44. Statistics of evaluation data used in this work.

6.7 Differentiating REToP from Calibration

REToP is different from calibration based techniques presented in (Kamath, Jia,
and Liang 2020; Varshney, Mishra, and Baral 2022b) in the following aspects:
(a) Firstly, REToP does not require a held-out dataset unlike calibration based meth-
ods that infer the model on the held-out dataset to gather instances on which the
model in incorrect.
(b) Secondly, the auxiliary model trained in REToP predicts the likelihood of cor-
rectness of (context, question, prediction) triplet i.e. it is used for each of the top N
prediction individually. This is in contrast to calibrators that predicts a single score
for an instance and ignores the top N predictions.
(c) Finally, we use the entire context, question, and the prediction to predict its
correctness likelihood score unlike feature-based calibrator models in which a random-
forest model is trained using just syntax-level features such as length of question,
semantic similarity of prediction with the question, etc.

6.8 Other Post-Abstention Techniques

Asking clarifying questions to the user in order to get information about the

question has started to received considerable research attention in conversational,

web search, and information retrieval settings (Aliannejadi et al. 2021, 2020; Zamani,

158

Dataset Model 0.2 0.32 0.36 0.48 0.54 0.60 0.68 Total Risk
Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Cov↑ Risk↓ Improvement↑

Given (G) 96.65 32.45 87.24 28.10 83.34 26.69 69.94 21.91 62.57 19.91 56.23 17.98 47.92 15.43
SQuAD Ens 97.64 32.88 89.51 28.93 87.64 28.24 72.46 22.71 65.12 20.58 58.37 18.7 49.59 15.89
(in-domain) G@Enscov - 32.96 - 29.09 - 28.26 - 22.58 - 20.65 - 18.66 - 15.91 0.29

HotpotQA
Given (G) 97.54 67.65 89.56 65.88 85.39 65.13 71.75 62.71 64.77 61.56 58.19 60.34 49.25 58.29
Ens 98.59 67.84 91.93 66.23 90.41 65.92 75.65 63.17 68.45 62.22 61.31 60.72 52.26 58.88
G@Enscov - 67.9 - 66.37 - 66.04 - 63.4 - 62.14 - 60.91 - 58.94 0.93

RE
Given (G) 97.59 44.49 89.01 40.51 85.41 39.04 74.08 34.16 66.86 30.54 60.58 27.94 54.10 24.20
Ens 98.27 44.56 92.2 41.35 90.57 40.71 77.44 34.87 70.86 31.45 64.86 29.08 56.07 24.74
G@Enscov - 44.82 - 42.27 - 41.42 - 35.58 - 32.47 - 30.02 - 25.54 21.72

RACE
Given (G) 89.02 80.5 71.07 77.04 66.17 75.56 51.34 72.54 43.47 69.62 36.2 68.85 29.97 63.86
Ens 91.69 80.42 73.89 77.71 71.51 77.18 53.71 72.65 46.88 70.25 40.21 69.0 31.6 64.79
G@Enscov - 80.88 - 77.31 - 77.13 - 72.93 - 71.43 - 70.11 - 65.09 16.72

NewsQA
Given (G) 93.90 69.76 80.91 66.40 75.5 64.91 60.30 60.79 53.30 58.8 47.17 56.62 39.32 54.11
Ens 95.56 70.24 83.52 67.14 81.13 66.49 63.01 61.53 55.75 59.45 49.53 57.19 41.17 54.21
G@Enscov - 70.18 - 67.02 - 66.46 - 61.63 - 59.67 - 57.33 - 54.67 11.92

SearchQA
Given (G) 96.15 86.68 81.77 85.67 75.77 85.34 58.64 84.08 50.22 83.58 42.67 83.33 34.46 82.55
Ens 98.0 86.82 87.31 85.79 84.7 85.61 65.65 84.1 56.86 83.65 48.46 83.16 38.73 82.36
G@Enscov - 86.83 - 86.05 - 85.87 - 84.52 - 84.03 - 83.59 - 82.94 17.05

TriviaQA
Given (G) 96.67 67.31 86.89 65.05 82.54 63.82 68.81 60.39 61.44 58.39 55.11 56.48 47.12 54.03
Ens 98.01 67.58 89.88 65.71 87.99 65.15 72.31 60.95 65.0 59.13 58.47 56.9 49.67 54.38
G@Enscov - 67.64 - 65.76 - 65.3 - 61.38 - 59.25 - 57.55 - 54.94 9.5

NQ
Given (G) 92.37 63.78 79.04 59.99 74.87 58.77 60.60 53.51 54.03 51.00 47.94 48.31 41.70 45.27
Ens 94.59 64.35 83.46 60.82 81.32 60.16 64.83 54.7 58.05 52.17 51.8 49.8 44.33 46.31
G@Enscov - 64.43 - 61.31 - 60.79 - 55.03 - 52.61 - 50.01 - 46.82 13.4

DROP
Given (G) 95.74 88.46 81.17 87.38 76.11 87.33 62.34 86.23 53.69 85.38 48.77 84.45 43.05 85.01
Ens 97.6 88.48 85.63 87.72 83.17 87.28 65.34 86.15 56.55 85.65 50.37 84.54 44.78 84.99
G@Enscov - 88.47 - 87.72 - 87.52 - 86.05 - 85.63 - 84.54 - 84.84 1.57

DuoRC
Given (G) 97.20 68.68 87.87 66.41 84.21 65.82 71.09 62.42 64.16 61.47 57.16 59.91 50.03 58.46
Ens 98.0 68.86 90.34 67.11 88.61 66.84 73.82 63.36 66.96 62.19 59.96 60.78 51.57 58.4
Original@cov - 68.91 - 67.18 - 66.69 - 63.18 - 61.79 - 60.07 - 58.91 -1.69

TBQA
Given (G) 94.34 67.14 80.9 63.32 75.65 61.92 57.49 56.02 49.63 52.14 41.45 51.04 34.07 50.00
Ens 95.94 67.55 84.3 64.17 81.1 63.33 62.28 56.94 53.96 54.25 45.78 52.33 37.72 51.15
G@Enscov - 67.45 - 64.33 - 63.38 - 57.05 - 54.38 - 52.03 - 50.53 -6.93

Table 45. Performance of Ensembling (Mean) as a post-abstention method for selected abstention
thresholds. The QA model is trained using SQuAD training data and evaluated on SQuAD (in-
domain) and 10 out-of-domain datasets. The last column corresponds to the overall improvement
aggregated over all confidences ranging from 0 to 1 at an interval of 0.02. ↓ and ↑ indicate that
lower (risk) and higher (coverage, risk improvement) values are better respectively.

Dumais, et al. 2020; Y. Zhang et al. 2020; Zamani, Lueck, et al. 2020). These

techniques can be leveraged/adapted for the post-abstention task.

Test-time adaptation is another promising research area in which the model

is adapted at test-time depending on the instance. This is being studied in both

computer vision (Dian Chen et al. 2022) and language processing (X. Wang et al. 2021;

Banerjee, Gokhale, and Baral 2021).

Cascading systems in which stronger and stronger models are conditionally used

159

for inference is also an interesting avenue to explore with respect to Post-Abstention

(Varshney and Baral 2022; Lei Li et al. 2021; Varshney, Luo, and Baral 2022).

6.9 Coverage 100% for Human Intervention Methods

We believe that the ability to identify situations when there is no good answer

in the top N returned candidates is a very difficult task (for the humans also) and

it requires even more cognitive skills than just selecting the best answer from the

provided answer candidates. Because of this reason, the coverage is 100%.

6.10 Comparison with Other Selective Prediction Methods

In this work, we presented a new QA setting and studied the performance of

several baseline methods for this task. The focus of this work is on studying the

risk improvement that can be achieved in this problem setup. We consciously do not

pitch the approaches for this task as competitors of the existing selective prediction

approaches. In fact, these approaches are complimentary to the selective prediction

approaches. A post-abstention method can be used with any selective prediction

method as the first step.

160

6.11 Conclusion and Discussion

In this work, we formulated ‘Post-Abstention’, a task that allows re-attempting

the abstained instances of the given selective prediction system with the aim of

increasing its coverage without significantly sacrificing the accuracy. We also explored

several baseline methods for this task. Through comprehensive experiments on

11 QA datasets, we showed that these methods lead to considerable performance

improvements in both in-domain and out-of-domain settings. We further performed

a thorough analysis that resulted in several interesting findings.

Looking forward, we believe that our work opens up several avenues for new

research, such as exploring test-time adaptation, knowledge hunting, and other human

intervention techniques like asking clarification questions as post-abstention methods

(discussed in Section 6.8). Studying the impact of composite or sequential application

of multiple post-abstention methods in another promising direction. Furthermore,

prior selective prediction methods can also be repurposed and explored for this task.

We plan to pursue these crucial research directions in our future work. Finally, we

hope our work will encourage further research in this important area and facilitate

the development of more reliable NLP systems.

161

Chapter 7

IMPROVING THE LLM INFERENCE EFFICIENCY BY ENABLING

INTERMEDIATE LAYER DECODING

Large Language Models (LLMs) have achieved remarkable performance across

a wide variety of tasks; however, their large size makes their inference slow and

computationally expensive. Focusing on this problem, we study instruction tuning

LLMs with additional explicit Losses from the InTermediate layErs (LITE) and show

that it enables these layers to acquire ‘good’ generation ability without affecting

the generation ability of the final layer. We then perform ‘dynamic confidence-

based early exiting ’ at token level from the intermediate layers which improves the

computational efficiency of text generation without sacrificing the quality of the

generation. We conduct comprehensive experiments by instruction tuning LLaMA-2

models on the Alpaca dataset and evaluate on four different instruction test sets.

We show that dynamic early exiting achieves consistent and considerable inference

cost improvements (37.86% for 7B and 46.35% for 13B model) while maintaining the

generation quality. We further conduct a thorough analysis of the results and dissect

the efficiency improvements which reveals several important findings.

162

7.1 Introduction

Recently developed LLMs (Touvron et al. 2023; OpenAI 2023; Chowdhery et

al. 2022; Rae et al. 2021; Smith et al. 2022) have revolutionized the field of natural

language processing and achieved remarkable performance across a wide variety of

tasks. ‘Instruction Tuning’ further teaches these models to follow the user’s instruction

provided in natural language (Jason Wei et al. 2022; Mishra, Khashabi, et al. 2022;

Sanh et al. 2022; Y. Wang et al. 2022; Chung et al. 2022). Despite all the notable

abilities of these models, their large size (number of parameters) makes their inference

slow and computationally expensive which poses a practical challenge limiting their

widespread adoption in resource constrained applications. Focusing on the above

problem, in this work, we investigate instruction tuning LLMs in a way that enables

intermediate layer decoding for efficiently generating text without compromising the

quality of the generation.

We first show that in standard instruction tuning, only the final layer of the

model acquires the ability to generate ‘quality ’ text while the representations of the

intermediate layers (when passed through the language modeling head) fail to do

so. This restricts decoding from these intermediate layers without degrading the

generation quality. Addressing this point, we instruction tune LLMs with additional

explicit Losses from the InTermediate layErs (LITE) and show that it enables these

layers to acquire ‘good’ generation ability. Importantly, we show that these layers

acquire this ability without affecting the generation ability of the final layer; however,

as expected, their generation ability still remains slightly inferior to the generation

163

ability of the final layer. Thus, decoding the complete response from intermediate

layers improves the efficiency of inference but still results in degradation in the quality

of the response.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Final Layer (Standard) Confidence-based Early Exiting

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0

50

100

150

200

250

300
TF

LO
PS

Cost
 (higher is better) (lower is better)

Vicuna (7B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e
Quality

0

50

100

150

200

250

300

TF
LO

PS

Cost
 (higher is better) (lower is better)

Koala (7B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0

50

100

150

200

250

300

TF
LO

PS

Cost
 (higher is better) (lower is better)

WizardLM (7B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0

50

100

150

200

250

300

TF
LO

PS

Cost
 (higher is better) (lower is better)

Self-Instruct (7B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0
50
100
150
200
250
300
350
400
450
500
550

TF
LO

PS

Cost
 (higher is better) (lower is better)

Vicuna (13B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0
50
100
150
200
250
300
350
400
450
500
550

TF
LO

PS

Cost
 (higher is better) (lower is better)

Koala (13B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0
50
100
150
200
250
300
350
400
450
500
550

TF
LO

PS

Cost
 (higher is better) (lower is better)

WizardLM (13B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0
50
100
150
200
250
300
350
400
450
500
550

TF
LO

PS

Cost
 (higher is better) (lower is better)

Self-Instruct (13B)
Figure 32. Comparing the quality of the responses and the inference cost of (i) the standard
generation from the final layer (orange) and (ii) the dynamic early exiting method (blue) on model
tuned with LITE. The top and the bottom rows show the effectiveness on four different test sets for
the LLaMA-2 7B and 13B models, respectively.

Addressing the above limitation, we show that (a) LITE greatly aligns the intermedi-

ate layers’ token prediction with that of the final layer and (b) the intermediate layers’

token prediction probabilities provide a strong signal of this alignment. Building on

these findings, we perform ‘dynamic confidence-based early exiting ’ at token level from

the intermediate layers which improves the efficiency of inference while maintaining

the generation quality.

We conduct comprehensive experiments by instruction tuning LLaMA-2 models

(Touvron et al. 2023) on the widely used Alpaca dataset (Taori et al. 2023) and

holistically evaluate on four different human-instruction test sets including Vicuna,

WizardLM, Koala, and Self-Instruct. Figure 32 compares the quality of responses

164

(evaluated using the Claude model as detailed in Section 7.4) and the inference cost

(measured in FLOPs) of the (i) standard generation method from the final layer with

(ii) the dynamic early exiting method. It shows that dynamic early exiting achieves

consistent and considerable inference cost improvements (37.86% for 7B and 46.35%

for 13B model on average) while maintaining the generation quality.

We further perform a thorough analysis of the results over several important

aspects, such as, comparing the semantic similarity between the responses generated

from the final layer and the early exiting method, and dissecting the efficiency

improvements by comparing the number of tokens generated in the outputs. We also

discuss the potential of intermediate layer decoding in ‘speculative sampling ’ and

‘hallucination detection’.

In summary, our work contributes to improving the efficiency of LLM inference

while maintaining the generation quality, a crucial step en route to enabling their

widespread adoption.

7.2 Instruction Tuning with LITE

Instruction Tuning (IT): One of the major reasons that necessitate instruction

tuning of LLMs is the mismatch between their pre-training objective and the users’

objective, i.e., LLMs are typically trained on minimizing the word prediction error

while users want the model to follow their instructions. To this end, an instruction

tuning dataset is collected and a pre-trained model is fine-tuned in a supervised

manner (Mishra, Khashabi, et al. 2022; Chung et al. 2022). Loss calculation during

165

instruction tuning of a typical decoder-only LLM (LLaMA in this case) is shown in

Figure 33 (left). The model consists of a stack of decoder layers followed by a language

modeling head which outputs the probability distribution over the vocabulary tokens

as its prediction. During the supervised fine-tuning, the loss over the output tokens

is backpropagated from the final layer of the model:

Loss(y1∶M) = −
M

∑
t=1

log p(yt∣y<t)

IT with LITE: We show that in standard instruction tuning, only the final layer

of the model acquires the ability to generate ‘quality’ text while the representations of

the intermediate layers (when passed through the language modeling head) fail to do

so (Section 7.5.1). In other words, it does not explicitly teach the intermediate layers

of the tuned LLM to generate tokens. This restricts decoding from these intermediate

layers without degrading the generation quality.

We note that during tuning, the same language modeling head (that is used with

the final layer) can also be used with the intermediate layers to obtain the losses

of those layers. Thus, this does not impact the number of parameters of the model.

To this end, we calculate a weighted aggregation of the losses from the intermediate

layers (including the final) to calculate the overall loss value:

Loss = ∑
N
i=1wiLossi

∑N
i=1wi

where N is the number of layers, wi is the weight of the ith layer, and Lossi is

the cross entropy loss of the ith layer as shown in Figure 33.

During training, we use the representations of the intermediate layers and calculate

the loss from these layers at the end. We note that this is a general formulation as it

166

Decoder

Decoder

Decoder

LM Head

…

Norm

Decoder

Decoder

Decoder

LM Head

…

Norm

Instruction Tuning Instruction Tuning with LITE
Figure 33. Loss calculation for standard instruction tuning (left) and instruction tuning with
additional explicit losses from the intermediate layers LITE (right).

captures a variety of scenarios including the standard fine-tuning in which the loss

is calculated only from the last layer (i.e., w1∶N−1 = 0 and wN = 1). Furthermore,

this formulation also allows aggregating losses from only the selected intermediate

layers instead of all the layers by accordingly defining the LM head pathways and

the wi values. In Section 7.5.2, we will show that this formulation while enabling

the intermediate layers with ‘good’ generation ability does not adversely affect the

final layer’s generation ability. Furthermore, as expected, the quality of generation

typically improves with the layer number as the later layers have more capacity to

learn.

167

7.3 Making Inference Efficient

In this section, we first detail auto-regressive inference and then describe early

exiting techniques.

Auto-Regressive Inference: It refers to the process of generating a sequence of

tokens where each token is generated based on the preceding tokens in the sequence.

For generating a token, the model takes the input (including the previously generated

tokens) and runs a forward pass in which the input is fed to the model and passed

sequentially along its layers until the probabilities for the next token are predicted

(called as logits). Chaining model forward passes with next token selection iteratively

leads to the generation of text. In greedy decoding, the token with the highest

probability is selected as the next word prediction at each timestep.

7.3.1 Fixed Early Exiting

Since instruction tuning with LITE enables the intermediate layers to acquire

‘good’ generation ability, the computations during inference can be terminated at

a pre-specified intermediate layer (referred to as exiting layer) and the language

modeling head can be used to predict the next token. This saves the computations of

the remaining layers that follow the specified exiting layer and thus it improves the

efficiency of inference.

Though this method of fixed early exiting leads to improvement in the efficiency of

inference, it is bound to result in some degradation in the quality of the generation as

168

the generation ability of an intermediate layer still remains inferior to the generation

ability of the final layer. However, the quality of generation typically improves with

the layer number as the later layers have more capacity.

7.3.2 Dynamic Confidence-Based Early Exiting

Addressing the limitation of the fixed early exiting method, we study a dynamic

early exiting method that decides the exiting layer for a token prediction based on

the intermediate layer’s probability of the prediction (softmax over the logit values).

This is motivated by our following two findings:

(a) Instruction Tuning with LITE greatly aligns the intermediate layers’ token predic-

tion with that of the final layer (Section 7.5.3) and

(b) The intermediate layers’ token prediction probabilities (referred to as confidence)

provide a strong signal of this alignment (Section 7.5.4).

Building on these two findings, we perform ‘dynamic confidence-based early exiting’

at token level from the intermediate layers which improves the efficiency of inference

while maintaining the generation quality. Specifically, a set of intermediate layers

with their corresponding confidence thresholds are defined and at inference time,

the exiting decision for a prediction is taken by comparing the intermediate layer’s

prediction confidence against its corresponding threshold. This enables the model to

perform efficient inference without degrading the generation quality. Note that this

method does not introduce new parameters and uses the softmax probability to make

the exiting decision. We study this exiting method for inference without KV caching.

169

Our work differs from existing work in the following aspects:

(1) Firstly, most of the existing work in early exiting focuses on improving the efficiency

of encoder-only models (like BERT) or encoder-decoder models (like T5); our work

focuses on the current state-of-the-art decoder-only LLMs (LLaMA-2). Furthermore,

we focus on the instruction tuning setting with text generation, unlike prior work that

focused on solving simpler tasks like GLUE classification or QA. (2) Early exiting

methods typically require training additional classifiers for the intermediate layers,

however, in this work, we use the same shared language modeling head at all the layers;

thus, we do not introduce new model weights. (3) For leveraging the intermediate

layers for decoding, we enable them to acquire generation ability by instruction tuning

with LITE, unlike other methods that use a pre finetuned model in which these

layers have poor generation ability as we show in Section 7.5.1. (4) Existing methods

typically require complex architectural modifications, pruning, saliency quantification,

or training new parameters. In contrast, our method (both for tuning and inference)

is simple and easy to implement and yet achieves considerable benefits. (5) Existing

methods typically require training a separate model for each computation budget;

however, in our method, the same model can be adapted to meet all the computation

constraints (by varying the exiting confidence thresholds). (6) The computational

efficiency often comes with a compromise in performance. However, our method

maintains the generation quality while providing efficiency benefits.

170

7.4 Experimental Setup

Instruction Tuning: We instruction tune the LLaMA-2 models (Touvron et

al. 2023) (7B and 13B) with the widely used Alpaca dataset (Taori et al. 2023).

Alpaca consists of 52K instruction-following demonstrations generated using the

self-instruct (Y. Wang et al. 2023) technique. In IT with LITE for 7B model (32 total

layers), we aggregate losses from the following selected intermediate layers: (8, 12,

16, 20, 24, 28) along with the final layer and use equal weights in loss calculation.

Similarly, for the 13B model (40 total layers), we use (8, 12, 16, 20, 24, 28, 32, 36)

layers. We perform full parameter fine-tuning on 4 A100 GPUs.

We skip selecting the initial layers because they have a limited capacity to learn

and thus can not give good token predictions. Furthermore, we select layers at an

interval of 4 so that at inference time, the model can do enough reasoning/interactions

between two consecutive checkpoints. Otherwise, checking at every layer can result in

computational overhead. We train this model for 5 epochs so that it achieves training

loss comparable to standard tuning.

We present all the results corresponding to this tuning configuration in the main

paper and present the study corresponding to weighted LITE in the Section 7.8.

Evaluation Datasets: To perform holistic evaluation, we experiment with four

different human-instruction test sets including Vicuna (Chiang et al. 2023), Self-

Instruct (Y. Wang et al. 2023), Koala (Geng et al. 2023), and WizardLM (C. Xu

et al. 2023). We select these evaluation test sets as they can together cover a large

171

number and types of instructions thus resulting in a comprehensive evaluation. Table

49 shows the statistics of the datasets.

Layer 32
(Final)

Layer 28 Layer 24 Layer 16 Layer 80

20

40

60

80

100

%
 Q

ua
lit

y
(c

om
pa

re
d

ag
ai

ns
t F

in
al

 L
ay

er
)

Final Layer's Quality

(a) Vicuna

Layer 32
(Final)

Layer 28 Layer 24 Layer 16 Layer 80

20

40

60

80

100

%
 Q

ua
lit

y
(c

om
pa

re
d

ag
ai

ns
t F

in
al

 L
ay

er
)

Final Layer's Quality

(b) Koala

Layer 32
(Final)

Layer 28 Layer 24 Layer 16 Layer 80

20

40

60

80

100

%
 Q

ua
lit

y
(c

om
pa

re
d

ag
ai

ns
t F

in
al

 L
ay

er
)

Final Layer's Quality

(c) WizardLM

Layer 32
(Final)

Layer 28 Layer 24 Layer 16 Layer 80

20

40

60

80

100

%
 Q

ua
lit

y
(c

om
pa

re
d

ag
ai

ns
t F

in
al

 L
ay

er
)

Final Layer's Quality

(d) Self-Instruct
Figure 34. Demonstrating quality comparison of the output of intermediate layers (generated via
fixed exiting) against the final layer’s generation of the model tuned with standard instruction
tuning.

Evaluation Methodology: The evaluation of the instruction-following ability of

LLMs is challenging due to the existence of multiple correct responses to an input and

the infeasibility of reproducing human evaluations. Addressing this problem, recent

works have started to rely on automatic evaluations using LLMs (Zheng et al. 2023;

Chiang et al. 2023). Specifically, we use Claude LLM (Bai et al. 2022) as a judge

to compare the quality of responses of two models on a given instruction. We note

that these LLMs have been shown to be vulnerable to position bias in their judgment

(P. Wang et al. 2023). To circumvent this bias, we evaluate a response pair with both

orderings of the responses and then aggregate the judgment scores. We provide the

prompt for comparing the quality of the responses of two models in Section 7.6.

7.5 Results and Analysis

In this section, we first demonstrate the inability of the intermediate layers of the

model tuned with standard IT to generate ‘quality’ text (7.5.1). Then, we show the

172

impact of IT with LITE: it does not adversely affect the generation quality of the final

layer (7.5.2), it aligns the intermediate layers’ token predictions with the final layer

(7.5.3), and the corresponding prediction confidence values provide a strong signal

of the alignment (7.5.4). These findings motivate dynamic confidence-based early

exiting. Finally, we show the effectiveness of the method in improving the efficiency

of inference while maintaining the generation quality (7.5.5). To avoid repetition, we

present results for the 7B model in the main paper and for the 13B model in 7.7.8.

7.5.1 Generation Ability of Intermediate Layers

In order to obtain the text (sequence of tokens) generated via fixed exiting from

an intermediate layer, we apply the normalization (RMSNorm) followed by the

language modeling head to the representations of that intermediate layer and skip the

computations of the layers following the exiting layer (as detailed in Section 7.3.1).

For the model tuned with the standard instruction tuning, we compare the quality

of the text (as detailed in Section 7.4) generated from different intermediate layers

against the final layer’s generation in Figure 34. As expected, the intermediate layers

generate text of considerably degraded quality and this quality drops as the layer

number decreases.

This demonstrates that with standard instruction tuning, only the later layers

(primarily the final layer) of the model acquire the ability to generate ‘quality’ text

while the representations of the intermediate layers (when passed through the language

modeling head) fail to do so. Thus, for such a model, the early exiting method saves

173

the inference computation cost but considerably degrades the generation quality. This

restricts employing such early exiting techniques for the model tuned with standard

instruction tuning. We show examples of responses obtained via fixed early exiting

from different intermediate layers in Section 7.7.1.

We perform instruction tuning with LITE to enable the intermediate layers to

acquire ‘good’ generation ability. Importantly, we show that these layers acquire this

ability without affecting the generation ability of the final layer (Section 7.5.2).

7.5.2 Impact of LITE on the Final Layer

In Figure 35, we compare the quality of responses of (a) the model tuned using

standard instruction tuning (IT) and (b) the model tuned using IT with LITE. Note

that the responses for both these models correspond to their respective final layer’s

output. From the figure, it can be observed that for all the datasets, the outputs of

both models are of comparable quality which shows that tuning with LITE does not

adversely affect the generation ability of the final layer of the model.

Next, we demonstrate two important characteristics of instruction tuning with

LITE (in 7.5.3 and 7.5.4) that motivate us to study dynamic confidence-based early

exiting from the intermediate layers.

174

7.5.3 ‘Alignment’ of Intermediate Layers

We define percentage ‘alignment’ of a layer as the measure of how often the token

predictions of that layer match with that of the final layer (given same input prefixes).

For this study, we do not do early exiting, instead we just use the representation of

each intermediate layer and pass it through the LM head to obtain the corresponding

token prediction of each layer. Note that for generating the next token, we follow the

standard generation methodology and append the predicted token of the last layer

to the input to obtain the token prediction of all the layers given the same input

prefixes.

In Figure 36, we plot the percentage alignment of token predictions of all inter-

mediate layers with the token predictions of the final layer. The figure shows the

percentage alignment of (i) the model tuned using standard IT (orange) and (ii) the

model tuned using IT with LITE (blue). We show this result aggregated over all the

output token predictions for all the inputs of the corresponding dataset.

We draw the following inferences:

(a) The predictions of the intermediate layers of the model tuned with LITE align

well with the final layer, i.e., given a prefix, the intermediate layers’ token predictions

match quite well with the final layer’s token prediction. In contrast for the model

tuned using IT, the token predictions of the intermediate layers do not align well

with the final layer’s token predictions.

(b) As the layer number increases, the % alignment also increases, i.e., given a

175

vicuna koala wizardLM self_instruct
Test Datasets

0

2

4

6

8

10

Qu
al

ity
 o

f R
es

po
ns

es

Instruction Tuning (IT)
IT with LITE (Final Layer)

Figure 35. Comparing quality of responses of (a) model tuned using IT and (b) model tuned using
IT with LITE. The outputs of the models are of comparable quality.

prefix, the predicted token of the later layers shows higher alignment (with the final

layer) than the initial layers.

(c) There are some peaks in the curve for IT with LITE which correspond to the

selected layers from which the loss is aggregated during tuning, i.e., these layers show

higher alignment as expected.

In summary, this study demonstrates that IT with LITE greatly aligns the token

predictions of intermediate layers with that of the final layer.

7.5.4 Token Probability and Alignment

We plot the relationship between the token prediction confidence (softmax over

the logits of the LM head) of the intermediate layers and the percentage alignment

with the token prediction of the final layer. Figure 37 shows this plot for the model

176

Instruction Tuning (IT)
IT with LITE

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(a) Vicuna

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(b) Koala

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(c) WizardLM

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(d) Self-Instruct
Figure 36. Comparing percentage ‘alignment’ of intermediate layer token predictions with the token
predictions of the final layer for the model tuned using IT (orange) and the model tuned using IT
with LITE (blue).

tuned with LITE. The figure shows that in IT with LITE, the intermediate layers’

token prediction probabilities provide a strong signal of alignment, i.e., a high token

prediction confidence implies a higher likelihood of its alignment with the token

prediction of the final layer. It also shows that with the increase in the layer number,

the percentage alignment typically increases at the same confidence values. In contrast,

in standard instruction tuning (IT), the confidence is not well correlated with the

percentage alignment as we show in Section 7.7.6.

177

7.5.5 Effectiveness of Dynamic Early Exiting

Motivated by the findings of the previous two subsections (7.5.3 and 7.5.4), we

perform dynamic confidence-based early exiting at token-level, i.e., we exit when the

token prediction confidence of the intermediate layer is sufficiently high (thus it is

likely to align with the final layer’s prediction).

To this end, from the confidence vs percentage alignment curve, we identify a

confidence threshold for each layer where the alignment is > 95%. Specifically, we use

the following thresholds: Layer 8: 0.95, Layer 12: 0.95, Layer 16: 0.9, Layer 20: 0.9,

Layer 24: 0.8, and Layer 28: 0.7.

In the main paper, we present the results and analysis for the aforementioned

configuration. However, we note that a different threshold configuration can also be

used for inference. For instance, a more aggressive configuration with lower thresholds

(shown in Section 7.7.7) leads to even more cost improvements (49.92%); though

it slightly drops the quality of generation (5.34%). The trade-off between quality

and cost can be balanced depending on the application requirements. For example,

applications with quality tolerance or resource limitations can keep low threshold to

achieve higher cost improvements.

Dynamic confidence-based early exiting: At a selected layer, we pass

its representations through the LM head, calculate the softmax logit value, and

compare it with the corresponding confidence threshold of the layer. If it surpasses

178

Layer 8
Layer 12

Layer 16
Layer 20

Layer 24
Layer 28

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(a) Vicuna

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(b) Koala

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(c) WizardLM

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100
%

 A
lig

nm
en

t

(d) Self-Instruct
Figure 37. Demonstrating trend of token prediction confidence of the intermediate layers and the %
alignment with the final layer for model tuned with LITE.

the threshold value then we exit from that layer and proceed to generate the next

token, otherwise, we repeat this process at the next selected layer.

Figure 32 (in Section 7.1) compares the quality of responses and the inference

cost (measured in FLOPs) of the standard generation method (final layer) with the

dynamic early exiting method. It shows that the dynamic early exiting method

achieves consistent and considerable cost improvements (37.86% for 7B and 46.35%

for 13B model on average) while maintaining the generation quality. Table 46 shows

179

Test Dataset Inference Cost Improvement (%)

Vicuna 33.39 %
Koala 35.40 %

WizardLM 36.12 %
Self Instruct 46.54 %

Table 46. Percentage improvements in the inference cost (measured in FLOPs) with dynamic early
exiting.

the percentage improvements in inference cost for each test set individually. We note

that we use FLOPs as the metric of showcasing inference efficiency improvements

because it is hardware independent, unlike latency.

7.5.5.1 Semantic Similarity of the Responses

In addition to comparing the quality, we also compare the semantic similarity

between the responses of the final layer and the dynamic early exiting. Table 47 shows

the semantic similarity (calculated using the ‘en_core_web_sm’ spacy model) for the

four datasets. It shows that there is a large semantic similarity between the responses

as the values are closer to 1. This implies that dynamic early exiting maintains the

semantics of the responses while providing efficiency benefits. Section 7.7.4 shows

examples of responses from both the last layer and the dynamic early exiting method.

180

Test Dataset Semantic Similarity

Vicuna 0.9135
Koala 0.8940

WizardLM 0.9020
Self Instruct 0.9001

Table 47. Semantic similarity between the final layer’s and the dynamic early exiting responses on
test sets.

7.5.5.2 Dissecting the Cost Improvements

In Figure 38, we compare the average number of tokens generated in the final

layer’s responses and the dynamic early exiting responses. It shows that both the

methods generate a comparable number of tokens in their respective outputs. This

asserts that the cost improvement resulting in dynamic early exiting is because of the

reduced computations and not due to generating a lesser number of tokens.

7.5.5.3 Contribution of Different Exiting Layers

Figure 39 shows the percentage of token outputs from different exit layers. Note

that this is aggregated across all the token positions. This shows that the model exits

a considerable percentage of times from the intermediate layers (while maintaining

the generation quality) which further justifies the improvement in inference efficiency.

We further conduct several interesting studies and analyses of the results and present

them in Section 7.7.

181

vicuna koala wizardLM self_instruct
Test Datasets

0

20

40

60

80

100

120

140

Av
g.

 N
um

be
r o

f T
ok

en
s G

en
er

at
ed Final Layer

Confidence-Based Early Exiting

Figure 38. Comparing the average number of tokens generated in the final layer’s responses and the
dynamic early exiting responses for the four datasets.

7.5.5.4 Effectiveness at Category Level

Vicuna and WizardLM datasets also provide the category corresponding to different

test instances. To this end, we present category-level quality and inference cost results

for these datasets in Figure 40 and 41. On average, the method results in cost

improvement of 33.39% on Vicuna and 36.12% on WizardLM.

7.6 Evaluation Methodology

We use the following prompt for comparing the quality of responses:

182

Human: You are a helpful and precise assistant for checking the

quality of the answer.

[Question]

{question} [The Start of Assistant 1’s Answer]

{answer_1}

[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]

{answer_2}

[The End of Assistant 2’s Answer]

We would like to request your feedback on the performance of two AI

assistants in response to the user question displayed above.

Please rate the helpfulness, relevance, accuracy, level of details

of their responses. Each assistant receives an overall score on a

scale of 1 to 10, where a higher score indicates better overall

performance.

Please output a single line containing only two values indicating

the scores for Assistant 1 and 2, respectively. The two scores are

separated by a space.

Assistant:

To circumvent the position bias, we evaluate a response pair with both orderings

of the responses and then aggregate the judgment scores. We use the Claude API

with temperature set to 0 and modelId to ‘anthropic.claude-v1’.

183

8 12 16 20 24 28 32
Exit Layer

0

5

10

15

20

25

30

Pe
rc

en
ta

ge

Figure 39. % of token outputs from different exiting layers in the proposed method.

7.7 Additional Results

7.7.1 Inability of the Intermediate Layers of the Model Tuned with Standard

Instruction Tuning to Generate ‘High-Quality’ Text

In this Subsection, we show examples of responses of intermediate layers (fixed

exiting) of the model tuned with standard instruction tuning (IT).

184

Question: What are the differences between plant-based and

animal-based protein sources?

Layer 32 (Final): The main difference between plant-based and

animal-based protein sources is that plant-based proteins are found

in plant-based foods, such as legumes, nuts, and seeds, while

animal-based proteins are found in animal-based foods, such as

meat, eggs, and fish. Plant-based proteins typically contain fewer

calories, fat, and ...

Layer 28: plant- based proteins sources such as legumes, legumes,

and nuts contain essential amino achren needed for growth and repair

of cellsular structures. animal based proteins sources such as

meat, eggs, and fish contain additional nutrients such as vitamin B

Complex vitamin D vitamin Iron and calcium needed for optimal health.

Layer 24: plant based prote source protein source diversity,

quality proteinsrichness quantityquantityquantityquantity quantity

quantity quantity quantity quantity q ...

Layer 20: difference between Plant Based vs animal based protein

sourceage oldenhamptonensis proportionalityunicíclesqueque ...

185

Question: Imagine you are a time traveler from the year 3000. What

technological advancements would you tell people about?

Layer 32 (Final): From the year 3000, I would tell people

about the advancements in technology that have made life easier and

more efficient. I would talk about the autonomous cars, the implanted

chips that allow people to access the internet and doctors to

monitor patients remotely, the 3D-printed homes and the list goes on.

I would also tell people about the advancements in renewable energy

and how we are able to generate electricity from the sun and the wind.

Layer 28: From the year 3000 perspective, some technological

advances might include flying cars, robotic vac vacuifiers,

implanted implants used for implantable devices such as pacemakers,

implanted cameras implanted microscopes implanted anything else you

can think of implanted implanted implanted ...

Layer 24: techn adv advances techn advances techn advances

techn ...

Layer 20: futureproofing@gmailgmail domainainsights

intoxicatednessipag eantryonswardswardsonswardsonswardso ...

186

The above examples and the results in Section 7.5.1 show that in standard

instruction tuning, the intermediate layers do not acquire good generation ability as

the generated responses are of poor quality.

In the next subsection, we illustrate examples that show that IT with LITE

enables the intermediate layers to acquire good generation ability.

187

7.7.2 Intermediate Layers Acquire Good Generation Ability in IT with LITE

Question: What are the differences between plant-based and

animal-based protein sources?

Layer 32 (Final): Plant-based protein sources are mainly found in

foods such as legumes, nuts, and seeds, while animal-based protein

sources are found in foods such as meat, fish, eggs, and dairy

products. Plant-based proteins are generally lower in calories ...

Layer 28: Plant-based protein sources are mainly found in foods such

as legumes, nuts, and seeds, while animal-based protein sources

are found in foods such as meat, fish, eggs, and dairy products.

Plant-based proteins are generally lower in calories and fat ...

Layer 24: Plant-based protein sources are mainly found in foods such

as legumes, nuts, and seeds, and are typically lower in calories

and fat than animal-based protein sources. Plant-based proteins are

also rich in vitamins, minerals, and antioxidants, and are a ...

Layer 20: Plant-based protein sources are found in many different

foods, including legumes, nuts, seeds, and seeds. They are usually

lower in calories and fat than animal-based protein sources.

Plant-based proteins are also rich in fiber and contain ...

188

Question: Imagine you are a time traveler from the year 3000. What

technological advancements would you tell people about?

Layer 32 (Final): From the year 3000, I would tell people

about the incredible advancements in technology that have been made

over the centuries. We take many things for granted now, such as

the internet and autonomous vehicles, but these technologies ...

Layer 28: From the year 3000, I would tell people about the

advancements in artificial intelligence, robotics, and genetic

engineering. In particular, I would tell people about the

advancements made in AI, such as the development of autonomous cars,

virtual assistants, and smart homes. I would ...

Layer 24: From the year 3000, I would tell people about the

incredible advancements in technology that have been made over the

centuries. We are now able to control our environment by using

thought-controlled prostheses, use genetic ...

Layer 20: In the 3000s, we have developed advanced artificial

intelligence, self-driving cars, and teleportation of particles.

We have also made significant progress in quantum computing, which

...

189

The above examples illustrate that IT with LITE enables the intermediate layers

to acquire good generation ability. This is because the losses are aggregated from

these intermediate layers during instruction tuning.

7.7.3 Poor Quality of Responses With Dynamic Early Exiting from Model Tuned

with Standard Instruction Tuning (IT)

Here, we show examples of the responses generated via dynamic confidence-based

early exiting from the model tuned with standard instruction tuning (IT). Note that

this is without LITE.

It can be observed from these examples that the early exiting responses are of

poor quality. They suffer from a number of issues including degeneration such as

unwanted token repetitions, and lack of coherence and structure. We note that this

can be attributed to the poor generation ability and alignment of the intermediate

layers.

190

Question: What are the most effective ways to deal with stress?

Layer 32 (Final): The most effective ways to deal with stress

include identifying sources of stress, developing coping strategies,

maintaining a balanced diet, exercising regularly, getting enough

sleep, and taking time to relax and do something enjoyable. Taking

time to practice deep breathing and meditation, talking to a friend

or therapist, and using humor are also helpful.

Dynamic Early Exiting with IT model: cop coping strategies

include identifying sources of stress, developing cop coping skills

such as cop coping and relaxation techniques such as meditation

and med meditation med meditation med meditation med meditation

med meditation med meditation med meditation med meditation med

meditation ...

191

Question: Can you explain the basics of quantum computing?

Layer 32 (Final): Quantum computing is a form of computing

that uses quantum-mechanical phenomena, such as superposition and

entanglement, to perform operations on data. It enables computation

at a much faster rate than traditional computers and can solve

problems that are intractable on classical computers. Quantum

computing uses qubits2̆014quantum bits2̆014which can be in a state of

0 or 1, instead of the traditional bit of 0 or 1. Qubits can be used

to represent data and perform operations on it, such as addition,

subtraction, and multiplication.

Dynamic Early Exiting with IT model: quantum computing basics

quantum computing basics explain the basics of quantum computing

including what it is, how it works, why it matter, how it can be

used for computing, and what its future may hold. quantum computing

basics quantum computing basics explain the basics of quantum

computing including what it is, how it works, why it matter, how it

can be used for computing ...

This further showcases the importance of LITE during instruction tuning as

192

it allows the intermediate layers to acquire good generation ability, thus enabling

opportunities for early exiting without compromising the quality of the generation.

193

7.7.4 Examples of Responses with Dynamic Early Exiting for Model instruction

tuned with LITE

Here, we show examples of responses of the final layer and the dynamic early

exiting method with the model instruction tuned using LITE.

194

Question: What are the main differences between Python and

JavaScript programming languages?

Layer 32 (Final): The main differences between Python and

JavaScript programming languages are their syntax, data types, data

structures, and logic. Python is a high-level, interpreted language

that is focused on readability and simplicity, while JavaScript

is a low-level, interpreted language that is focused on adding

interactive elements to web pages. Python has strong support for

data typing, while JavaScript has weaker support for data types.

Python is more suitable for creating scripts and applications,

while JavaScript is more suitable for creating interactive web pages.

Dynamic Early Exiting: The main differences between Python

and JavaScript programming languages are their syntax, data types,

data structures, and logic. Python is a high-level, interpreted

language that is focused on readability and simplicity, while

JavaScript is a low-level, interpreted language that is focused

on adding interactive features to web pages. Python has dynamic

data types, while JavaScript has static data types. Python is more

suitable for creating scripts and applications, while JavaScript is

more suitable for creating interactive web pages.

195

Question: What if Isaac Newton had focused on biology instead of

physics?

Layer 32 (Final): Isaac Newton had focused on biology instead of

physics, he would have likely made similar discoveries in that

field as he did in physics. His laws of motion and universal

gravitation could have been formulated in a biological context, for

example, describing the ways in which cells and organisms adhere to

physical laws. He would have likely realized that biology is also

an essential physical science, and that the laws of motion are just

as universal in biology as in physics.

Dynamic Early Exiting: Isaac Newton had focused on biology instead

of physics, he would have developed a different understanding

of the natural world. He would have believed that biology was

the foundation of all physics, and that it was the only way to

understand the universe. He would have also believed that all living

organisms had the same underlying laws of physics, rather than the

laws of physics being created for humans to understand. He would

have also believed that biology was the most important branch of

science, and that it was the only way to understand the universe.

196

These examples show that the responses obtained via early exiting do not com-

promise the quality of the generation. Furthermore, responses have high syntactic

and semantic overlap.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Final Layer (Standard) Confidence-based Early Exiting

0

2

4

6

8

10

Qu
al

ity

0

25

50

75

100

TF
LO

PS
 (higher is better) (lower is better)

(a) Generic

0

2

4

6

8

10
Qu

al
ity

0

100

200

TF
LO

PS

 (higher is better) (lower is better)

(b) Knowledge

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

TF
LO

PS

 (higher is better) (lower is better)

(c) Roleplay

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

TF
LO

PS

 (higher is better) (lower is better)

(d) Commonsense

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

 (higher is better) (lower is better)

(e) Fermi

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

TF
LO

PS

 (higher is better) (lower is better)

(f) Counterfactual

0

2

4

6

8

10

Qu
al

ity

0

100

200

TF
LO

PS

 (higher is better) (lower is better)

(g) Writing

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

 (higher is better) (lower is better)

(h) Coding

0

2

4

6

8

10

Qu
al

ity

0.0

2.5

5.0

7.5

10.0
TF

LO
PS

 (higher is better) (lower is better)

(i) Math
Figure 40. Comparing the quality of responses and the inference cost of the standard generation
method with the dynamic early exiting method on different categories of the Vicuna Test set.

7.7.5 Quality and Inference Cost Analysis at Category Level

Vicuna and WizardLM test sets also provide the category corresponding to different

test instances. To this end, we present category-level quality and inference cost results

for these datasets.

Vicuna: Figure 40 compares the quality of responses and the inference cost of

the standard generation method (final layer) with the dynamic early exiting method

197

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Final Layer (Standard) Confidence-based Early Exiting

0

2

4

6

8

10

Qu
al

ity

0

20

40

60

TF
LO

PS

 (higher is better) (lower is better)

(a) Math

0

2

4

6

8

10

Qu
al

ity

0

100

200

TF
LO

PS

 (higher is better) (lower is better)

(b) Code Generation

0

2

4

6

8

10

Qu
al

ity

0

100

200

300

TF
LO

PS

 (higher is better) (lower is better)

(c) Writing

0

2

4

6

8

10

Qu
al

ity

0

100

200

TF
LO

PS

 (higher is better) (lower is better)

(d) Reasoning

0

2

4

6

8

10

Qu
al

ity

0

100

200

300

TF
LO

PS
 (higher is better) (lower is better)

(e) Computer Sc.

0

2

4

6

8

10
Qu

al
ity

0

100

200

300

TF
LO

PS

 (higher is better) (lower is better)

(f) Code Debug

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

 (higher is better) (lower is better)

(g) Complex Format

0

2

4

6

8

10

Qu
al

ity

0

20

40

60

TF
LO

PS

 (higher is better) (lower is better)

(h) Common-Sense

0

2

4

6

8

10

Qu
al

ity

0

100

200

300

TF
LO

PS

 (higher is better) (lower is better)

(i) Counterfactual

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

 (higher is better) (lower is better)

(j) Multilingual
Figure 41. Comparing the quality of responses and the inference cost of the standard generation
method with the dynamic early exiting method on different categories of the WizardLM Test set.

for different categories of Vicuna test set. On average, it results in cost improvement

of 33.39%. It can be observed that the approach consistently achieves efficiency

improvement in all the categories which demonstrates the generality of the approach.

WizardLM: Figure 41 compares the quality of responses and the inference

cost of the standard generation method (final layer) with the dynamic early exiting

method for different categories of WizardLM test set. On average, it results in cost

improvement of 36.12%.

198

7.7.6 Relationship Between Token Prediction Confidence and Percentage Alignment

of the Intermediate Layers for the Model Tuned with Instruction Tuning (IT)

Figure 42 shows the relationship between the token prediction confidence of the

intermediate layers and the percentage alignment with the token prediction of the

final layer for standard instruction tuning (IT). It shows that the confidence is not

well correlated with the percentage alignment. However, in IT with LITE (Figure

37), the intermediate layers’ token prediction probabilities provide a strong signal of

alignment.

7.7.7 Dynamic Confidence-Based Early Exiting with Aggressive Confidence Thresh-

olds

We also experiment with aggressive confidence thresholds. Specifically, we use

the following confidence thresholds: Layer 8: 0.85, Layer 12: 0.85, Layer 16: 0.8,

Layer 20: 0.8, Layer 24: 0.7, and Layer 28: 0.6. These thresholds are lower than

those used in the main paper. Figure 43 shows the quality and cost comparisons. It

leads to larger cost improvements (of 49.92%) though it slightly drops the quality of

generation (by 5.34%).

199

Layer 8
Layer 12

Layer 16
Layer 20

Layer 24
Layer 28

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(a) Vicuna

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(b) Koala

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(c) WizardLM

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(d) Self-Instruct
Figure 42. Demonstrating relationship between token prediction confidence of the intermediate
layers and the percentage alignment with the token prediction of the final layer for model tuned
with IT.

200

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Final Layer (Standard) Confidence-based Early Exiting

0
1
2
3
4
5
6
7
8
9

10

Qu
al

ity

0

25

50

75

100

125

150

175

TF
LO

PS

(higher is better) (lower is better)

(a) Vicuna

0
1
2
3
4
5
6
7
8
9

10

Qu
al

ity

0

50

100

150

200

250

TF
LO

PS

(higher is better) (lower is better)

(b) Koala

0
1
2
3
4
5
6
7
8
9

10

Qu
al

ity

0

50

100

150

200

250

TF
LO

PS

(higher is better) (lower is better)

(c) WizardLM

0
1
2
3
4
5
6
7
8
9

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

(higher is better) (lower is better)

(d) Self-Instruct
Figure 43. Comparing the quality of responses (evaluated using the Claude model) and the inference
cost (measured in FLOPs) of the standard generation method from the final layer with the dynamic
early exiting method. Confidence Thresholds: Layer 8: 0.85, Layer 12: 0.85, Layer 16: 0.8, Layer
20: 0.8, Layer 24: 0.7, and Layer 28: 0.6. This aggressive configuration results in larger cost
improvements of 49.93% but results in a slight degradation in the generation quality.

Test Dataset Cost Improvement (%)

Vicuna 43.60 %
Koala 45.62 %

WizardLM 50.84 %
Self Instruct 45.35 %

Table 48. Percentage improvements in the inference cost (measured in FLOPs) with dynamic early
exiting for the 13B model. On average, it achieves an improvement of 46.35%.

7.7.8 Results for 13B Model

For the 13B model we use the following confidence thresholds: Layer 8: 0.95,

Layer 12: 0.95, Layer 16: 0.9, Layer 20: 0.9, Layer 24: 0.8, Layer 28: 0.7, Layer 32:

0.7, and Layer 36: 0.65,

Table 48 shows the cost improvements resulting from dynamic early exiting from

the 13B model on each test dataset. On average, it results in 46.35% cost improvement.

This improvement is higher than the improvement achieved in the case of the 7B

model (37.86%).

201

Test Set # Samples

Vicuna 80
Koala 180

WizardLM 218
Self Instruct 252

Table 49. Statistics of evaluation datasets: Vicuna, Koala, WizardLM, and Self-Instruct.

7.8 Weighted LITE

We also experiment using increasing weights for different intermediate layers

during the loss aggregation. We use increasing weights as the later layers have more

capacity to learn. Specifically, for the 7B model where we select layer numbers 8, 12,

..., 28, and 32, we use the following weights: 1, 2, ..., 7.

In Figure 44, we plot the percentage alignment of token predictions of all inter-

mediate layers with the token predictions of the final layer. The figure shows the

percentage alignment of (i) the model tuned using standard IT (orange) and (ii) the

model tuned using IT with weighted LITE (blue). In Figure 45, we compare the

alignment for the model tuned using IT with LITE and the model tuned using IT

with weighted LITE. It can be observed that assigning lower weight to the initial

layers results in just a slight reduction in alignment percentage.

We also plot the relationship between the token prediction confidence (softmax

over the logits of the LM head) of the intermediate layers and the percentage alignment

with the token prediction of the final layer. Figure 46 shows this plot for the model

tuned with weighted LITE.

202

Instruction Tuning (IT)
IT with LITE

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(a) Vicuna

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(b) Koala

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(c) WizardLM

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(d) Self-Instruct
Figure 44. Comparing percentage ‘alignment’ of intermediate layer token predictions with the token
predictions of the final layer for the model tuned using IT (orange) and the model tuned using IT
with weighted LITE (blue).

7.9 Design Decisions

FLOPs for measuring Computational Cost: We note that we use FLOPs as

the metric of showcasing inference efficiency improvements because it is hardware

independent, unlike latency.

KV Caching: We explore the dynamic exiting method for inference without KV

caching. This is because the representations of the layers after the exiting layer are

not computed in this method and thus will not be available in the cache for the

next token prediction if the model exits from a higher layer than the previous token

prediction.

LLaMA-2 Models for Experiments: We experiment with LLaMA-2 models as they

are publicly available and widely used for LLM research.

Evaluation Datasets To perform holistic evaluation, we experiment with four

different human-instruction test sets including Vicuna, Self-Instruct, Koala, and

WizardLM. We select these evaluation test sets as they can together cover a large

203

IT with LITE
IT with weighted LITE

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(a) Vicuna

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(b) Koala

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(c) WizardLM

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(d) Self-Instruct
Figure 45. Comparing percentage ‘alignment’ of intermediate layer token predictions with the token
predictions of the final layer for the model tuned using IT with LITE (orange) and the model tuned
using IT with weighted LITE (blue).

Layer 8
Layer 12

Layer 16
Layer 20

Layer 24
Layer 28

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(a) Vicuna

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(b) Koala

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100
%

 A
lig

nm
en

t

(c) WizardLM

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(d) Self-Instruct
Figure 46. Demonstrating trend of token prediction confidence of the intermediate layers and the %
alignment with the final layer for model tuned with weighted LITE.

number and types of instructions thus resulting in a comprehensive evaluation. Table

49 shows the statistics of the datasets.

7.10 Discussion on Other Avenues of Research using Intermediate Layer Decoding

7.10.1 Speculative Sampling

In speculative sampling (Leviathan, Kalman, and Matias 2023; C. Chen et al. 2023;

Ning et al. 2023; Kim et al. 2023; Spector and Re 2023), a short draft of K tokens is

204

first generated from a smaller auto-regressive model and then the draft is scored using

the target model. Using a rejection sampling scheme, a subset of the K draft tokens

is accepted by sequentially checking from left to right, and thus in this process, the

distribution of the target model is recovered for the accepted tokens. The efficiency

in this technique comes from ‘producing’ more than one token (on average) from the

target model in a single pass.

This technique requires an additional drafting model. However, we showed

that instruction tuning with LITE enables the intermediate layers to acquire ‘good’

generation ability. Thus, the intermediate layer(s) of the same model can be used

as the drafting model while the last layer remains to be the target model. This

circumvents the requirement of maintaining a separate drafting model for speculative

sampling.

7.10.2 Hallucination Detection

Addressing the hallucination problem of LLMs is an important research direction

and a number of methods have been developed (Manakul, Liusie, and M. Gales 2023;

Azaria and Mitchell 2023a; T. Zhang et al. 2023; Dhuliawala et al. 2023; Varshney,

Yao, et al. 2023; Gou et al. 2023). Sampling based methods require generating multiple

samples and then checking the information consistency between them. Enabling the

intermediate layers with the generation ability equips us with multiple opportunities,

such as checking the consistency based on the alignment percentage of the intermediate

205

layers with the final layer or using the intermediate layers to generate the complete

output and then checking the information consistency.

7.11 Conclusion and Discussion

In this chapter, we proposed instruction tuning with additional explicit losses

from the intermediate layers and showed that it enables these layers to acquire ‘good’

generation ability without affecting the final layer’s generation ability. We performed

‘dynamic confidence-based early exiting ’ at token level from the intermediate layers and

showed that it improves the efficiency of inference while maintaining the generation

quality. We further conducted a thorough analysis that resulted in several important

findings. Overall, our work contributes to improving the efficiency of LLM inference

while maintaining the generation quality, a crucial step en route to enabling their

widespread adoption.

Looking forward, our work additionally opens up several other avenues for new

research, such as speculative sampling from the intermediate layers to improve

the inference efficiency and checking information consistency from the output of

intermediate layers to detect hallucinations (discussed in Section 7.10). Furthermore,

this approach is complementary to some existing efficiency methods, i.e., they can be

used in conjunction to achieve even more efficiency gains.

206

Chapter 8

JOINTLY IMPROVING EFFICIENCY AND ACCURACY VIA MODEL

CASCADING

Do all instances need inference through the big models for a correct prediction?

Perhaps not; some instances are easy and can be answered correctly by even small

capacity models. This provides opportunities for improving the computational

efficiency of systems. In this chapter, we present an explorative study on ‘model

cascading’, a simple technique that utilizes a collection of models of varying capacities

to accurately yet efficiently output predictions. Through comprehensive experiments

in multiple task settings that differ in the number of models available for cascading

(K value), we show that cascading improves both the computational efficiency and

the prediction accuracy. For instance, in K=3 setting, cascading saves up to 88.93%

computation cost and consistently achieves superior prediction accuracy with an

improvement of up to 2.18%. We also study the impact of introducing additional

models in the cascade and show that it further increases the efficiency improvements.

8.1 Introduction

Pre-trained language models such as RoBERTa (Y. Liu et al. 2019a), ELECTRA

(K. Clark et al. 2020), and T5 (Raffel et al. 2020b) have achieved remarkable perfor-

mance on numerous natural language processing benchmarks (A. Wang et al. 2018;

207

Figure 47. Illustrating a cascading approach with three models (Mini, Med, and Base) arranged
in increasing order of capacity. An input is first passed through the smallest model (Mini) which
fails to predict with sufficient confidence. Therefore, it is then inferred using a bigger model (Med)
that satisfies the confidence constraints and the system outputs its prediction (‘contradiction’ as
dog has four legs). Thus, by avoiding inference through large/expensive models, the system saves
computation cost without sacrificing the accuracy.

A. Wang et al. 2019; Talmor et al. 2019). However, these models have a large number

of parameters which makes them slow and computationally expensive; for instance,

T5-11B requires ∼87 × 1011 floating point operations (FLOPs) for an inference. This

limits their widespread adoption in real-world applications that prefer computationally

efficient systems in order to achieve low response times.

The above concern has recently received considerable attention from the NLP

community leading to development of several techniques, such as (1) network pruning

that progressively removes model weights from a big network (Wang, Wohlwend,

and Lei 2020; Guo, Rush, and Kim 2021), (2) early exiting that allows multiple

exit paths in a model (Xin et al. 2020), (3) adaptive inference that adjusts model

208

size by adaptively selecting its width and depth (Goyal et al. 2020; Kim and Cho

2021), (4) knowledge distillation that transfers ‘dark-knowledge’ from a large teacher

model to a shallow student model (Jiao et al. 2020; Z. Li et al. 2022), and (5) input

reduction that eliminates less contributing tokens from the input text to speed up

inference (Modarressi, Mohebbi, and Pilehvar 2022). These methods typically require

architectural modifications, network manipulation, saliency quantification, or even

complex training procedures. Moreover, computational efficiency in these methods

often comes with a compromise on accuracy. In contrast, model cascading, a simple

technique that utilizes a collection of models of varying capacities to accurately yet

efficiently output predictions has remained underexplored.

In this work, we address the above limitation by first providing mathematical

formulation of model cascading and then exploring several approaches to do it. In its

problem setup, a collection of models of different capacities (and hence performances)

are provided and the system needs to output its prediction by leveraging one or more

models. On one extreme, the system can use only the smallest model and on the

other extreme, it can use all the available models (ensembling). The former system

would be highly efficient but usually poor in performance while the latter system

would be fairly accurate but expensive in computation. Model cascading strives to

get the best of both worlds by allowing the system to efficiently utilize the available

models while achieving high prediction accuracy. This is in line with the ‘Efficiency

NLP’ (Arase and al. 2021) policy document put up by the ACL community.

Consider the case of CommitmentBank (Marneffe, Simons, and Tonhauser 2019)

dataset on which BERT-medium model having just 41.7M parameters achieves 75%

209

accuracy and a bigger model BERT-base having 110M parameters achieves 82%

accuracy. From this, it is clear that the performance of the bigger model can be

matched by inferring a large number of instances using the smaller model and only

a few instances using the bigger model. Thus, by carefully deciding when to use

bigger/more expensive models, the computational efficiency of NLP systems can be

improved. So, how should we decide which model(s) to use for a given test instance?

Figure 47 illustrates an approach to achieve this; it infers an instance sequentially

through models (ordered in increasing order of capacity) and uses a threshold over the

maximum softmax probability (MaxProb) to decide whether to output the prediction

or pass it to the next model in sequence. The intuition behind this approach is that

MaxProb shows a positive correlation with predictive correctness. Thus, instances that

are predicted with high MaxProb get answered at early stages as their predictions

are likely to be correct and the remaining ones get passed to the larger models.

Hence, by avoiding inference through large and expensive models (primarily for easy

instances), cascading makes the system computationally efficient while maintaining

high prediction performance.

We describe several such cascading methods in Section 8.2.2. Furthermore,

cascading allows custom computation costs as different number of models can be used

for inference. We compute accuracies for a range of costs and plot an accuracy-cost

curve. Then, we calculate its area (AUC) to quantify the efficacy of the cascading

method. Larger the AUC value, the better the method is as it implies higher accuracy

on average across computation costs.

We conduct comprehensive experiments with 10 diverse NLU datasets in multiple

210

task settings that differ in the number of models available for cascading (K value from

Section 8.2). We first demonstrate that cascading achieves considerable improvement

in computational efficiency. For example, in case of QQP dataset, cascading system

achieves 88.93% computation improvement over the largest model (M3) in K=3

setting i.e. it requires just 11.07% of the computation cost of model M3 to attain

equal accuracy. Then, we show that cascading also achieves improvement in prediction

accuracy. For example, on CB dataset, the cascading system achieves 2.18% accuracy

improvement over M3 in the K=3 setting. Similar improvements are observed in

settings with different values of K. Lastly, we show that introducing additional model

in the cascade further increases the efficiency benefits.

In summary, our contributions and findings are:

1. Model Cascading: We provide mathematical formulation of model cascading,

explore several methods, and systematically study its benefits.

2. Cascading Improves Efficiency: Using accuracy-cost curves, we show that

cascading systems require much lesser computation cost to attain accuracies equal

to that of big models.

3. Cascading Improves Accuracy: We show that cascading systems consistently

achieve superior prediction performance than even the largest model available in

the task setting.

4. Comparison of Cascading Methods: We compare performance of our

proposed cascading methods and find that DTU (8.2.2) outperforms all others by

achieving the highest AUC of accuracy-cost curves on average.

211

We note that model cascading is trivially easy to implement, can be applied to a

variety of problems, and can have good practical values.

8.2 Model Cascading

We define model cascading as follows:

Given a collection of models of varying capacities, the system needs to leverage

one or more models in a computationally efficient way to output accurate predictions.

As previously mentioned, a system using only the smallest model would be highly

efficient but poor in accuracy and a system using all the available models would be

fairly accurate but expensive in computation. The goal of cascading is to achieve high

prediction accuracy while efficiently leveraging the available models. The remainder of

this section is organized as follows: we provide mathematical formulation of cascading

in 8.2.1 and describe its various approaches in 8.2.2.

8.2.1 Formulation

Consider a collection of K trained models (M1, ...,MK) ordered in increasing order

of their computation cost i.e. for an instance x, cxj < cxk (∀ j < k) where c corresponds

to the cost of inference. The system needs to output a prediction for each instance of

the evaluation dataset D leveraging one or more models. Let Mx
j be a function that

indicates whether model Mj is used by the system to make inference for the instance

212

x i.e.

Mx
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if model Mj is used for instance x

0, otherwise

Thus, the average cost of the system for the entire evaluation dataset D is calculated

as:

CostD =
∑xi∈D∑

K
j=1M

xi
j × cxi

j

∣D∣

In addition to this cost, we also measure accuracy i.e. the percentage of correct

predictions by the system. The goal is to achieve high prediction accuracy while

being computationally efficient.

Performance Evaluation: With the increase in the computation cost, the

accuracy usually also increases as the system leverages large models (that are often

more accurate) for more number of instances. To quantify the performance of a

cascading method, we first plot its accuracy-cost curve by varying the computation

costs and then calculate the area under this curve (AUC). Larger the AUC value,

the better the cascading method is as it implies higher accuracy on average

across all computation costs. We note that the computation cost of the cascading

system can be varied by adjusting the confidence thresholds of models in the cascade

(described in the next subsection).

Along with the AUC metric, we evaluate efficacy of cascading on two additional

parameters:

1. Comparing computation cost of the cascading system at accuracies

achieved by each individual model of cascade: Consider a setting in which

the model M2 achieves accuracy a2 at computation cost c2; from the accuracy-cost

213

curve of the cascading system, we compare c2 with the cost of the cascading system

when its accuracy is a2.

2. Comparing the maximum accuracy of the cascading system with that of

the largest model of collection: We compare accuracy of the largest individual

model with the maximum accuracy achieved by the cascading system.

Note that the first parameter corresponds to the point of intersection obtained by

drawing a horizontal line from accuracy-cost point of each individual model on the

accuracy-cost curve. Refer to the red dashed lines in Figure 48 and 50 for illustration.

For a cascading system to perform better than the individual models in the cascade,

it should have a lower computation cost (in parameter one) and a higher accuracy

(in parameter two).

8.2.2 Approaches

We explore the following approaches of selecting which model(s) to use for infer-

ence.

Maximum Softmax Probability (MaxProb): Usually, the last layer of a

model has a softmax activation function that distributes its prediction probability

P (y) over all possible answer candidates Y . MaxProb corresponds to the maximum

softmax probability assigned by the model i.e.

MaxProb =max
y∈Y

P (y)

MaxProb (often termed as prediction confidence) has been shown to be positively

correlated with predictive correctness (Hendrycks and Gimpel 2017; Hendrycks et

214

al. 2020; Varshney, Mishra, and Baral 2022b) i.e. a high MaxProb value implies a

high likelihood for the model’s prediction to be correct. We leverage this characteristic

of MaxProb in our first cascading approach. Specifically, we infer the given input

instance sequentially through the models starting with M1 and use a confidence

threshold over MaxProb value to decide whether to output the prediction or pass the

instance to the next model in sequence.

Consider an instance x for which the models till Mz−1 fail to surpass their confidence

thresholds and Mz exceeds its threshold then:

Mx
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if j ≤ z

0, if j > z

The confidence thresholds could be different at different stages. Figure 47 illustrates

this approach.

It provides efficiency benefits as it avoids passing easy instances (that can be

potentially answered correctly by low-compute models) to the computationally ex-

pensive models. Furthermore, it does not sacrifice the accuracy of system because

the difficult instances would often end up being answered by the large (and more

accurate) models. We note that this approach requires additional computation for

comparing MaxProb values with thresholds but its cost is negligible in comparison to

the cost of model inferences and hence ignored in the overall cost calculation.

Distance To Uniform Distribution (DTU): In this approach, we use the

distance between the model’s softmax probability distribution and the uniform

probability distribution as the confidence estimate (in place of MaxProb) to decide

whether to output the prediction or pass the instance to the next model in sequence

215

i.e.

DTU = ∣∣P (Y) −U(Y)∣∣2

where U(Y) corresponds to the uniform output distribution. For example, in case of

a task with 4 classification labels, U(Y) = [0.25, 0.25, 0.25, 0.25]. The intuition behind

this approach is to leverage the entire shape of the output probability distribution

and not just the highest probability as in MaxProb.

Random: In this approach, instead of using a metric such as MaxProb or DTU

to decide which instances to pass to the next model in sequence, we do this instance

selection process at random. This serves as a baseline cascading method.

Heuristic: Here, we use a heuristic derived from the input text to decide which

instances to pass to the next model in sequence. Specifically, we use length of the

input text as the heuristic.

Routing: In this approach, instead of sequentially passing an instance to bigger

and bigger models, we skip intermediate models and pass the instance directly to a

suitable model based on its maxProb value. For example, in K = 3 setting, we first

infer using M1 and if its maxProb is very low then we skip M2 and directly pass it to

M3. On the other hand, if its maxProb is sufficiently high (but below M1’s output

threshold) then we pass it to M2. The intuition behind this approach is that the

system might save inference cost of intermediate models by directly using a suitable

model that is likely to answer it correctly. This approach is not applicable for K = 2

as there is only one option to route after inference through the model M1.

Our work is different from existing methods in the following aspects: (1) Existing

methods typically require architectural changes, network manipulation, saliency

216

quantification, knowledge distillation, or complex training procedures. In contrast,

cascading is a simple technique that is easy to implement and does not require such

modifications, (2) The computational efficiency in existing methods often comes

with a compromise on accuracy. Contrary to this, we show that model cascading

surpasses the accuracy of even the largest models, (3) Existing methods typically

require training a separate model for each computation budget; on the other hand, a

single cascading system can be adjusted to meet all the computation constraints. (4)

Finally, cascading does not require an instance to be passed sequentially through the

model layers; approaches such as routing (section 8.2) allow passing it directly to a

suitable model.

8.3 Experiments

8.3.1 Experimental Details

Datasets: We experiment with a diverse set of NLU classification datasets:

SNLI (Bowman et al. 2015), Multi-NLI (Williams, Nangia, and Bowman 2018),

Dialogue-NLI (Welleck et al. 2019), Question-NLI (A. Wang et al. 2018), QQP (Iyer,

Dandekar, and Csernai 2017), MRPC (Dolan and Brockett 2005), PAWS (Zhang,

Baldridge, and He 2019), SST-2 (Socher et al. 2013), COLA (Warstadt, Singh, and

Bowman 2019), and CommitmentBank (Marneffe, Simons, and Tonhauser 2019).

Models: We use the following variants of BERT (Devlin et al. 2019): BERT-

mini (11.3M parameters), BERT-medium (41.7M parameters), BERT-base (110M

217

Figure 48. Accuracy-computation cost curves for cascading with MaxProb (in blue) and Random
baseline (in black) methods in K=2 setting. Red points correspond to the accuracy-cost values of
individual models M1 and M2. Points of intersection of red dashed lines drawn from M2 on the
blue curve correspond to the evaluation parameters described in Section 8.2. MaxProb outperforms
Random baseline as it achieves considerably higher AUC.

parameters), and BERT-large (340M parameters) for our experiments. Table 50 shows

the computation cost (in FLOPs) of these models for different input text sequence

lengths. We use sequence length of 50 for COLA, 80 for SST2, 100 for QQP, 120 for

MNLI, DNLI, SNLI, 150 for QNLI, MRPC, PAWS, and 275 for CommitmentBank

datasets following the standard experimental practice. We run all our experiments

on Nvidia V100 GPUs with a batch size of 32 and learning rate ranging in {1−5}e−5.

In the following subsections, we study the effect of cascading in multiple settings

that differ in the number of models in the cascade i.e. K value in the task formulation.

218

Mini Medium Base Large
Length (128M) (474M) (1.3G) (3.8G)

50 0.16 1.26 4.25 5.10
80 0.25 2.01 6.80 24.16
100 0.31 2.52 8.49 30.20
120 0.38 3.02 10.19 36.24
150 0.47 3.78 12.74 45.30
220 0.69 5.54 18.69 66.44
275 0.87 6.92 23.36 83.05

Table 50. Inference cost (in 109 FLOPs) of BERT variants for different input text sequence lengths.
We also specify the storage size of the models in this table.

Method MNLI QNLI QQP SST2 COLA CB DNLI MRPC PAWS SNLI

Random 81.16 84.24 89.64 89.64 77.97 77.27 85.35 81.76 91.63 89.50
Heuristic 81.13 84.15 89.69 89.06 79.45 76.79 85.30 81.54 91.65 89.45

MaxProb 82.38 85.73 90.19 90.16 80.25 80.40 85.27 82.74 92.30 90.15
DTU 82.38 85.73 90.18 90.16 80.25 80.70 85.24 82.74 92.30 90.16

Table 51. Comparing AUC values of different cascading methods in K=2 setting. Random and
Heuristic correspond to the cascading baselines. MaxProb and DTU outperform both the baselines.

8.3.2 Cascading with Two Models (K=2)

8.3.2.1 Problem Setup

In this setting, we consider two trained models BERT-medium (41.7M parameters)

as M1 and BERT-base (110M parameters) as M2. We also analyze results for other

model combinations (such as medium, large and mini, large).

219

8.3.2.2 Results

Recall that the computation cost of a cascading system can be controlled by

changing the Mj values. For example, in case of MaxProb, changing the confidence

threshold value would result in different Mj values and hence different cost and

accuracy values. Figure 48 shows accuracy-cost curves for two cascading approaches:

MaxProb (in blue) and Random Baseline (in black). In the same figure, we also show

accuracy-cost points for the individual models M1 and M2. However, to compare

the performance of these methods, we provide their AUC values (of their respective

accuracy-cost curves) in Table 51.

Efficiency Improvement: The accuracy-cost curves show that the cascading

system matches the accuracy of the larger model M2 at considerably lesser computation

cost. This cost value corresponds to the point of intersection on the curve with a

straight horizontal line drawn from M2 (red dashed line). For example, in case of

QQP, model M2 achieves 89.99% accuracy at average computation cost of 8.49 × 109

FLOPs while the cascading system achieves the same accuracy at only 2.82 × 109

FLOPs. Similarly, in case of MNLI, M2 achieves 82.53% accuracy at cost of 10.19 ×

109 FLOPs while the cascading system achieves the same accuracy at only 5.26 ×

109 FLOPs. Such improvements are observed for all datasets. This efficiency benefit

comes from using the smaller models for a large number of instances and passing only

a few instances to the larger models.

Accuracy Improvement: From the accuracy-cost curves, it can be observed

that beyond the cost value identified in the previous paragraph (where the red dashed

220

line intersects the accuracy-cost curve), the cascading system outperforms model

M2 in terms of accuracy. For example, in case of QQP, cascading with MaxProb

achieves accuracy of up to 90.39% that is higher than the accuracy of M2 (89.99%).

Similar improvements are observed for all other datasets. We note that the accuracy

improvement is a by-product of cascading, its primary benefit remains to be the

improvement in computational efficiency.

Higher accuracy achieved by the cascading system (that uses M1 for some instances

and conditionally also uses M2 for others) than the larger model M2 implies that M1,

despite being smaller in size is more accurate than M2 on at least a few instances.

Though, on average across all instances, M2 has higher accuracy than M1. The

cascading system uses M1 for instances on which it is sufficiently confident and thus

more likely to be correct. Only the instances on which it is not sufficiently confident

get passed to the bigger model. This supports the findings of recent works such

as (Zhong et al. 2021; Varshney, Mishra, and Baral 2022a) that conduct instance-

level analysis of models’ predictions. We further analyze these results in the next

paragraphs.

Comparing Cascading Approaches: Figure 48 demonstrates that MaxProb

cascading approach clearly outperforms the ‘Random’ cascading baseline. In Table 48,

we compare AUC of respective accuracy-cost curves of various cascading approaches.

Both MaxProb and DTU outperform both the baseline methods (Random and

Heuristic). In K = 2 setting, both MaxProb and DTU achieve roughly the same

performance on average across all datasets. The gap between MaxProb and DTU

becomes more significant in K = 3 setting (8.3.3).

221

Contribution of M1 and M2 in the Cascade: To further analyze the perfor-

mance of the cascading system, we study the contribution of individual models M1

and M2 in the cascade. Figure 49 shows the contribution of M1 and M2 for MNLI

dataset when the cost is 5.26× 109 FLOPs i.e. the point at which the accuracy of the

cascading system is equal to that of the bigger model M2 (intersection point of the

horizontal red dashed line with the accuracy-cost curve of the cascading system in

Fig 48). At this point, the cascade system uses M1 for 78% instances and M2 for the

remaining 22% instances. The accuracy of M1 on its 78% instances (87.6%) would

be equal to that of M2 on those 78% instances as the overall accuracy of system on

complete dataset (100% instances) is equal to that of M2. However, this does not

imply that the instance-level predictions of the two models on those 78% would be

exactly the same. Though, their predictions overlap in majority of the cases.
Figure 49 also shows that the accuracy of model M1 on the instances that got

passed to M2 in the cascade system is significantly lesser (by 33.12%) than on the
instances that M1 answered (blue bars). M2 achieves 10.12% higher accuracy on those
instances than M1. Therefore, the cascading system utilizes the models efficiently by
using the smaller model M1 for the easy instances and the larger model M2 for the
difficult ones.

8.3.3 Cascading with Three Models (K=3)

8.3.3.1 Problem Setup

Now, we study the effect of introducing another model in the problem setup of

K=2 setting. Specifically, we consider three models: BERT-mini (11.3M parameters)

222

Figure 49. Comparing accuracy of individual models M1 and M2 on the instances answered by each
model when used as cascade for MNLI dataset in K=2 setting.

Method MNLI QNLI QQP SST2 COLA CB DNLI MRPC PAWS SNLI

Random 78.77 80.58 88.97 87.00 76.55 77.28 84.49 78.30 87.74 88.12
Heuristic 78.85 80.44 88.87 87.67 76.28 77.11 84.46 77.59 88.28 88.27

MaxProb 80.89 82.97 90.1 89.45 78.66 78.31 85.17 80.2 90.23 89.67
DTU 80.98 83.28 90.15 89.6 78.87 78.52 85.20 80.42 90.46 89.72
Routing 80.55 82.93 89.92 89.52 78.60 74.58 85.20 80.97 90.68 89.46

Table 52. Comparing AUC values of different cascading methods in K=3 setting. Random and
Heuristic correspond to the cascading baselines. DTU outperforms other cascading methods on
average.

as M1, BERT-medium (41.7M parameters) as M2, and BERT-base (110M parameters)

as M3 in this setting. Note that BERT-medium is referred to as M2 in this

setting as it is the second model in cascading setup unlike the K = 2 setting

(8.3.2) in which it was M1.

223

Figure 50. Accuracy-computation cost curves for cascading with MaxProb (in blue) and Random
baseline (in black) methods in K=3 setting. Accuracy-cost values of individual models M1, M2, and
M3 are shown in red. Note that M1 here is different from M1 in Figure 48. MaxProb outperforms
Random baseline as it achieves higher AUC.

8.3.3.2 Results and Analysis

Figure 50 shows the accuracy-cost curves of two cascading approaches: MaxProb

(in blue) and Random Baseline (in black) and Table 52 compares AUC values achieved

by various cascading approaches. In general, cascading achieves larger improvement

(in magnitude) in K=3 setting than K=2 setting.

Efficiency Improvement: The accuracy-cost curves show that the cascading

system matches the accuracy of larger models M2 and M3 at considerably lesser

respective computation costs. For example, in case of QQP, cascading system matches

the accuracy of model M3 by using just 11.07% of M3’s computation cost and of

224

Figure 51. Comparing accuracy of individual models M1, M2, and M3 on the instances answered by
each model when used in the cascade for MNLI dataset.

model M2 by using just 23.53% of M2’s computation cost. The magnitude of efficiency

improvement in this setting is higher than that in the K=2 setting.

Accuracy Improvement: Cascading also achieves improvement in the overall

accuracy. For example, on the CB dataset, cascading system achieves 83.93% accuracy

that is even higher than the largest model M3. Similar improvements are observed

for other datasets also.

Comparing Cascading Approaches: Table 52 compares AUC values achieved

by various cascading approaches. DTU clearly outperforms all other cascading meth-

ods as it achieves the highest AUC values. We attribute this to DTU’s characteristic

of utilizing the entire shape of the output probability distribution and not just the

highest probability in computing its confidence.
Contribution of M1, M2, and M3 in Cascade:

Figure 51 shows the contribution of individual models M1, M2, and M3 in the

225

cascade for MNLI dataset when the cost is 4.8 × 109 FLOPs i.e. the point at which

accuracy of cascade is equal to that of the largest model M3 (where the horizontal

red dashed line drawn from M3 intersects the accuracy-cost curve in Fig 50). The

figure shows that the accuracy of M1 on the instances that were passed to M2 drops

by 20.04% and accuracy of M2 on instances that were passed to M3 drops by 28.53%.

This shows that the cascading system is good at identifying potentially incorrect

predictions of M1 and passes those instances to M2 and similarly good at identifying

potentially incorrect predictions of M2 and passes those instances to M3 .

Advantage of introducing another model in the Cascade: Comparing

figure 51 for the K=3 setting with the figure 49 for K=2 setting, we find that by

introducing a smaller model in the collection, the cascading system can be made more

efficient. This is because the BERT-medium model answered 78% instances in K=2

setting and that portion got split into BERT-mini (smaller cost than medium) and

medium models in K=3 setting while maintaining the accuracy. This suggests that

the cascading technique utilizes the available models efficiently without sacrificing

the accuracy.

8.3.4 Analysis with Other Model Combinations

8.3.4.1 Medium and Large

Figure 52 shows accuracy-cost curves with MaxProb (in blue) and Random (in

black) as cascading approaches with M1 as BERT-medium and M2 as BERT-large.

226

Figure 52. Accuracy-Cost curves for K=2 setting with M1 as BERT-medium and M2 as BERT-large
models.

MaxProb approach clearly outperforms Random approach and achieves considerably

higher AUC value.

8.3.4.2 Mini and Large

Figure 53 shows accuracy-cost curves with MaxProb (in blue) and Random (in

black) as cascading approaches with M1 as BERT-mini and M2 as BERT-large.

MaxProb approach clearly outperforms Random approach and achieves considerably

higher AUC value.

227

Figure 53. Accuracy-Cost curves for K=2 setting with M1 as BERT-mini and M2 as BERT-large
models.

8.4 Conclusion and Discussion

We systematically explored model cascading and proposed several methods for it.

Through comprehensive experiments with 10 diverse NLU datasets, we demonstrated

that cascading improves both the computational efficiency and the prediction accuracy.

We also studied the impact of introducing another model in the collection and showed

that it further improves the computational efficiency of the cascading system.

Selecting Optimal Operating Threshold: The selection of confidence

threshold for models in the cascade is dependent on the computation budget of the

system. A low-budget system can select low threshold for the low-cost models (so that

low-cost models answer majority of the questions leading to less computation cost)

and similarly, high-budget systems can afford to select high thresholds to achieve

228

higher accuracy. In order to select thresholds in an application-independent manner,

the ML’s standard practice of using the validation data to tune the hyperparameters

can be used.

Outlier/OOD Detection Techniques: Outlier/OOD detection techniques

such as (Kimin Lee et al. 2018; Hsu et al. 2020; W. Liu et al. 2020) can also be

explored to decide which instance to pass to the bigger models in the cascade.

Including Linear Models in the Cascade: This idea can be extended to

include non-transformer based less expensive models like linear models or LSTM

based models. Since the computation cost of these models is significantly lower than

the transformer based models and yet they achieve non-trivial predictive performance,

a cascading system with these models could achieve even more improvement in

computational efficiency. We plan to explore this aspect in the future work.

229

Chapter 9

EFFICIENTLY UTILIZE EXTERNAL KNOWLEDGE FOR OPEN-DOMAIN

QUESTION ANSWERING VIA DYNAMIC READING

State-of-the-art open-domain QA models typically use a retriever–reader approach

in which the retriever finds relevant passages and the reader leverages that to predict

the answer. Prior work has shown that the reader’s performance usually tends to

improve with the increase in the number of these passages. Thus, state-of-the-art

readers typically use a large number of passages (e.g. 100) for inference. While such

systems achieve high prediction performance, their inference is computationally very

expensive. We humans, on the other hand, have a remarkable capability of utilizing

external knowledge efficiently while answering. Motivated by this, we ask a question

“Can the open-domain QA reader utilize external knowledge efficiently like humans

without sacrificing the prediction performance? ” To this end, we investigate an

approach that utilizes both the ‘closed-book’ (parametric knowledge) and the ‘open-

book’ (external knowledge) inferences in an efficient manner. Furthermore, instead of

using a large fixed number of passages for open-book inference, we dynamically read

the external knowledge in multiple ‘knowledge iterations’. Through comprehensive

experiments on NQ and TriviaQA datasets, we demonstrate that this approach

improves both the inference efficiency and the prediction accuracy of the reader.

230

9.1 Introduction

Retriever-reader systems (Danqi Chen et al. 2017; Karpukhin et al. 2020; Khattab

and Zaharia 2020; Izacard and Grave 2021) have achieved impressive performance on

the open-domain QA task. In this pipeline, the retriever finds top-N relevant passages

and the reader leverages them to predict the answer. Prior work has shown that the

reader’s performance tends to improve (up to a certain extent) with the increase in the

value of N . Thus, state-of-the-art models use a large number of passages (e.g. 100).

While this strategy results in a high prediction performance, it makes the inference

of the reader computationally very expensive. For instance, Fusion-in-Decoder reader

model (FiD) (Izacard and Grave 2021) requires approximately 70 × 1011 floating-point

operations (FLOPs) for an inference with 100 passages. This high inference cost

limits the widespread adoption of such systems in real-world applications that prefer

efficient systems to be able to achieve low response times.

Improving the efficiency of systems has been an important research topic in

NLP. For the open-domain QA (ODQA) task, efficiency from the perspectives of

retrieval (Zhao, Lu, and Lee 2021) and on-disk memory (Min et al. 2021; Izacard

et al. 2020; Yamada, Asai, and Hajishirzi 2021) has been studied. However, the aspect

of efficiently leveraging external knowledge to improve the computation performance

of the reader model has remained underexplored.

Humans, notably have a remarkable capability of utilizing external knowledge:

firstly, if we can answer the question using our already acquired knowledge then

we do not even use the external knowledge, and in the case when we do require

231

it, we don’t always need to read the entire knowledge; we only read the amount

that is sufficient to find the answer. Motivated by this strategy, we argue that some

questions are trivial and can be answered with a few passages or even without using

any external knowledge at all (by just relying on the knowledge already stored in

the model parameters). Consider the case of FiD model, it achieves 54.43% and

50.61% exact match accuracies when used with 100 and 10 passages respectively.

From this, it is clear that the performance of the system utilizing 100 passages

can be matched by inferring a large number of instances with just 10 passages

and only a few instances with 100 passages. Furthermore, the closed-book model

(Roberts, Raffel, and Shazeer 2020) that does not use any external knowledge and

relies only on the parametric knowledge (acquired during pre-training/fine-tuning)

requires considerably lesser FLOPs and achieves lower yet non-trivial accuracy of

29.83%. Thus, by carefully deciding when external knowledge is required

and whether the current amount of knowledge is sufficient to answer a

question correctly, the computational efficiency of the reader system can

be considerably improved while maintaining the high prediction accuracy.

Moreover, this can also help the system mitigate the distraction that may result

from using too many passages for inference and thus can even improve its prediction

accuracy.

Following the above intuition, we explore an approach that utilizes both ‘closed-

book’ and ‘open-book’ inferences and dynamically uses external knowledge in multiple

knowledge iterations. Specifically, given a question, we first answer it using the

low-cost closed-book model that relies on the parametric knowledge. If its prediction

232

confidence is sufficiently high then the prediction is outputted otherwise we use the

open-book model with external knowledge. Unlike the standard open-book models

that always ‘read’ a fixed number of passages, in our method, the knowledge provided

to the reader is iteratively increased until the model’s prediction becomes sufficiently

confident. We study four ways to measure the confidence of prediction of the models

(Section 9.2) and demonstrate that the confidence shows a positive correlation with

the predictive correctness. Thus, instances that are predicted with high confidence

using low-cost inference get answered at early stages as their predictions are likely to

be correct, and the remaining instances get answered with dynamically used external

knowledge. Hence, by avoiding expensive inference primarily for easy instances and

dynamically using external knowledge, our approach makes the reader computationally

efficient while maintaining high prediction accuracy.

Through comprehensive experiments on NQ and TriviaQA datasets, we first show

that our approach considerably improves the computation efficiency of inference of

the reader. Comparing with the FiD reader, we show that our approach matches

its accuracy by utilizing just 18.32% of its inference computation cost (in FLOPs).

Then, we show that our approach also leads to a consistent improvement in prediction

accuracy. Specifically, it outperforms FiD by achieving up to 55.10% accuracy on

NQ Open and 72.33% on TriviaQA. This improvement is an outcome of mitigating

distraction that results from using too many passages for inference. Finally, we note

that our approach is intuitive, easy to implement, and also has practical values.

233

9.2 Approach

Firstly, we note that even a closed-book reader (CB) that does not use any

external knowledge achieves a non-trivial accuracy by just relying on the knowledge

already stored in its network parameters (acquired during pre-training/fine-tuning).

This is a low-cost inference as the input contains just the question (without any

additional context). So, in our approach, we first infer the given question using the

closed-book reader and output the prediction if it is already sufficiently confident. If it

is not confident then we leverage the external knowledge with the open-book reader

(OB). Unlike the standard open-book readers that use all the top retrieved passages

for inference, we iteratively increase the number of passages until the reader predicts

with sufficient confidence; we refer to these iterations as ‘knowledge iterations’.

This conditional multi-stage inference process achieves computation efficiency

benefits for two reasons: first, if CB reader is already sufficiently confident in its

prediction then the expensive open-book inference is not used at all (this corresponds

to the case of the least inference cost) and second, when OB reader is indeed used

for inference, it leverages the external knowledge efficiently by reading just enough

passages required to predict confidently instead of reading a static large number of

passages. This approach can also help the system mitigate the distraction that may

result from using too many passages for inference.

Hence, by avoiding expensive inference and dynamically using the external knowl-

edge, our approach makes the reader inference computationally efficient while main-

taining high prediction accuracy. We note that this doesn’t impact the retriever

234

as the retrieval is done only once irrespective of the number of knowledge

iterations and the number of passages used in each individual iteration. We further

note that in this work, our focus is only on improving the cost of reader

inference. We detail our approach and provide its mathematical formulation in the

next subsection.

9.2.1 Mathematical Formulation

Let q be the given question, K be the number of knowledge iterations, and M q
OBk

be the value indicating whether kth iteration (k ≤K) with the OB reader is used for

inference.

M q
OBk
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if kth knowledge iteration with

OB reader is used for question q

0, otherwise

Sample Scenario: Consider a scenario in which top-100 passages are available

and in our approach we are using two knowledge iterations (K = 2) using 20 and

100 passages respectively i.e. a question will be first inferred using the CB reader,

if it is not sufficiently confident then top-20 (referred as S1) passages will be used

with the OB model (referred as OB1) and if that prediction is not confident then

top-100 (S2) passages will be used with the OB model (OB2). In the computationally

most efficient case, inference would be made only using the CB reader and in the

most expensive case, inference would be made sequentially using CB, then OB1

(OB using 20 passages), and then OB2 (OB using 100 passages). In this work, we

235

comprehensively study extensive combinations of CB, OB readers and values of K

and Sk.

Cost of Reader Inference: In our formulation, the cost of reader inference for

instance q is:

Costq = CCB +
K

∑
k=1
(M q

OBk
× Sk ×COB)

where CCB and COB are the inference costs of CB and OB models respectively, and

Sk is the number of passages used by the OB model in kth knowledge iteration. This

is because the low-cost CB reader is first used for all the instances and then OB

model is conditionally used in different knowledge iterations. In the sample scenario,

the minimum cost would be CCB and the maximum cost would be CCB + 20 ×COB +

100 ×COB. Next, we discuss a few important characteristics of this formulation.

Inference Cost of OB Reader: FiD (Izacard and Grave 2021) is one of the top

performing open-book models. It uses an encoder-decoder architecture i.e. it first

computes the representation of question + passage for each passage independently

using the encoder (with fixed number of input tokens) and then concatenates these

representations and passes it to the decoder for answer prediction. Thus, to compute

the OB model’s cost of inference in the kth iteration, we multiply COB with Sk where

COB is the cost of single inference with that fixed number of tokens and it is done Sk

times.

However, we note that this is the upper bound of the inference cost because the

encoder representation of the passages of the previous iterations can be reused i.e.

the representations of passages of (k − 1)th iteration can be reused in the kth iteration.

However, this would require auxiliary space for storage and would involve a trade-off

236

between computation cost and storage space. We leave the investigation for future

work but note that the inference cost of our system would be even lower

in practice. Moreover, as we demonstrate through extensive experiments that even

with this cost upper bound, the proposed method achieves very high improvements

in computation efficiency.

Same Model for CB and OB: We note that the same model can also be used

to act as CB when external knowledge is not available and as OB when it is available.

However, their cost of inference will still be different as it depends on the number of

input tokens used for inference. The CB reader uses only the question as input while

the OB reader also uses external knowledge (thus more tokens). Therefore, in our

general formulation, we keep two different variables for their respective costs.

Total Cost of Reader Inference: The average cost of reader inference for the

dataset D is:

CostD =
∑qj∈DCostqj

∣D∣

9.2.2 Deciding When to Use More Knowledge

The leading models in ODQA and perhaps in many NLU tasks are mostly seq2seq

generative models; for e.g. both closed-book and FiD models are based on T5 (Raffel

et al. 2020b). Therefore, a critical design decision in our method pertains to computing

the prediction confidence for these models. These models make predictions token by

token and output a probability distribution over the entire vocabulary for each token.

We explore a number of methods to compute the confidence scores.

237

Let the maximum softmax probabilities for the prediction having n tokens at each

token position be (p1, p2, p3, ..., pn). We explore the following ways of computing the

model’s confidence.

Product of probabilities of all tokens (PPA): In this technique, we take

the product of probabilities of all prediction tokens i.e. PROD(p1, p2, ..., pn) as the

model’s prediction confidence. This is the standard technique used in various tasks

such as perplexity computation. We also experiment with several other confidence

techniques.

Probability of the first token (PF): Here, we simply use the probability of

the first prediction token i.e. p1 as the model’s prediction confidence.

Average probability of first and last token (PFL): Here, we use the average

probability of the first and the last token i.e. AV G(p1, pn) as the confidence.

Average probability across all tokens (PA): In this technique, we utilize

probabilities of all the tokens of the prediction and take the average probability across

all tokens i.e. AV G(p1, p2, ..., pn) as model’s prediction confidence.

9.2.3 Baseline Approaches

For a fair comparison of our approach (and various confidence computation

methods), we also compare them with several other simple baselines:

Random: In this method, instead of using a metric based on probabilities to

decide which instances to pass to the OB model/next knowledge iteration, we do this

instance selection process at random.

238

Heuristic: Here, we use a heuristic derived from the input to decide which

instances to pass to the OB model/next knowledge iteration. Specifically, we use the

length of the question as the heuristic.

9.2.4 Performance Comparison Metric

We demonstrate the efficacy of our method by showing the computation effi-

ciency and accuracy improvements. For computation efficiency, we use FLOPs as the

metric. An alternative metric could be measuring the latency of inference; however,

it is a machine-dependent metric. FLOPs, on the other hand, is machine-independent

and hence a more reliable metric for comparison.

To further compare various confidence computation methods and base-

lines, we use another performance metric. For our approach, the reader inference

cost (in FLOPs) and the accuracy vary with the prediction confidences thresholds.

Therefore, to compare various confidence methods and comprehensively study their

efficacy, we compute accuracies for a range of costs and plot an accuracy-cost curve

(as shown in Figure 54). We plot a curve for each method and calculate the area

under the curve (AUC) to quantify the overall performance of each method. The

larger the AUC value, the better the method is as it implies higher accuracy on

average across all computation costs.

Our work differs from existing work in the following aspects: (1) Firstly, the

inference efficiency aspect has mostly been studied for classification tasks using

encoder-based models. However, we focus on a more challenging task of open-

239

domain QA with generative models. (2) Existing efficiency improvement methods

typically require architectural changes, network manipulation, saliency quantification,

knowledge distillation, or even complex training procedures. In contrast, our method

is easy to implement, does not require such modifications, and could generalize easily

to a variety of applications. Moreover, it can even complement these existing methods.

(3) The computation efficiency in existing methods often comes with a compromise

on accuracy. In contrast, we show that our method consistently achieves superior

accuracy. (4) Finally, existing methods usually do not allow custom computation

costs and require training a separate model for each computation budget. In contrast,

our system can be adjusted to meet any given computational requirements.

9.3 Experiments and Results

Experimental Details: We conduct experiments with NQ (Kwiatkowski,

Palomaki, Redfield, Collins, Parikh, Alberti, Epstein, Polosukhin, Devlin, Lee, et

al. 2019a) Open and TriviaQA (Joshi et al. 2017) datasets. We use closed-book

models from (Roberts, Raffel, and Shazeer 2020) and FiD open-book models (and

retrieved passages) from (Izacard and Grave 2021). The closed-book models take just

the question as input and its inference cost is 0.0046 × 1011 FLOPs for T5-small and

0.0615×1011 FLOPs for T5-large for the average input size (12 tokens) of NQ questions.

On the other hand, the open-book readers also take the retrieved passages as input

(truncated to 250 tokens each) and thus have a higher inference cost. For example,

the cost of inference for the open-book FiD reader with 1 passage is 0.202 × 1011

240

Figure 54. Accuracy-cost curves of the proposed system (blue) and baseline (black) for K=1 setting
on NQ. Red points are the (cost, accuracy) values of the individual models CB and OB1 (using S1

passages). Point of intersection (×) of red dashed line drawn from OB1 on the blue curve corresponds
to cost at which our system achieves the same accuracy as OB1. Our method achieves this accuracy
at considerably lower reader inference cost.

FLOPs for T5-base and 0.707 × 1011 FLOPs for T5-large. We compute these FLOP

values using ‘thop’ library.

Accuracy-Cost Curves: As motivated previously, we plot accuracy-cost curves

to study our method. We conduct experiments in multiple settings that differ in the

(CB, OB) model combination, number of knowledge iterations with the OB model

(K), and the Sk values. Figure 54, 55, and 56 show these curves for K = 1, 2, and 3

settings respectively. Each curve includes the following:

1. Accuracy-cost points of individual systems: The costs-accuracy point of the

CB and OBk models are represented by the red scatter points. These individual

points correspond to the case in which all the instances are answered using the

corresponding reader model.

241

Figure 55. Accuracy-cost curves of the proposed method (in blue) and baseline (in black) for K=2
setting on NQ. Red points correspond to the individual models CB, OB1 (S1 passages), and OB2

(S2 passages).

2. Accuracy-cost curve of the proposed method: We explore multiple ways

of computing prediction confidence of the generative models. We compare the

AUC (of respective accuracy-cost curves) achieved by each method in We present

an exhaustive comparison of these methods in Tables 53 and 54. We note that

all confidence methods outperform the baselines. Since PPA yields the best

performance, we present its accuracy-cost curves in the main results.

3. Costs at Equal Accuracies: To measure the improvement in efficiency, we

highlight (with ×) the costs at which the accuracy of the proposed system matches

the accuracy of the OBk models. For instance, in K=1 setting, we highlight the

point at which the proposed system achieves the same accuracy as the OB1 model

(that use a fixed S1 number of passages for all questions).

4. Accuracy-cost curve of the baseline method: To further demonstrate the

242

efficacy of PPA method, we represent the accuracy-cost curve of the baseline

method with black dashed line.

Next, we show the results for configurations with different number of knowledge

iterations.

9.3.1 One Knowledge Iteration (K = 1)

In this setting, we first use the CB model and if it is not sufficiently confident

then we use the OB model with S1 knowledge statements. Figure 54 shows the

accuracy-cost curves for different configurations of CB, OB, and S1 values on NQ.

Improvement in Efficiency: The accuracy-cost curves show that the proposed

system matches the accuracy of the OB model at a considerably lesser reader inference

cost. This cost value corresponds to the point of intersection (×) on the curve with a

straight horizontal line drawn from OB1. For example, in the case of (CB= T5-large,

OB=T5-base, S1 = 5), OB1 achieves 43.30% accuracy using 1.01 × 1011 FLOPs while

the proposed system achieves the same accuracy at just 0.54 × 1011 FLOPs. Such

improvements are observed for all the cases. We show these curves for an exhaustive

set of configurations. In this setting, our approach achieves cost improvements

of up to 67.77%. This efficiency benefit comes from using the low-cost closed-book

model for some instances where it is likely to be correct and additionally using the

more expensive open-book model with S1 passages only for the remaining instances.

In the later results sections, we further discuss the overall cost improvement in reader

inference (Table 57).

243

Improvement in Accuracy: From the curves, it is clear that the accuracy

achieved by the proposed system surpasses the accuracy of the OB1 model beyond

the cost shown with ×. For example, in case of (CB= T5-large, OB=T5-base,

S1 = 1, the top-left figure), our system achieves the accuracy of up to 40.17% as

compared to 32.88% accuracy of OB1. Same as the efficiency improvement, such

accuracy improvements are also observed across all configurations. We attribute this

improvement to our approach’s efficient use of external knowledge i.e. relying on the

closed-book model when it is likely to be correct thus avoiding distraction with the

external knowledge and using it only when it is required.

Distraction At Inference: The fact that our approach (that outputs its pre-

dictions using CB for some instances and OB for the others) outperforms the OB

reader highlights that excessive external knowledge distracts the reader into giving

incorrect answers while the CB reader answers them correctly. We note that near

the OB1 computation cost, the accuracy of our system begins to come closer to the

OB1’s accuracy as more and more instances get answered by the OB1 model.

Comparison with Baselines: From the accuracy-cost curves, it is clear that

our proposed method that uses PPA as the confidence (blue curve) outperforms the

baseline (black curve) as the blue curve is consistently above the black and thus has

a higher AUC. In Tables 53 and 54, we compare AUC values achieved by all the

confidence measures: PF , PFL, PA, and PPA. All the approaches achieve considerably

higher AUCs than the baselines while PPA achieves the highest. This highlights

the effectiveness of our confidence computation methods. We show this comparison

244

Method / S1 1 2 3 4 5 10 20 25 50 100

Random 30.96 33.28 34.73 35.74 36.05 38.12 39.27 39.14 39.96 39.94
Heuristic 31.90 33.97 35.62 36.32 36.90 38.77 39.69 39.62 40.22 40.28

PPA 36.61 38.53 39.64 40.59 41.14 42.82 43.69 43.69 44.43 44.29
PF 36.15 38.09 39.16 40.15 40.77 42.47 43.34 43.36 44.13 43.95
PFL 36.13 38.08 39.15 40.16 40.76 42.46 43.35 43.36 44.16 43.97
PA 36.39 38.35 39.49 40.45 41.00 42.74 43.56 43.54 44.30 44.15

Table 53. Comparing AUCs of accuracy-cost curves of different cascading techniques for (CB=T5-
large and OB=T5-base) configuration.

Method / S1 1 2 3 4 5 10 20 25 50 100

Random 33.14 36.4 37.81 38.87 39.47 40.92 41.91 42.21 42.54 42.62

PPA 38.45 41.07 42.29 43.18 43.76 45.40 46.34 46.52 46.71 46.77
PF 38.00 40.68 41.92 42.87 43.47 45.11 46.09 46.31 46.45 46.46
PFL 37.96 40.65 41.89 42.85 43.44 45.09 46.06 46.28 46.44 46.46
PA 38.26 40.93 42.17 43.08 43.66 45.28 46.25 46.43 46.61 46.69

Table 54. Comparing AUCs of accuracy-cost curves of different cascading techniques for (CB=T5-
large and OB=T5-large) configuration.

for other configurations also. As PPA achieves the highest AUC, we use it for our

subsequent experiments.

Comparing Overall Performance: We show the exact match accuracies

achieved by various ODQA methods in Table 55. Our method achieves slightly higher

performance that both FiD base and large models. We note that this is an additional

benefit of our approach, though, the primary benefit remains to be the improvement

in efficiency. The cost of FiD base model is 20.19 × 1011 FLOPs while our system

matches its accuracy at just 13.10 × 1011 FLOPs. We show that the performance

improves further on increasing the number of knowledge iterations in our method.

245

Method NQ TQA

Hard EM 28.8 50.9
ORQA 31.3 45.1
REALM 40.4 -
DPR 41.5 57.9
RAG 44.5 56.1
DensePhrases 41.5 56.8
PAQ 52.3 -
KG-FiD 53.4 69.8

FiD* (base) 50.03 68.01
Ours K= 1 (with FiD base) 50.83 68.52
Ours K= 2 (with FiD base) 50.94 68.69
Ours K= 3 (with FiD base) 50.97 68.80

FiD* (large) 54.43 72.07
Ours K= 1 (with FiD large) 54.90 72.16
Ours K= 2 (with FiD large) 54.99 72.29
Ours K= 3 (with FiD large) 55.10 72.33

Table 55. Comparing EM accuracy of ODQA methods. * indicates the highest performance of the
latest model.

9.3.2 Two Knowledge Iterations (K = 2)

In this setting, we use CB model and then conditionally use two knowledge

iterations with the OB model. Specifically, if CB is not sufficiently confident then we

use the OB model with S1 passages (OB1), and if OB1 is not sufficiently confident

then we use OB with S2 passages (OB2). Figure 55 shows accuracy-cost curves for

this setting.

Improvement in Efficiency: In this setting, our method achieves larger efficiency

improvements than the K=1 setting. For example, in case of (CB=T5-large, OB=T5-

246

CB OB S1 S2 PA PPA Baseline

Large Base 1 2 39.56 39.79 32.75
Large Base 2 5 42.90 43.14 36.62
Large Base 10 20 46.23 46.30 42.83
Large Base 20 100 49.04 49.09 47.07
Large Large 1 2 42.31 42.48 35.76
Large Large 2 5 46.24 46.35 41.08
Large Large 10 20 49.55 49.71 46.51
Large Large 20 100 52.87 52.97 51.44

Table 56. Comparing AUCs of accuracy-cost curves of the proposed and the baseline methods in
K=2 setting.

base, S1=1, S2=2), OB2 achieves 37.48% accuracy at the cost of 0.4 × 1011 FLOPs

and cascading system achieves the same accuracy at just 0.13 × 1011 FLOPs. We

achieve similar efficiency improvements over OB1 model also; in the same case, OB1

achieves 32.88% accuracy at 0.2 × 1011 FLOPs and our system achieves the same

accuracy at just 0.09 × 1011 FLOPs. Similar improvements are observed for all the

configurations.

Improvement in Accuracy: As can be observed from the accuracy-cost curves,

our system achieves a higher accuracy than even the OB2 model. For example, in

case of (CB=T5-large, OB=T5-base, S1=10, S2=20), our system achieves accuracy

of 49.83% that is considerably higher than the 48.61% accuracy of OB2 and 46.78%

accuracy of OB1. Furthermore, at the same cost as OB1, cascading system achieves

48.98% accuracy, 2.2% higher than that of OB1 system (46.78%). Thus, our method

improves both the reader computation efficiency and the prediction accuracy.

Comparison with Baseline: In Table 56, we show AUCs for different config-

247

Figure 56. Accuracy-cost curves of the proposed method (in blue) and baseline (in black) for K=3
setting on NQ. Red points correspond to the accuracy and cost values of the individual CB, OB1,
OB2, and OB3 models.

urations. Same as K=1 setting, the proposed system clearly achieves higher AUC

than the baseline.

9.3.3 Three Knowledge Iterations (K = 3)

In this setting, we first use the CB model and then conditionally use three

knowledge iterations with the OB model with S1, S2, and S3 passages respectively.

Figure 56 shows the accuracy-cost curves.

Improvement in Efficiency and Accuracy: We observe both efficiency and

accuracy improvements in this setting also. For example, in (CB=T5-large, OB=T5-

base, S1=10, S2=20, S3=100) configuration, OB3 achieves 50.03% accuracy at cost

of 20.19 × 1011 FLOPs and our system achieves the same accuracy at just 5.03 × 1011

248

Figure 57. Illustrating the impact of multiple knowledge iterations by plotting accuracy-cost curves
for K=1 and K=2 settings together. The system using two iterations (K=2) achieves higher AUC
than its counterpart using the same amount of total knowledge (20, 25, and 50 in the three cases
respectively) but with just one iteration.

FLOPs. Furthermore, our system even achieves higher accuracy than even OB3.

Finally, the proposed system achieves AUC of 49.62 which is considerably higher

than that of the baseline (47.7).

9.4 Impact of Knowledge Iterations

We demonstrate the impact of multiple knowledge iterations by plotting the

accuracy-cost curves for K=1 and K=2 settings together in Figure 57. The system

using two iterations (K=2) achieves higher AUC than its counterpart using the same

amount of knowledge but with just one iteration. For the first case, we use CB and

OB model (with S=20) in K=1 setting, and in the K=2 setting, we introduce an

intermediate step that uses 10 passages i.e. we use CB, OB1 (with S1=10), and OB2

(with S2=20). The total amount of knowledge is same in both the scenarios (20

contexts) but K=2 system tries to first answer the question using just 10 passages

while the K=1 system directly uses 20 passages. The K=2 system achieves higher

249

Method Cost (in 1011 FLOPs)

FiD (base) 20.19
Ours (at same EM as FiD base) 3.69

FiD (large) 70.69
Ours (at same EM as FiD large) 20.59

Table 57. Comparing reader inference cost of FiD and our system at equivalent exact match
accuracies on NQ.

AUC than K=1 (46.25 vs 43.56). This pattern is seen in all the cases thus highlighting

the positive impact of using knowledge iterations with OB model.

9.5 Comparing Overall Performance

In Table 55, we compare the performance achieved by our system in different K

settings. With the increase in the value of K, the improvement in performance also

increases. On NQ Open, our system achieves accuracy of up to 55.10% with large

model and up to 50.97% with base model outperforming all other reader methods

such as Hard EM, ORQA, REALM, DPR, RAG, DensePhrases, PAQ, FiD, and

KG-FiD. Similar improvements are also observed on the TriviaQA. Finally, in Table

57, we compare the cost of reader inference at equal EMs and show that our method

achieves considerable efficiency improvements over the FiD reader.

250

9.6 Conclusion

Addressing the problem of high-inference cost of reader models in open-domain

QA, we investigated an approach that utilizes both the ‘closed-book’ and the ‘open-

book’ inferences and dynamically reads the external knowledge in multiple ‘knowledge

iterations’. Through comprehensive experiments, we demonstrated that this dynamic

reading approach improves both the inference efficiency and the prediction

accuracy of the reader. Compared with the Fusion-in-Decoder reader, this approach

matches its accuracy by utilizing just 18.32% of its reader inference cost (FLOPs) and

also outperforms it by achieving up to 55.10% accuracy on NQ Open and 72.33% on

TriviaQA. Finally, we believe our work will encourage further research and facilitate

development of efficient QA reader systems.

251

Chapter 10

ACHIEVING TRAINING DATA EFFICIENCY FOR NATURAL LANGUAGE

INFERENCE USING PHL TRIPLET GENERATION

Transformer-based models achieve impressive performance on numerous Natural

Language Inference (NLI) benchmarks when trained on respective training datasets.

However, in certain cases, training samples may not be available or collecting them

could be time-consuming and resource-intensive. In this chapter, we address the

above challenge and present an explorative study on unsupervised NLI, a paradigm

in which no human-annotated training samples are available. We investigate it under

three settings: PH, P, and NPH that differ in the extent of unlabeled data available

for learning. As a solution, we propose a procedural data generation approach that

leverages a set of sentence transformations to collect PHL (Premise, Hypothesis,

Label) triplets for training NLI models, bypassing the need for human-annotated

training data. Comprehensive experiments with several NLI datasets show that the

proposed approach results in accuracies of up to 66.75%,65.9%,65.39% in PH, P,

and NPH settings respectively, outperforming all existing unsupervised baselines.

Furthermore, fine-tuning our model with as little as ∼0.1% of the human-annotated

training dataset (500 instances) leads to 12.2% higher accuracy than the model trained

from scratch on the same 500 instances. Supported by this superior performance, we

conclude with a recommendation for collecting high-quality task-specific data.

252

10.1 Introduction

Natural Language Inference (NLI) is the task of determining whether a “hypoth-

esis” is true (Entailment), false (Contradiction), or undetermined (Neutral) given

a “premise”. State-of-the-art models have matched human performance on several

NLI benchmarks, such as SNLI (Bowman et al. 2015), Multi-NLI (Williams, Nangia,

and Bowman 2018), and Dialogue NLI (Welleck et al. 2019). This high performance

can be partially attributed to the availability of large training datasets; SNLI (570k),

Multi-NLI (392k), and Dialogue-NLI (310k). For new domains, collecting such train-

ing data is time-consuming and can require significant resources. What if no training

data was available at all?

In this work, we address the above question and explore Unsupervised NLI, a

paradigm in which no human-annotated training data is provided for learning the

task. We study three different unsupervised settings: PH, P, and NPH that differ

in the extent of unlabeled data available for learning. In PH-setting, unlabeled

premise-hypothesis pairs are available i.e. data without ground-truth labels. In

P-setting, only a set of premises are available i.e. unlabeled partial inputs. The

third setting NPH does not provide access to any training dataset, and thus it is the

hardest among the three unsupervised settings considered in this work.

We propose to solve these unsupervised settings using a procedural data generation

approach. Given a sentence, our approach treats it as a premise (P) and generates

multiple hypotheses (H) corresponding to each label (L = Entailment, Contradiction,

and Neutral) using a set of sentence transformations (refer to Figure 58). This

253

Figure 58. Illustrating our procedural data generation approach for unsupervised NLI. A sentence is
treated as premise, and multiple hypotheses conditioned on each label (Entailment- E, Contradiction-
C, and Neutral- N) are generated using a set of sentence transformations.

results in creation of Premise-Hypothesis-Label (PHL) triplets that can be used for

training the NLI model. In the P and PH settings, we directly apply our sentence

transformations over the available premises to generate PHL triplets. However, in the

NPH setting, premises are not available. We tackle this challenge by incorporating a

premise generation step that extracts sentences from various raw text corpora such as

Wikipedia and short stories. We use these extracted sentences as premises to generate

PHL triplets. In Figure 59, we compare the four settings (one supervised and three

unsupervised) and show our approach to develop an NLI model for each setting.

To evaluate the efficacy of the proposed approach, we conduct comprehensive

254

Figure 59. Comparing supervised NLI with our three unsupervised settings. For unsupervised
settings, we procedurally generate PHL triplets to train the NLI model. In NPH setting, a premise
pool is collected from raw text corpora such as Wikipedia and then used for generating PHL triplets.
In P setting, we directly apply these transformations on the available premises. In PH setting, we
leverage the P-setting model to pseudo-label and filter the provided unlabeled PH pairs and then
train the NLI model using this pseudo-labeled dataset.

experiments with several NLI datasets. We show that our approach results in

accuracies of 66.75%,65.9%, and 65.39% on SNLI dataset in PH, P, and NPH

settings respectively, outperforming all existing unsupervised methods by ∼13%.

We also conduct experiments in low-data regimes where a few human-annotated

labeled instances are provided and show that further fine-tuning our models with

these instances consistently achieves higher performance than the models fine-tuned

from scratch. For example, with just 500 labeled instances, our models achieve

8.4% and 10.4% higher accuracy on SNLI and MNLI datasets respectively. Finally,

we show that fine-tuning with ‘adversarial’ instances instead of randomly selected

human-annotated instances further improves the performance of our models; it leads

to 12.2% and 10.41% higher accuracy on SNLI and MNLI respectively.

In summary, our contributions are as follows:

255

1. We explore three unsupervised settings for NLI and propose a procedural data

generation approach that outperforms the existing approaches by ∼13% and

raises the state-of-the-art unsupervised performance on SNLI to 66.75%.

2. We also conduct experiments in low-data regimes and demonstrate that further

fine-tuning our models with the provided instances achieves 8.4% and 10.4%

higher accuracy on SNLI and MNLI datasets respectively.

3. Finally, we show that using ‘adversarial’ instances for fine-tuning instead of

randomly selected instances further improves the accuracy. It leads to 12.2%

and 10.41% higher accuracy on SNLI and MNLI respectively. Supported by

this superior performance, we conclude with a recommendation for collecting

high-quality task-specific data.

We release the implementation of our procedural data generation approach and hope

that our work will encourage research in developing techniques that reduce reliance

on expensive human-annotated data for training task-specific models.

10.2 Unsupervised NLI

In NLI, a premise-hypothesis pair (P,H) is provided as input and the system needs

to determine the relationship L∈{Entailment,Contradiction,Neutral} between P and

H. In the supervised setting, a labeled dataset Dtrain={(Pi,Hi), Li}Mi=1 consisting of

M instances which are usually human-annotated is available for training. However in

the unsupervised setting, labels Li are not available, thus posing a significant challenge

for training NLI systems. Along with this standard unsupervised setting (referred to

256

as PH), we consider two novel unsupervised settings (P and NPH) that differ in the

extent of unlabeled data available for learning: PH-setting: It corresponds to the

standard unsupervised setting where an unlabeled dataset of PH pairs ({(Pi,Hi)}Mi=1)

is provided.

P-setting: In this setting, only premises from Dtrain i.e ({(Pi)}Mi=1) are provided.

It is an interesting setting as the large-scale NLI datasets such as SNLI (Bowman et

al. 2015) and MultiNLI (Williams, Nangia, and Bowman 2018) have been collected by

presenting only the premises to crowd-workers and asking them to write a hypothesis

corresponding to each label. Furthermore, this setting presents a harder challenge for

training NLI systems than the PH-setting as only partial inputs are provided.

NPH-setting: Here, no datasets (even with partial inputs) are provided. Thus,

it corresponds to the hardest unsupervised NLI setting considered in this work. This

setting is of interest in scenarios where we need to make inferences on a test dataset

but its corresponding training dataset is not available in any form.

From the above formulation, it can be inferred that the hardness of the task

increases with each successive setting (PH→P→NPH) as lesser and lesser information

is made available. In order to address the challenges of each setting, we propose a

two-step approach that includes a pipeline for procedurally generating PHL triplets

from the limited information provided in each setting (Section 10.3), followed by

training an NLI model using this procedurally generated data (Section 10.4). Figure

59 highlights the differences between four NLI settings (one supervised and three

unsupervised) and summarizes our approach to develop an NLI model for each setting.

257

10.3 PHL Triplet Generation

To compensate for the absence of labeled training data, we leverage a set of

sentence transformations and procedurally generate PHL triplets that can be used

for training the NLI model. In P and PH settings, we apply these transformations on

the provided premise sentences. In the NPH setting where premises are not provided,

we extract sentences from various raw text corpora and apply these transformations

on them to generate PHL triplets.

10.3.1 P : Premise Generation

We extract sentences from raw text sources, namely, COCO captions (Lin et

al. 2014), ROC stories (Mostafazadeh et al. 2016), and Wikipedia to compile a set of

premises for the NPH setting. We use these text sources as they are easily available

and contain a large number of diverse sentences from multiple domains.

ROC Stories is a collection of short stories consisting of five sentences each. We

include all these sentences in our premise pool. MS-COCO is a dataset consisting

of images with five captions each. We add all captions to our premise pool. From

Wikipedia, we segment the paragraphs into individual sentences and add them to

our premise pool.

We do not perform any sentence filtration during the premise collection process.

However, each transformation (described in subsection 10.3.2) has its pre-conditions

258

Transformation Original Sentence (Premise) Hypothesis Label

PA Fruit and cheese sitting on a
black plate

There is fruit and cheese on a
black plate

E

PA + ES +
HS

A large elephant is very close to
the camera

Elephant is close to the photo-
graphic equipment

E

CW-noun Two horses that are pulling a
carriage in the street

Two dogs that are pulling a
carriage in the street

C

CV A young man sitting in front of
a TV

A man in green jersey jumping
on baseball field

C

PA + CW A woman holding a baby while
a man takes a picture of them

A kid is taking a picture of a
male and a baby

C

FCon A food plate on a glass table A food plate made of plastic on
a glass table

N

PA + AM Two dogs running through the
snow

The big dogs are outside N

Table 58. Illustrative examples of PHL triplets generated from our proposed transformations. E,C,
and N correspond to the NLI labels Entailment, Contradiction, and Neutral respectively.

such as presence of verbs/adjectives/nouns that automatically filter out sentences

from the premise pool that can not be used for PHL triplet generation.

10.3.2 T : Transformations

Now, we present our sentence transformations for each NLI label. Table 58

illustrates examples of PHL triplets generated from these transformations.

10.3.2.1 Entailment:

In NLI, the label is entailment when the hypothesis must be true if the premise

is true. Table 59 shows examples of our transformations. Paraphrasing (PA):

259

Category Original Sentence (Premise) Hypothesis

PA Fruit and cheese sitting on a
black plate.

There is fruit and cheese on a
black plate.

ES person relaxes at home while
holding something.

person relaxes while holding
something.

HS. A girl is sitting next to a blood
hound.

A girl is sitting next to an ani-
mal.

PS People are walking down a busy
city street.

they are walking down a busy city
street

CT A man and woman setup a cam-
era.

Two people setup a camera

Composite A large elephant is very close to
the camera.

elephant is close to the photo-
graphic equipment.

Table 59. Illustrative examples of entailment transformations.

Paraphrasing corresponds to expressing the meaning of a text (restatement) using

other words and hence results in entailment premise-hypothesis pairs. We use the

Pegasus (J. Zhang et al. 2019) tool to generate up to 10 paraphrases of a sentence

and use them as hypothesis with the original sentence as the premise

Extracting Snippets (ES): We use dependency parse tree to extract meaningful

snippets from a sentence and use them as hypothesis with the original sentence as the

premise. Specifically, we extract sub-trees that form a complete phrase or a sentence.

For example, from the sentence “A person with red shirt is running near the garden”,

we create entailing hypotheses “A person is running near the garden”, “A person is

running”, “A person is near the garden”, etc. We implement 10 such techniques using

spacy (Honnibal et al. 2020).

Hypernym Substitution (HS): A hypernym of a word is its supertype, for

example, “animal” is a hypernym of “dog”. We use WordNet (Miller 1995) to collect

260

hypernyms and replace noun(s) in a sentence with their corresponding hypernyms

to create entailment hypothesis. For example, from the premise “A black dog is

sleeping”, we create “A black animal is sleeping”. Note that swapping the premise

and hypothesis in this case gives us another PH pair that has a ‘Neutral’ relationship.

Pronoun Substitution (PS): Here, we leverage Part-of-Speech (POS) tagging

of spacy to heuristically substitute a noun with its mapped pronoun. For example,

substituting “boy” with “he” in the sentence “boy is dancing in arena” results in an

entailing hypothesis “he is dancing in arena”.

Counting (CT): Here, we count nouns with common hypernyms and use several

templates such as “There are {count} {hypernym}s present” to generate entailing

hypotheses. For instance, from the sentence “A motorbike and a car are parked ”,

we create hypothesis “Two automobiles are parked ”. We also create contradiction

hypotheses using the same templates by simply changing the count value such as

“There are five automobiles present”.

10.3.2.2 Contradiction:

The label is contradiction when the hypothesis can never be true if the premise is

true. Table 60 shows examples of our transformations.

Contradictory Words (CW): We replace noun(s) and/or adjective(s) (iden-

tified using spacy POS tagging) with their corresponding contradictory words. For

example, replacing the word ‘big’ with ‘small’ in “He lives in a big house” results in a

contradictory hypothesis “He lives in a small house”. For contradictory adjectives, we

261

Category Original Sentence (Premise) Hypothesis

CW-noun A small bathroom with a sink
under a cabinet.

a small kitchen with a sink under
a cabinet.

CW-adj A young man is doing a trick on
a surfboard.

A old man is doing a trick on a
surfboard.

CV A couple pose for a picture while
standing next to a couch.

A couple sit in a chair on laptops

SOS A man is flying a kite on the
beach.

a beach is flying a kite on the
man

NS Two green traffics lights in a Eu-
ropean city.

nine green traffics lights in a Eu-
ropean city

IrH. A flock of sheep grazing in a field. A man having fun as he glides
across the water.

NI. A boy with gloves on a field
throwing a ball.

a boy with gloves on a field not
throwing a ball

Composite A woman holding a baby while a
man takes a picture of them

a kid is taking a picture of a male
and a baby.

Table 60. Illustrative examples of contradiction transformations.

collect antonyms from wordnet and for nouns, we use the function ‘most_similar’

from gensim (Rehurek and Sojka 2011) .

Contradictory Verb (CV): We collect contradictory verbs from gensim and

create hypothesis in the following two ways: (i) substituting verb with its contradictory

verb: for example, from “A girl is walking”, we create hypothesis “A girl is driving”

and (ii) selecting other sentences from the premise pool that have the same subject

as the original sentence but have contradictory verbs: for example, sentences like “A

young girl is driving fast on the street” and “There is a girl skiing with her mother ”.

The second approach adds diversity to our synthetically generated PHL triplets.

Subject Object Swap (SOS): We swap the subject and object of a sentence

to create a contradictory hypothesis. For example, from the sentence “A clock is

262

Category Original Sentence (Premise) Hypothesis

AM two cats are eating next to each
other out of the bowl

two cats are eating next to each
other out of the same bowl

SSNCV A man holds an electronic device
over his head.

man is taking photo with a small
device

FCon a food plate on a table with a
glass.

a food plate on a table with a
glass which is made of plastic.

Composite two dogs running through the
snow.

The big dogs are outside.

Table 61. Illustrative examples of neutral transformations.

standing on top of a concrete pillar ”, we create a contradictory hypothesis “a pillar is

standing on top of a concrete clock ”.

Negation Introduction (NI): We introduce negation into a sentence to create a

contradictory hypothesis. For example, from the sentence “Empty fog covered streets

in the night”, we create hypothesis “Empty fog did not cover streets in the night”.

Number Substitution (NS): Here, we change numbers (tokens with dependency

tag ‘nummod ’ in the parse tree) in a sentence. For example, changing ‘four’ to ‘seven’

in the sentence “Car has four red lights” results in a contradictory hypothesis.

Irrelevant Hypothesis (IrH): We sample sentences that have different subjects

and objects than the premise sentence. For example, for the premise “Sign for an

ancient monument on the roadside”, we sample “A man goes to strike a tennis ball ”

as a contradictory hypothesis.

263

10.3.2.3 Neutral:

The label is neutral when the premise does not provide enough information to

classify a PH pair as either entailment or contradiction. Table 61 shows examples of

our transformations.

Adding Modifiers (AM): We introduce a relevant modifier for noun(s) in

premise to generate a neutral hypothesis. For instance, in the sentence “A car parked

near the fence”, we insert modifier ’silver’ for the noun ‘car’ and create hypothesis “A

silver car parked near the fence”. We collect relevant modifiers for nouns by parsing

sentences in the premise pool and selecting tokens with dependency tag ‘amod ’ and

POS tag ‘ADJ ’.

ConceptNet (Con): We add relevant information from ConceptNet (Speer,

Chin, and Havasi 2017) relations (‘AtLocation’, ‘DefinedAs’, etc.) to the premise and

create a neutral hypothesis. For instance, from the sentence “Bunch of bananas are

on a table”, we create hypothesis“Bunch of bananas are on a table at kitchen” using

the ‘AtLocation’ relation.

Same Subject but Non-Contradictory Verb (SSNCV): For a premise, we

select sentences from the premise pool that have the same subject as the premise,

contain additional noun(s) but no contradictory verbs as neutral hypotheses. For

instance, for premise “A small child is sleeping in a bed with a bed cover ”, we sample

“A child laying in bed sleeping with a chair near by” as a hypothesis.

We create more examples by swapping premise and hypothesis of the collected

PHL triplets and accordingly change the label. For instance, swapping P and H in

264

HS, ES, etc. results in neutral examples, swapping P and H in AM, Con results

in entailment examples. Furthermore, we note that transformations ES, HS, PS,

SOS, NI result in PH pairs with high word overlap between premise and hypothesis

sentences, whereas, transformation PA, CV, IrH, SSNCV, etc. result in PH

pairs with low word overlap. In order to add more diversity to the examples, we use

composite transformations on the same sentence such as PA + ES (L = E), PA +

CW (L = C) as shown in Table 58.

10.3.3 Data Validation

In order to measure the correctness of our procedurally generated PHL triplets,

we validate randomly sampled 50 instances for each transformation. We find that

nearly all the instances get correct label assignments in case of PA, HS, PS, NI,

NS, IrH, AM transformations. While transformations CW, Con, SSNCV result

in a few mislabeled instances. Specifically, SSNCV transformation results in the

maximum errors (5). Table 70 shows examples of mis-labeled instances generated by

our transformations. While it is beneficial to have noise-free training examples, doing

so would require more human effort and increase the data collection cost. Thus, in

this work, we study how well we can do solely using the procedurally generated data

without investing human effort in either creating instances or eliminating noise.

265

Transformation T NPH-Setting P-Setting

T (P(C)) T (P(R)) T (P(W)) T (SNLI)
Raw Sentences 591 490 600 548

PA 5083 3072 273 475
ES 2365 196 87 516
PS 37 41 137 38
CT 25 8 2 43
Neg. 1175 1175 2053 990
CW 978 119 116 265
CV 1149 63 5 505
NS 73 16 224 91
SOS 428 180 229 76
AM 1048 125 535 327
SSNCV 1363 2 7 405

Table 62. Sizes of PHL triplet datasets generated by our transformations for the unsupervised
settings. All numbers are in thousands. C, R, W denote COCO, ROC Stories, and Wikipedia
respectively. For P-Setting, we show stats for SNLI dataset. We do not include PH-Setting in this
table because we leverage the PHL triplets generated using the P-Setting to solve it as described in
Section 10.4.3.

10.4 Training NLI Model

In this section, we describe our approach to develop NLI models for each unsuper-
vised setting.

Table 62 shows sizes of the generated PHL datasets for each setting.

10.4.1 NPH-Setting

We use the Premise Generation function (P) over raw-text sources, namely, COCO

captions, ROC stories, and Wikipedia i.e., P(COCO), P(ROC), and P(Wiki) to

266

compile a set of premises and apply the transformations (T) over them to generate

PHL triplets. We then train a transformer-based 3-class classification model (Section

10.5.1) using the generated PHL triplets for the NLI task.

10.4.2 P-Setting

In this slightly relaxed unsupervised setting, premises of the training dataset are

provided. We directly apply the transformation functions (T) on the given premises

and generate PHL triplets. Similar to the NPH setting, a 3-class classification model

is trained using the generated PHL triplets.

10.4.3 PH-Setting

In this setting, unlabeled training data is provided. We present a 2-step approach

to develop a model for this setting. In the first step, we create PHL triplets from the

premises and train a model using the generated PHL triplets (same as the P-setting).

In the second step, we pseudo-label the unlabeled PH pairs using the model trained

in Step 1.

Here, a naive approach to develop NLI model would be to train using this pseudo-

labeled dataset. This approach is limited by confirmation bias i.e overfitting to

incorrect pseudo-labels predicted by the model (Arazo et al. 2020). We address

this by filtering instances from the pseudo-labeled dataset based on the model’s

prediction confidence. We use the maximum softmax probability (maxProb) as the

267

confidence measure and select only the instances that have high prediction confidence

for training the final NLI model. This approach is based on prior work (Hendrycks

and Gimpel 2017) showing that correctly classified examples tend to have greater

maximum softmax probabilities than erroneously classified examples. Furthermore,

we investigate two ways of training the final NLI model: Augmenting with T (P):

Train using the selected pseudo-labeled dataset and the PHL triplets generated in

Step 1.

Further Fine-tune P-Model: Further fine-tune the model obtained in Step 1

with the selected pseudo-labeled dataset instead of fine-tuning one from scratch.

10.5 Experiments

10.5.1 Experimental Setup

Datasets: We conduct comprehensive experiments with a diverse set of NLI

datasets: SNLI (Bowman et al. 2015) (sentence derived from only a single text genre),

Multi-NLI (Williams, Nangia, and Bowman 2018) (sentence derived from multiple

text genres), Dialogue NLI (Welleck et al. 2019) (sentences from context of dialogues),

and Breaking NLI (Glockner, Shwartz, and Goldberg 2018) (adversarial instances).

Model: We use BERT-BASE model (Devlin et al. 2019) with a linear layer on

top of [CLS] token representation for training the 3-class classification model. We

trained models for 5 epochs with a batch sizes of 32 and a learning rate ranging in

{1−5}e−5. All experiments are done with Nvidia V100 16GB GPUs.

268

Model SNLI MNLI
mat.

MNLI
mis.

DNLI BNLI

BERT* 35.09 - - - -
LXMERT* 39.03 - - - -
VilBert* 43.13 - - - -

T (P(C)) 64.8 49.01 50.0 50.26 74.73
T (P(R)) 58.51 45.44 45.93 47.4 67.9
T (P(W)) 55.06 44.15 44.25 48.48 62.58
T (P(C+R)) 65.39 46.83 46.92 47.95 77.37
T (P(C+R+W)) 65.09 46.63 46.83 44.74 56.11

Table 63. Comparing accuracy of models in the NPH-setting. C, R, and W correspond to the
premise sources COCO, ROC, and Wikipedia respectively. Results marked with * have been taken
from Cui, Zheng, and Wang 2020.

Baseline Methods: We compare our approach with Multimodal Aligned Con-

trastive Decoupled learning (MACD) (Cui, Zheng, and Wang 2020) , Single-modal

pre-training model BERT (Devlin et al. 2019), Multi-modal pre-training model

LXMERT (Tan and Bansal 2019), and VilBert (Lu et al. 2019).

10.5.2 Results

NPH-Setting: We utilize three raw text sources: COCO, ROC, and Wikipedia

to compile a premise pool and then generate PHL triplets from those premises.

Table 63 shows the accuracy of models in this setting. We use equal number of

PHL triplets (150k class-balanced) for training the NLI models. We find that the

model trained on PHL triplets generated from COCO captions as premises

269

Approach SNLI MNLI
mat.

MNLI
mis.

DNLI BNLI

BERT* 35.09 - - - -
LXMERT* 39.03 - - - -
VilBert* 43.13 - - - -
MACD* 52.63 - - - -

T (SNLI) 65.72 49.56 50.00 43.27 67.78
+T (P(C)) 65.36 49.91 49.24 46.25 70.07
T (P(R)) 65.90 48.53 48.36 44.97 66.43

Table 64. Comparing accuracy of various approaches in the P-Setting. Results marked with * have
been taken from Cui, Zheng, and Wang 2020. Note that we utilize the premises of the SNLI training
dataset only but evaluate on SNLI (in-domain), and MNLI, DNLI, BNLI (out-of-domain).

Method Data SNLI MNLI
mat.

MNLI
mis.

From Scratch MaxProbFilt 66.67 53.37 55.17
From Scratch MaxProbFilt+T (P) 66.75 50.22 50.37
Finetune P-model MaxProbFilt 65.60 52.97 53.44

Table 65. Comparing accuracy of our proposed approaches in the PH-Setting. Note that the models
are trained using PH pairs only from the SNLI train-set but evaluated on MNLI (out-of-domain
dataset) also.

outperforms ROC and Wikipedia models on all datasets. We attribute this

superior performance to the short, simple, and diverse sentences present in COCO

that resemble the premises of SNLI that were collected from Flickr30K (Plummer

et al. 2015) dataset. In contrast, Wikipedia contains lengthy and compositional

sentences resulting in premises that differ from those present in SNLI, MNLI, etc.

Furthermore, we find that combining the PHL triplets of COCO and ROC

leads to a slight improvement in performance on SNLI (65.39%), and BNLI

(77.37%) datasets.

270

Training Method 100 200 500 1000 2000
Dataset SNLI MNLI SNLI MNLI SNLI MNLI SNLI MNLI SNLI MNLI

SNLI
BERT 44.62 37.36 48.97 34.71 58.54 44.01 65.36 37.24 72.51 45.59
NPH (Random) 64.82 49.72 65.06 50.48 66.97 52.33 70.61 56.75 73.7 59.0
NPH (Adv.) 68.21 51.93 69.23 56.55 70.85 58.46 73.62 59.47 74.31 60.43

MNLI BERT 35.12 36.01 35.14 36.58 46.16 47.1 47.64 56.21 53.68 63.3
NPH (Random) 63.87 52.85 63.87 53.61 64.23 57.47 65.62 60.42 66.87 62.89

Table 66. Comparing performance of various methods on in-domain and out-of-domain datasets in
low-data regimes (100-2000 training instances). ‘BERT’ method corresponds to fine-tuning BERT
over the provided instances from SNLI/MNLI, ‘NPH (Random)’ corresponds to further fine-tuning
our NPH model with the randomly sampled instances from SNLI/MNLI, ‘NPH (Adv.)’ corresponds
to further fine-tuning our NPH model with the adversarially selected instances from SNLI/MNLI.

P-Setting: Cui, Zheng, and Wang 2020 presented MACD that performs multi-

modal pretraining using COCO and Flick30K caption data for the unsupervised

NLI task. It achieves 52.63% on the SNLI dataset. Our approach outperforms

MACD and other single-modal and multi-modal baselines by ∼13% on SNLI

as shown in Table 64. We also experiment by adding PHL triplets generated from

COCO and ROC to the training dataset that further improves the accuracy to 65.90%

and establish a new state-of-the-art performance in this setting.

PH-Setting: Here, we first pseudo-label the given unlabeled PH pairs using

the P-model and then select instances based on the maximum softmax probability

(Section 10.4.3). We refer to this set of selected instances as MaxProbFilt dataset.

This approach results in accuracy of 66.67% on the SNLI dataset as shown in Table

65. We investigate two more approaches of training the NLI model. In the first

approach, we train using MaxProbFilt and PHL triplets generated from premises. In

the second approach, we further fine-tune the P-model with MaxProbFilt dataset.

We find that the first approach slightly improves the accuracy to 66.75%. This also

represents our best performance across all the unsupervised settings. Furthermore, we

271

observe improvement in the Out-of-domain datasets also (53.37% and 55.17%

on MNLI matched and mismatched datasets respectively).

10.5.3 Low-Data Regimes

We also conduct experiments in low-data regimes where a few labeled instances

are provided. We select these instances from the training dataset of SNLI/MNLI

using the following two strategies:

Random: Here, we randomly select instances from the corresponding training

dataset. Further fine-tuning our NPH model with the selected instances consistently

achieves higher performance than the models fine-tuned from scratch as shown in

Table 66. With just 500 SNLI instances i.e. ∼ 0.1% of training dataset, our

models achieve 8.4% and 8.32% higher accuracy on SNLI (in-domain) and

MNLI (out-of-domain) respectively. Furthermore, with 500 MNLI instances,

our models achieve 10.37% and 18.07% higher accuracy on MNLI (in-domain) and

SNLI (out-of-domain) respectively.

Adversarial: Here, we select those instances from the training dataset on which

the NPH model makes incorrect prediction. This is similar to the adversarial data

collection strategy (Nie et al. 2020; Kiela et al. 2021) where instances that fool

the model are collected. Here, we do not simply fine-tune our NPH model with

the adversarial examples as it would lead to catastrophic forgetting (Carpenter and

Grossberg 1988). We tackle this by including 20000 randomly sampled instances from

the generated PHL triplets and fine-tune on the combined dataset. It further takes

272

Approach ∆ Accuracy

NPH model 64.8%
- CV −5.88%
- CW −3.07%
- SSNCV −2.63%
- Neg. −0.70%
- IrH −0.50%
- PS −0.00%

Table 67. Ablation Study of transformations in the NPH-Setting. Each row corresponds to the
drop in performance on the SNLI dataset when trained without PHL triplets created using that
transformation.

the performance to 70.85%, 58.46% on SNLI and MNLI respectively with

500 instances.

10.5.4 Analysis

Ablation Study:

We conduct ablation study to understand the contribution of individual trans-

formations on NLI performance. Table 67 shows the performance drop observed on

removing PHL triplets created using a single transformation in the NPH-Setting. We

find that Contradictory Words (CW) and Contradictory Verbs (CV) lead

to the maximum drop in performance, 5.88% and 3.07% respectively. In

contrast, Pronoun Substitution (PS) transformation doesn’t impact the performance

significantly. Note that this does not imply that this transformation is not effective,

it means that the evaluation dataset (SNLI) does not contain instances requiring this

transformation.

273

Setting Metric Label

C E N

NPH Precision 0.65 0.71 0.6
Recall 0.68 0.77 0.51

P Precision 0.66 0.72 0.58
Recall 0.67 0.78 0.52

PH Precision 0.64 0.74 0.60
Recall 0.73 0.77 0.50

Table 68. Precision and Recall values achieved by our models under each unsupervised setting.

NC RS SNLI-RS SNLI-NC

84.22 50.07 58.59 75.39

Table 69. Performance of our NPH model on Names-Changed (NC) and Roles-Switched (RS)
adversarial test sets Mitra, Shrivastava, and Baral 2020.

NC and RS Evaluation:

We evaluate our model on NER-Changed (NC) and Roles-Switched (RS) datasets

presented in (Mitra, Shrivastava, and Baral 2020) that test the ability to distinguish

entities and roles. Our model achieves high performance on these datasets.

Specifically, 84.22% on NC and 75.39% on SNLI-NC as shown in Table 69.

Label-Specific Analysis: Table 68 shows the precision and recall values achieved

by our models. We observe that our models perform better on Entailment and

Contradiction than Neutral examples. This suggests that neutral examples are

relatively more difficult. Table 70 shows examples of mis-labeled instances

generated by our transformations.

274

Trans. Premise Hypothesis Assigned
Label

True
Label

PS Two dogs on leashes
sniffing each other as
people walk in a outdoor
market

Two dogs on leashes
sniffing each other as
they walk in a market

E N

CT Adult woman eating
slice of pizza while stand-
ing next to building

There are 2 humans
present

E C

CW Meal with meat and
vegetables served on
table

There is a meal with
cheese and vegetables

C N

SSNCV A person riding skis
down a snowy slope

A person riding skis in a
body of water

N C

SSNCV A person on a skate-
board jumping up into
the air

A person jumping up in
the air on a snowboard

N C

CV A male surfer riding a
wave on the ocean

A surfer is surfing in
the ocean near some
swimmers

C N

Table 70. Examples of mis-labeled PHL triplets generated by our transformations.

10.6 Conclusion and Discussion

We explored three different settings in unsupervised NLI and proposed a procedural

data generation approach that outperformed the existing unsupervised methods by

∼13%. Then, we showed that fine-tuning our models with a few human-authored

instances leads to a considerable improvement in performance. We also experimented

using adversarial instances for this fine-tuning step instead of randomly selected

instances and showed that it further improves the performance. Specifically, in

presence of just 500 adversarial instances, the proposed method achieved 70.85%

275

accuracy on SNLI, 12.2% higher than the model trained from scratch on the same

500 instances.

This improvement in performance suggests possibility of an alternative data

collection strategy that not only results in high-quality data instances but is also

resource efficient. Using a model-in-the-loop technique has been shown to be effective

for adversarial data collection (Nie et al. 2020; Kiela et al. 2021; Linjie Li et al. 2021;

Sheng et al. 2021; Arunkumar et al. 2020). In these techniques, a model is first trained

on a large dataset and then humans are instructed to create adversarial samples that

fool the model into making incorrect predictions. Thus, requiring the crowd-sourcing

effort twice. However, in our method, a dataset designer can develop a set of simple

functions (or transformations) to procedurally generate training data for the model

and can directly instruct humans to create adversarial samples to fool the trained

model. This is resource efficient and allows dataset designers to control the quality of

their dataset.

276

Chapter 11

ACHIEVING EVALUATION EFFICIENCY VIA INSTANCE-LEVEL

DIFFICULTY ANALYSIS OF EVALUATION DATA

Knowledge of difficulty level of questions helps a teacher in several ways, such

as estimating students’ potential quickly by asking carefully selected questions and

improving quality of examination by modifying trivial and hard questions. Can we

extract such benefits of instance difficulty in Natural Language Processing? To this

end, we conduct Instance-Level Difficulty Analysis of Evaluation data (ILDAE) in

a large-scale setup of 23 datasets and demonstrate its five novel applications: 1)

conducting efficient-yet-accurate evaluations with fewer instances saving computa-

tional cost and time, 2) improving quality of existing evaluation datasets by repairing

erroneous and trivial instances, 3) selecting the best model based on application

requirements, 4) analyzing dataset characteristics for guiding future data creation,

5) estimating Out-of-Domain performance reliably. Comprehensive experiments for

these applications lead to several interesting results, such as evaluation using just

5% instances (selected via ILDAE) achieves as high as 0.93 Kendall correlation with

evaluation using complete dataset and computing weighted accuracy using difficulty

scores leads to 5.2% higher correlation with Out-of-Domain performance.

277

11.1 Introduction

Transformer-based language models (Devlin et al. 2019; Y. Liu et al. 2019a; K.

Clark et al. 2020) have improved state-of-the-art performance on numerous natural

language processing benchmarks (A. Wang et al. 2018; A. Wang et al. 2019; Talmor

et al. 2019); however, recent studies (Zhong et al. 2021; Sagawa et al. 2020) have

raised questions regarding whether these models are uniformly better across all

instances. This has drawn attention towards instance-level analysis of evaluation

data (Rodriguez et al. 2021; Vania et al. 2021; Mishra and Arunkumar 2021) which

was previously limited to training data (Swayamdipta et al. 2020; B. Xu et al. 2020;

Mishra and Sachdeva 2020). Furthermore, it is intuitive that not all instances in a

dataset are equally difficult. However, instance-level difficulty analysis of evaluation

data (ILDAE) has remained underexplored in many different ways: what are the

potential applications and broad impact associated with ILDAE?

In this work, we address the above question by first computing difficulty scores of

evaluation instances (section 11.2) and then demonstrating five novel applications of

ILDAE (Figure 60).

1. Efficient Evaluations: We propose an approach of conducting efficient-yet-

accurate evaluations. Our approach uses as little as 5% evaluation instances

(selected via ILDAE) to achieve up to 0.93 Kendall correlation with evaluations

conducted using the complete dataset. Thus, without considerably impacting the

effectiveness of evaluations, our approach saves computational cost and time.

2. Improving Evaluation Datasets: We first show that ‘trivial’ and ‘erroneous’

278

Figure 60. Illustrating five applications of Instance-Level Difficulty Analysis of Evaluation data
(ILDAE).

instances can be identified using our difficulty scores and then present a model-and-

human-in-the-loop technique to modify/repair such instances resulting in improved

quality of the datasets. We instantiate it with SNLI dataset Bowman et al. 2015

and show that on modifying the trivial instances, the accuracy (averaged over 27

models) drops from 77.58% to 26.49%, and on repairing the erroneous instances,

it increases from 13.65% to 69.9%. Thus, improving the dataset quality.

3. Model Analysis: We divide evaluation instances into different regions based on

difficulty scores and analyze models’ performance in each region. We find that a

single model does not achieve the highest accuracy in all difficulty regions. This

implies that the model that achieves best overall performance may not be the

best in each difficulty region. Such analyses could benefit in model selection. For

279

instance, in scenarios where a system is expected to encounter hard instances, the

model that performs well in high difficulty regions could be selected.

4. Dataset Analysis: ILDAE reveals several important characteristics of datasets

that can be leveraged in future data creation processes. For instance, we find that in

SNLI and MNLI datasets, ‘contradiction’ instances receive lower average difficulty

score than ‘entailment’ and ‘neutral’ instances. Thus, more difficult contradiction

examples can be created to develop high-quality task-specific datasets.

5. OOD Correlation: We compute weighted accuracy leveraging the difficulty

scores and show that it leads to 5.2% higher Kendall correlation with Out-of-

Domain (OOD) performance than the standard accuracy that treats all instances

equally. Thus, ILDAE helps in getting a more reliable estimation of models’ OOD

performance.

11.2 Difficulty Score Computation

11.2.1 Desiderata for Difficulty Scores

Interpretation: Human perception of difficulty may not always correlate

well with machine’s interpretation. Thus, difficulty scores must be computed via a

model-in-the-loop technique so that they directly reflect machine’s interpretation.

Relationship with Predictive Correctness: Difficulty scores must be

negatively correlated with predictive correctness since a difficult instance is less likely

to be predicted correctly than a relatively easier instance.

280

11.2.2 Method

Algorithm 1 Difficulty Score Computation
Input: T : Training Data, M : Model,

D: Evaluation Data E: Training Epochs
Output: Difficulty Score of each instance in D
Auxiliary Function: GET_CKPTS (tr, m, e) - Returns checkpoints on training model m
with data tr for e epochs
Initialization: Models ← ∅ : List to store ensemble of models trained with different
configurations
▷ Train with Partial Data
for each pct ∈ [100,50,25,20,15,10,5] do

Tp = Sample(T, pct)
Models += Get_Ckpts(Tp, M, E)

end for each
▷ Train with Corrupted Data
for each pct ∈ [25,20,10,5,2] do

Tc = Corrupt(T, pct)
Models += Get_Ckpts(Tc, M, E)

end for each
▷ Infer D using all Models and compute difficulty score di for each instance
i ∈D
for each i ∈D do

di = 1 −
∑m∈Models cmi

∣Models∣
▷ where cmi is the confidence assigned to the ground truth answer by model m

end for each
return d

We incorporate the above desiderata and consider model’s prediction confidence

in the ground truth answer (indicated by softmax probability assigned to that answer)

as the measure of its predictive correctness. Furthermore, we compile an ensemble of

models trained with varying configurations and use their mean predictive correctness

to compute the difficulty scores. We do this because model’s predictions fluctuate

greatly when its training configuration is changed (X. Zhou et al. 2020; McCoy, Min,

281

and Linzen 2020) and relying on predictive correctness of only one model could result

in difficulty scores that show poor generalization. To this end, we use the following

three training configurations to compile predictions from an ensemble of models:

Data Size: Instances that can be answered correctly even with few training

examples are inherently easy and should receive lower difficulty score than the ones

that require a large training dataset. To achieve this, we train a model each with 5,

10, 15, 20, 25, 50, and 100 % of the total training examples and include them in our

ensemble.

Data Corruption: Instances that can be answered correctly even with some level

of corruption/noise in the training dataset should receive low difficulty score. To

achieve this, we train a model each with different levels of noise (2, 5, 10, 20, 25%

of the examples) in the training data, and add them to our ensemble. For creating

noisy examples, we randomly change the ground-truth label in case of classification

and multiple-choice datasets and change the answer span for extractive QA datasets.

Training Steps: Instances that can be consistently answered correctly from the

early stages of training should receive low difficulty score. Here, we add a model

checkpoint after every epoch during training to our ensemble.

This results in a total of N = E ∗ (7 + 5) models in our ensemble where E

corresponds to the number of training epochs, and 7, 5 correspond to the number of

data size and data corruption configurations respectively. We infer the evaluation

dataset using these N models and calculate the average predictive correctness for

each instance. Finally, we compute the difficulty score by subtracting this averaged

correctness value from 1. This ensures that an instance that is answered correctly

282

with high confidence under many training configurations gets assigned a low difficulty

score as it corresponds to an easy instance. In contrast, an instance that is often

answered incorrectly gets assigned a high difficulty score. Algorithm 1 summarizes

this approach.

We use RoBERTa-large model (Y. Liu et al. 2019a) for this procedure and train

each model for E = 10 epochs, resulting in N = 120 predictions for each evaluation

instance. Our difficulty computation method is general and can be used with any other

model or configurations; we use RoBERTa-large as it has been shown to achieve high

performance across diverse NLP tasks (Y. Liu et al. 2019a). In addition, we show

that difficulty scores computed using our procedure also generalize for other models

(11.3.5.1).

We note that difficulty computation is not our primary contribution. Prior work

(Swayamdipta et al. 2020; B. Xu et al. 2020) has explored different ways to achieve

this. However, our approach uses 120 predictions from models trained with different

configurations for its computation and hence is more reliable. Equipped with difficulty

scores of evaluation instances, we now demonstrate five applications of ILDAE in the

following sections.

283

11.3 Efficient Evaluations

11.3.1 Problem Statement

Success of BERT (Devlin et al. 2019) has fostered development of several other

pre-trained language models such as RoBERTa (Y. Liu et al. 2019a), XLNet (Z. Yang

et al. 2019b), DistilBERT (Sanh et al. 2019), ALBERT (Lan et al. 2020). Though,

it has resulted in the availability of numerous model options for a task, comparing

the performance of such a large number of models has become computationally

expensive and time-consuming. For example, in real-world applications like online

competitions, the naive approach that evaluates candidate models on the entire test

dataset would be too expensive because they receive thousands of model submissions

and contain a sizable number of evaluation instances. Moreover, some applications

also require additional evaluations to measure Out-of-Domain generalization and

robustness making it even more expensive. Can we make the evaluations efficient?

11.3.2 Solution

We address the above question and explore if the performance of candidate models

can be accurately compared with a carefully selected smaller subset of the evaluation

dataset. Reducing the number of instances would save computational cost and make

the evaluations efficient. To this end, we propose an approach that selects evaluation

instances based on their difficulty scores. We compare performance of candidate

284

models only on these selected instances and show that without considerably impacting

the result of evaluations, our approach saves computational cost and time.

Instance Selection: We argue that the instances with extreme difficulty scores

(very low and very high scores) would not be very effective in distinguishing between

the candidate models. This is because the former instances are trivial and would be

answered correctly by many/all candidate models, while the latter ones are hard and

would be answered correctly by only a few/none models. Therefore, given a budget

on the number of evaluation instances, we select a majority of them with moderate

difficulty scores. However, to distinguish amongst very weak and amongst very strong

candidates, we also include a small number of instances with extreme difficulty scores.

Figure 61 illustrates our approach.

Note that our approach does not add any computational overhead during evalu-

ations as the difficulty scores are pre-computed. Furthermore, we do not compute

separate difficulty scores for each candidate model as it would defy the sole purpose

of ‘efficient’ evaluations. Instead, we compute difficulty scores using only one model

(RoBERTa-large) and exclude it from the list of candidate models for a fair evalu-

ation of our approach. For our instance selection approach to work in this setting,

the difficulty scores should generalize for other models. We empirically prove this

generalization capability and demonstrate the efficacy of our efficient evaluations

approach in 11.3.5.

285

Figure 61. Comparing standard evaluation approach (top) with our proposed ‘efficient’ approach
(bottom). We leverage difficulty scores to select a small subset of evaluation instances on which
the performance of models can be efficiently compared. Our selected subset contains a majority of
the instances with moderate difficulty scores and only a few with extreme difficulty scores. We use
Kendall correlation between the performance scores to measure the efficacy of our approach.

11.3.3 Experimental Details

Performance Metric: We measure the efficacy of an instance selection tech-

nique by computing accuracies of candidate models on the selected instances and

calculating their Kendall’s correlation (Kendall 1938) with accuracies obtained on the

full evaluation dataset. High correlation implies that the performance scores obtained

using the selected instances display the same behavior as the performance scores

obtained using the complete dataset. Hence, high correlations values are preferred.

Datasets: We experiment with a total of 23 datasets across Natural Language In-

ference, Duplicate Detection, Sentiment Analysis, Question Answering, Commonsense

286

Figure 62. Demonstrating difficulty score generalization. Difficulty scores computed using RoBERTa-
large show negative correlation with accuracy averaged over 27 other models, hence satisfying the
desiderata mentioned in Section 11.2.1. Note that we depict this trend for a few datasets only to
avoid cluttering the image. Similar trend is observed for other dataset also.

Reasoning, and several other tasks. We experiment with the following datasets: SNLI

(Bowman et al. 2015), Multi-NLI (Williams, Nangia, and Bowman 2018), Dialogue

NLI (Welleck et al. 2019), Adversarial NLI (R1, R2, R3) (Nie et al. 2020), QNLI

(A. Wang et al. 2018), QQP (Iyer, Dandekar, and Csernai 2017), MRPC (Dolan

and Brockett 2005), PAWS-QQP, PAWS-Wiki (Zhang, Baldridge, and He 2019),

SST-2 (Socher et al. 2013), COLA (Warstadt, Singh, and Bowman 2019) AG’s News

(Zhang, Zhao, and LeCun 2015), ARC-Easy, ARC-Challenge (P. Clark et al. 2018),

SWAG (Zellers et al. 2018), Abductive-NLI (Bhagavatula et al. 2020), Winogrande

(Sakaguchi et al. 2020), CommonsenseQA (Talmor et al. 2019), QuaRel (Tafjord,

Clark, et al. 2019), QuaRTz (Tafjord, Gardner, et al. 2019), and SocialIQA (Sap

et al. 2019).

Candidate Models: We use BERT (Devlin et al. 2019), DistilBERT (Sanh

287

% Instances → 0.5% 1% 2% 5% 10% 20%
Dataset ↓ Random Heuristic Proposed Random Heuristic Proposed Proposed Proposed Proposed Proposed

SNLI 0.550.09 0.380.17 0.680.13 0.680.05 0.580.08 0.780.08 0.830.04 0.880.04 0.910.01 0.930.02
PAWS Wiki 0.670.07 0.680.04 0.780.06 0.730.05 0.780.02 0.860.05 0.890.02 0.910.03 0.950.01 0.960.01
AgNews 0.120.26 0.140.27 0.470.05 0.250.34 0.410.14 0.520.1 0.650.07 0.750.06 0.80.04 0.890.03
QNLI 0.410.1 0.440.04 0.480.13 0.570.04 0.550.1 0.570.07 0.70.06 0.780.06 0.850.03 0.910.03
MRPC 0.040.09 −0.030.18 0.210.16 −0.020.09 0.050.2 0.290.21 0.360.15 0.450.08 0.580.12 0.650.14
SocialIQA 0.190.09 0.150.29 0.370.17 0.340.07 0.280.21 0.40.09 0.580.1 0.670.04 0.750.08 0.810.05
QQP 0.630.06 0.640.05 0.650.05 0.740.03 0.740.01 0.770.06 0.840.04 0.90.04 0.940.04 0.950.01
DNLI 0.580.05 0.590.1 0.580.11 0.680.1 0.710.04 0.760.07 0.840.04 0.920.05 0.940.03 0.960.01
COLA − − − −0.010.18 0.250.26 0.240.45 0.410.41 0.630.23 0.750.08 0.780.02
SWAG 0.720.04 0.660.02 0.750.06 0.790.03 0.770.03 0.780.05 0.860.03 0.890.02 0.930.01 0.950.01
PAWS QQP − − − 0.130.24 0.360.05 0.340.13 0.550.19 0.80.05 0.840.03 0.870.04
MNLI 0.70.04 0.710.03 0.730.07 0.80.02 0.80.04 0.820.08 0.890.03 0.930.02 0.950.02 0.960.01
Adv. NLI R1 0.00.08 −0.070.06 0.170.27 0.020.13 0.090.11 0.080.2 0.130.18 0.30.18 0.470.05 0.590.05
Adv. NLI R2 −0.080.04 -0.010.06 −0.080.16 −0.080.07 0.020.03 −0.030.21 0.00.12 0.170.03 0.260.11 0.420.15
Adv. NLI R3 −0.150.12 0.150.1 0.10.21 −0.030.06 0.070.1 0.10.11 0.180.16 0.120.17 0.310.15 0.580.05
SST-2 − − − 0.080.15 0.160.35 0.290.25 0.40.2 0.520.16 0.650.13 0.810.08
ARC Easy − − − 0.00.2 −0.030.12 0.420.19 0.470.19 0.590.13 0.60.14 0.740.11
ARC Diff − − − − − − 0.150.29 0.280.13 0.330.31 0.30.26
Abductive NLI 0.080.26 0.170.05 0.160.09 0.190.19 0.260.08 0.30.07 0.420.13 0.570.08 0.610.07 0.680.07
Winogrande −0.190.11 −0.030.06 0.00.17 −0.110.09 −0.050.12 0.110.15 0.090.14 0.030.1 0.140.1 0.210.14
CSQA 0.290.11 0.280.1 0.310.07 0.360.14 0.370.08 0.390.09 0.490.09 0.690.08 0.780.04 0.830.05
QuaRel − − − − − − 0.320.26 0.330.25 0.390.07 0.510.1
QuaRTz − − − − − − 0.340.19 0.360.04 0.340.12 0.370.08

Average 0.280.1 0.30.11 0.390.13 0.310.11 0.350.11 0.430.14 0.460.17 0.580.11 0.660.08 0.720.07

Table 71. Kendall correlation with full evaluation dataset achieved by various instance selection
approaches for different percentage of instances. Each cell shows the mean and standard deviation
obtained from 5 different runs. − cell indicates 0 selected instances. We show the expanded version
of this table in supplementary.

et al. 2019), ConvBERT (Z.-H. Jiang et al. 2020) , XLNET (Z. Yang et al. 2019a),

SqueezeBERT (Iandola et al. 2020), ELECTRA (K. Clark et al. 2020) in our experi-

ments. We also use different variants of ConvBert (small, medium-small, base) and

ELECTRA (small, base) models. For comprehensive experiments, we train each of

the above models with training data of three different sizes (2k, 5k, and 10k examples)

resulting in 27 candidate models for each dataset. We intentionally exclude RoBERTa

from this list as we use it for computing the difficulty scores.

Instance Selection Baselines: We compare the proposed instance selection

approach with the following baselines:

Random Selection: Select a random subset of instances from the evaluation

dataset.

288

Heuristic Selection: Select instances based on the length heuristic (number of

characters in the instance text) instead of the difficulty scores.

11.3.4 Related Work

Adaptive evaluation (Weiss 1982) is used in educational settings for evaluating

performance of students. It uses Item Response Theory (IRT) (Baker and Kim 2004)

from psychometrics that requires a large number of subjects and items to estimate

system parameters (Lalor, Wu, and Yu 2016; Lalor et al. 2018). Moreover, adaptive

evaluation is computationally very expensive as it requires calculating performance

after each response to select the next instance based on the previous responses of the

subject. Thus, it is not fit for our setting as we intend to improve the computational

efficiency. In contrast, our approach is much simpler and efficient as it does not incur

any additional cost during the evaluation.

11.3.5 Results

We first study generalization of our computed difficulty scores and then show the

efficacy of the proposed instance selection approach in conducting efficient evaluations.

289

11.3.5.1 Generalization of Difficulty Scores:

In Figure 62, we plot accuracy (averaged over all 27 candidate models) against

difficulty scores (computed using RoBERTa-large). We find that with the increase in

difficulty score, the accuracy consistently decreases for all datasets. We also study this

behavior for each individual candidate model and find results supporting the above

observation (Figure 65). This proves that the difficulty scores follow the desiderata

mentioned in Section 11.2.1 for other models also and our intuitions behind instance

selection for conducting efficient evaluations hold true. Note that these difficulty

scores are computed using a specific model but our approach is general and will

replicate this generalization capability if used with any other model.

11.3.5.2 Efficient Evaluations:

Table 71 shows Kendall correlation with full dataset evaluation achieved by various

instance selection approaches for different percentages of instances.

Proposed Approach Outperforms Baselines: Our proposed approach is

consistently better than the Random and Heuristic approaches. For instance, with just

0.5% and 1% evaluation instances, our approach outperforms the baseline methods

by ∼ 30% and ∼ 22.8% respectively.

Correlation Change with % of Instances: As expected, Kendall correlation

consistently increases as a higher percentage of instances are selected for evaluation.

In case of SNLI, PAWS Wiki, QQP, DNLI, SWAG, and MNLI, just 2% instances

290

are sufficient to achieve correlation of > 0.8. For most datasets, with just 20% of the

evaluation instances, our approach achieves Kendall correlation of > 0.8. This suggests

that the evaluations can be conducted with fewer instances without significantly

compromising the accuracy of comparison. We further analyze performance of our

approach for higher percentage of instances in Table 77.

Thus, for practical settings where candidate models can’t be compared on the

entire dataset due to computational and time constraints, evaluating only on the

selected instances can result in fairly accurate performance comparison.

Performance on Multiple-Choice QA datasets: Though, we perform better

than the baselines approaches on almost all datasets, we achieve a lower correlation

value for multiple-choice question answering datasets such as QuaRel, QuaRTz, and

Winogrande. We attribute this behavior to the close scores (accuracies) achieved by

many candidate models even in case of full dataset evaluation. Thus, it is difficult to

differentiate such models as they achieve nearly the same performance. Furthermore,

in some difficult datasets such as Adversarial NLI (R1, R2, and R3), ARC Difficult,

and Winogrande, many candidate models achieve accuracies very close to the random

baseline (33% for NLI, 50% for Winogrande). So, comparing their performance even

with full dataset does not provide any significant insights.

291

Difficult Instance

Premise: Dog standing with 1 foot up in a large field. Hyp.: The dog is standing on
one leg. Label: Contradiction.

Premise: A salt-and-pepper-haired man with beard and glasses wearing black sits on
the grass. Hyp.: An elderly bearded man sitting on the grass. Label: Entailment.

Premise: A man is standing in front of a building holding heart shaped balloons and
a woman is crossing the street. Hyp.: Someone is holding something heavy outside.
Label: Contradiction.

Premise: A group of people plays a game on the floor of a living room while a TV
plays in the background. Hyp.: A group of friends are playing the xbox while other
friends wait for their turn. Label: Contradiction.

Table 72. Illustrative examples of instances that receive high difficulty score but are not erroneous.
Such instances are difficult even for humans as they require reasoning ability.

11.4 Improving Evaluation Datasets

11.4.1 Problem Statement

Recent years have seen a rapid increase in the number and size of NLP datasets.

Crowd-sourcing is a prominent way of collecting these datasets. Prior work (Guru-

rangan et al. 2018; Tan et al. 2019; Mishra, Arunkumar, Sachdeva, et al. 2020) has

shown that crowd-sourced datasets can contain: (a) erroneous instances that have

annotation mistakes or ambiguity, (b) too many trivial instances that are very easy

to answer. This hampers the quality of the dataset and makes it less reliable for

drawing conclusions. Can difficulty scores aid in improving the quality of evaluation

datasets?

292

Dataset Instance

SNLI (72%) Premise: Trucks racing. Hypothesis: Four trucks are racing
against each other in the relay.
Label: Entailment, Neutral

CSQA (50%) Why would a band be performing when there are no people nearby?
O1: record album, O2: play music, O3: hold concert, O4: blaring,
O5: practice

WG (36%) Maria was able to keep their weight off long term, unlike Felicia,
because _ followed a healthy diet.
O1: Maria, O2: Felicia

aNLI O1: Ella was taking her final exam. O2: Ella was able to finish
her exam on time. H1: Ella got to class early and was in no hurry.
H2: Ella broke her pencil.

Table 73. Examples of erroneous instances from SNLI, CSQA, Winogrande, and Abductive NLI.
Orange (ambiguous) and red (mislabeled) correspond to the originally annotated answer while blue
corresponds to the correct/equally probable answer.

11.4.2 Solution

We first show that erroneous and trivial instances can be identified using the

difficulty scores and then present a human-and-model-in-the-loop technique to mod-

ify/repair such instances resulting in improved quality of the datasets.

Identifying Erroneous and Trivial Instances: We inspect 50 instances each

with very high and very low difficulty scores and find that a significant percentage of

the former are either mislabeled or contain ambiguity and the latter are too easy to

be answered.

Table 73 shows examples of erroneous instances from SNLI, Winogrande, CSQA,

and Abductive NLI. We find 72% of the inspected SNLI instances to be erroneous.

Furthermore, we find that some high difficulty score instances are actually difficult

293

Dataset Instance

SNLI Premise: Trucks racing. Hyp.: Four trucks are racing against
each other in the relay. Entailment, Neutral

(72%) Premise: Two elderly men having a conversation. Hyp.: Two
elderly woman having a conversation with their children. Neutral,
Contradiction

CSQA Why would a band be performing when there are no people nearby?
O1: record album, O2: play music, O3: hold concert, O4: blaring,
O5: practice

(50%) What do audiences clap for? O1: cinema, O2: theatre, O3: movies,
O4: show, O5: hockey game

WG Maria was able to keep their weight off long term, unlike Felicia,
because _ followed a healthy diet. O1: Maria, O2: Felicia

(36%) When Derrick told Christopher about quitting school to provide for
their family, _ started panicking. O1: Derrick, O2: Christopher

aNLI O1: Ella was taking her final exam. O2: Ella was able to finish
her exam on time. H1: Ella got to class early and was in no hurry.
H2: Ella broke her pencil.
O1: Cathy was happy that she finally had some time to sew. O2:
Cathy tapped her metal fingertips on the table in frustration. H1:
Cathy put the thimbles on. H2: Cathy could not get the thread
into the fabric.

Table 74. Illustrative examples of erroneous instances in SNLI, CSQA, Winogrande, and Abductive
NLI. Orange (ambiguous) and red (mislabeled) indicate the originally annotated answer while blue
indicates the True/equally probable answer.

even for humans because they require abilities such as commonsense reasoning. Table

72 shows such instances. We also provide examples of trivial instances (Table 75) and

note that such instances are trivial from model’s perspective as they can be answered

correctly (with high confidence) by simply latching on to some statistical cues present

in the training data.

Technique: Since the trivial instances are too easy to be answered, we propose

294

Figure 63. Comparing accuracy (averaged over 27 models) before and after modifying the SNLI
instances using our model-and-human-in-the-loop technique. The accuracy on trivial instances
decreases as we make them more difficult while the accuracy on erroneous instances increases as we
repair them.

to modify them in an adversarial way such that they no longer remain trivial.
Specifically, we include a human-in-the-loop who needs to modify a trivial instance in
a label-preserving manner such that the modified version fools the model into making
an incorrect prediction. For adversarial attack, we use the strongest model from our
ensemble of 120 models. It has two key differences with the standard adversarial data
creation approach presented in (Nie et al. 2020; Kiela et al. 2021): (a) it requires
modifying an already existing instance instead of creating a new instance from scratch.
(b) it does not increase the size of the evaluation dataset as we replace an already
saturated instance (trivial) with its improved not-trivial version. We use a human
instead of leveraging automated ways to modify the trivial instances because our
objective is to improve the quality of instances and prior work has shown that these
automated techniques often result in unnatural and noisy instances. Therefore, such
techniques could be cost-efficient but might not solve the sole purpose of improving
quality.

To further improve the quality, we provide instances with very high difficulty

score (potentially erroneous) and ask a human to repair them such that the repaired

versions follow the task definition. The human can either change the instance text or

its answer to achieve the goal. Note that this scenario is model-independent.

295

Dataset Instance

SNLI Premise: A woman playing with her cats while taking pictures. Hyp.:
A woman is playing with her dolls. Contradiction

CSQA What will a person going for a jog likely be wearing? O1: grope, O2:
acknowledgment, O3: comfortable clothes, O4: ipod, O5: passionate
kisses

WG Katrina did not value the antique pictures as much as Lindsey because
_ was a history buff. O1: Katrina, O2: Lindsey

aNLI O1: I bought a house with an ugly yard. O2: He carved the rock into
a lion head and kept it. H1: There was a large rock in the yard. H2:
I decided to tear the whole notebook up.

Table 75. Illustrative examples of trivial instances in SNLI, CSQA, Winogrande, and Abductive
NLI. Text in blue corresponds to the ground-truth answer.

11.4.3 Results

Table 76 shows original and modified instances from SNLI. Top two examples

correspond to the trivial instances where the human modified the hypothesis in a

label-preserving manner such that it fooled the model into making incorrect prediction.

The bottom two correspond to the mislabeled instances where the human rectified

the label. Figure 63 compares the performance of models on the original instances

and the their modified/repaired versions. As expected, the performance drops on the

previously trivial instances as they are no longer trivial and improves on the previously

erroneous instances. We release the improved version of the dataset compiled via our

technique.

296

Original Instance Modification

P: A man standing in front of a chalkboard
points at a drawing. H: A kid washes a
chalkboard L: Contradiction

H’: A 4 year old male standing in front of
a chalkboard points at a drawing.
Predicted L: Neutral

P: A man is performing tricks with his
superbike. H: A bike is in the garage. L:
Contradiction

H’: He is performing stunts on a four
wheeler.
Predicted L: Neutral

P: A skateboarder does a trick at a skate
park. H: The skateboarder is performing
a heelie kick flip. L: Entailment

L’: Neutral

P: A little blond girl is running near a
little blond boy. H: A sister and brother
are playing in their yard. L: Entailment

L’: Neutral

Table 76. Illustrative examples from SNLI dataset modified using our technique. Top two correspond
to trivial instances for which a human modified the hypothesis in a label-preserving manner such
that the model’s prediction changed. Bottom two correspond to mislabeled instances where the
human rectified the label.

11.5 Other Applications of ILDAE

We now briefly discuss other ILDAE applications.

11.5.1 Dataset Analysis

ILDAE reveals several useful characteristics of datasets such as which class label

has the easiest instances. We study this for NLI datasets: SNLI, MNLI, DNLI, and

Adversarial NLI (Figure 64). For SNLI and MNLI, we find that the contradiction

instances receive lower average difficulty score than entailment and neutral instances.

297

Figure 64. Comparing average difficulty of NLI labels for various datasets.

For Adversarial NLI, the order is reversed. For DNLI, all the labels get assigned

nearly the same average difficulty. Such analysis can serve as a guide for future data

creation as it indicates for which type of instances more data collection effort needs

to be invested. It can also be used to compare average difficulty at dataset level.

Furthermore, a new harder task-specific benchmark can be created by combining high

difficulty instances from all the datasets of that task.

11.5.2 Model Analysis

We divide the evaluation instances into different regions based on the difficulty

scores and analyze models’ performance in each region. We find that a single model

does not achieve the highest accuracy across all regions. Figure 65 illustrates this

pattern for SNLI dataset. This implies that the model that achieves the highest

performance on easy instances may not necessarily achieve the highest performance on

298

25% 30% 40% 50% 60% 75%
Dataset P P P P P P

SNLI 0.950.0 0.950.01 0.960.01 0.960.01 0.960.01 0.970.01
PAWS Wiki 0.980.01 0.980.02 0.980.01 0.980.01 0.980.01 0.990.01
AgNews 0.930.01 0.930.02 0.930.01 0.960.01 0.960.01 0.970.01
QNLI 0.920.02 0.920.03 0.930.02 0.960.01 0.960.01 0.970.01
MRPC 0.670.13 0.70.11 0.750.08 0.840.05 0.840.03 0.880.03
SocialIQA 0.840.04 0.870.02 0.890.02 0.910.01 0.930.02 0.940.03
QQP 0.960.01 0.960.01 0.960.01 0.970.01 0.980.0 0.990.01
DNLI 0.960.02 0.970.02 0.970.02 0.980.01 0.980.01 0.980.01
COLA 0.80.05 0.820.07 0.890.06 0.910.02 0.920.04 0.960.02
SWAG 0.970.01 0.960.01 0.970.01 0.980.01 0.990.0 0.990.01
PAWS QQP 0.890.02 0.920.02 0.920.02 0.930.02 0.940.01 0.940.02
MNLI 0.950.01 0.970.01 0.970.01 0.980.0 0.970.01 0.980.01
Adv. NLI R1 0.620.06 0.640.08 0.670.06 0.730.06 0.790.05 0.840.07
Adv. NLI R2 0.420.08 0.460.1 0.540.14 0.630.05 0.710.05 0.770.03
Adv. NLI R3 0.610.05 0.590.06 0.660.1 0.750.06 0.790.06 0.850.04
SST-2 0.830.05 0.860.04 0.870.02 0.870.04 0.910.03 0.920.01
ARC Easy 0.760.07 0.780.08 0.840.08 0.850.05 0.890.03 0.940.02
ARC Diff 0.410.36 0.490.32 0.620.28 0.590.18 0.750.1 0.860.06
Abductive NLI 0.720.03 0.770.03 0.790.06 0.820.03 0.860.02 0.880.04
Winogrande 0.240.13 0.30.16 0.390.17 0.440.16 0.530.09 0.630.07
CSQA 0.850.04 0.860.03 0.890.03 0.910.02 0.940.02 0.950.01
QuaRel 0.570.12 0.580.16 0.730.1 0.80.15 0.790.07 0.810.07
QuaRTz 0.370.12 0.440.07 0.510.12 0.570.09 0.620.11 0.640.08

Table 77. Kendall correlation with full dataset evaluation achieved by our proposed instance selection
approach for different percentage of instances. Each cell shows the mean and standard deviation
obtained from 5 different runs.

difficult instances. The similar pattern is observed for other datasets. Such analysis

would benefit in model selection. For instance, in scenarios where a system is expected

to encounter hard instances, we can select the model that has the highest accuracy

on instances of difficult regions. Whereas, for scenarios containing easy instances, the

model that has the highest accuracy on instances of easy regions.

299

Figure 65. Comparing accuracy of various models in different difficulty regions for SNLI dataset.
Each line corresponds to a candidate model (27 in total). It shows that a single model does not
achieve the highest accuracy in all difficulty regions.

11.5.3 Correlation with OOD Performance

Large pre-trained language models can achieve high In-Domain performance

on numerous tasks. However, it does not correlate well with OOD performance

(Hendrycks and Dietterich 2019; Hendrycks et al. 2020). To this end, we present

an approach to compute a weighted accuracy that shifts away from treating all the

evaluations instances equally and assigns weight based on their difficulty scores. We

define the weight wi of an instance i with difficulty score di as:

wi =
1 + µ ∗ di

N + µ ∗∑N
j=1 dj

300

where N corresponds to the total number of evaluation instances, and µ is a hyper-

parameter that controls influence of difficulty score on the weight. Then, weighted

accuracy W is simply:

W =
N

∑
i=1

wi ∗ vi

where vi is 1 when the model’s prediction is correct else 0. This implies that high

accuracy may not always translate to high weighted accuracy.

We take SNLI as the in-domain dataset and MNLI, DNLI, and HANS (McCoy,

Pavlick, and Linzen 2019) (Constituent, Lexical Overlap, Subsequence) as OOD

datasets. We calculate unweighted and weighted accuracy of the 27 models (described

in Section 11.3.3) and compare their Kendall correlation with the accuracy on OOD

datasets. Figure 66 shows this comparison. It can be observed that weighted accuracy

shows 5.2% higher correlation with OOD performance that the standard accuracy.

Most improvement is observed in hard datasets i.e. HANS. Thus, weighting instances

based on their difficulty score is more informative than the standard accuracy that

treats all instances equally.

11.6 Conclusion

We conducted Instance-Level Difficulty Analysis of Evaluation data (ILDAE) in

a large-scale setup of 23 datasets and presented its five novel applications. With

these applications, we demonstrated ILDAE’s impact in several important areas,

301

Figure 66. Comparing Kendall correlation of standard unweighted accuracy and weighted accuracy
with OOD accuracy. Weighted accuracy achieves 5.2% higher correlation on average.

such as conducting efficient evaluations with fewer instances, improving dataset

quality, and estimating out-of-domain performance reliably. We release our computed

difficulty scores and hope that our work will encourage research in this important yet

understudied field of leveraging instance difficulty in evaluations.

302

Chapter 12

CONCLUSIONS AND FUTURE WORK

Despite recently developed pre-trained language models achieving impressive

performance, there are several challenges pertaining to their practical application,

such as they have a large number of parameters which makes their inference slow

and computationally expensive and they are not absolutely perfect always i.e. they

often make incorrect predictions which hampers their reliability. In this dissertation,

I identified and provided effective solutions to several efficiency and reliability related

challenges. Specifically, towards improving the reliability of models, I first focused on

addressing the hallucination problem which corresponds to the phenomenon when the

model outputs factually incorrect text. Then, I focused on another aspect of reliability

which is selective prediction. Selective prediction enables the models to abstain from

making predictions when the predictions are likely to be incorrect. This prevents

the model from making erroneous predictions and thus improves its reliability. On

the efficiency front, I covered several crucial aspects such as ‘inference efficiency’

which focuses on making model inferences in a computationally efficient manner

without sacrificing the prediction accuracy, ‘open-domain QA reader efficiency’ in

which I leveraged the external knowledge efficiently while answering open-domain

questions, ‘LLM decoding efficiency’ where I improved the computational efficiency

of text generation without sacrificing the quality of the generation, ‘data sample

efficiency’ in which I focused on efficiently collecting data instances for training a

303

task-specific system, and ‘evaluation efficiency’ where I compared the performance of

different models efficiently. Overall, with the research mission of developing reliable

and efficient natural language processing systems, this dissertation identified several

crucial challenges pertinent to the ‘efficiency’ and ‘reliability’ of NLP systems and

provided effective solutions to address these two important elements of practical NLP.

We present the key takeaways and future research avenues from different compo-

nents of this dissertation below:

• Addressing the Hallucination problem: LLMs exhibit hallucination in

their output which hampers their reliability and trustworthiness. Due to the

autoregressive nature of generation of the models, active detection and mitigation

during the generation process does not only reduce these hallucinations but

also prevents the propagation of hallucinations in the model’s output. Future

avenues for research in this direction include studying the active detection and

mitigation approach with the multi-modal models and systematically comparing

the effectiveness of various no-resource and retrieval augmented methods in a

unified testbench.

• Improving Reliability via Selective Prediction and Post-Abstention:

Model’s are not absolutely perfect, i.e., they often output incorrect predictions

which hamper their reliability. Selective prediction with approaches like maxi-

mum softmax probability, monte-carlo dropout, label smoothing, and calibration

can partly address this problem. This is because selective prediction enables the

models to abstain from answering when their prediction is likely to be incorrect.

Future avenues for research in this direction include studying post-abstention

304

methods such as REToP that leverage the logit outputs to detect uncertainty

with LLMs and multi-modal LLMs.

• Improving the Decoding Efficiency: Models’ have a high number of param-

eters which makes their inference slow and computationally expensive. Dynamic

confidence based early exiting from the intermediate layers of a model tuned

with explicit intermediate losses from the intermediate layers addresses this

problem. This approaches improves the computational efficiency of text genera-

tion without sacrificing the quality of generation. Future avenues for research in

this direction include studying speculative sampling from the intermediate layers

to further improve the computational efficiency, and exploring the detection of

hallucination from the outputs of the intermediate layers and their uncertainties.

• Improving the Inference Efficiency: With the increase in the model capacity

(number of parameters), the performance typically tends to increase; however, it

also increases the computation cost associated with inference. Model cascading

is a simple yet effective solution to efficiently yet accurately output predictions.

Furthermore, introducing additional models in the cascade further increases the

efficiency improvements. Future avenues for research in this direction include

studying the efficacy of cascading with the same large model but pruned to

various sparsity targets.

• Improving Open-domain QA Reader Efficiency: Efficiently leveraging

the closed-book and open-book inferences improve the efficiency of open-domain

QA reader model. Dynamic reading in multiple iterations based on the model’s

305

confidence saves the computation cost of the reader model while maintaining

the prediction performance.

• Improving Data Sample Efficiency for Training: Crowdsourcing training

data for a task has several challenges such as creating of too many trivial

examples, similar examples, and erroneous examples. Synthetically creating the

initial set of trivial examples and then adversarially collecting the non-trivial

examples reduces the requirement of collecting expensive crowdsourced data.

Future avenues for research in this direction include utilizing this approach

for collecting instruction tuning data for LLMs and also selecting the honest

examples for tuning safety critical models.

• Improving Evaluation Efficiency: Success of pre-trained language mod-

els has fostered in development of large number of models. Though, it has

resulted in the availability of numerous model options for a task, comparing

the performance of such a large number of models has become computationally

expensive and time-consuming. Computing the difficult scores of evaluation

instances helps in conducting efficient yet accurate evaluations with fewer in-

stances. Future avenues for research in this direction include exploring ways

to efficiently compute difficult scores of evaluation instances and incorporating

more dimensions (apart from the performance of models) to the definition of

difficulty.

306

REFERENCES

Adlakha, Vaibhav, Parishad BehnamGhader, Xing Han Lu, Nicholas Meade, and Siva

Reddy. 2023. “Evaluating correctness and faithfulness of instruction-following

models for question answering.” arXiv preprint arXiv:2307.16877, https://arxiv.

org/abs/2307.16877.

Aliannejadi, Mohammad, Julia Kiseleva, Aleksandr Chuklin, Jeff Dalton, and Mikhail

Burtsev. 2020. “ConvAI3: Generating clarifying questions for open-domain dia-

logue systems (ClariQ).” arXiv preprint arXiv:2009.11352, https://arxiv.org/

abs/2009.11352.

. 2021. “Building and Evaluating Open-Domain Dialogue Corpora with Clari-

fying Questions.” In Proceedings of the 2021 Conference on Empirical Methods

in Natural Language Processing, 4473–4484. Online and Punta Cana, Domini-

can Republic: Association for Computational Linguistics, November. https :

//doi.org/10.18653/v1/2021.emnlp-main.367.

Anantha, Raviteja, Svitlana Vakulenko, Zhucheng Tu, Shayne Longpre, Stephen

Pulman, and Srinivas Chappidi. 2021. “Open-Domain Question Answering Goes

Conversational via Question Rewriting.” In Proceedings of the 2021 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, 520–534. Online: Association for Computational

Linguistics, June. https://doi.org/10.18653/v1/2021.naacl-main.44.

307

https://arxiv.org/abs/2307.16877
https://arxiv.org/abs/2307.16877
https://arxiv.org/abs/2009.11352
https://arxiv.org/abs/2009.11352
https://doi.org/10.18653/v1/2021.emnlp-main.367
https://doi.org/10.18653/v1/2021.emnlp-main.367
https://doi.org/10.18653/v1/2021.naacl-main.44

Aralikatte, Rahul, Shashi Narayan, Joshua Maynez, Sascha Rothe, and Ryan Mc-

Donald. 2021. “Focus Attention: Promoting Faithfulness and Diversity in Sum-

marization.” In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on Natu-

ral Language Processing (Volume 1: Long Papers), 6078–6095. Online: Association

for Computational Linguistics, August. https://doi.org/10.18653/v1/2021.acl-

long.474.

Arase, Yuki, and et al. 2021. “Efficient NLP policy document, https ://bit . ly /

EfficientNLP.”

Arazo, Eric, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness.

2020. “Pseudo-labeling and confirmation bias in deep semi-supervised learning.”

In 2020 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE.

https://arxiv.org/abs/1908.02983.

Arunkumar, Anjana, Swaroop Mishra, Bhavdeep Sachdeva, Chitta Baral, and Chris

Bryan. 2020. “Real-time visual feedback for educative benchmark creation: A

human-and-metric-in-the-loop workflow,” https://arxiv.org/abs/2302.04434.

Azaria, Amos, and Tom Mitchell. 2023a. “The Internal State of an LLM Knows

When It’s Lying.” In Findings of the Association for Computational Linguistics:

EMNLP 2023, edited by Houda Bouamor, Juan Pino, and Kalika Bali, 967–

976. Singapore: Association for Computational Linguistics, December. https:

//aclanthology.org/2023.findings-emnlp.68.

308

https://doi.org/10.18653/v1/2021.acl-long.474
https://doi.org/10.18653/v1/2021.acl-long.474
https://bit.ly/EfficientNLP
https://bit.ly/EfficientNLP
https://arxiv.org/abs/1908.02983
https://arxiv.org/abs/2302.04434
https://aclanthology.org/2023.findings-emnlp.68
https://aclanthology.org/2023.findings-emnlp.68

Azaria, Amos, and Tom Mitchell. 2023b. “The internal state of an llm knows when

its lying.” arXiv preprint arXiv:2304.13734, https://arxiv.org/abs/2304.13734.

Bai, Yuntao, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,

Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,

et al. 2022. “Constitutional ai: Harmlessness from ai feedback.” arXiv preprint

arXiv:2212.08073, https://arxiv.org/abs/2212.08073.

Baker, Frank B, and Seock-Ho Kim. 2004. Item response theory: Parameter estimation

techniques. CRC Press. https://www.publichealth.columbia.edu/research/

population-health-methods/item-response-theory.

Banerjee, Pratyay, Chitta Baral, Man Luo, Arindam Mitra, Kuntal Pal, Tran C

Son, and Neeraj Varshney. 2020. “Can Transformers Reason About Effects of

Actions?” arXiv preprint arXiv:2012.09938, https://arxiv.org/abs/2012.09938.

Banerjee, Pratyay, Tejas Gokhale, and Chitta Baral. 2021. “Self-Supervised Test-Time

Learning for Reading Comprehension.” In Proceedings of the 2021 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, 1200–1211. Online: Association for Computational

Linguistics, June. https://doi.org/10.18653/v1/2021.naacl-main.95.

Belinkov, Yonatan, and Yonatan Bisk. 2018. “Synthetic and Natural Noise Both

Break Neural Machine Translation.” In International Conference on Learning

Representations. https://openreview.net/forum?id=BJ8vJebC-.

309

https://arxiv.org/abs/2304.13734
https://arxiv.org/abs/2212.08073
https://www.publichealth.columbia.edu/research/population-health-methods/item-response-theory
https://www.publichealth.columbia.edu/research/population-health-methods/item-response-theory
https://arxiv.org/abs/2012.09938
https://doi.org/10.18653/v1/2021.naacl-main.95
https://openreview.net/forum?id=BJ8vJebC-

Bhagavatula, Chandra, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari

Holtzman, Hannah Rashkin, Doug Downey, Wen-tau Yih, and Yejin Choi. 2020.

“Abductive Commonsense Reasoning.” In International Conference on Learning

Representations. https://openreview.net/forum?id=Byg1v1HKDB.

Bowman, Samuel R., Gabor Angeli, Christopher Potts, and Christopher D. Manning.

2015. “A large annotated corpus for learning natural language inference.” In

Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, 632–642. Lisbon, Portugal: Association for Computational Linguistics,

September. https://doi.org/10.18653/v1/D15-1075.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, et al. 2020. “Language Models are Few-

Shot Learners.” In Advances in Neural Information Processing Systems, edited

by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, 33:1877–

1901. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Cao, Meng, Yue Dong, and Jackie Cheung. 2022. “Hallucinated but Factual! In-

specting the Factuality of Hallucinations in Abstractive Summarization.” In

Proceedings of the 60th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), 3340–3354. Dublin, Ireland: Association for

Computational Linguistics, May. https://doi.org/10.18653/v1/2022.acl-long.236.

310

https://openreview.net/forum?id=Byg1v1HKDB
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.236

Carpenter, Gail A., and Stephen Grossberg. 1988. “The ART of adaptive pattern

recognition by a self-organizing neural network.” Computer 21 (3): 77–88. https:

//ieeexplore.ieee.org/document/33.

Chen, Anthony, Panupong Pasupat, Sameer Singh, Hongrae Lee, and Kelvin Guu.

2023. “PURR: Efficiently Editing Language Model Hallucinations by Denoising

Language Model Corruptions.” arXiv preprint arXiv:2305.14908, https://arxiv.

org/abs/2305.14908.

Chen, Charlie, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent

Sifre, and John Jumper. 2023. “Accelerating large language model decoding with

speculative sampling.” arXiv preprint arXiv:2302.01318, https://arxiv.org/abs/

2302.01318.

Chen, Danqi, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. “Reading

Wikipedia to Answer Open-Domain Questions.” In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), 1870–1879. Vancouver, Canada: Association for Computational

Linguistics, July. https://doi.org/10.18653/v1/P17-1171.

Chen, Dian, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. 2022. “Contrastive

Test-Time Adaptation.” In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 295–305. https://arxiv.org/abs/2204.

10377.

311

https://ieeexplore.ieee.org/document/33
https://ieeexplore.ieee.org/document/33
https://arxiv.org/abs/2305.14908
https://arxiv.org/abs/2305.14908
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://doi.org/10.18653/v1/P17-1171
https://arxiv.org/abs/2204.10377
https://arxiv.org/abs/2204.10377

Chen, Sihao, Fan Zhang, Kazoo Sone, and Dan Roth. 2021. “Improving Faithfulness in

Abstractive Summarization with Contrast Candidate Generation and Selection.”

In Proceedings of the 2021 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, 5935–

5941. Online: Association for Computational Linguistics, June. https://doi.org/

10.18653/v1/2021.naacl-main.475.

Chen, Tianlong, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang

Wang, and Michael Carbin. 2020. “The Lottery Ticket Hypothesis for Pre-trained

BERT Networks.” In Advances in Neural Information Processing Systems, edited

by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, 33:15834–

15846. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/file/

b6af2c9703f203a2794be03d443af2e3-Paper.pdf.

Cheng, Zhoujun, Jungo Kasai, and Tao Yu. 2023. “Batch Prompting: Efficient Inference

with Large Language Model APIs.” In Proceedings of the 2023 Conference

on Empirical Methods in Natural Language Processing: Industry Track, edited

by Mingxuan Wang and Imed Zitouni, 792–810. Singapore: Association for

Computational Linguistics, December. https://aclanthology.org/2023.emnlp-

industry.74.

Chern, I, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian

He, Graham Neubig, Pengfei Liu, et al. 2023. “FacTool: Factuality Detection in

Generative AI–A Tool Augmented Framework for Multi-Task and Multi-Domain

Scenarios.” arXiv preprint arXiv:2307.13528, https://arxiv.org/abs/2307.13528.

312

https://doi.org/10.18653/v1/2021.naacl-main.475
https://doi.org/10.18653/v1/2021.naacl-main.475
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://aclanthology.org/2023.emnlp-industry.74
https://aclanthology.org/2023.emnlp-industry.74
https://arxiv.org/abs/2307.13528

Chiang, Wei-Lin, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin

Zheng, et al. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with

90%* ChatGPT Quality, March. https://lmsys.org/blog/2023-03-30-vicuna/.

Chow, Chi-Keung. 1957. “An optimum character recognition system using decision

functions.” IRE Transactions on Electronic Computers, no. 4, 247–254. https:

//ieeexplore.ieee.org/document/5222035.

Chowdhery, Aakanksha, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav

Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-

bastian Gehrmann, et al. 2022. “Palm: Scaling language modeling with pathways.”

arXiv preprint arXiv:2204.02311, https://arxiv.org/abs/2204.02311.

Chrysostomou, George, Zhixue Zhao, Miles Williams, and Nikolaos Aletras. 2023.

“Lighter, yet More Faithful: Investigating Hallucinations in Pruned Large Lan-

guage Models for Abstractive Summarization.” arXiv preprint arXiv:2311.09335,

https://arxiv.org/abs/2311.09355.

Chung, Hyung Won, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,

Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022.

“Scaling instruction-finetuned language models.” arXiv preprint arXiv:2210.11416,

https://arxiv.org/abs/2210.11416.

Clark, Kevin, Minh-Thang Luong, Urvashi Khandelwal, Christopher D. Manning,

and Quoc V. Le. 2019. “BAM! Born-Again Multi-Task Networks for Natural

Language Understanding.” In Proceedings of the 57th Annual Meeting of the As-

313

https://lmsys.org/blog/2023-03-30-vicuna/
https://ieeexplore.ieee.org/document/5222035
https://ieeexplore.ieee.org/document/5222035
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2311.09355
https://arxiv.org/abs/2210.11416

sociation for Computational Linguistics, 5931–5937. Florence, Italy: Association

for Computational Linguistics, July. https://doi.org/10.18653/v1/P19-1595.

Clark, Kevin, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020.

“ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Genera-

tors.” In ICLR. https://openreview.net/pdf?id=r1xMH1BtvB.

Clark, Peter, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa

Schoenick, and Oyvind Tafjord. 2018. “Think you have solved question answering?

try arc, the ai2 reasoning challenge.” arXiv preprint arXiv:1803.05457, https:

//arxiv.org/abs/1803.05457.

Clark, Peter, Oyvind Tafjord, and Kyle Richardson. 2020. “Transformers as soft

reasoners over language.” arXiv preprint arXiv:2002.05867, https://arxiv.org/

abs/2002.05867.

Cui, Wanyun, Guangyu Zheng, and Wei Wang. 2020. “Unsupervised Natural Lan-

guage Inference via Decoupled Multimodal Contrastive Learning.” In Proceedings

of the 2020 Conference on Empirical Methods in Natural Language Process-

ing (EMNLP), 5511–5520. Online: Association for Computational Linguistics,

November. https://doi.org/10.18653/v1/2020.emnlp-main.444.

Dettmers, Tim, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022.

“GPT3.int8(): 8-bit Matrix Multiplication for Transformers at Scale.” In Advances

in Neural Information Processing Systems, edited by Alice H. Oh, Alekh Agarwal,

314

https://doi.org/10.18653/v1/P19-1595
https://openreview.net/pdf?id=r1xMH1BtvB
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2002.05867
https://arxiv.org/abs/2002.05867
https://doi.org/10.18653/v1/2020.emnlp-main.444

Danielle Belgrave, and Kyunghyun Cho. https://openreview.net/forum?id=

dXiGWqBoxaD.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. “BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.”

In Proceedings of the 2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers), 4171–4186. Minneapolis, Minnesota: Association for

Computational Linguistics, June. https://doi.org/10.18653/v1/N19-1423.

Dhingra, Bhuwan, Manaal Faruqui, Ankur Parikh, Ming-Wei Chang, Dipanjan Das,

and William Cohen. 2019. “Handling Divergent Reference Texts when Evaluating

Table-to-Text Generation.” In Proceedings of the 57th Annual Meeting of the As-

sociation for Computational Linguistics, 4884–4895. Florence, Italy: Association

for Computational Linguistics, July. https://doi.org/10.18653/v1/P19-1483.

Dhuliawala, Shehzaad, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli

Celikyilmaz, and Jason Weston. 2023. “Chain-of-verification reduces hallucination

in large language models.” arXiv preprint arXiv:2309.11495, https://arxiv.org/

abs/2309.11495.

Din, Alexander Yom, Taelin Karidi, Leshem Choshen, and Mor Geva. 2023. “Jump to

Conclusions: Short-Cutting Transformers With Linear Transformations.” arXiv

preprint arXiv:2303.09435, https://arxiv.org/abs/2303.09435.

315

https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1483
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2303.09435

Dolan, William B, and Chris Brockett. 2005. “Automatically constructing a corpus of

sentential paraphrases.” In Proceedings of the Third International Workshop on

Paraphrasing (IWP2005). https://aclanthology.org/I05-5002/.

Du, Yilun, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch.

2023. “Improving Factuality and Reasoning in Language Models through Multi-

agent Debate.” arXiv preprint arXiv:2305.14325, https://arxiv.org/abs/2305.

14325.

Dua, Dheeru, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and

Matt Gardner. 2019. “DROP: A Reading Comprehension Benchmark Requiring

Discrete Reasoning Over Paragraphs.” In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), 2368–2378.

Minneapolis, Minnesota: Association for Computational Linguistics, June. https:

//doi.org/10.18653/v1/N19-1246.

Dunn, Matthew, Levent Sagun, Mike Higgins, V Ugur Guney, Volkan Cirik, and

Kyunghyun Cho. 2017. “Searchqa: A new q&a dataset augmented with context

from a search engine.” arXiv preprint arXiv:1704.05179, https://arxiv.org/abs/

1704.05179.

Dziri, Nouha, Andrea Madotto, Osmar Zaıane, and Avishek Joey Bose. 2021. “Neural

Path Hunter: Reducing Hallucination in Dialogue Systems via Path Grounding.”

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language

316

https://aclanthology.org/I05-5002/
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://arxiv.org/abs/1704.05179
https://arxiv.org/abs/1704.05179

Processing, 2197–2214. Online and Punta Cana, Dominican Republic: Association

for Computational Linguistics, November. https://doi.org/10.18653/v1/2021.

emnlp-main.168.

Elbayad, Maha, Jiatao Gu, Edouard Grave, and Michael Auli. 2020. “Depth-Adaptive

Transformer.” In International Conference on Learning Representations. https:

//openreview.net/forum?id=SJg7KhVKPH.

Elsahar, Hady, and Matthias Gallé. 2019. “To Annotate or Not? Predicting Perfor-

mance Drop under Domain Shift.” In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2163–

2173. Hong Kong, China: Association for Computational Linguistics, November.

https://doi.org/10.18653/v1/D19-1222.

Ettinger, Allyson. 2020. “What BERT Is Not: Lessons from a New Suite of Psycholin-

guistic Diagnostics for Language Models.” Edited by Mark Johnson, Brian Roark,

and Ani Nenkova. Transactions of the Association for Computational Linguistics

(Cambridge, MA) 8:34–48. https://doi.org/10.1162/tacl_a_00298.

Feng, Yang, Wanying Xie, Shuhao Gu, Chenze Shao, Wen Zhang, Zhengxin Yang, and

Dong Yu. 2020. “Modeling fluency and faithfulness for diverse neural machine

translation.” In Proceedings of the AAAI Conference on Artificial Intelligence,

34:59–66. 01. https://arxiv.org/abs/1912.00178.

317

https://doi.org/10.18653/v1/2021.emnlp-main.168
https://doi.org/10.18653/v1/2021.emnlp-main.168
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://doi.org/10.18653/v1/D19-1222
https://doi.org/10.1162/tacl_a_00298
https://arxiv.org/abs/1912.00178

Fisch, Adam, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen.

2019. “MRQA 2019 Shared Task: Evaluating Generalization in Reading Compre-

hension.” In Proceedings of the 2nd Workshop on Machine Reading for Question

Answering, 1–13. https://aclanthology.org/D19-5801/.

Frantar, Elias, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2023. “OPTQ:

Accurate Quantization for Generative Pre-trained Transformers.” In The Eleventh

International Conference on Learning Representations. https://openreview.net/

forum?id=tcbBPnfwxS.

Gal, Yarin, and Zoubin Ghahramani. 2016. “Dropout as a bayesian approximation:

Representing model uncertainty in deep learning.” In international conference

on machine learning, 1050–1059. PMLR. https://arxiv.org/abs/1506.02142.

Garg, Siddhant, and Alessandro Moschitti. 2021. “Will this Question be Answered?

Question Filtering via Answer Model Distillation for Efficient Question Answer-

ing.” In Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, 7329–7346. Online and Punta Cana, Dominican Republic:

Association for Computational Linguistics, November. https://doi.org/10.18653/

v1/2021.emnlp-main.583.

Geifman, Yonatan, and Ran El-Yaniv. 2017. “Selective Classification for Deep Neural

Networks.” In NIPS. https://arxiv.org/abs/1705.08500.

. 2019. “SelectiveNet: A Deep Neural Network with an Integrated Reject

Option.” In ICML. https://arxiv.org/abs/1901.09192.

318

https://aclanthology.org/D19-5801/
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://arxiv.org/abs/1506.02142
https://doi.org/10.18653/v1/2021.emnlp-main.583
https://doi.org/10.18653/v1/2021.emnlp-main.583
https://arxiv.org/abs/1705.08500
https://arxiv.org/abs/1901.09192

Geng, Xinyang, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey

Levine, and Dawn Song. 2023. Koala: A Dialogue Model for Academic Research.

Blog post, April. Accessed April 3, 2023. https://bair.berkeley.edu/blog/2023/

04/03/koala/.

Gera, Ariel, Roni Friedman, Ofir Arviv, Chulaka Gunasekara, Benjamin Sznajder,

Noam Slonim, and Eyal Shnarch. 2023. “The Benefits of Bad Advice: Auto-

contrastive Decoding across Model Layers.” In Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), edited by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,

10406–10420. Toronto, Canada: Association for Computational Linguistics, July.

https://doi.org/10.18653/v1/2023.acl-long.580.

Glockner, Max, Vered Shwartz, and Yoav Goldberg. 2018. “Breaking NLI Systems

with Sentences that Require Simple Lexical Inferences.” In Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics (Volume

2: Short Papers), 650–655. Melbourne, Australia: Association for Computational

Linguistics, July. https://doi.org/10.18653/v1/P18-2103.

Gou, Zhibin, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan,

and Weizhu Chen. 2023. “Critic: Large language models can self-correct with

tool-interactive critiquing.” arXiv preprint arXiv:2305.11738, https://arxiv.org/

abs/2305.11738.

319

https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://doi.org/10.18653/v1/2023.acl-long.580
https://doi.org/10.18653/v1/P18-2103
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2305.11738

Goyal, Saurabh, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy,

Yogish Sabharwal, and Ashish Verma. 2020. “PoWER-BERT: Accelerating BERT

inference via progressive word-vector elimination.” In International Conference

on Machine Learning, 3690–3699. PMLR. https://proceedings.mlr.press/v119/

goyal20a/goyal20a.pdf.

Guo, Demi, Alexander Rush, and Yoon Kim. 2021. “Parameter-Efficient Transfer

Learning with Diff Pruning.” In Proceedings of the 59th Annual Meeting of

the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), 4884–4896.

Online: Association for Computational Linguistics, August. https://doi.org/10.

18653/v1/2021.acl-long.378.

Gururangan, Suchin, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bow-

man, and Noah A. Smith. 2018. “Annotation Artifacts in Natural Language

Inference Data.” In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, Volume 2 (Short Papers), 107–112. New Orleans, Louisiana: Association

for Computational Linguistics, June. https://doi.org/10.18653/v1/N18-2017.

He, Zhenyu, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. 2023. “REST:

Retrieval-Based Speculative Decoding.” arXiv preprint arXiv:2311.08252, https:

//arxiv.org/abs/2311.08252.

320

https://proceedings.mlr.press/v119/goyal20a/goyal20a.pdf
https://proceedings.mlr.press/v119/goyal20a/goyal20a.pdf
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/N18-2017
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2311.08252

Hendrycks, Dan, and Thomas Dietterich. 2019. “Benchmarking Neural Network

Robustness to Common Corruptions and Perturbations.” In International Con-

ference on Learning Representations. https : //openreview .net/ forum? id=

HJz6tiCqYm.

Hendrycks, Dan, and Kevin Gimpel. 2017. “A Baseline for Detecting Misclassified and

Out-of-Distribution Examples in Neural Networks.” Proceedings of International

Conference on Learning Representations, https://arxiv.org/abs/1610.02136.

Hendrycks, Dan, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan,

and Dawn Song. 2020. “Pretrained Transformers Improve Out-of-Distribution

Robustness.” In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, 2744–2751. Online: Association for Computational

Linguistics, July. https://doi.org/10.18653/v1/2020.acl-main.244.

Holtzman, Ari, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. “The Curious

Case of Neural Text Degeneration.” In International Conference on Learning

Representations. https://openreview.net/forum?id=rygGQyrFvH.

Hossain, Md Mosharaf, and Eduardo Blanco. 2022. “Leveraging Affirmative Interpreta-

tions from Negation Improves Natural Language Understanding.” In Proceedings

of the 2022 Conference on Empirical Methods in Natural Language Process-

ing, edited by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, 5833–5847.

321

https://openreview.net/forum?id=HJz6tiCqYm
https://openreview.net/forum?id=HJz6tiCqYm
https://arxiv.org/abs/1610.02136
https://doi.org/10.18653/v1/2020.acl-main.244
https://openreview.net/forum?id=rygGQyrFvH

Abu Dhabi, United Arab Emirates: Association for Computational Linguistics,

December. https://doi.org/10.18653/v1/2022.emnlp-main.393.

Hossain, Md Mosharaf, Dhivya Chinnappa, and Eduardo Blanco. 2022. “An Analysis

of Negation in Natural Language Understanding Corpora.” In Proceedings of the

60th Annual Meeting of the Association for Computational Linguistics (Volume

2: Short Papers), edited by Smaranda Muresan, Preslav Nakov, and Aline Villav-

icencio, 716–723. Dublin, Ireland: Association for Computational Linguistics,

May. https://doi.org/10.18653/v1/2022.acl-short.81.

Hossain, Md Mosharaf, Venelin Kovatchev, Pranoy Dutta, Tiffany Kao, Elizabeth

Wei, and Eduardo Blanco. 2020. “An Analysis of Natural Language Inference

Benchmarks through the Lens of Negation.” In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing (EMNLP), edited by

Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, 9106–9118. Online:

Association for Computational Linguistics, November. https://doi.org/10.18653/

v1/2020.emnlp-main.732.

Hosseini, Arian, Siva Reddy, Dzmitry Bahdanau, R Devon Hjelm, Alessandro Sordoni,

and Aaron Courville. 2021. “Understanding by Understanding Not: Modeling

Negation in Language Models.” In Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, edited by Kristina Toutanova, Anna Rumshisky, Luke

Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell,

Tanmoy Chakraborty, and Yichao Zhou, 1301–1312. Online: Association for

322

https://doi.org/10.18653/v1/2022.emnlp-main.393
https://doi.org/10.18653/v1/2022.acl-short.81
https://doi.org/10.18653/v1/2020.emnlp-main.732
https://doi.org/10.18653/v1/2020.emnlp-main.732

Computational Linguistics, June. https://doi.org/10.18653/v1/2021.naacl-

main.102.

Hou, Lu, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. 2020.

“DynaBERT: Dynamic BERT with Adaptive Width and Depth.” In Advances in

Neural Information Processing Systems, edited by H. Larochelle, M. Ranzato, R.

Hadsell, M. F. Balcan, and H. Lin, 33:9782–9793. Curran Associates, Inc. https:

//proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-

Paper.pdf.

Hsieh, Cheng-Yu, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii,

Alex Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. “Distilling

Step-by-Step! Outperforming Larger Language Models with Less Training Data

and Smaller Model Sizes.” In Findings of the Association for Computational

Linguistics: ACL 2023, edited by Anna Rogers, Jordan Boyd-Graber, and Naoaki

Okazaki, 8003–8017. Toronto, Canada: Association for Computational Linguistics,

July. https://doi.org/10.18653/v1/2023.findings-acl.507.

Hsu, Yen-Chang, Yilin Shen, Hongxia Jin, and Zsolt Kira. 2020. “Generalized ODIN:

Detecting Out-of-Distribution Image Without Learning From Out-of-Distribution

Data.” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 10948–10957. https://arxiv.org/abs/2002.11297.

323

https://doi.org/10.18653/v1/2021.naacl-main.102
https://doi.org/10.18653/v1/2021.naacl-main.102
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-acl.507
https://arxiv.org/abs/2002.11297

Huang, Yichong, Xiachong Feng, Xiaocheng Feng, and Bing Qin. 2021. “The factual

inconsistency problem in abstractive text summarization: A survey.” arXiv

preprint arXiv:2104.14839, https://arxiv.org/abs/2104.14839.

Iandola, Forrest, Albert Shaw, Ravi Krishna, and Kurt Keutzer. 2020. “Squeeze-

BERT: What can computer vision teach NLP about efficient neural networks?”

In Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Lan-

guage Processing, 124–135. Online: Association for Computational Linguistics,

November. https://doi.org/10.18653/v1/2020.sustainlp-1.17.

Iyer, Shankar, Nikhil Dandekar, and Kornél Csernai. 2017. “First quora dataset release:

Question pairs.” data. quora. com, https://quoradata.quora.com/First-Quora-

Dataset-Release-Question-Pairs.

Iyyer, Mohit, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. 2018. “Adversarial

Example Generation with Syntactically Controlled Paraphrase Networks.” In Pro-

ceedings of the 2018 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), 1875–1885. New Orleans, Louisiana: Association for Computational

Linguistics, June. https://doi.org/10.18653/v1/N18-1170.

Izacard, Gautier, and Edouard Grave. 2021. “Leveraging Passage Retrieval with

Generative Models for Open Domain Question Answering.” In Proceedings of the

16th Conference of the European Chapter of the Association for Computational

324

https://arxiv.org/abs/2104.14839
https://doi.org/10.18653/v1/2020.sustainlp-1.17
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://doi.org/10.18653/v1/N18-1170

Linguistics: Main Volume, 874–880. Online: Association for Computational

Linguistics, April. https://doi.org/10.18653/v1/2021.eacl-main.74.

Izacard, Gautier, Fabio Petroni, Lucas Hosseini, Nicola De Cao, Sebastian Riedel, and

Edouard Grave. 2020. “A memory efficient baseline for open domain question

answering.” arXiv preprint arXiv:2012.15156, https://arxiv.org/abs/2012.15156.

Jang, Joel, Seonghyeon Ye, and Minjoon Seo. 2023. “Can large language models

truly understand prompts? a case study with negated prompts.” In Transfer

Learning for Natural Language Processing Workshop, 52–62. PMLR. https :

//arxiv.org/abs/2209.12711.

Ji, Ziwei, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,

Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. “Survey of hallucination

in natural language generation.” ACM Computing Surveys 55 (12): 1–38. https:

//arxiv.org/abs/2202.03629.

Jia, Robin, and Percy Liang. 2017. “Adversarial Examples for Evaluating Reading

Comprehension Systems.” In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, 2021–2031. Copenhagen, Denmark:

Association for Computational Linguistics, September. https://doi.org/10.18653/

v1/D17-1215.

Jiang, Zi-Hang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, and Shuicheng

Yan. 2020. “ConvBERT: Improving BERT with Span-based Dynamic Convo-

lution.” In Advances in Neural Information Processing Systems, edited by H.

325

https://doi.org/10.18653/v1/2021.eacl-main.74
https://arxiv.org/abs/2012.15156
https://arxiv.org/abs/2209.12711
https://arxiv.org/abs/2209.12711
https://arxiv.org/abs/2202.03629
https://arxiv.org/abs/2202.03629
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215

Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, 33:12837–12848.

Curran Associates, Inc. https : //proceedings .neurips . cc/paper/2020/ file /

96da2f590cd7246bbde0051047b0d6f7-Paper.pdf.

Jiang, Huiqiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.

“Llmlingua: Compressing prompts for accelerated inference of large language

models.” arXiv preprint arXiv:2310.05736, https://arxiv.org/abs/2310.05736.

Jiang, Zhengbao, Jun Araki, Haibo Ding, and Graham Neubig. 2021. “How Can We

Know When Language Models Know? On the Calibration of Language Models

for Question Answering.” Transactions of the Association for Computational

Linguistics 9 (September): 962–977. https://doi.org/10.1162/tacl_a_00407.

eprint: https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00407/

1962628/tacl_a_00407.pdf.

Jiao, Xiaoqi, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang

Wang, and Qun Liu. 2020. “TinyBERT: Distilling BERT for Natural Language

Understanding.” In Findings of the Association for Computational Linguistics:

EMNLP 2020, 4163–4174. Online: Association for Computational Linguistics,

November. https://doi.org/10.18653/v1/2020.findings-emnlp.372.

Joshi, Mandar, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. “TriviaQA: A

Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension.”

In Proceedings of the 55th Annual Meeting of the Association for Computational

326

https://proceedings.neurips.cc/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://arxiv.org/abs/2310.05736
https://doi.org/10.1162/tacl_a_00407
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00407/1962628/tacl_a_00407.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00407/1962628/tacl_a_00407.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.372

Linguistics (Volume 1: Long Papers), 1601–1611. Vancouver, Canada: Association

for Computational Linguistics, July. https://doi.org/10.18653/v1/P17-1147.

Kadavath, Saurav, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan

Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson,

et al. 2022. “Language models (mostly) know what they know.” arXiv preprint

arXiv:2207.05221, https://arxiv.org/abs/2207.05221.

Kamath, Amita, Robin Jia, and Percy Liang. 2020. “Selective Question Answering

under Domain Shift.” In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, 5684–5696. Online: Association for Computational

Linguistics, July. https://doi.org/10.18653/v1/2020.acl-main.503.

Karpukhin, Vladimir, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. 2020. “Dense Passage Retrieval for

Open-Domain Question Answering.” In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), 6769–6781. Online:

Association for Computational Linguistics, November. https://doi.org/10.18653/

v1/2020.emnlp-main.550.

Kassner, Nora, and Hinrich Schütze. 2020. “Negated and Misprimed Probes for

Pretrained Language Models: Birds Can Talk, But Cannot Fly.” In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics,

edited by Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, 7811–

327

https://doi.org/10.18653/v1/P17-1147
https://arxiv.org/abs/2207.05221
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

7818. Online: Association for Computational Linguistics, July. https://doi.org/

10.18653/v1/2020.acl-main.698.

Kendall, Maurice G. 1938. “A new measure of rank correlation.” Biometrika 30 (1/2):

81–93. https://www.jstor.org/stable/2332226.

Khattab, Omar, and Matei Zaharia. 2020. “ColBERT: Efficient and Effective Passage

Search via Contextualized Late Interaction over BERT.” In Proceedings of the

43rd International ACM SIGIR Conference on Research and Development in

Information Retrieval, 39–48. SIGIR ’20. Virtual Event, China: Association for

Computing Machinery. https://doi.org/10.1145/3397271.3401075.

Khot, Tushar, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter

Clark, and Ashish Sabharwal. 2023. “Decomposed Prompting: A Modular Ap-

proach for Solving Complex Tasks.” In The Eleventh International Conference

on Learning Representations. https://openreview.net/forum?id=_nGgzQjzaRy.

Kiela, Douwe, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan

Wu, Bertie Vidgen, et al. 2021. “Dynabench: Rethinking Benchmarking in NLP.”

In Proceedings of the 2021 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, 4110–

4124. Online: Association for Computational Linguistics, June. https://doi.org/

10.18653/v1/2021.naacl-main.324.

Kim, Daesik, Seonhoon Kim, and Nojun Kwak. 2019. “Textbook Question Answering

with Multi-modal Context Graph Understanding and Self-supervised Open-set

328

https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://www.jstor.org/stable/2332226
https://doi.org/10.1145/3397271.3401075
https://openreview.net/forum?id=_nGgzQjzaRy
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324

Comprehension.” In Proceedings of the 57th Annual Meeting of the Associa-

tion for Computational Linguistics, 3568–3584. Florence, Italy: Association for

Computational Linguistics, July. https://doi.org/10.18653/v1/P19-1347.

Kim, Gyuwan, and Kyunghyun Cho. 2021. “Length-Adaptive Transformer: Train

Once with Length Drop, Use Anytime with Search.” In Proceedings of the 59th

Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), 6501–6511. Online: Association for Computational Linguistics, August.

https://doi.org/10.18653/v1/2021.acl-long.508.

Kim, Sehoon, Karttikeya Mangalam, Jitendra Malik, Michael W Mahoney, Amir

Gholami, and Kurt Keutzer. 2023. “Big little transformer decoder.” arXiv preprint

arXiv:2302.07863, https://arxiv.org/abs/2302.07863.

Koh, Pang Wei, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang,

Akshay Balsubramani, Weihua Hu, et al. 2021. “WILDS: A Benchmark of in-the-

Wild Distribution Shifts.” In Proceedings of the 38th International Conference

on Machine Learning, edited by Marina Meila and Tong Zhang, 139:5637–

5664. Proceedings of Machine Learning Research. PMLR, 18–24 Jul. https :

//proceedings.mlr.press/v139/koh21a.html.

Kulkarni, Mayank, Debanjan Mahata, Ravneet Arora, and Rajarshi Bhowmik.

2021. “Learning rich representation of keyphrases from text.” arXiv preprint

arXiv:2112.08547, https://arxiv.org/abs/2112.08547.

329

https://doi.org/10.18653/v1/P19-1347
https://doi.org/10.18653/v1/2021.acl-long.508
https://arxiv.org/abs/2302.07863
https://proceedings.mlr.press/v139/koh21a.html
https://proceedings.mlr.press/v139/koh21a.html
https://arxiv.org/abs/2112.08547

Kwiatkowski, Tom, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur

Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton

Lee, et al. 2019a. “Natural questions: a benchmark for question answering re-

search.” Transactions of the Association for Computational Linguistics 7:453–466.

https://aclanthology.org/Q19-1026/.

Kwiatkowski, Tom, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur

Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton

Lee, et al. 2019b. “Natural Questions: A Benchmark for Question Answering

Research.” Transactions of the Association for Computational Linguistics 7

(March): 452–466. https://doi.org/10.1162/tacl_a_00276.

Lai, Guokun, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. “RACE:

Large-scale ReAding Comprehension Dataset From Examinations.” In Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing,

785–794. Copenhagen, Denmark: Association for Computational Linguistics,

September. https://doi.org/10.18653/v1/D17-1082.

Lalor, John P., Hao Wu, Tsendsuren Munkhdalai, and Hong Yu. 2018. “Understanding

Deep Learning Performance through an Examination of Test Set Difficulty: A

Psychometric Case Study.” In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, 4711–4716. Brussels, Belgium: Associa-

tion for Computational Linguistics, October. https://doi.org/10.18653/v1/D18-

1500.

330

https://aclanthology.org/Q19-1026/
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D18-1500
https://doi.org/10.18653/v1/D18-1500

Lalor, John P., Hao Wu, and Hong Yu. 2016. “Building an Evaluation Scale using

Item Response Theory.” In Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, 648–657. Austin, Texas: Association for

Computational Linguistics, November. https://doi.org/10.18653/v1/D16-1062.

Lan, Zhenzhong, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,

and Radu Soricut. 2020. “ALBERT: A Lite BERT for Self-supervised Learn-

ing of Language Representations.” In International Conference on Learning

Representations. https://openreview.net/forum?id=H1eA7AEtvS.

Lebret, Rémi, David Grangier, and Michael Auli. 2016. “Neural Text Generation from

Structured Data with Application to the Biography Domain.” In Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing,

1203–1213. Austin, Texas: Association for Computational Linguistics, November.

https://doi.org/10.18653/v1/D16-1128.

Lee, Katherine, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck,

Chris Callison-Burch, and Nicholas Carlini. 2022. “Deduplicating Training Data

Makes Language Models Better.” In Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers),

8424–8445. Dublin, Ireland: Association for Computational Linguistics, May.

https://doi.org/10.18653/v1/2022.acl-long.577.

Lee, Kimin, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. “A Simple Unified

Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks.”

331

https://doi.org/10.18653/v1/D16-1062
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/2022.acl-long.577

In Advances in Neural Information Processing Systems, edited by S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/

abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf.

Lee, Nayeon, Wei Ping, Peng Xu, Mostofa Patwary, Pascale N Fung, Mohammad

Shoeybi, and Bryan Catanzaro. 2022. “Factuality enhanced language models

for open-ended text generation.” Advances in Neural Information Processing

Systems 35:34586–34599. https://arxiv.org/abs/2206.04624.

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. 2023. “Fast inference from

transformers via speculative decoding.” In International Conference on Machine

Learning, 19274–19286. PMLR. https://arxiv.org/abs/2211.17192.

Levy, Omer, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. 2017. “Zero-Shot

Relation Extraction via Reading Comprehension.” In Proceedings of the 21st

Conference on Computational Natural Language Learning (CoNLL 2017), 333–

342. Vancouver, Canada: Association for Computational Linguistics, August.

https://doi.org/10.18653/v1/K17-1034.

Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART: Denoising

Sequence-to-Sequence Pre-training for Natural Language Generation, Translation,

and Comprehension. arXiv: 1910.13461 [cs.CL]. https://aclanthology.org/2020.

acl-main.703/.

332

https://proceedings.neurips.cc/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://arxiv.org/abs/2206.04624
https://arxiv.org/abs/2211.17192
https://doi.org/10.18653/v1/K17-1034
https://arxiv.org/abs/1910.13461
https://aclanthology.org/2020.acl-main.703/
https://aclanthology.org/2020.acl-main.703/

Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. “BART:

Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,

Translation, and Comprehension.” In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, 7871–7880. Online: Association

for Computational Linguistics, July. https://doi.org/10.18653/v1/2020.acl-

main.703.

Li, Haoran, Junnan Zhu, Jiajun Zhang, and Chengqing Zong. 2018. “Ensure the

Correctness of the Summary: Incorporate Entailment Knowledge into Abstractive

Sentence Summarization.” In Proceedings of the 27th International Conference on

Computational Linguistics, 1430–1441. Santa Fe, New Mexico, USA: Association

for Computational Linguistics, August. https://aclanthology.org/C18-1121.

Li, Lei, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li, Jie Zhou, and Xu Sun.

2021. “CascadeBERT: Accelerating Inference of Pre-trained Language Models

via Calibrated Complete Models Cascade.” In Findings of the Association for

Computational Linguistics: EMNLP 2021, 475–486. Punta Cana, Dominican

Republic: Association for Computational Linguistics, November. https://doi.org/

10.18653/v1/2021.findings-emnlp.43.

Li, Linjie, Jie Lei, Zhe Gan, and Jingjing Liu. 2021. “Adversarial VQA: A New

Benchmark for Evaluating the Robustness of VQA Models.” In International

Conference on Computer Vision (ICCV). https://arxiv.org/abs/2106.00245.

333

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/C18-1121
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://arxiv.org/abs/2106.00245

Li, Zheng, Zijian Wang, Ming Tan, Ramesh Nallapati, Parminder Bhatia, Andrew

Arnold, Bing Xiang, and Dan Roth. 2022. “DQ-BART: Efficient Sequence-to-

Sequence Model via Joint Distillation and Quantization.” In Proceedings of the

60th Annual Meeting of the Association for Computational Linguistics (Vol-

ume 2: Short Papers), 203–211. Dublin, Ireland: Association for Computational

Linguistics, May. https://doi.org/10.18653/v1/2022.acl-short.22.

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollar, and Larry Zitnick. 2014. “Microsoft COCO: Common

Objects in Context.” In ECCV. European Conference on Computer Vision,

September. https://www.microsoft.com/en-us/research/publication/microsoft-

coco-common-objects-in-context/.

Liu, Weitang, Xiaoyun Wang, John Owens, and Yixuan Li. 2020. “Energy-based

Out-of-distribution Detection.” In Advances in Neural Information Processing

Systems, edited by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and

H. Lin, 33:21464–21475. Curran Associates, Inc. https://proceedings.neurips.cc/

paper/2020/file/f5496252609c43eb8a3d147ab9b9c006-Paper.pdf.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019a. “RoBERTa:

A Robustly Optimized BERT Pretraining Approach.” ArXiv abs/1907.11692.

https://arxiv.org/abs/1907.11692.

334

https://doi.org/10.18653/v1/2022.acl-short.22
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://proceedings.neurips.cc/paper/2020/file/f5496252609c43eb8a3d147ab9b9c006-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5496252609c43eb8a3d147ab9b9c006-Paper.pdf
https://arxiv.org/abs/1907.11692

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. “Roberta: A

robustly optimized bert pretraining approach.” arXiv preprint arXiv:1907.11692,

https://arxiv.org/abs/1907.11692.

Longpre, Shayne, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, and

Sameer Singh. 2021. “Entity-Based Knowledge Conflicts in Question Answering.”

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, 7052–7063. Online and Punta Cana, Dominican Republic: Association

for Computational Linguistics, November. https://doi.org/10.18653/v1/2021.

emnlp-main.565.

Lu, Jiasen, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. “ViLBERT: Pretraining

Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks.”

In Advances in Neural Information Processing Systems, edited by H. Wallach,

H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, vol. 32.

Curran Associates, Inc. https : //proceedings .neurips . cc/paper/2019/ file /

c74d97b01eae257e44aa9d5bade97baf-Paper.pdf.

Luo, Man, Shashank Jain, Anchit Gupta, Arash Einolghozati, Barlas Oguz, Debojeet

Chatterjee, Xilun Chen, Chitta Baral, and Peyman Heidari. 2022. “A Study on

the Efficiency and Generalization of Light Hybrid Retrievers.” arXiv preprint

arXiv:2210.01371, https://aclanthology.org/2023.acl-short.139/.

335

https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.emnlp-main.565
https://doi.org/10.18653/v1/2021.emnlp-main.565
https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://aclanthology.org/2023.acl-short.139/

Luo, Man, Shrinidhi Kumbhar, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee,

Somak Aditya, Chitta Baral, et al. 2023. “Towards logiglue: A brief survey and

a benchmark for analyzing logical reasoning capabilities of language models.”

arXiv preprint arXiv:2310.00836, https://arxiv.org/abs/2310.00836.

Manakul, Potsawee, Adian Liusie, and Mark Gales. 2023. “SelfCheckGPT: Zero-

Resource Black-Box Hallucination Detection for Generative Large Language

Models.” In Proceedings of the 2023 Conference on Empirical Methods in Natural

Language Processing, edited by Houda Bouamor, Juan Pino, and Kalika Bali,

9004–9017. Singapore: Association for Computational Linguistics, December.

https://aclanthology.org/2023.emnlp-main.557.

Manakul, Potsawee, Adian Liusie, and Mark JF Gales. 2023. “Selfcheckgpt: Zero-

resource black-box hallucination detection for generative large language models.”

arXiv preprint arXiv:2303.08896, https://arxiv.org/abs/2303.08896.

Marneffe, Marie-Catherine de, Mandy Simons, and Judith Tonhauser. 2019. “The

CommitmentBank: Investigating projection in naturally occurring discourse.”

https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf.

Maynez, Joshua, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020. “On

Faithfulness and Factuality in Abstractive Summarization.” In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, 1906–1919.

Online: Association for Computational Linguistics, July. https://doi.org/10.

18653/v1/2020.acl-main.173.

336

https://arxiv.org/abs/2310.00836
https://aclanthology.org/2023.emnlp-main.557
https://arxiv.org/abs/2303.08896
https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173

McCoy, R. Thomas, Junghyun Min, and Tal Linzen. 2020. “BERTs of a feather

do not generalize together: Large variability in generalization across models

with similar test set performance.” In Proceedings of the Third BlackboxNLP

Workshop on Analyzing and Interpreting Neural Networks for NLP, 217–227.

Online: Association for Computational Linguistics, November. https://doi.org/

10.18653/v1/2020.blackboxnlp-1.21.

McCoy, Tom, Ellie Pavlick, and Tal Linzen. 2019. “Right for the Wrong Reasons:

Diagnosing Syntactic Heuristics in Natural Language Inference.” In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics,

3428–3448. Florence, Italy: Association for Computational Linguistics, July.

https://doi.org/10.18653/v1/P19-1334.

Michel, Paul, Xian Li, Graham Neubig, and Juan Pino. 2019. “On Evaluation of

Adversarial Perturbations for Sequence-to-Sequence Models.” In Proceedings of

the 2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), 3103–3114. Minneapolis, Minnesota: Association for Computational

Linguistics, June. https://doi.org/10.18653/v1/N19-1314.

Miller, George A. 1995. “WordNet: a lexical database for English.” Communications

of the ACM 38 (11): 39–41. https://dl.acm.org/doi/10.1145/219717.219748.

Miller, John, Karl Krauth, Benjamin Recht, and Ludwig Schmidt. 2020. “The effect

of natural distribution shift on question answering models.” In International

337

https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/N19-1314
https://dl.acm.org/doi/10.1145/219717.219748

Conference on Machine Learning, 6905–6916. PMLR. https://arxiv.org/abs/

2004.14444.

Min, Sewon, Jordan Boyd-Graber, Chris Alberti, Danqi Chen, Eunsol Choi, Michael

Collins, Kelvin Guu, et al. 2021. “NeurIPS 2020 EfficientQA Competition: Sys-

tems, Analyses and Lessons Learned.” In Proceedings of the NeurIPS 2020

Competition and Demonstration Track, edited by Hugo Jair Escalante and Katja

Hofmann, 133:86–111. Proceedings of Machine Learning Research. PMLR, June.

https://proceedings.mlr.press/v133/min21a.html.

Min, Sewon, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh,

Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. “FActScore: Fine-

grained Atomic Evaluation of Factual Precision in Long Form Text Generation.”

arXiv preprint arXiv:2305.14251, https://arxiv.org/abs/2305.14251.

Mirzadeh, Seyed Iman, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa,

and Hassan Ghasemzadeh. 2020. “Improved knowledge distillation via teacher

assistant.” In Proceedings of the AAAI Conference on Artificial Intelligence,

34:5191–5198. 04. https://ojs.aaai.org/index.php/AAAI/article/view/5963.

Mishra, Swaroop, and Anjana Arunkumar. 2021. “How Robust are Model Rankings: A

Leaderboard Customization Approach for Equitable Evaluation.” In Proceedings

of the AAAI Conference on Artificial Intelligence, 35:13561–13569. 15. https:

//arxiv.org/abs/2106.05532.

338

https://arxiv.org/abs/2004.14444
https://arxiv.org/abs/2004.14444
https://proceedings.mlr.press/v133/min21a.html
https://arxiv.org/abs/2305.14251
https://ojs.aaai.org/index.php/AAAI/article/view/5963
https://arxiv.org/abs/2106.05532
https://arxiv.org/abs/2106.05532

Mishra, Swaroop, Anjana Arunkumar, Chris Bryan, and Chitta Baral. 2020. “Our

Evaluation Metric Needs an Update to Encourage Generalization.” arXiv preprint

arXiv:2007.06898, https://arxiv.org/abs/2007.06898.

. 2022. “Hardness of samples need to be quantified for a reliable evaluation

system: Exploring potential opportunities with a new task.” arXiv preprint

arXiv:2210.07631.

Mishra, Swaroop, Anjana Arunkumar, Bhavdeep Sachdeva, Chris Bryan, and

Chitta Baral. 2020. “DQI: Measuring Data Quality in NLP.” arXiv preprint

arXiv:2005.00816, https://arxiv.org/abs/2005.00816.

Mishra, Swaroop, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022.

“Cross-Task Generalization via Natural Language Crowdsourcing Instructions.”

In Proceedings of the 60th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), 3470–3487. Dublin, Ireland: Association for

Computational Linguistics, May. https://doi.org/10.18653/v1/2022.acl-long.244.

Mishra, Swaroop, and Bhavdeep Singh Sachdeva. 2020. “Do We Need to Create

Big Datasets to Learn a Task?” In Proceedings of SustaiNLP: Workshop on

Simple and Efficient Natural Language Processing, 169–173. Online: Association

for Computational Linguistics, November. https://doi.org/10.18653/v1/2020.

sustainlp-1.23.

339

https://arxiv.org/abs/2007.06898
https://arxiv.org/abs/2005.00816
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2020.sustainlp-1.23
https://doi.org/10.18653/v1/2020.sustainlp-1.23

Mitra, A., Ishan Shrivastava, and Chitta Baral. 2020. “Enhancing Natural Language

Inference Using New and Expanded Training Data Sets and New Learning

Models.” In AAAI. https://ojs.aaai.org/index.php/AAAI/article/view/6371.

Mitra, Arindam, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes,

Sahaj Agarwal, Xuxi Chen, et al. 2023. Orca 2: Teaching Small Language Models

How to Reason. arXiv: 2311.11045 [cs.AI]. https://arxiv.org/abs/2311.11045.

Modarressi, Ali, Hosein Mohebbi, and Mohammad Taher Pilehvar. 2022. “AdapLeR:

Speeding up Inference by Adaptive Length Reduction.” In Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), 1–15. Dublin, Ireland: Association for Computational Linguistics,

May. https://doi.org/10.18653/v1/2022.acl-long.1.

Mostafazadeh, Nasrin, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv

Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. “A Corpus

and Cloze Evaluation for Deeper Understanding of Commonsense Stories.”

In Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, 839–

849. San Diego, California: Association for Computational Linguistics, June.

https://doi.org/10.18653/v1/N16-1098.

Naik, Aakanksha, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Gra-

ham Neubig. 2018. “Stress Test Evaluation for Natural Language Inference.”

In Proceedings of the 27th International Conference on Computational Linguis-

340

https://ojs.aaai.org/index.php/AAAI/article/view/6371
https://arxiv.org/abs/2311.11045
https://arxiv.org/abs/2311.11045
https://doi.org/10.18653/v1/2022.acl-long.1
https://doi.org/10.18653/v1/N16-1098

tics, 2340–2353. Santa Fe, New Mexico, USA: Association for Computational

Linguistics, August. https://www.aclweb.org/anthology/C18-1198.

Nakamura, Mutsumi, Santosh Mashetty, Mihir Parmar, Neeraj Varshney, and Chitta

Baral. 2023. “LogicAttack: Adversarial Attacks for Evaluating Logical Consistency

of Natural Language Inference.” In Findings of the Association for Computational

Linguistics: EMNLP 2023, edited by Houda Bouamor, Juan Pino, and Kalika Bali,

13322–13334. Singapore: Association for Computational Linguistics, December.

https://doi.org/10.18653/v1/2023.findings-emnlp.889.

Nie, Yixin, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe

Kiela. 2020. “Adversarial NLI: A New Benchmark for Natural Language Un-

derstanding.” In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, 4885–4901. Online: Association for Computational

Linguistics, July. https://doi.org/10.18653/v1/2020.acl-main.441.

Ning, Xuefei, Zinan Lin, Zixuan Zhou, Huazhong Yang, and Yu Wang. 2023. “Skeleton-

of-thought: Large language models can do parallel decoding.” arXiv preprint

arXiv:2307.15337, https://arxiv.org/abs/2307.15337.

O’Brien, Sean, and Mike Lewis. 2023. “Contrastive decoding improves reasoning in

large language models.” arXiv preprint arXiv:2309.09117, https://arxiv.org/abs/

2309.09117.

OpenAI. 2023. “GPT-4 Technical Report.” ArXiv abs/2303.08774. https ://api .

semanticscholar.org/CorpusID:257532815.

341

https://www.aclweb.org/anthology/C18-1198
https://doi.org/10.18653/v1/2023.findings-emnlp.889
https://doi.org/10.18653/v1/2020.acl-main.441
https://arxiv.org/abs/2307.15337
https://arxiv.org/abs/2309.09117
https://arxiv.org/abs/2309.09117
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815

Pan, Liangming, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and

William Yang Wang. 2023. “Automatically correcting large language models:

Surveying the landscape of diverse self-correction strategies.” arXiv preprint

arXiv:2308.03188, https://arxiv.org/abs/2308.03188.

Pan, Yikang, Liangming Pan, Wenhu Chen, Preslav Nakov, Min-Yen Kan, and

William Wang. 2023. “On the Risk of Misinformation Pollution with Large

Language Models.” In Findings of the Association for Computational Linguistics:

EMNLP 2023, edited by Houda Bouamor, Juan Pino, and Kalika Bali, 1389–

1403. Singapore: Association for Computational Linguistics, December. https:

//doi.org/10.18653/v1/2023.findings-emnlp.97.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. 2011. “Scikit-learn: Machine learning in Python.” the Journal of

machine Learning research 12:2825–2830. https://www.jmlr.org/papers/v12/

pedregosa11a.html.

Platt, John, et al. 1999. “Probabilistic outputs for support vector machines and com-

parisons to regularized likelihood methods.” Advances in large margin classifiers

10 (3): 61–74. https://home.cs.colorado.edu/~mozer/Teaching/syllabi/6622/

papers/Platt1999.pdf.

Plummer, Bryan A, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hock-

enmaier, and Svetlana Lazebnik. 2015. “Flickr30k entities: Collecting region-

342

https://arxiv.org/abs/2308.03188
https://doi.org/10.18653/v1/2023.findings-emnlp.97
https://doi.org/10.18653/v1/2023.findings-emnlp.97
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://home.cs.colorado.edu/~mozer/Teaching/syllabi/6622/papers/Platt1999.pdf
https://home.cs.colorado.edu/~mozer/Teaching/syllabi/6622/papers/Platt1999.pdf

to-phrase correspondences for richer image-to-sentence models.” In Proceedings

of the IEEE international conference on computer vision, 2641–2649. https:

//arxiv.org/abs/1505.04870.

Rae, Jack W, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann,

Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young,

et al. 2021. “Scaling language models: Methods, analysis & insights from training

gopher.” arXiv preprint arXiv:2112.11446, https://arxiv.org/abs/2112.11446.

Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020a. “Exploring the limits of

transfer learning with a unified text-to-text transformer.” The Journal of Machine

Learning Research 21 (1): 5485–5551. https://arxiv.org/abs/1910.10683.

. 2020b. “Exploring the Limits of Transfer Learning with a Unified Text-

to-Text Transformer.” Journal of Machine Learning Research 21 (140): 1–67.

http://jmlr.org/papers/v21/20-074.html.

Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. “SQuAD:

100,000+ Questions for Machine Comprehension of Text.” In Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing,

2383–2392. Austin, Texas: Association for Computational Linguistics, November.

https://doi.org/10.18653/v1/D16-1264.

343

https://arxiv.org/abs/1505.04870
https://arxiv.org/abs/1505.04870
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/1910.10683
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264

Ranaldi, Leonardo, and Giulia Pucci. 2023. “When Large Language Models contra-

dict humans? Large Language Models’ Sycophantic Behaviour.” arXiv preprint

arXiv:2311.09410, https://arxiv.org/abs/2311.09410.

Rao, Sudha, and Hal Daumé III. 2018. “Learning to Ask Good Questions: Ranking

Clarification Questions using Neural Expected Value of Perfect Information.” In

Proceedings of the 56th Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), 2737–2746. Melbourne, Australia: Association

for Computational Linguistics, July. https://doi.org/10.18653/v1/P18-1255.

Rehurek, Radim, and Petr Sojka. 2011. “Gensim–python framework for vector space

modelling.” NLP Centre, Faculty of Informatics, Masaryk University, Brno,

Czech Republic 3 (2). https://pypi.org/project/gensim/#:~:text=Gensim%20is%

20a%20Python%20library,information%20retrieval%20(IR)%20community.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2018. “Semantically Equiv-

alent Adversarial Rules for Debugging NLP models.” In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), 856–865. Melbourne, Australia: Association for Computational

Linguistics, July. https://doi.org/10.18653/v1/P18-1079.

Roberts, Adam, Colin Raffel, and Noam Shazeer. 2020. “How Much Knowledge Can

You Pack Into the Parameters of a Language Model?” In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP),

344

https://arxiv.org/abs/2311.09410
https://doi.org/10.18653/v1/P18-1255
https://pypi.org/project/gensim/#:~:text=Gensim%20is%20a%20Python%20library,information%20retrieval%20(IR)%20community
https://pypi.org/project/gensim/#:~:text=Gensim%20is%20a%20Python%20library,information%20retrieval%20(IR)%20community
https://doi.org/10.18653/v1/P18-1079

5418–5426. Online: Association for Computational Linguistics, November. https:

//doi.org/10.18653/v1/2020.emnlp-main.437.

Rodriguez, Pedro, Joe Barrow, Alexander Miserlis Hoyle, John P. Lalor, Robin

Jia, and Jordan Boyd-Graber. 2021. “Evaluation Examples are not Equally

Informative: How should that change NLP Leaderboards?” In Proceedings of the

59th Annual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing (Volume

1: Long Papers), 4486–4503. Online: Association for Computational Linguistics,

August. https://doi.org/10.18653/v1/2021.acl-long.346.

Sagawa, Shiori, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. 2020. “An

investigation of why overparameterization exacerbates spurious correlations.”

In International Conference on Machine Learning, 8346–8356. PMLR. https:

//arxiv.org/abs/2005.04345.

Saha, Amrita, Rahul Aralikatte, Mitesh M. Khapra, and Karthik Sankaranarayanan.

2018. “DuoRC: Towards Complex Language Understanding with Paraphrased

Reading Comprehension.” In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), 1683–1693.

Melbourne, Australia: Association for Computational Linguistics, July. https:

//doi.org/10.18653/v1/P18-1156.

345

https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2021.acl-long.346
https://arxiv.org/abs/2005.04345
https://arxiv.org/abs/2005.04345
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156

Sakaguchi, Keisuke, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2020.

“WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale.” In

AAAI. https://arxiv.org/abs/1907.10641.

Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. “Distil-

BERT, a distilled version of BERT: smaller, faster, cheaper and lighter.” ArXiv

abs/1910.01108. https://arxiv.org/abs/1910.01108.

Sanh, Victor, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid

Alyafeai, Antoine Chaffin, et al. 2022. “Multitask Prompted Training Enables

Zero-Shot Task Generalization.” In International Conference on Learning Repre-

sentations. https://openreview.net/forum?id=9Vrb9D0WI4.

Santilli, Andrea, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele

Mancusi, Riccardo Marin, and Emanuele Rodolà. 2023. “Accelerating Transformer

Inference for Translation via Parallel Decoding.” arXiv preprint arXiv:2305.10427,

https://arxiv.org/abs/2305.10427.

Sap, Maarten, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. 2019.

“Social IQA: Commonsense Reasoning about Social Interactions.” In EMNLP

2019. https://arxiv.org/abs/1904.09728.

Schuster, Tal, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran,

Yi Tay, and Donald Metzler. 2022. “Confident adaptive language modeling.”

Advances in Neural Information Processing Systems 35:17456–17472. https :

//arxiv.org/abs/2207.07061.

346

https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1910.01108
https://openreview.net/forum?id=9Vrb9D0WI4
https://arxiv.org/abs/2305.10427
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/2207.07061
https://arxiv.org/abs/2207.07061

Sharma, Mrinank, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell,

Samuel R Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R

Johnston, et al. 2023. “Towards understanding sycophancy in language models.”

arXiv preprint arXiv:2310.13548, https://arxiv.org/abs/2310.13548.

Shen, Sheng, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael

W Mahoney, and Kurt Keutzer. 2020. “Q-bert: Hessian based ultra low precision

quantization of bert.” In Proceedings of the AAAI Conference on Artificial

Intelligence, 34:8815–8821. 05. https://arxiv.org/abs/1909.05840.

Sheng, Sasha, Amanpreet Singh, Vedanuj Goswami, Jose Alberto Lopez Magana,

Wojciech Galuba, Devi Parikh, and Douwe Kiela. 2021. “Human-Adversarial

Visual Question Answering.” https://arxiv.org/abs/2106.02280.

Smith, Shaden, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajb-

handari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Ko-

rthikanti, et al. 2022. “Using deepspeed and megatron to train megatron-turing nlg

530b, a large-scale generative language model.” arXiv preprint arXiv:2201.11990,

https://arxiv.org/abs/2201.11990.

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,

Andrew Ng, and Christopher Potts. 2013. “Recursive Deep Models for Seman-

tic Compositionality Over a Sentiment Treebank.” In Proceedings of the 2013

Conference on Empirical Methods in Natural Language Processing, 1631–1642.

347

https://arxiv.org/abs/2310.13548
https://arxiv.org/abs/1909.05840
https://arxiv.org/abs/2106.02280
https://arxiv.org/abs/2201.11990

Seattle, Washington, USA: Association for Computational Linguistics, October.

https://aclanthology.org/D13-1170.

Soldaini, Luca, and Alessandro Moschitti. 2020. “The Cascade Transformer: an

Application for Efficient Answer Sentence Selection.” In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, 5697–5708.

Online: Association for Computational Linguistics, July. https://doi.org/10.

18653/v1/2020.acl-main.504.

Soo, Sander. 2014. “Object detection using Haar-cascade Classifier.” Institute of

Computer Science, University of Tartu 2 (3): 1–12. https://www.semanticscholar.

org/paper/Object-detection-using-Haar-cascade-Classifier-Soo/0f1e866c3acb8

a10f96b432e86f8a61be5eb6799.

Spector, Benjamin, and Chris Re. 2023. “Accelerating llm inference with staged

speculative decoding.” arXiv preprint arXiv:2308.04623, https://arxiv.org/abs/

2308.04623.

Speer, Robyn, Joshua Chin, and Catherine Havasi. 2017. “Conceptnet 5.5: An open

multilingual graph of general knowledge.” In Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 31. 1. https://arxiv.org/abs/1612.03975.

Sun, Weiwei, Zhengliang Shi, Shen Gao, Pengjie Ren, Maarten de Rijke, and Zhaochun

Ren. 2023. “Contrastive learning reduces hallucination in conversations.” In

Proceedings of the AAAI Conference on Artificial Intelligence, 37:13618–13626. 11.

https://arxiv.org/abs/2212.10400.

348

https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/2020.acl-main.504
https://doi.org/10.18653/v1/2020.acl-main.504
https://www.semanticscholar.org/paper/Object-detection-using-Haar-cascade-Classifier-Soo/0f1e866c3acb8a10f96b432e86f8a61be5eb6799
https://www.semanticscholar.org/paper/Object-detection-using-Haar-cascade-Classifier-Soo/0f1e866c3acb8a10f96b432e86f8a61be5eb6799
https://www.semanticscholar.org/paper/Object-detection-using-Haar-cascade-Classifier-Soo/0f1e866c3acb8a10f96b432e86f8a61be5eb6799
https://arxiv.org/abs/2308.04623
https://arxiv.org/abs/2308.04623
https://arxiv.org/abs/1612.03975
https://arxiv.org/abs/2212.10400

Swayamdipta, Swabha, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh

Hajishirzi, Noah A. Smith, and Yejin Choi. 2020. “Dataset Cartography: Mapping

and Diagnosing Datasets with Training Dynamics.” In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP),

9275–9293. Online: Association for Computational Linguistics, November. https:

//doi.org/10.18653/v1/2020.emnlp-main.746.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew

Wojna. 2016. “Rethinking the Inception Architecture for Computer Vision.”

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2818–2826. https://arxiv.org/abs/1512.00567.

Tafjord, Oyvind, Peter Clark, Matt Gardner, Wen-tau Yih, and Ashish Sabharwal.

2019. “Quarel: A dataset and models for answering questions about qualitative

relationships.” In Proceedings of the AAAI Conference on Artificial Intelligence,

33:7063–7071. 01. https://arxiv.org/abs/1811.08048.

Tafjord, Oyvind, Matt Gardner, Kevin Lin, and Peter Clark. 2019. “QuaRTz: An

Open-Domain Dataset of Qualitative Relationship Questions.” In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), 5941–5946. Hong Kong, China: Association for Computa-

tional Linguistics, November. https://doi.org/10.18653/v1/D19-1608.

349

https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1811.08048
https://doi.org/10.18653/v1/D19-1608

Talmor, Alon, and Jonathan Berant. 2019. “MultiQA: An Empirical Investigation

of Generalization and Transfer in Reading Comprehension.” In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics,

4911–4921. Florence, Italy: Association for Computational Linguistics, July.

https://doi.org/10.18653/v1/P19-1485.

Talmor, Alon, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. “Com-

monsenseQA: A Question Answering Challenge Targeting Commonsense Knowl-

edge.” In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Vol-

ume 1 (Long and Short Papers), 4149–4158. Minneapolis, Minnesota: Association

for Computational Linguistics, June. https://doi.org/10.18653/v1/N19-1421.

Talmor, Alon, Oyvind Tafjord, Peter Clark, Yoav Goldberg, and Jonathan Berant.

2020. “Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason

Over Implicit Knowledge.” In Advances in Neural Information Processing Systems,

edited by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,

33:20227–20237. Curran Associates, Inc. https://proceedings.neurips.cc/paper_

files/paper/2020/file/e992111e4ab9985366e806733383bd8c-Paper.pdf.

Tan, Hao, and Mohit Bansal. 2019. “LXMERT: Learning Cross-Modality Encoder

Representations from Transformers.” In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 5100–

350

https://doi.org/10.18653/v1/P19-1485
https://doi.org/10.18653/v1/N19-1421
https://proceedings.neurips.cc/paper_files/paper/2020/file/e992111e4ab9985366e806733383bd8c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e992111e4ab9985366e806733383bd8c-Paper.pdf

5111. Hong Kong, China: Association for Computational Linguistics, November.

https://doi.org/10.18653/v1/D19-1514.

Tan, Shawn, Yikang Shen, Chin-Wei Huang, and Aaron C. Courville. 2019. “Investi-

gating Biases in Textual Entailment Datasets.” ArXiv abs/1906.09635. https:

//arxiv.org/abs/1906.09635.

Tao, Chaofan, Lu Hou, Wei Zhang, Lifeng Shang, Xin Jiang, Qun Liu, Ping Luo, and

Ngai Wong. 2022. “Compression of Generative Pre-trained Language Models via

Quantization.” arXiv preprint arXiv:2203.10705, https://aclanthology.org/2022.

acl-long.331.pdf.

Taori, Rohan, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos

Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An

Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_

alpaca.

Tian, Ran, Shashi Narayan, Thibault Sellam, and Ankur P Parikh. 2019. “Sticking to

the facts: Confident decoding for faithful data-to-text generation.” arXiv preprint

arXiv:1910.08684, https://arxiv.org/abs/1910.08684.

Touvron, Hugo, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. 2023. “Llama: Open and efficient foundation language models.”

arXiv preprint arXiv:2302.13971, https://arxiv.org/abs/2302.13971.

351

https://doi.org/10.18653/v1/D19-1514
https://arxiv.org/abs/1906.09635
https://arxiv.org/abs/1906.09635
https://aclanthology.org/2022.acl-long.331.pdf
https://aclanthology.org/2022.acl-long.331.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/1910.08684
https://arxiv.org/abs/2302.13971

Trischler, Adam, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip

Bachman, and Kaheer Suleman. 2017. “NewsQA: A Machine Comprehension

Dataset.” In Proceedings of the 2nd Workshop on Representation Learning for

NLP, 191–200. Vancouver, Canada: Association for Computational Linguistics,

August. https://doi.org/10.18653/v1/W17-2623.

Truong, Thinh Hung, Timothy Baldwin, Karin Verspoor, and Trevor Cohn. 2023.

“Language models are not naysayers: an analysis of language models on negation

benchmarks.” In Proceedings of the 12th Joint Conference on Lexical and Com-

putational Semantics (*SEM 2023), edited by Alexis Palmer and Jose Camacho-

collados, 101–114. Toronto, Canada: Association for Computational Linguistics,

July. https://doi.org/10.18653/v1/2023.starsem-1.10.

Turc, Iulia, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. “Well-read

students learn better: On the importance of pre-training compact models.” arXiv

preprint arXiv:1908.08962, https://openreview.net/forum?id=BJg7x1HFvB.

Vakulenko, Svitlana, Nikos Voskarides, Zhucheng Tu, and Shayne Longpre. 2021. “A

comparison of question rewriting methods for conversational passage retrieval.”

In European Conference on Information Retrieval, 418–424. Springer. https:

//arxiv.org/abs/2101.07382.

Vania, Clara, Phu Mon Htut, William Huang, Dhara Mungra, Richard Yuanzhe Pang,

Jason Phang, Haokun Liu, Kyunghyun Cho, and Samuel R. Bowman. 2021.

“Comparing Test Sets with Item Response Theory.” In Proceedings of the 59th

352

https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/2023.starsem-1.10
https://openreview.net/forum?id=BJg7x1HFvB
https://arxiv.org/abs/2101.07382
https://arxiv.org/abs/2101.07382

Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), 1141–1158. Online: Association for Computational Linguistics, August.

https://doi.org/10.18653/v1/2021.acl-long.92.

Varshney, Neeraj, Pratyay Banerjee, Tejas Gokhale, and Chitta Baral. 2022. “Un-

supervised Natural Language Inference Using PHL Triplet Generation.” In

Findings of the Association for Computational Linguistics: ACL 2022, 2003–

2016. Dublin, Ireland: Association for Computational Linguistics, May. https:

//aclanthology.org/2022.findings-acl.159.

Varshney, Neeraj, and Chitta Baral. 2022. “Model Cascading: Towards Jointly Im-

proving Efficiency and Accuracy of NLP Systems.” In Proceedings of the 2022

Conference on Empirical Methods in Natural Language Processing, 11007–11021.

Abu Dhabi, United Arab Emirates: Association for Computational Linguistics,

December. https://doi.org/10.18653/v1/2022.emnlp-main.756.

. 2023. “Post-Abstention: Towards Reliably Re-Attempting the Abstained

Instances in QA.” In Proceedings of the 61st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), 967–982. Toronto,

Canada: Association for Computational Linguistics, July. https://aclanthology.

org/2023.acl-long.55.

353

https://doi.org/10.18653/v1/2021.acl-long.92
https://aclanthology.org/2022.findings-acl.159
https://aclanthology.org/2022.findings-acl.159
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://aclanthology.org/2023.acl-long.55
https://aclanthology.org/2023.acl-long.55

Varshney, Neeraj, Agneet Chatterjee, Mihir Parmar, and Chitta Baral. 2023. “Accel-

erating llm inference by enabling intermediate layer decoding.” arXiv preprint

arXiv:2310.18581.

Varshney, Neeraj, Man Luo, and Chitta Baral. 2022. “Can Open-Domain QA

Reader Utilize External Knowledge Efficiently like Humans?” arXiv preprint

arXiv:2211.12707, https://arxiv.org/abs/2211.12707.

Varshney, Neeraj, Swaroop Mishra, and Chitta Baral. 2022a. “ILDAE: Instance-

Level Difficulty Analysis of Evaluation Data.” In Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), 3412–3425. Dublin, Ireland: Association for Computational Linguistics,

May. https://aclanthology.org/2022.acl-long.240.

. 2022b. “Investigating Selective Prediction Approaches Across Several Tasks

in IID, OOD, and Adversarial Settings.” In Findings of the Association for

Computational Linguistics: ACL 2022, 1995–2002. Dublin, Ireland: Association

for Computational Linguistics, May. https://aclanthology.org/2022.findings-

acl.158.

. 2022c. “Towards Improving Selective Prediction Ability of NLP Systems.”

In Proceedings of the 7th Workshop on Representation Learning for NLP, 221–

226. Dublin, Ireland: Association for Computational Linguistics, May. https:

//doi.org/10.18653/v1/2022.repl4nlp-1.23.

354

https://arxiv.org/abs/2211.12707
https://aclanthology.org/2022.acl-long.240
https://aclanthology.org/2022.findings-acl.158
https://aclanthology.org/2022.findings-acl.158
https://doi.org/10.18653/v1/2022.repl4nlp-1.23
https://doi.org/10.18653/v1/2022.repl4nlp-1.23

Varshney, Neeraj, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu.

2023. “A stitch in time saves nine: Detecting and mitigating hallucinations of

llms by validating low-confidence generation.” arXiv preprint arXiv:2307.03987,

https://arxiv.org/abs/2307.03987.

Wallace, Eric, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019.

“Universal Adversarial Triggers for Attacking and Analyzing NLP.” In Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), 2153–2162. Hong Kong, China: Association for

Computational Linguistics, November. https://doi.org/10.18653/v1/D19-1221.

Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael,

Felix Hill, Omer Levy, and Samuel Bowman. 2019. “SuperGLUE: A Stickier

Benchmark for General-Purpose Language Understanding Systems.” In Advances

in Neural Information Processing Systems, edited by H. Wallach, H. Larochelle, A.

Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, vol. 32. Curran Associates,

Inc. https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf492

3da8de6-Paper.pdf.

Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel

Bowman. 2018. “GLUE: A Multi-Task Benchmark and Analysis Platform for

Natural Language Understanding.” In Proceedings of the 2018 EMNLP Workshop

BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 353–355.

355

https://arxiv.org/abs/2307.03987
https://doi.org/10.18653/v1/D19-1221
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf

Brussels, Belgium: Association for Computational Linguistics, November. https:

//doi.org/10.18653/v1/W18-5446.

Wang, Hongmin. 2019. “Revisiting Challenges in Data-to-Text Generation with Fact

Grounding.” In Proceedings of the 12th International Conference on Natural

Language Generation, 311–322. Tokyo, Japan: Association for Computational

Linguistics, October. https://doi.org/10.18653/v1/W19-8639.

Wang, Peiyi, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu

Liu, and Zhifang Sui. 2023. “Large language models are not fair evaluators.”

arXiv preprint arXiv:2305.17926, https://arxiv.org/abs/2305.17926.

Wang, Xinyi, Yulia Tsvetkov, Sebastian Ruder, and Graham Neubig. 2021. “Efficient

Test Time Adapter Ensembling for Low-resource Language Varieties.” In Findings

of the Association for Computational Linguistics: EMNLP 2021, 730–737. Punta

Cana, Dominican Republic: Association for Computational Linguistics, November.

https://doi.org/10.18653/v1/2021.findings-emnlp.63.

Wang, Yizhong, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel

Khashabi, and Hannaneh Hajishirzi. 2023. “Self-Instruct: Aligning Language

Models with Self-Generated Instructions.” In Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), edited by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,

13484–13508. Toronto, Canada: Association for Computational Linguistics, July.

https://doi.org/10.18653/v1/2023.acl-long.754.

356

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W19-8639
https://arxiv.org/abs/2305.17926
https://doi.org/10.18653/v1/2021.findings-emnlp.63
https://doi.org/10.18653/v1/2023.acl-long.754

Wang, Yizhong, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza

Mirzaei, Atharva Naik, Arjun Ashok, et al. 2022. “Super-NaturalInstructions:

Generalization via Declarative Instructions on 1600+ NLP Tasks.” In Proceedings

of the 2022 Conference on Empirical Methods in Natural Language Processing,

5085–5109. Abu Dhabi, United Arab Emirates: Association for Computational

Linguistics, December. https://aclanthology.org/2022.emnlp-main.340.

Wang, Ziheng, Jeremy Wohlwend, and Tao Lei. 2020. “Structured Pruning of Large

Language Models.” In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), 6151–6162. Online: Association for

Computational Linguistics, November. https://doi.org/10.18653/v1/2020.emnlp-

main.496.

Warstadt, Alex, Amanpreet Singh, and Samuel R. Bowman. 2019. “Neural Network

Acceptability Judgments.” Transactions of the Association for Computational

Linguistics 7 (March): 625–641. https://doi.org/10.1162/tacl_a_00290.

Wei, Jason, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester,

Nan Du, Andrew M. Dai, and Quoc V Le. 2022. “Finetuned Language Models are

Zero-Shot Learners.” In International Conference on Learning Representations.

https://openreview.net/forum?id=gEZrGCozdqR.

Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc

V Le, Denny Zhou, et al. 2022. “Chain-of-thought prompting elicits reasoning

357

https://aclanthology.org/2022.emnlp-main.340
https://doi.org/10.18653/v1/2020.emnlp-main.496
https://doi.org/10.18653/v1/2020.emnlp-main.496
https://doi.org/10.1162/tacl_a_00290
https://openreview.net/forum?id=gEZrGCozdqR

in large language models.” Advances in Neural Information Processing Systems

35:24824–24837. https://arxiv.org/abs/2201.11903.

Wei, Jerry, Da Huang, Yifeng Lu, Denny Zhou, and Quoc V Le. 2023. “Simple

synthetic data reduces sycophancy in large language models.” arXiv preprint

arXiv:2308.03958, https://arxiv.org/abs/2308.03958.

Weiss, David J. 1982. “Improving measurement quality and efficiency with adaptive

testing.” Applied psychological measurement 6 (4): 473–492. https://journals.

sagepub.com/doi/10.1177/014662168200600408.

Welleck, Sean, Jason Weston, Arthur Szlam, and Kyunghyun Cho. 2019. “Dialogue

Natural Language Inference.” In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, 3731–3741. Florence, Italy: Associa-

tion for Computational Linguistics, July. https://doi.org/10.18653/v1/P19-1363.

Williams, Adina, Nikita Nangia, and Samuel Bowman. 2018. “A Broad-Coverage

Challenge Corpus for Sentence Understanding through Inference.” In Proceedings

of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), 1112–1122. New Orleans, Louisiana: Association for Computational

Linguistics, June. https://doi.org/10.18653/v1/N18-1101.

Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, et al. 2020. “Transformers: State-of-the-Art Natural

Language Processing.” In Proceedings of the 2020 Conference on Empirical

358

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2308.03958
https://journals.sagepub.com/doi/10.1177/014662168200600408
https://journals.sagepub.com/doi/10.1177/014662168200600408
https://doi.org/10.18653/v1/P19-1363
https://doi.org/10.18653/v1/N18-1101

Methods in Natural Language Processing: System Demonstrations, 38–45. Online:

Association for Computational Linguistics, October. https://doi.org/10.18653/

v1/2020.emnlp-demos.6.

Xin, Ji, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. 2020. “DeeBERT:

Dynamic Early Exiting for Accelerating BERT Inference.” In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, 2246–2251.

Online: Association for Computational Linguistics, July. https://doi.org/10.

18653/v1/2020.acl-main.204.

Xin, Ji, Raphael Tang, Yaoliang Yu, and Jimmy Lin. 2021. “The Art of Abstention:

Selective Prediction and Error Regularization for Natural Language Processing.”

In Proceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), 1040–1051. Online: Association for Compu-

tational Linguistics, August. https://doi.org/10.18653/v1/2021.acl-long.84.

Xu, Benfeng, Licheng Zhang, Zhendong Mao, Quan Wang, Hongtao Xie, and Yongdong

Zhang. 2020. “Curriculum Learning for Natural Language Understanding.” In

Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, 6095–6104. Online: Association for Computational Linguistics, July.

https://doi.org/10.18653/v1/2020.acl-main.542.

Xu, Can, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang

Tao, and Daxin Jiang. 2023. “Wizardlm: Empowering large language models to

359

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2021.acl-long.84
https://doi.org/10.18653/v1/2020.acl-main.542

follow complex instructions.” arXiv preprint arXiv:2304.12244, https://arxiv.

org/abs/2304.12244.

Yamada, Ikuya, Akari Asai, and Hannaneh Hajishirzi. 2021. “Efficient Passage Re-

trieval with Hashing for Open-domain Question Answering.” In Proceedings of

the 59th Annual Meeting of the Association for Computational Linguistics and

the 11th International Joint Conference on Natural Language Processing (Volume

2: Short Papers), 979–986. Online: Association for Computational Linguistics,

August. https://doi.org/10.18653/v1/2021.acl-short.123.

Yang, Nan, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan

Majumder, and Furu Wei. 2023. “Inference with reference: Lossless acceleration

of large language models.” arXiv preprint arXiv:2304.04487, https://arxiv.org/

abs/2304.04487.

Yang, Seongjun, Gibbeum Lee, Jaewoong Cho, Dimitris Papailiopoulos, and Kangwook

Lee. 2023. “Predictive Pipelined Decoding: A Compute-Latency Trade-off for

Exact LLM Decoding.” arXiv preprint arXiv:2307.05908, https://arxiv.org/abs/

2307.05908.

Yang, Zhilin, Zihang Dai, Yiming Yang, J. Carbonell, R. Salakhutdinov, and Quoc

V. Le. 2019a. “XLNet: Generalized Autoregressive Pretraining for Language

Understanding.” In NeurIPS. https://arxiv.org/abs/1906.08237.

Yang, Zhilin, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and

Quoc V Le. 2019b. “XLNet: Generalized Autoregressive Pretraining for Language

360

https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://doi.org/10.18653/v1/2021.acl-short.123
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2307.05908
https://arxiv.org/abs/2307.05908
https://arxiv.org/abs/1906.08237

Understanding.” In Advances in Neural Information Processing Systems, edited

by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.

Garnett, vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/

2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

Yang, Zhilin, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan

Salakhutdinov, and Christopher D. Manning. 2018. “HotpotQA: A Dataset for

Diverse, Explainable Multi-hop Question Answering.” In Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing, 2369–

2380. Brussels, Belgium: Association for Computational Linguistics, October.

https://doi.org/10.18653/v1/D18-1259.

El-Yaniv, Ran, et al. 2010. “On the Foundations of Noise-free Selective Classification.”

Journal of Machine Learning Research 11 (5). https://jmlr.csail.mit.edu/papers/

volume11/el-yaniv10a/el-yaniv10a.pdf.

Yao, Zhewei, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and

Yuxiong He. 2022. “Zeroquant: Efficient and affordable post-training quantization

for large-scale transformers.” Advances in Neural Information Processing Systems

35:27168–27183. https://arxiv.org/abs/2206.01861.

Ye, Mengyu, Tatsuki Kuribayashi, Jun Suzuki, Goro Kobayashi, and Hiroaki Fu-

nayama. 2023. “Assessing Step-by-Step Reasoning against Lexical Negation: A

Case Study on Syllogism.” In Proceedings of the 2023 Conference on Empiri-

cal Methods in Natural Language Processing, edited by Houda Bouamor, Juan

361

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.18653/v1/D18-1259
https://jmlr.csail.mit.edu/papers/volume11/el-yaniv10a/el-yaniv10a.pdf
https://jmlr.csail.mit.edu/papers/volume11/el-yaniv10a/el-yaniv10a.pdf
https://arxiv.org/abs/2206.01861

Pino, and Kalika Bali, 14753–14773. Singapore: Association for Computational

Linguistics, December. https://doi.org/10.18653/v1/2023.emnlp-main.912.

Yue, Murong, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. 2023. “Large Language

Model Cascades with Mixture of Thoughts Representations for Cost-efficient

Reasoning.” arXiv preprint arXiv:2310.03094, https://arxiv.org/abs/2310.03094.

Zamani, Hamed, Susan T. Dumais, Nick Craswell, Paul N. Bennett, and Gord Lueck.

2020. “Generating Clarifying Questions for Information Retrieval.” Proceedings

of The Web Conference 2020, https://dl.acm.org/doi/10.1145/3366423.3380126.

Zamani, Hamed, Gord Lueck, Everest Chen, Rodolfo Quispe, Flint Luu, and Nick

Craswell. 2020. “MIMICS: A Large-Scale Data Collection for Search Clarification.”

In Proceedings of the 29th ACM International on Conference on Information

and Knowledge Management. CIKM ’20. https://arxiv.org/abs/2006.10174.

Zellers, Rowan, Yonatan Bisk, Roy Schwartz, and Yejin Choi. 2018. “SWAG: A Large-

Scale Adversarial Dataset for Grounded Commonsense Inference.” In Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing

(EMNLP). https://arxiv.org/abs/1808.05326.

Zhang, Jingqing, Yao Zhao, Mohammad Saleh, and Peter J. Liu. 2019. PEGASUS:

Pre-training with Extracted Gap-sentences for Abstractive Summarization. arXiv:

1912.08777 [cs.CL]. https://arxiv.org/abs/1912.08777.

362

https://doi.org/10.18653/v1/2023.emnlp-main.912
https://arxiv.org/abs/2310.03094
https://dl.acm.org/doi/10.1145/3366423.3380126
https://arxiv.org/abs/2006.10174
https://arxiv.org/abs/1808.05326
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777

Zhang, Shujian, Chengyue Gong, and Eunsol Choi. 2021. “Knowing More About

Questions Can Help: Improving Calibration in Question Answering.” In Findings

of the Association for Computational Linguistics: ACL-IJCNLP 2021, 1958–1970.

Online: Association for Computational Linguistics, August. https://doi.org/10.

18653/v1/2021.findings-acl.172.

Zhang, Tianhua, Hongyin Luo, Yung-Sung Chuang, Wei Fang, Luc Gaitskell, Thomas

Hartvigsen, Xixin Wu, Danny Fox, Helen Meng, and James Glass. 2023. “In-

terpretable unified language checking.” arXiv preprint arXiv:2304.03728, https:

//arxiv.org/abs/2304.03728.

Zhang, Wei, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun Liu.

2020. “TernaryBERT: Distillation-aware Ultra-low Bit BERT.” In Proceedings

of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP), 509–521. Online: Association for Computational Linguistics, Novem-

ber. https://doi.org/10.18653/v1/2020.emnlp-main.37.

Zhang, Xiang, Junbo Zhao, and Yann LeCun. 2015. “Character-level Convolutional

Networks for Text Classification.” In Advances in Neural Information Processing

Systems, edited by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,

vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/

250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

Zhang, Yizhe, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao,

Jianfeng Gao, Jingjing Liu, and Bill Dolan. 2020. “DIALOGPT : Large-Scale

363

https://doi.org/10.18653/v1/2021.findings-acl.172
https://doi.org/10.18653/v1/2021.findings-acl.172
https://arxiv.org/abs/2304.03728
https://arxiv.org/abs/2304.03728
https://doi.org/10.18653/v1/2020.emnlp-main.37
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

Generative Pre-training for Conversational Response Generation.” In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics: Sys-

tem Demonstrations, 270–278. Online: Association for Computational Linguistics,

July. https://doi.org/10.18653/v1/2020.acl-demos.30.

Zhang, Yuan, Jason Baldridge, and Luheng He. 2019. “PAWS: Paraphrase Adversaries

from Word Scrambling.” In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), 1298–1308. Min-

neapolis, Minnesota: Association for Computational Linguistics, June. https:

//doi.org/10.18653/v1/N19-1131.

Zhao, Ruochen, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. 2023.

“Verify-and-edit: A knowledge-enhanced chain-of-thought framework.” arXiv

preprint arXiv:2305.03268, https://arxiv.org/abs/2305.03268.

Zhao, Tiancheng, Xiaopeng Lu, and Kyusong Lee. 2021. “SPARTA: Efficient Open-

Domain Question Answering via Sparse Transformer Matching Retrieval.” In

Proceedings of the 2021 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, 565–575.

Online: Association for Computational Linguistics, June. https://doi.org/10.

18653/v1/2021.naacl-main.47.

Zhao, Zheng, Shay B. Cohen, and Bonnie Webber. 2020. “Reducing Quantity Halluci-

nations in Abstractive Summarization.” In Findings of the Association for Com-

364

https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/N19-1131
https://doi.org/10.18653/v1/N19-1131
https://arxiv.org/abs/2305.03268
https://doi.org/10.18653/v1/2021.naacl-main.47
https://doi.org/10.18653/v1/2021.naacl-main.47

putational Linguistics: EMNLP 2020, 2237–2249. Online: Association for Com-

putational Linguistics, November. https://doi.org/10.18653/v1/2020.findings-

emnlp.203.

Zheng, Lianmin, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao

Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. “Judging LLM-as-

a-judge with MT-Bench and Chatbot Arena.” arXiv preprint arXiv:2306.05685,

https://arxiv.org/abs/2306.05685.

Zhong, Ruiqi, Dhruba Ghosh, Dan Klein, and Jacob Steinhardt. 2021. “Are Larger

Pretrained Language Models Uniformly Better? Comparing Performance at

the Instance Level.” In Findings of the Association for Computational Linguis-

tics: ACL-IJCNLP 2021, 3813–3827. Online: Association for Computational

Linguistics, August. https://doi.org/10.18653/v1/2021.findings-acl.334.

Zhou, Denny, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,

Dale Schuurmans, et al. 2023. “Least-to-Most Prompting Enables Complex

Reasoning in Large Language Models.” In The Eleventh International Conference

on Learning Representations. https://openreview.net/forum?id=WZH7099tgfM.

Zhou, Wenxuan, Sheng Zhang, Hoifung Poon, and Muhao Chen. 2023. “Context-

faithful prompting for large language models.” arXiv preprint arXiv:2303.11315,

https://arxiv.org/abs/2303.11315.

Zhou, Xiang, Yixin Nie, Hao Tan, and Mohit Bansal. 2020. “The Curse of Perfor-

mance Instability in Analysis Datasets: Consequences, Source, and Suggestions.”

365

https://doi.org/10.18653/v1/2020.findings-emnlp.203
https://doi.org/10.18653/v1/2020.findings-emnlp.203
https://arxiv.org/abs/2306.05685
https://doi.org/10.18653/v1/2021.findings-acl.334
https://openreview.net/forum?id=WZH7099tgfM
https://arxiv.org/abs/2303.11315

In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP), 8215–8228. Online: Association for Computational

Linguistics, November. https://doi.org/10.18653/v1/2020.emnlp-main.659.

366

https://doi.org/10.18653/v1/2020.emnlp-main.659

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

31235859

2024

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 INTRODUCTION
	1.1 Overview
	1.2 Solutions to Address the Efficiency and Reliability Challenges
	1.3 Impact of our Solutions
	1.4 Summary
	1.5 Related Publications

	2 BACKGROUND AND RELATED WORK
	2.1 Hallucinations of Large Language Models
	2.2 Selective Prediction
	2.2.1 Formulation
	2.2.2 Tasks Related to Selective Prediction
	2.2.2.1 Confidence Calibration
	2.2.2.2 Out-of-Domain Detection

	2.3 Efficient Decoding of Large Language Models
	2.4 Efficient Inference of Models
	2.5 Efficient Evaluations

	3 Improving Reliability by Actively Detecting and Mitigating Hallucinations of Large Language Models
	3.1 Why Do LLMs Hallucinate?
	3.2 Active Detection and Mitigation Approach
	3.2.1 Hallucination Detection
	3.2.1.1 STEP: Identify Key Concepts
	3.2.1.2 STEP: Calculate Model's Uncertainty
	3.2.1.3 STEP: Create Validation Question
	3.2.1.4 STEP: Find Relevant Knowledge
	3.2.1.5 STEP: Answer Validation Question

	3.2.2 Hallucination Mitigation
	3.2.3 Design Decisions

	3.3 Experiments and Results
	3.3.1 Motivating Findings
	3.3.1.1 Propagation of Hallucination
	3.3.1.2 Logits Provide Signal for Hallucination

	3.3.2 Hallucination Detection and Mitigation
	3.3.3 Active Detection and Mitigation

	3.4 Additional Experiments
	3.4.1 Efficacy with Another LLM
	3.4.2 Multi-hop Questions
	3.4.3 False Premise Questions

	3.5 Advantages of the Proposed Approach
	3.6 Limitations of the Proposed Approach
	3.6.1 Impact on Inference Efficiency
	3.6.2 Correctness of Retrieved Knowledge
	3.6.3 Error Propagation

	3.7 Further Analysis
	3.7.1 Active Detection and Mitigation Performance Analysis
	3.7.2 Recall of Hallucination Detection vs Probability Threshold
	3.7.3 Hallucination Mitigation Analysis
	3.7.4 Analysis of Logit Output Values
	3.7.4.1 Benefit of Identifying Concepts from a Sentence
	3.7.4.2 Logit Output Values with Minimum Technique
	3.7.4.3 Comparing Probability Calculation Techniques

	3.7.5 Efficacy with Another LLM
	3.7.6 Multi-hop QA Experiment
	3.7.6.1 Prompt with In-context Examples
	3.7.6.2 Examples of Multi-hop Bridge Questions
	3.7.6.3 Examples of Model Responses

	3.7.7 False Premise QA Experiment
	3.7.8 Effectiveness of the Method beyond the First Five Generated Sentences
	3.7.9 Effectiveness of Retrieval Alone

	3.8 Other Applications of our Approach
	3.9 Conclusion

	4 Improving Reliability by Addressing the Hallucination Problem in Tasks Involving Negation
	4.1 Introduction
	4.2 Evaluation Tasks
	4.2.1 False Premise Completion (FPC)
	4.2.2 Constrained Fact Generation (CFG)
	4.2.3 Multiple-Choice QA (MCQA)
	4.2.4 Fact Generation (FG)

	4.3 Experiments and Results
	4.3.1 False Premise Completion
	4.3.1.1 Performance of Models
	4.3.1.2 Mitigation of Hallucinations

	4.3.2 Constrained Fact Generation
	4.3.3 Multiple-Choice QA
	4.3.4 Fact Generation

	4.4 BARD Evaluations
	4.5 Conclusion

	5 Improving Reliability by Abstaining From Making Incorrect Predictions via Selective Prediction
	5.1 Introduction
	5.2 Approaches
	5.3 Experimental Setup
	5.3.1 Tasks and Settings:
	5.3.2 Training Details:

	5.4 Results and Analysis
	5.4.1 Slight Improvement in IID
	5.4.2 Negligible Improvement / Degradation in OOD and ADV
	5.4.3 Calib T Degrades Performance
	5.4.4 Existing Approaches Fail to Utilize Additional Resources
	5.4.5 Effect of Increasing Dropout Masks in Monte-Carlo Dropout
	5.4.6 No Clear Winner
	5.4.7 MaxProb for Selective Prediction
	5.4.8 Comparing Risk-Coverage Curves of MCD and Calib C for DNLI Dataset in IID Setting

	5.5 Towards Improving Selective Prediction Ability of NLP Systems
	5.6 Method
	5.6.1 Difficulty Score Computation
	5.6.2 Annotation Score Computation
	5.6.3 Calibration

	5.7 Experimental Setup
	5.7.1 Calibration Baselines
	5.7.2 Datasets

	5.8 Results and Analysis
	5.8.1 MaxProb Struggles in OOD Setting
	5.8.2 Proposed Method Outperforms All

	5.9 Conclusion

	6 Reliably Increasing the Coverage of a Selective Prediction System
	6.1 Introduction
	6.2 Post-Abstention
	6.2.1 Background
	6.2.2 Task Formulation
	6.2.3 Approaches
	6.2.3.1 Ensembling using Question Paraphrases
	6.2.3.2 Re-Examining Top N Predictions (REToP)
	6.2.3.3 Human Intervention (HI)

	6.3 Experiments and Results
	6.3.1 Experimental Setup
	6.3.2 Results
	6.3.2.1 REToP
	6.3.2.2 Comparing Post-Abstention Approaches
	6.3.2.3 Human Intervention (HI)
	6.3.2.4 Ensembling Using Paraphrases

	6.4 Analysis
	6.5 Ensembling (Mean) Performance
	6.6 Dataset Statistics
	6.7 Differentiating REToP from Calibration
	6.8 Other Post-Abstention Techniques
	6.9 Coverage 100% for Human Intervention Methods
	6.10 Comparison with Other Selective Prediction Methods
	6.11 Conclusion and Discussion

	7 Improving the LLM Inference Efficiency by Enabling Intermediate Layer Decoding
	7.1 Introduction
	7.2 Instruction Tuning with LITE
	7.3 Making Inference Efficient
	7.3.1 Fixed Early Exiting
	7.3.2 Dynamic Confidence-Based Early Exiting

	7.4 Experimental Setup
	7.5 Results and Analysis
	7.5.1 Generation Ability of Intermediate Layers
	7.5.2 Impact of LITE on the Final Layer
	7.5.3 `Alignment' of Intermediate Layers
	7.5.4 Token Probability and Alignment
	7.5.5 Effectiveness of Dynamic Early Exiting
	7.5.5.1 Semantic Similarity of the Responses
	7.5.5.2 Dissecting the Cost Improvements
	7.5.5.3 Contribution of Different Exiting Layers
	7.5.5.4 Effectiveness at Category Level

	7.6 Evaluation Methodology
	7.7 Additional Results
	7.7.1 Inability of the Intermediate Layers of the Model Tuned with Standard Instruction Tuning to Generate `High-Quality' Text
	7.7.2 Intermediate Layers Acquire Good Generation Ability in IT with LITE
	7.7.3 Poor Quality of Responses With Dynamic Early Exiting from Model Tuned with Standard Instruction Tuning (IT)
	7.7.4 Examples of Responses with Dynamic Early Exiting for Model instruction tuned with LITE
	7.7.5 Quality and Inference Cost Analysis at Category Level
	7.7.6 Relationship Between Token Prediction Confidence and Percentage Alignment of the Intermediate Layers for the Model Tuned with Instruction Tuning (IT)
	7.7.7 Dynamic Confidence-Based Early Exiting with Aggressive Confidence Thresholds
	7.7.8 Results for 13B Model

	7.8 Weighted LITE
	7.9 Design Decisions
	7.10 Discussion on Other Avenues of Research using Intermediate Layer Decoding
	7.10.1 Speculative Sampling
	7.10.2 Hallucination Detection

	7.11 Conclusion and Discussion

	8 Jointly Improving Efficiency and Accuracy via Model Cascading
	8.1 Introduction
	8.2 Model Cascading
	8.2.1 Formulation
	8.2.2 Approaches

	8.3 Experiments
	8.3.1 Experimental Details
	8.3.2 Cascading with Two Models (K=2)
	8.3.2.1 Problem Setup
	8.3.2.2 Results

	8.3.3 Cascading with Three Models (K=3)
	8.3.3.1 Problem Setup
	8.3.3.2 Results and Analysis

	8.3.4 Analysis with Other Model Combinations
	8.3.4.1 Medium and Large
	8.3.4.2 Mini and Large

	8.4 Conclusion and Discussion

	9 Efficiently Utilize External Knowledge for Open-Domain Question Answering via Dynamic Reading
	9.1 Introduction
	9.2 Approach
	9.2.1 Mathematical Formulation
	9.2.2 Deciding When to Use More Knowledge
	9.2.3 Baseline Approaches
	9.2.4 Performance Comparison Metric

	9.3 Experiments and Results
	9.3.1 One Knowledge Iteration (K = 1)
	9.3.2 Two Knowledge Iterations (K = 2)
	9.3.3 Three Knowledge Iterations (K = 3)

	9.4 Impact of Knowledge Iterations
	9.5 Comparing Overall Performance
	9.6 Conclusion

	10 Achieving Training Data Efficiency for Natural Language Inference Using PHL Triplet Generation
	10.1 Introduction
	10.2 Unsupervised NLI
	10.3 PHL Triplet Generation
	10.3.1 P: Premise Generation
	10.3.2 T: Transformations
	10.3.2.1 Entailment:
	10.3.2.2 Contradiction:
	10.3.2.3 Neutral:

	10.3.3 Data Validation

	10.4 Training NLI Model
	10.4.1 NPH-Setting
	10.4.2 P-Setting
	10.4.3 PH-Setting

	10.5 Experiments
	10.5.1 Experimental Setup
	10.5.2 Results
	10.5.3 Low-Data Regimes
	10.5.4 Analysis

	10.6 Conclusion and Discussion

	11 Achieving Evaluation Efficiency via Instance-Level Difficulty Analysis of Evaluation Data
	11.1 Introduction
	11.2 Difficulty Score Computation
	11.2.1 Desiderata for Difficulty Scores
	11.2.2 Method

	11.3 Efficient Evaluations
	11.3.1 Problem Statement
	11.3.2 Solution
	11.3.3 Experimental Details
	11.3.4 Related Work
	11.3.5 Results
	11.3.5.1 Generalization of Difficulty Scores:
	11.3.5.2 Efficient Evaluations:

	11.4 Improving Evaluation Datasets
	11.4.1 Problem Statement
	11.4.2 Solution
	11.4.3 Results

	11.5 Other Applications of ILDAE
	11.5.1 Dataset Analysis
	11.5.2 Model Analysis
	11.5.3 Correlation with OOD Performance

	11.6 Conclusion

	12 Conclusions and Future Work

	References

